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1 MULTILINEAR ALGEBRA

Notation. R : commutative ring with 1. A,B ,C , M ,V : (unitary) R-module

Definition 1. The tensor product A⊗R B is defined by the universal property

A×B
⊗ //

∀bilinear
((

A⊗B

∃!R-hom
��

∀C

Existence? Consider it as the quotient of the free group : A⊗B =F (A×B)/(bilinearity).

Exercise 1. Show that (A⊗B)⊗C ≈ A⊗ (B ⊗C ).

Definition 2. Tensor product A⊗B ⊗C is defined by the following universal property

A×B ×C
⊗ //

∀trilinear
))

A⊗B ⊗C

∃!R-hom
��

∀M

HW 1. Show that the exsistence of the tensor product A⊗B ⊗C follows from Exercise 1.

Definition 3. One can define similarly the tensor product of n R-moduels: A1 ⊗ A2 ⊗·· ·⊗ An .
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Associativity "a(bc) = (ab)c" implies the general associativity : order of parenthesis doesn’t matter. For in-
stance, (ab)(cd(e f )) = a((bc)d)e f

Definition 4. Let V be an R-module. Define the tensor algebra T (V ) by

T (V ) = ⊕
i∈Z+

T i (V )

= R ⊕V ⊕ (V ⊗V )⊕ (V ⊗V ⊗V )⊕·· ·

where T 0(V ) = R, T i (V ) = T i−1(V )⊗V .

Z+ denotes the set of nonnegative integers. Note that T (V ) is a graded algebra.

Example 1. (A⊗B)⊗C

We need to define multiplication in order to make T (V ) into an algebra. We simply make the tensor product
into the multiplication. For example, for u, v, w ∈V , define u · v = u ⊗ v , and u · (v ⊗ v) = u ⊗ v ⊗w .
A multiplication is a R-bilinear map T (V )×T (V ) → T (V ) which is associative. Does this map exists? Not so
sure. But consider instead each direct summand. On can define following bilinear map

T i (V )×T j (V ) −→ T i+ j (V )

by (u, v) 7→ u ⊗ v , that is, the tensor map ⊗.
Associativity is clear:

T i (V )×T j (V )×T k (V ) −→ T i+ j+k (V )

Now we have multiplication on each direct summands. Linearly extend this to the multiplication of the whole.

Universal property of tensor algebra. Tensor algebra can be defined by the following universal property: for
any R-algebra A and R-linear map f : V →A , there exists a unique R-algebra homomorphism φ : T (V ) →A

such that following diagram commutes;

V
embd //

f
''

T (V )

φ

��
A

where the horizontal map is the embedding onto the first summand V → T 1(V ) = V . To show this, note that
for each direct summand T i (V ), there is a unique R-algebra homomorphism φi : T i (V ) → A for which the
following diagram commutes, by the universal property of tensor product:

V

i︷ ︸︸ ︷×·· ·×V =: V i //

∏
f

((

T i (V )

∃!R- hom φi

��
A
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That is, for each (u1, · · · ,ui ) ∈V i ,

f (u1) f (u2) · · · f (ui ) =φi (u1 ⊗u2 ⊗·· ·⊗ui ).

Then φ := ⊕
i∈Z+ φi : T (V ) → A is an R-homomorphism for which the first diagram commutes. Is φ also an

R-algebra homomorphism? It suffices to check for each direct summands since we have defined the multipli-
cation on the tensor algebra by linearly extending the one on each summands. That is, we need to show that
φi (ai )φ j (b j ) =φi+ j (ai b j ). Indeed, if we write ai = u1 ⊗·· ·⊗ui ∈ T i (V ) and b j = v1 ⊗·· ·⊗ v j ∈ T j (V ), then

φi (ai )φ j (b j ) = f (u1) · · · f (ui ) f (v1) · · · f (v j )

= φi+ j (u1 ⊗·· ·⊗ui ⊗ v1 ⊗·· ·⊗ v j )

= φi+ j (ai b j ).

Proposition 1. Let V be a free R-module with basis B= {v j }. Then T (V ) is a free R-algebra generated by B.

Proof. It follows immediately from the diagram below;

B
embd //

∀ f   

V

∃! R-linear
��

// T (V )

∃! R-alg hom||
A

(Lang) Since V =⊕
I R, one has V ⊗V = (

⊕
i∈I R)⊗(

⊕
j∈I R) =⊕

i , j∈I R. Similarly, one has T n(V ) =⊕
i1,··· ,in∈I R,

so that {vi1 ⊗ ·· ·⊗ vin | i1, · · · , in ∈ I } forms a basis for T n(V ). Now one can assign the suitable values on each
basis vectors, nemely, vi1 ⊗·· ·vin 7−→ f (vi1 ) · · · f (vin ).

Note that this also gives a proof of the existence of a free R-algebra. Indeed this equals to the (non-commutative)
polynomial algebra; just regard the basis elements as the indeterminates. For example, 2x3 y2z = 2x⊗3⊗ y⊗2⊗
z. In other words, one can define a non-commutative polynomial algebra as a tensor algebra generated by the
indeterminates.

Evaluation homomorphism is well-defiend for each polynimial, since it has only finitely many variables. Let
B be the set of indeterminates, possibly infinite, and R{B} be the non-commutative polynomial algebra with
B as the set of all indeterminates. For a given polynomial f , let B f be the set of all indeterminates that apper
in f . Then following commutative diagram

B //

∀ f ""

R{B f }

∃! φ f evaluation

��

embd // R{B}

∃! φ evaluation
zz

A

yields the R-evaluation φ : R{B} →A .

Definition 5. A graded ring A is a ring that has a direct sum dicomposition into (abelian additive groups)

A = ⊕
n∈N

An = A0 ⊕ A1 ⊕ A2 ⊕·· ·
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such that for each x ∈ As and y ∈ Ar , it holds that x y ∈ As+r , and so As Ar ⊆ As+r . Elements of An are known
as homogeneous elements of degree n. An algebra A over a ring R is a graded algebra if it is graded as a ring.
An ideal or other subset a of A is homogeneous if for every element a ∈ a, the homogeneous parts of a are also
contained in a.

Example 2. The polynomial rings k[t ] =⊕
i∈Z+ kt i and k[s, t ] =⊕

i∈Z+ µi over the field k are graded algebras.

Note 1. There is a natural correspondence between the free R-algebra FR-alg(B) and free commutative R-
algebra FR-comm alg(B) generated by B, namely,

FR-alg(B)/〈x y − y x |x, y ∈B〉 ≈FR-comm alg(B)

To see this, first we need to check that

I1 := 〈x y − y x |x, y ∈B〉 = 〈αβ−βα |α,β ∈FR-alg(B)〉.
⊆ is clear, and to show ⊇, it suffices to show for r1,r2 ∈ R and x, y ∈B that r1xr2 y−r2 yr1x ∈ I1 by distributivity.
Since R is commutative, it amounts to show that r1r2(x y − y x) ∈ I1 and this is clear.

