HW 2

Due March 20, 2013

Some Notations

- For sets A and B, let

$$
A-B:=\{x \mid x \in A \& x \notin B\} .
$$

We write

$$
A \subseteq B \quad \text { or } \quad B \supseteq A
$$

if every element of A is an element of B. In this case we write

$$
A \subset B \quad \text { or } \quad B \supset A
$$

if $A \neq B$.

- If f is a function, then

$$
f[A]:=\{f(a) \mid a \in A\} .
$$

- If f is a function, then

$$
f^{1}=f, \quad f^{2}:=f \circ f, \quad f^{3}:=f \circ f \circ f, \quad \ldots
$$

and f^{0} is the identity map.

- Let B^{A} be the set of all functions from A into B.

Homeworks 2

1. Show that $f[A-B] \supseteq f[A]-f[B]$.
2. Show that, if f is injective, $f[A-B]=f[A]-f[B]$.
3. Let h be a function from A into itself. Let

$$
A_{n}:=h^{n}[A]-h^{n+1}[A]
$$

for $n=0,1,2, \ldots$, and let

$$
h^{\infty}[A]=\bigcap_{n=0}^{\infty} h^{n}[A] .
$$

Show that

$$
A-\bigcup_{n=0}^{\infty} A_{n}=h^{\infty}[A] .
$$

4. For sets A, B and C, show that

$$
\left(A^{B}\right)^{C} \sim A^{B \times C}
$$

5. Show that the set of all infinite sequences of \mathbb{R} is equipotent to \mathbb{R}, i.e., $\mathbb{R}^{\mathbb{N}} \sim \mathbb{R}$.