Second, isomorphism between the two R-algebras holds in a similar way to the isomorphism between the
quotient of a free group modulo the commutator and free abelian group.

Definition 6. Let S0(V ) = R and define a R-submodule

S n(V ) := 〈(v1 ⊗·· ·⊗ vn)− (vσ(1) ⊗·· ·⊗ vσ(n)) |vi ∈V , σ ∈ Sn〉;
S (V ) := ⊕

i∈Zi

S i (V ).

Note that S (V ) is a 2-sided ideal of T (V ), and hence one can define the symmetric algebra S(V )on V over the
field k by

S(V ) := T (V )/S (V ).

The symmetric algebra S(V ) has a graded algebra structure, namely S(V ) = ⊕
n∈Z+ Sn(V ) where Sn(V ) :=

T n(V )/S n(V ).
We hope that this symmetric algebra would be a commutative polynomial algebra.

Universal property of symmetric algebra. Let C be any commutative R-algebra and f : V →C be a R-linear
map. Then for any R-linear map V → C , there are unique R-algebra homomorphisms φ : T (V ) → C and
φ : S(V ) →C for which the following diagram commutes;

V
embd//

f ""

T (V )

φ

��

// S(V )

φ{{
C

To see this, one needs to check if φ is induced, i.e., φ(V ) = 0. Recall that φ=⊕
φi . Then since C is commuta-

tive, we have f (v1) · · · f (vn)− f (vσ(1)) · · · f (vσ(n)) = 0. Hence φ is induced, and therefore we can say that S(V )
is a free commutative R-algebra generated by B. This is equivalent to say that S(V ) is a polynomial algebra
with indeterminate set B.
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Proposition 2. S(V ) = T (V )/S (V ) =⊕
T i (V )/

⊕
Si (V ) ≈⊕

(T i (V )/S i (V ))

Proof. How can we construct the isomorphism
⊕

T i (V )/
⊕

Si (V )
≈→ ⊕

(T i (V )/S i (V ))? By the universal
property of direct sum and symmetric algebra, there is a R-algebra homomorphism φ for which the following
diagram is commutative:

T i (V )
embd //

�� ((

⊕
j∈Z+ T j (V )

��

// ⊕T i (V )/
⊕

S j (V )

φuu
T i (V )/S i (V ) // ⊕T j (V )/S j (V )

For inverse, first note that the map T i (V ) → ⊕
T i (V ) induces the map one the quotients T i (V )/S i (V ) →⊕

T i (V )/
⊕

Si (V ) since S i (V ) maps to zero by the embedding. Hence the universal property of direct sum
yields that there is a R-algebra homomorphism ψ such that we have the following commutative diagram :

T i (V )/S i (V ) //

((

⊕
(T i (V )/Si (V ))

ψ

��⊕
T i (V )/

⊕
Si (V )

That ψ is the inverse map of ψ comes easily by tracking the basis elements. In the first diagram, we see that
φ maps a typical basis element v1 ⊗·· ·⊗ v j +S (V ) to v1 ⊗·· ·⊗ v j +S j (V ). On the other hand on the second
diagram, ψ maps v1 ⊗·· ·⊗v j +S j (V ) to v1 ⊗·· ·⊗v j +S (V ). This shows φ◦ψ, ψ◦φ are identity maps on the
basis elements, and hence they are identity maps on the whole. This shows the desired isomorphism.

Following proposition corresponds to the observation we made in Note 1.

Proposition 3. S (V ) =
(1)

〈x y − y x |x, y ∈V 〉 =
(2)

〈x y − y x |x, y ∈ T (V )〉.
Proof. (1) ⊆S (V ) : x y − y x = x ⊗ y − y ⊗x ⊂S (V ).

(1) ⊇ S (V ) : We need to show v1 · · ·vn − vσ(1) · · ·vσ(n) ∈ (1) where v1 · · ·vn ∈ T n(V ) and σ ∈ Sn . Recall that
each permutation in Sn is a composition of transpositions. For each σ ∈ Sn , let |σ| be the smallest
number k such that σ can be written by a composition of k transpositions. Let τ1, · · · ,τk be a sequence
of transpositions such that σ = τk · · ·τ1 and k = |σ|. Suppose the assertion holds for |σ| < k. Suppose
τ1 = (i , i +1). Then we can write

(v1 · · ·vn)− (vσ(1) · · ·vσ(n))

= [v1 · · ·vi−1(vi vi+1 − vi+1vi )vi+2 · · ·vn]+ (
[v1 · · ·vi−1vi+1vi vi+2 · · ·vn]− [vσ(1) · · ·vσ(n)]

)
Obviously the first term belongs to (1). Note that the permutation (1, · · · , i − 1, i + 1, i , i + 2, · · · ,n) 7→
(σ(1), · · · ,σ(n)) equals τk · · ·τ2, and hence the remaining term in the large parentheses belongs to (1) by
induction hypothesis.

(1) ⊆ (2) : Clear.
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(2) ⊆ (1) : (2) ⊆S (V ) ⊆(1).

Definition 7. Let A =⊕
i∈Z+ Ai be a µ−graded algebra and a be a 2-sided ideal of A . Then

a is a homogeneous ideal ⇐⇒ a= ⊕
i∈Z+

(a∩ Ai )

⇐⇒ if f = ∑
d≥0

fd ∈ a then fd ∈ a for all d , where each fd is a homogeneous element

⇐⇒ every element of a is generated by homogeneous elements in a

HW 2. Show that a⊂A is a homogeneous ideal if and only if it is generated by homogeneous elements.

Example 3. 〈t 2 − t〉 ⊂R[t ] is not a homogenous ideal, whilst 〈t , t 2〉 is so.

Example 4. In the definition of symmetric algebra S(V ) over V , note that S (V ) =⊕
i S

i (V ) is a homogeneous
ideal generated by the elements of the form

v1 ⊗·· ·⊗ vi − vσ(1) ⊗·· ·⊗ vσ(i )

where σ ∈ Si . According to Proposition 3, it is in fact generated by the homogeneous elements of the form

x y − y x, x, y ∈V.

Graded structure on the symmetric algebra S(V ). Recall that S(V ) =⊕
i∈Z+ Si (V ) where Si (V ) = T i (V )/S i (V )

: R-module. We want it to be Z+-graded!

multiplication : Si (V )×S j (V ) → Si+ j (V ) well-defined?

Let ai −a′
i ∈S i (V ), b j −b′

j ∈S j (V ). Then we need to show ai b j −a′
i b′

j ∈S i+ j (V ). Observe that

ai b j −a′
i b′

j = (ai −a′
i )b j +a′

i (b j −b′
j )

and (ai −a′
i )b j , a′

i (b j −b′
j ) ∈S (V )∩T i+ j =S i+ j (V ) since S (V ) is homogeneous ideal. Thus the multiplica-

tion is well-defined and hence S(V ) has a graded ring structure.

Definition 8. The exterior algebra(or alternating algegra) Λ(V ) over a vector space V over a field k is defined
as the quotient algebra of the tensor algebra by the two-sided ideal I generated by all elements of the form
x ⊗x such that x ∈V . Symbolically,

Λ(V ) := T (V )/I .

The exterior product ∧ of two elements ofΛ(V ) is defined by

α∧β=α⊗β (mod I ).

More explicitely, we may define

Ωn(V ) := 〈v1 ⊗·· ·⊗ vn |vi ∈V , vi = v j for some i 6= j 〉
Ω(V ) := ⊕

n∈Z+
Ωn

Λi (V ) := T i /Ωn(V ).
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Then one hasΩ(V ) = 〈v ⊗ v |v ∈V 〉 = I , so that

Λ(V ) = ⊕
n∈Z+

Λn(V ).

HW 3. Find a suitable example of an exterior algebra.

Definition 9. An R-algebra A is algernating algebra if and only if a2 = 0 for all a ∈A .

Universal property of exterior algebra. Let A be an alternating algebra and let f : V →A be a R-linear map
such that f (v) f (v) = 0 for all v ∈ V . Then there exists a unique R-algebra homomorphism φ :Λ(V ) → A for
which the following diagram commutes;

V //

f
''

Λ(V )

φ

��
A

where the horizontal map is the composition V → T (V ) → Λ(V ) = T (V /I ) of the quotient map and embed-
ding. This universal property follows from the diagram below;

V
embd//

f ""

T (V ) //

∃!ϕ
��

Λ(V )

φ{{
A

We only need to check thatϕ(I ) = 0; indeed, a typical element of I is v2 for some v ∈V , andϕ(v2) =ϕ(v)ϕ(v) =
f (v) f (v) = 0.

Proposition 4. Suppose the vector space V has dimension n. Then we have

dimT r (V ) = nr

dimSr (V ) =
(

n + r −1

r

)

dimΛr (V ) =
(

n

r

)

Proof. Let {v1, · · · , vn} be a basis for V . The first dimensionality is clear. For the second, the dimension equals
the number of degree r monomials with n indeterminates. Lastly, the set

{vi1 ∧·· ·∧ vir |1 ≤ i1 < i2 < ·· · < ir ≤ n} (∗)

is a basis for λk (V ). The reason is the following: that the set (∗) is k-linearly independent is clear; given any
exterior product of the form

u1 ∧·· ·∧uk

then every vector u j can be written as a linear combination of the basis vectors vi ; using the bilinearity of
the exterior product, this can be expanded to a linear combination of exterior products of those basis vectors.
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Any exterior product in which the same basis vector appears more than once is zero; any exterior product
in which the basis vectors do not appear in the proper order can be reordered, changing the sign whenever
two basis vectors change places; consequently (∗) spans λk (V ). In general, the resulting coefficients of the
basis k-vectors can be computed as the minors of the matrix that describes the vectors u j in terms of the basis
vi .
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2 REPRESENTATION THEORY

Definition 10. Let V be a k-vector space. A group homomorphism φ : G → GL(V ) is called a representation
of G over V . An injective representation is called faithful.

Let C be the category of [representations of G over k-vector space].

Morphism in C : G //

''

GL(V )

��
GL(W )

Note that C is isomorphic to the category of k[G]-modules Mod(k[G]). Hence the study of representation is
equivalent to study k[G]-modules.

Definition 11. A R-module is irreducible or simple if it has no nonzero proper submodules.

Simple modules are analogous to the simple groups in group theory.

Proposition 5 (Lang p.645). Let R be a ring not necessarily being commutative. Let E be a R-module. These
followings are equivalent.

(1) E =∑
i Ei , where Ei is irreducible(simple) R-module.

(2) E =⊕
j F j where Fi irreducible(simple) R-module.

(3) For any R-submodule F ≤R E , there exists F ′ ≤R E such that E = F ⊕F ′.

Proof. (1) ⇒ (2). Assume (1). I claim that there exists a subset J ⊂ I such that E is the direct sum
⊕

j∈J E j .
To see this, let J be a maximal subset of I such that the sum

∑
j∈J E j is direct(by Zorn’s Lemma). We

contend that is sum is in fact equal to E . It will suffice to show that each Ei is contained in this sum. But
the intersection of our sum with Ei is a submodule of Ei , hence equal to 0 or Ei . If it is equal to 0, then
one can add the index i to J , which contradicts the maximality of J . Hence the intersection equals to Ei

and thus Ei ⊂∑
j∈J E j . This show the claim. This also shows the implication (1) ⇒ (2).

(2) ⇒ (3). Assume (2). We may assume F 6= 0, since otherwise we can take F ′ = E . Since Ei ∩F ≤R Ei and Ei

is simple, either Ei ∩F = 0 or Ei ≤R F . Since F is nonzero, there is some Ei contained in F . Now let J be
the maximal subset of I such that

⊕
J E j ⊆ F (by Zorn’s Lemma). If the inclusion is proper, then there is

some i ∈ I \ J such that Ei ∩F 6= 0; but this means Ei ⊂ F , and hence we get a larger index set J ∩ {i } ⊂ I
which contradicts our choice of J . Thus

⊕
J E j = F . Now take F ′ =⊕

I \J Ei .

(3) ⇒ (1). Assume (3). I claim that every nonzero submodule E ′ of E contains a simple submodule. Let v ∈ E ′,
v 6= 0. Then by definition, Rv is a principal submodule, and the kernel of the homomorphism

R → Rv

is a left ideal L 6= R. Hence L is contained in a maximal ideal M 6= R(by Zorn’s Lemma). Then M/L is a
maximal ideal of R/L, and hence M v is a maximal submodule of Rv , corresponding to M/L under the
isomorphism

R/L → Rv.
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By (3), we can write E = M v ⊕M ′ for some submodule M ′ of E . Then we have

Rv = M v ⊕ (M ′∩Rv),

since every element x ∈ E ′ can be written uniquely as a sum x =αv +x ′ with α ∈ M and x ′ ∈ M , and x ′ =
x−αv lies in Rv . Then since M v is maximal in Rv , it follows that M ′∩Rv is simple, as desired.(otherwise
there would be a nonzero proper submodule S of M ′∩Rv , to form a proper submodule M v+S of M ′∩Rv
properly containing the maximal one M v , which is a contradiction.) This proves the claim.

We now show (3) imples (1). Let E0 be the sum of all simple submodules of E . We may assume E0 6= E for
contradiction. Then there exists a nonzero submodule F ≤R E such that E = E0 ⊕F . Then by the claim,
F contains a simple submodule F ′ ≤R E . But then F ′ ⊂ E0 by the choice of E0, which is a contradiction.
Thus E = E0.

We call such a R-module a semisimple R-module or completely reducible R-module.

Example 5. Any vector space over the field k is a semisimple k-module. The simple k-modules are 1-dimensional
subspaces, and for any given subspace, we can obtain the complimentary space by basis extension.

Proposition 6. Let E be a semisimple R-module. Show that a submodule and quotient of E is also semisimple.

Proof. Suppose E ′ ≤R E and let F be any submodule of E ′. Since E is semisimple, we have E = F ⊕F ′. Then
it follows by taking intersection with E ′ that E ′ = F ⊕ (F ′ ∩E). Hence E ′ is semisimple. As for the quotient
module, say E/F , we may write E = F ⊕F ′ for some F ′ ≤R E . Then the cannonical projection E → E/F induces
an isomorphism of F ′ onto E/F . Hence E/F is semisimple being isomorphic to a submodule of E .

Definition 12 (Lang p.651). A ring R is a semisimple ring if R R is a semisimple R-module.

Proposition 7. Let R be a semisimple ring. Then every R-module E is a semisimple R-module.

Proof. First observe that every free R-module F is semisimple; since we have F '⊕
I R R, and R is a semisimple

ring, F is a direct sum of semisimple R-modules. Then since each of the factor module R R is a direct sum of
simple R-modules, F is also a direct sum of simple R-modules. Hence F is semisimple. Now since E is a
quotient module of a free R-module and a quotient module of a semisimple R-module is semisimple, we
conclude that E is also semisimple.

Example 6 (Lang p.651). Examples of semisimple ring.

(1) R = k.

(2) The algebra Mn,n(k) of n ×n matrices over k.

(3) Group algebra k[G] where |G| <∞ and char(k) - |G|.
(4) The Clifford algebras Cn over the real numbers.

By definition the group algebra k[G] is a k-vector space with k-basis G . Multiplication on the basis elements
is given by the binary operation in G . Following theorem of Maschke explains the third item of the above
example.
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Theorem 1 (Maschke). |G| <∞ and char(k) - |G| =⇒ k[G] : semisimple ring.

Proof. (Special case) Suppose k is a subfield of R and V be a finite dimensional k[G]-module. We want to
show

W ≤k[G] V =⇒∃W ′ ≤k[G] V such that V =W ⊕W ′.
Want : V = W ⊕W ⊥. Let {vi } be a basis for V and define dot product by 〈vi , v j 〉 = δi j . But in order for
W ⊥ ≤k[G] V , we want G-invariant inner product since then we would have for every v ∈W ⊥ and g ∈G ,

〈g v,W 〉 = 〈g−1g v, g−1W 〉 = 〈v, g−1W 〉 = 〈v,W 〉 = 0 =⇒ g v ∈W ⊥.

Such a G-invariant inner product on V can be defined by

v •w = ∑
g∈G

〈g v, g w〉.

Note that this inner product is positive definite.

(General case) Let W ≤k[G] V . Since W ≤k V , there is a k-subspace W ′ ≤k V such that V = W ⊕W ′(basis
extension). Let π : V → W be the cannonical projection. Now we want to show following short exact
sequence of k[G]-modules is split;

0 // W
i // V // V /W // 0,

for which it suffices to show there is a k[G]-linear map φ : V →W such that φ◦ i = i dW . Let us define a
map φ : V →W by

φ(v) = 1

|G|
∑

g∈G
g−1π(g v) (char(k) - |G| ), (∗)

The property φ ◦ i = i dW is immediate W ≤k[G] V and π is identity on W , and clearly φ is k-linaer. In
fact, it is k[G]-linear; for h, v ∈G , we have

φ(hv) = 1

|G|
∑

g∈G
g−1π(g hv)

= 1

|G|
∑
t∈G

ht−1π(t v) (t = g h)

= h

|G|
∑
t∈G

t−1π(t v) = hφ(v).

Therefore V =W ⊕kerφ where kerφ≤k[G] V

Note that the definition (∗) is motivated by Haar measure of Locally compart group.
Due to Maschke’s Theorem, the study of simple k[G]-module is equivalent to the study of the (linear) repre-
sentation of G over the field k, provided that the hypothesis of the theorem is satisfied. We are not so interested
in the exceptional cases.

Representation of S3

S3 = {1,σ,τ,στ,στ2,τ2}, σ2 = τ3 = 1, στσ= τ2

Maschke + Wedderburn + α.
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Theorem 2. |G| ≤∞, char(k) - |G| ⇒ k[G] : semisimple. Let k be algebraically closed. Then

k[G]
R-alg≈ Endk (V1)×·· ·×Endk (Vr )

where {V1, · · · ,Vr } is the complete list of irreducible representations of G over k(up to equivalence)

Proof. Omitted.

Mor(G →GL(V ),G →GL(W )) = Mork[G](GL(V ),GL(W )).

Corollary 1. If we put ni := dimk (Vi ) <∞, then we have

|G| = dimk (k[G]) = n2
1 +·· ·+n2

r .

Recall that [g ] = {hg h−1 |h ∈G}.

Corollary 2. Moreover, r is the number of conjugacy classes of G .

Proof. Observe that r = dimk (Z (k[G])); center of product algebra is the product of the centers, and the center
of a matrix algebra is 1-dimensional.
On the other hand, let C1, · · · ,Cs be the list of all conjugacy classes of G . Put zi = ∑

g∈Ci
1 · g . We claim that

B= {z1, · · · , zs } is a k-basis of Z (k[G]). It is clear that B⊂ Z (k[G]); for any h ∈G , hzi h−1 =∑
g∈Ci

1 ·hg h−1 = zi

since the conjugation by h fixes the conjugacy class Ci . To show B spans Z (k[G]), put
∑

g∈G ag · g ∈ Z (k(G))
where ag ∈ k. Then

h(
∑
g

ag · g )h−1 = ∑
g

ag hg h−1

= ∑
g

ahg h−1 g =∑
g

ag · g

and since the elements of G forms a basis for the k-vector space k[G], we see that ag = ahg h−1 for all g . This
shows B spans Z (k[G]), and proves the claim. Now we conclude r = s as desired.

Example 7. G ≈Z3. 3 =∑
n2

i = 1+1+1. SinceZ3 is abelian, the conjugacy classes are just the single elements;
hence r = # of conjugacy classes = 3.
G → k× =GL1(k) group homomorphism, x 7→ w where w3 = 1.

Definition 13. Group character.

(1) Group homomorphism G → k×

(2) Group homomorphism φ : G →GL(V ), dimV <∞.

χ(g ) = tr(φ(g )).

Example 8. G ≈Z5. 5 =∑
n2

i = 1+1+1+1+1 = 1+22.

Example 9. G ≈ Z4. Since every group has the trivial representation which is 1-dimensional, namely G →
GL1(k) = k× by g 7→ 1, we have 4 =∑

n2
i = 1+1+1+1.

12



Example 10. G ≈ S3. [1] = 1, [τ] = {τ,τ2}, [σ] = {σ,στ,στ2}.(τστ−1 = στ2σ−1 = στ). Hence r = 3, and 6 =
1+1+4.

(1) trivial representation : S3 → {1} ⊂ k×

(2) sgn : S3 → {±1} ⊂ k×

(3)Ψ1 : S3 →GL2(k), where σ 7→
[−1 0

0 1

]
and τ 7→ R2π/3 · · · · · · · · · · · · · · · · · · · · · · · · · · · rigid motion.

(4)Ψ2 : S3 →GL2(k), where σ 7→
[

0 1
1 0

]
and τ 7→

[
ζ 0
0 ζ

]
where 1+ζ+ζ2 = 0.

Example 11. |G| = 8 = 1+1+1+1+4 = 1+1+1+1+1+1+1+1. Note that if every irreducible representation is
1-dimensional, then G is abelian.(need to prove). Hence if we assume G non-abelian, then |G| = 1+1+1+1+4.

Even if we have found a representation φ : G → GL(V ), we might not be able to fined a basis of V . So matrix
representation is hard. In this case, we use character table

Theorem 3 (Burnside). Let p, q be prime integers and a,b be positive integers. Then every group of order
pa qb is solvable.

Proof. Use Character theory.

Topological Group

Definition 14. A group G is a topological group if it satisfies following properties:

(i) G is a topological space

(ii) ∗ : G ×G →, inverse : G →G are continuous maps, where we give product topology to G ×G .

HW 4. Show that (R,+), (R×,×) are topological groups.

Proposition 8. Let G be a topological group and g ∈G . Then the neighborhood of g is homeomorphic to the
neighborhood of e.

Proof. e ∈U → gU homeomorphism.

13



3 INVERSE LIMITS

Definition 15. I is a directed index set if

(i) : I is a poset

(ii) : If i , j ∈ I , then there is k ∈ I such that i ≤ k and j ≤ k.

Definition 16. Let C be a category, and I a directed set. We call A = {Ai , f j
i } a directed system if Ai ∈ C and

f j
i : A j → Ai for all i ≤ j such that

(i) : f i
i = i d

(ii) : i ≤ j ≤ k ⇒ f j
i ◦ f k

j = f k
i .

The inverse limit A := lim←−−i∈I
Ai is defined by the following universal property(think of the product

∏
i Ai ) : for

any B ∈C and morphisms ψ j : B → A j and ψi : B → Ai such that f j
i ◦ψ j =ψi , there exists unique morphism

φ : B → A such that following diagram commutes

B

φ

��
ψi

��

ψ j

��

A

φ j�� φi ��
A j

f
j

i

// Ai

Example 12. Let X be a topological space. Let U be an open subset. Then CU := { f : U →R |continuous} is an
abelian group. Restriction is a typical example.

Example 13. Let X be a set, and P a subset of the power set P (X ). Assume P is a directed set with respect to
the inverse set inclusion. We define f A

B →: A → B inclusion for each A ≤ B(i.e., A ⊂ B).

Example 14. Let k be a field. The power series ring k[[T ]] in one variable may be viewed as the inverse limit
of the factor polynomial rings k[T ]/(T n), where for n ≤ m we have the cannonical ring homomorhism

f n
m : k[T ]/(T n) −→ k[T ]/(T m).

A similar remark applies to power series in several variables.

Example 15. Let p be a prime integer, and suppose 1 ≤ n ≤ m. There is a natural map f m
n : Z/(pm+1) →

Z/(pn+1). We call the inverse limit of Z/(pm) the ring of p-adic integers and denote Zp .

Theorem 4. Suppose the Cartesian product and categorical product in C agree. Then we have

lim←−−
i∈I

Ai =
{

x ∈∏
i∈I

Ai

∣∣∣ f j
i (x( j )) = x(i ) ∀i ≤ j

}

14



Proof. Let A be the subset of the Cartesian product on the right hand side of the assertion. Note that A is
maximal subset of

∏
i Ai such that the following diagram is commutative:

A
p j

��

pi

��
A j

f
j

i

// Ai

Given B ∈C and morphisms ψ j : B → A j , the universal property of the categorical product yields that we get
a unique morphism φ : B →∏

i∈I Ai such that the following diagram commutes;

B
φ //

ψ j ""

∏
i∈I Ai

p j

��
A j

Now it remains to check if φ is into A, since then we would obtain the desired commutative diagram

B

φ

��
ψi

��

ψ j

��

A

p j��
pi ��

A j
f

j
i

// Ai

Indeed, for any b ∈ B we have

f j
i p j (φ(b)) = f j

i ◦ (p j ◦φ)(b) = f j
i ◦ψ j (b) =ψi (b) = pi (φ(b)).

so that φ(b) ∈ A. This shows A satisfies the universal property of the inverse limit lim←−−i∈I
Ai .

Example 16. By the above theorem, we see that the ring Zp of p-adic integers is given by

Zp =
{

(x0, x1, x2, · · · ) ∈ ∏
i∈Z+

Z/(p i ) |xn ≡ xn−1 (mod pn)

}

by considering the diagram
Zp

p j{{ pi ##
Z/(p j+1)

f
j

i

// Z/(p i+1).
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Example 17. We can describe the Galois group of even an infinite Galois extension as an inverse limit of finite
Galois groups. Let K /k be a Galois extension, not necessarily finite. Consider a tower k ≤ F ≤ K . Denote
G = Gal(K /k) and H = Gal(K /F ). Recall that K /F is automatically Galois, and F /k is finite Galois if and only
if H CG and [G : H ] <∞. Now we form a directed system of finite Galois groups of finite Galois extensions
F /k such that k ≤ F ≤ K in following way: the intermediate fields k ≤ F ≤ G forms the directed index set F ,
and for the tower k ≤ F ≤ F ′ ≤ K , we define f F ′

F ′ : Gal(F ′/k) → Gal(F /k) by the restriction map. Now consider
the inverse limit of this directed system. Since the catetorical and Cartesian product agrees in the category of
groups, we see that

lim←−−
F∈F

Gal(F /k) ≤ ∏
F∈F

Gal(F /k).

Let pF be the projection from the inverse limit onto the Galois group textGal (F /k) for each F ∈F . Then one
can show that there is a natural homomorphism φ from the Galois group Gal(K /k) to the inverse limit, such
that the following diagram commutes:

Gal(K /k)

φ

��
restriction

  

restriction

~~

lim←−−F∈F
Gal(F /k)

pF ′ww
pF ′′ ''

Gal(F ′/k)
f F ′

F ′′

// Gal(F ′′/k)

But by the universal property of the inverse limit, we conclude that φ is an isomorphism. For details, we need
to define Krull topology on the automorphism group Gal(K /k). Analogous to the Galois correspondence of fi-
nite Galois theory, we have the 1:1 correspondence between closed subgroups of Gal(K /k)with the (arbitrary)
intermediate fields.

Definition 17. Inverse limit of finite groups is called profinite group. Inverse limit of cycle group is called
procyclic group.

Example 18. Let each Gi has dicrete topology and suppose 1 < |Gi | <∞. The product
∏

∈I Gi is not necessarily
discrete. But it is at least totally disconnected(the only connected components are the empty set and point
sets) An important example of a totally disconnected space is the Cantor set. Another example, playing a key
role in algebraic number theory, is the fieldQp of p-adic numbers.

HW 5. Let {Gi , f j
i } be a discrete system where each Gi is a compact discrete space. Show the inverse limit of

Gi is totally disconnected and compact.

The ring of p-adic inters is totally disconnected and compact. A p-adic integer looks like (a0, a1, · · · ), where
for each n it satisfies an ≡ an−1(mod pn) since ak ∈ Z/pk+1. It equals another p-adic number (b0,b1, · · · ) iff
ai ≡ bi (mod p i+1)

Example 19. p = 7. (3,10,3+7 ·1+72 ·2, · · · )
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4 ABSOLUTE VALUE AND VALUATION

Minkovski’s Motivation. Consider x2
0 ≡ 2(mod7), which has solution x0 = 3 or 4. Also consider x2

1 ≡ 2(mod 72).
Regard a number is "small" if it can be divided by a large power of prime p.

Definition 18. Let k be a field. Then | · | : k →R≥0 is an absolute value if

(i) (nondegenerate) |α| > 0 if α 6= 0 and |0| = 0

(ii) (multiplicative) |αβ| = |α| · |β|
(iii) (triangle inequality) |α+β| ≤ |α|+ |β|

An absolute value with
(iii)’ |α+β| ≤ max(|α|, |β|)

is called a valuation(non-archimedian).

Example 20. Let p be a fixed prime in 2. If a 6= 0 in Q, we write a = pk b
c where k ∈ Z and (b, p) = 1 = (c, p).

The integer k is uniquely determined by a. We denote it as vp (a) and we define vp (0) =∞. Now let γ be a real
number such that 0 < γ< 1 and define a p-adic absolute value |a|p onQ by

|a|p = γk .

Example 21. Let k(x) be the field of rational expressions in an indeterminate x and let p(x) be a prime polyno-
mial in k(x) . If a ∈ k(x) and a 6= 0, we have a = p(x)k b(x)/c(x) where k ∈Z and (p(x),b(x)) = 1 = (p(x),c(x)).
We define vp (a) = k, vp (0) =∞. Then for some real γ, 0 < γ< 1, we have an absolute value on k(x) defined by

|a|p = γvp (a).

Example 22. We obtain another absolute value on k(x) in the following manner. If a 6= 0, we write a =
b(x)/c(x) where b(x) = b0 +b1x +·· ·+bm xm , c(x) = c0 + c1x +·· ·+ cn xn , bi ,ci ∈ k, bm ,cm 6= 0. Define v∞(a) =
n −m, v∞(0) = 0, and |a|∞ = γv∞(a) where γ ∈R and 0 < γ< 1. Then we have

a = xm(b0x−m +b1x−(m−1) +·· ·+bm)

xn(c0x−n + c1x−(n−1) +·· ·+cn

= (b0x−m +b1x−(m−1) +·· ·+bm)

(c0x−n + c1x−(n−1) +·· ·+cn
x−(n−m).

Hence the definition of |a|∞ amounts to using the generator x−1 for F (x) and applying the procedure in ex-
ample 2 to k[x−1] with p(x−1) = x−1. Hence | · |∞ is an absolute value on k(x). In the special case of k = C,
v∞(a) gives the behaviour at ∞ of the rational function defined by a.

For any field k we have the trivial absolute value on k in which |0| = 0 and |a| = 1 if a 6= 0.
Below are a list of simple properties of absolute values that follow directly from the definition:

|1| = 1, |u| = 1 if un = 1, |−a| = |a|, |a−1| = |a|−1 if a 6= 0, ||a|− |b||∞ ≤ |a −b|.

An absolute value on k defines a metric topology on k. It is easy to check that the multiplication, addition,
and subtraction are continuous maps of two variables in the topology. We can also define convergence of
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sequences and series in the usual way. Thus we may say that {an |n = 1,2, · · · } converges to a if for every real
ε> 0, there exists an integer N = N (ε) such that

|a −an | < ε

for all n ≥ N . In this case we also write lim an = a or an → a.

Definition 19. Two absolute values | · |1 and | · |2 on k are equivalent if they define the same topology on k.

Example 23. If | · |p and | · |′p are p-adic valuations defined by γ and γ′ respectively, that is, |a|p = γvp (a) and

|a|′p = γ′vp (a), then |a|′p = |a|sp for s = logγ′/logγ> 0. Hence the spherical neighborhood of a point defined by
one of these absolute values is a spherical neighborhood defined by the other. Thus | · |p and | · |′p defines the
same tolopogy. Note that this is the case for any field k and any two absolute values | · | and | · |′ = | · |s for some
s > 0.

Remark 1. The topology of k defined by an absolute value | · | is discrete if and only if || is trivial. It is clear that
the trivial absolute value defines the discrete topology. Conversely, if | · | is not trivial, then there is some a ∈ k
such that 0 < |a| < 1. Then an → 0 and the set of points {an} is not closed in k, so the topology is not discrete.

It is now clear that the only absolute value equivalent to the discrete one | · | is || itself. For nontrivial absolute
values we shall now show that equivalence can hold only if each absolute value is a positive power of the other.

Theorem 5. Let | · |1 and | · |2 be absolute values of a field k such that | · |1 is not trivial and the unit open ball in
| · |1 is contained in the unit open ball in | · |2, i.e.,

{a ∈ k | |α|1 < 1} ⊂ {a ∈ k | |α|2 < 1}.

Then there exists a positive real number s such that | · |2 = | · |s1(that is, |a|2 = |a|s1 for all a 6= 0). Hence | · |1 and
| · |2 are equivalent.

Proof. See Jacobson 2 p.541.

Theorem 6. An absolute value | · | of a field k is non-archimedean if and only if |n ·1| ≤ 1 for all n ∈Z.

Proof. (Artin) If | · | is non-archimedean, then |n ·1| = |1+·· ·+1| ≤ |1| = 1 for all n ∈Z. Conversely, suppose this
tholds and let a,b ∈ k. Then for any positive integer n we have

|a +b|n =
∣∣∣∣∣an +

(
n

1

)
an−1b +

(
n

2

)
an−2b2 +·· ·+bn

∣∣∣∣∣
≤ |an |+ |an−1||b|+ · · ·+ |bn |
≤ (n +1)max(|an |, |bn |).

Hence we obtain |a +b| ≤ (n +1)
1
n max(|a|, |b|). Since (n +1)

1
n → 0 in R, this yields |a +b| ≤ max(|a|, |b|).

Corollary 3. Any absolute value on a field of characteristic p 6= 0 is non-archimedean.

Proof. Let n be an integer. If n ·1 ∈ k and n ·1 6= 0, then (n ·1)p−1 = 1
n·1 (n ·1)p = 1

n·1 n ·1 = 1. Thus |n ·1| = 1, and
also |0| = 0. Hence | · | is non-archimedean by the Theorem 6.
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The trivial absolute value is non-archimedean. It is clear also from Theorem 6 that if | · | is non-archimedean
on a subfield of a field k, then | · | is non-archimedean on k. Hence we have

Corollary 4. If | · | is trivial on a subfield, then | · | is non-archimedean.

Exercise 2. Show that

(1) if | · | is an absolute value and let 0 < s < 1 be a real number, then | · |s is an absolute value.

(2) if | · | is a valuation, then | · |s is an absolute value for every s > 0.

Proof. (1) The nondegeneracy and multiplicativity are clear. For triangle inequality, we may assume a,b ∈ k
nonzero and show |a +b|s ≤ |a|s +|b|s . Note that

(1+x)s ≤ (1+xs )

for all x ≤ 0. To see this, set f (x) = 1+xs −(1+x)s and observe f (0) = 0 and f ′(x) = s(xs−1−(1+x)s−1) ≥ 0
for x ≥ 0 and 0 < s < 1. Now put x = |b|/|a| and multiply both side by |a|s to obtain the desired inequality.

(2) It suffices to show the triangle inequality. For a,b ∈ k, observe that |a +b| ≤ max(|a|, |b|) yields |a +b|s ≤
max(|a|s , |b|s ) ≤ |a|s +|b|s .

Exercise 3. Show that if | · | is non-archimedean, then |a+b| = |a| if |a| > |b|. Show also that if a1 +·· ·+an = 0,
then |ai | = |a j | for some i 6= j .

Proof. Since |·| is non-archimedean we have |a+b| ≤ |a|. On the other hand, since a = (a+b)−b, we also have
|a| ≤ max(|a +b|, |b|). But since |a| > |b|, we see that |a| ≤ |a +b|. This shows |a +b| = |a|. We can generalize
this statement as follows; |a1 +·· ·+ an | = |a1| if |a1| > max(|a2|, · · · , |an |). To see this, just apply the previous
statement to a1 +b where b = a2 +·· ·+bn . By assumption |a1| > |b| and hence |a1 +b| = |a1|.
For the second assertion, suppose for contrary that all the real numbers |a1|, · · · , |an | are distinct. We may
assume |a1| is the greatest. Then −a1 = a2 +·· ·+an yields

|a1| = |a2 +·· ·+an | = max(|a2|, · · · , |an |) < |a1|,
which is a contradiction. This shows the second assertion.

Exercise 4. Let | · | be an absolute value on E and assume that | · | is trivial on a subfield k such that E/k is
algebraic. Show that | · | is trivial on E .

Proof. Suppose for contrary that there is an element a ∈ k such that |a| < 1. Since a is algebraic over k, there
are c0, · · · ,cm ∈ k with cm ,c0 6= 0 such that cm am +·· ·+ c1a + c0 = 0. Since | · | is trivial on k by hypothesis, we
have

|a||cm am−1 +·· ·+c1| = |c0| = 1,

which yields

|cm am−1 +·· ·+c1| = |a|−1 > 1.

On the other hand, since | · | is non-archimedean by Corollary 4, we get

|cm am−1 +·· ·+c1| ≤ max(am , · · · ,1) = 1,

which is a contradiction. Therefore | · | is trivial on E .
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Example 24. (1) {α ∈Q | |α|p < 1} = { pb
a |a 6= 0, p - a}

(2) {α ∈Q | |α|p ≤ 1} = { b
a |a 6= 0, p - a} =Z(p)S−1Z} where S =Z− (p)

: local ring with maximal ideal {α ∈Q | |α|p < 1}.

Note that if | · | is a valuation on a field k, then {α ∈ k | |α| ≤ 1} is a ring since for any element α,β of it we have

|α+β| ≤ max(|α|, |β|) ≤ 1 |αβ| = |α| · |β| ≤ 1

This ring is called the valuation ring.

Proposition 9. The only non-trivial absolute value onQ up to equivalence is

(1) Euclidean absolute value if archimedean

(2) p-adic valuation onQ if non-archimedean

Proof. (1) See Jacobson 2, p.545.

(2) Let | · | be a non-archimedean absolute value on Q. Then we have |n| ≤ 1 for every integer n. If |n| = 1
for all n, then | · | is trivial, contrary to the hypothesis. Hence there is some nonzero integer n such that
0 < |n| < 1. Hence the set P ⊂ Q of all integers b such that |b| < 1 contains nonzero element. It is easy
to see that P forms an ideal in Z, since for any a,b ∈ P and c ∈ Z we have |a +b| ≤ max(|a|, |b|) < 1 and
|ca| = |c||a| < 1. Moreoer, P is a prime ideal since |n| = |n′| = 1 implies |nn′| = 1. Hence P = (p) for some
prime integer p. Now let γ = |p| so that 0 < γ < 1. Now let r ∈ Q be arbitrary. Write r = pk a

b for some

k, a,b ∈ Z such that a,b ∉ (p). This means |a| = |b| = 1, and hence |r | = |pk | = γk = γvp (r ). Hence | · | is
the p-adic absolute value defined by γ.

Proposition 10. Let | · | be a non-trivial absolute value on k(x), x trancendental, that is trivial on k. Then | · | is
one of the absolute values defined in Example 20 and 21.

Proof. Case I. |x| ≤ 1 : In this case, the fact that | · | is trivial on k and non-archimedean implies that | f | ≤ 1 for
all f ∈ k(x). Since | · | is not trivial, there should be some nonzero element b ∈ k(x) such that 0 < |b| < 1.
Hence the set P ⊂ k[x] of all elements c with |c| < 1 contains nonzero element. Then P forms an ideal
in k[x]; for any a,b ∈ P and c ∈ k[x], we have |a +b| ≤ max(|a|, |b|) < 1 and |ca| = |c||a| < 1. Moreover,
it is a prime ideal since |a| = |b| = 1 yields |ab| = 1. Since k[x] is a PID, P = (p(x)) for some prime
polynomial. Now let γ = |p(x)| so that 0 < γ < 1. Let f ∈ k(x) be arbitrary. We may write f = p(x)k a(x)

b(x)
for some k ∈Z, a(x),b(x) ∈ k[x] with a(x),b(x) ∉ (p(x)). This yields |a(x)| = |b(x)| = 1, and consequently
| f | = |p(x)k | = γk = γvp ( f ). This is the valuation defined in Example 20.

Case II. |x| > 1 : Let b = b0 + ·· · +bm xm be an arbitrary element of k[x]. Observe that for each 0 ≤ i < m,
we have |bm xm | = |xm | = |x|m > |x|i = |bi xi |. Hence Exercise 3 tells us |b| = |x|m . Put γ = |x|−1, so that
0 < γ< 1. If f ∈ k(x) is an arbitrary element, then we write f = x−k a(x)

b(x) for some k ∈Z, a(x),b(x) ∈ k[x]

with (a(x), x) = 1 = (b(x), x). Hence |a(x)| = |b(x)| = 1 and therefore | f | = |x−k | = γk . This is the valuation
defined in Example 21.
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5 THE RING OF p-ADIC INTEGERS

Recall that the ring Zp of p-adic integers is defined by

Zp = lim←−−Z/(pk )

= {(x0, x1, x2, · · · ) ∈∏
Z/(p i ) |xn ≡ xn−1 (mod pn)}.

An element of
∏
Z can be veiwed as a sequence of integers. It has been defined by the inverse limit of Z/(pn).

The explicit ring structure of it is given as follows. For {xn}, {yn} ∈ Zp , it can be checked that {xn + yn}, {xn yn}
are elements of Zp . Moreover, there is a natural embedding Z→ Zp given by a 7→ {a} = (a, a, a, · · · ). Hence
(Zp ,+, ·, {0}, {1}) forms a commutative ring, the ring of p-adic integers.
The constraint xn ≡ xn−1 (mod pn) emposes that such a sequence {xn} must form a Cauchy sequence with
respect to the valuation | · |p on Q. Hence Zp may be regarded as the completion of Z with respect to | · |p We
shall come back to this soon.
Any two elements (x0, x1, · · · ) and (y0, y1, · · · ) of Zp are the same if and only if xi ≡ yi (mod p i+1). Hence, in
particular, translation is an identity map on Zp , i.e., (x0, x1, x2, · · · ) = (0, x0, x1, · · · ).
Note that lim←−− is an exact functor.

Theorem 7. (x0, x1, · · · ) ∈ (Zp )× ⇐⇒ p - x0

Proof. (=⇒) From {xn}{yn} = {1}, we have xn yn ≡ 1(mod pn+1). In particular, x0 y0 ≡ 1(mod p). Thus p - x0.

(⇐=) Assume p - x0. Since xi ≡ xi−1(mod p i ), we have

xn ≡ xn−1 ≡ ·· · ≡ x0(mod p).

so that p - xn . Recall that a ∈Z/(n) is unit iff (a,n) = 1. Consequently, for any n, we have xn ∈ (Z/(pn+1))×
and hence we may find yn such that

xn yn ≡ 1(mod pn+1).

Now we show that the sequence {yn} is an element of Zp . Note that xn ≡ xn−1(mod pn) says xn and
xn−1 represent the same element of (Z/(pn))×, so that their inverse elements yn−1, yn also represent the
same element of (Z/(pn))×. This shows {yn} ∈Zp .

From this theorem it follows that a rational integer a, considered as an element of Zp , is a unit if and only if
p - a. If this condition holds, then a−1 belongs to Zp . Hence any rational integer b is divisible by such an a in

Zp , that is, any rational number of the form b
a , where a and b are integers and p - a, belongs to Zp . Rational

numbers of this ttype are called p-integers. They clearly form a ring, the locall ringZ(p). We can now formulate
the above result as follows:

Corollary 5. There is an embedding of the local ring Z(p) into Zp given by

b

a
7−→ (b,b, · · · )(a, a, · · · )−1

However, there is no embeddingQ→Zp since Zp is a division ring whereasQ is not.
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Example 25. {2} ∈ (Z3)× since 3 - 2. (2,2,2, · · · )(y0, y1, · · · ) = (1,1,1, · · · ). By easy calculation, one has (y0, y1, · · · ) =
(2,5,14,41, · · · ) = (2,2+1 ·3,2+1 ·3+1 ·32,2+1 ·3+1 ·32 +1 ·33). Hence yn = 1+∑n

i=0 3i .

Consider (k, | · |), the field k absolute value. If |r | < 1, then
∑∞

n=0 r n = 1
1−r . In fact, the inverse is also true.

Definition 20. The field of p-adic numbersQp is defined by the field of quotient of the ring of p-adic integers
Zp .

Theorem 8. (1) 0 6=α ∈Zp =⇒ ∃! k ∈Z+ and ∃u ∈ (Zp )× such that α= pk u.

(2) 0 6=α ∈Qp =⇒ ∃! k ∈Z and ∃u ∈ (Zp )× such that α= pk u.

Proof. (1) Proof by example. Recall that the translation (x0, x1, x2, · · · ) 7→ (0, x0, x1, · · · ) is an identity map on
Z/p. Hence

(0,0,2p2,2p2 +p3,2p2 +1p3 +3p4) = (2p2,2p2 +p3,2p2 +p3 +3p4)

= p2(2,2+p,2+p +3p2, · · · )

(2) Let α be a nonzero element of Qp . Then α= a/b where a,b ∈Zp − {0}. By part (1), one can write a = p s u
and b = p t v for some s, t ∈Z and u, v ∈ (Zp )×. Then α= p s−t u

v and ε= u/v ∈ (Zp )×.

Definition 21. Let α ∈Qp as in Theorem 8-(2). The map α 7−→ |α|p := 1
pk is called the p-adic valuation onQp .

Exsercise : Show that the p-adic valuation onQ is well-defined.

Corollary 6. The p-adic integer α determined by the sequence {xn} is divisible by pk if and only if xn ≡
0(mod pn+1) for all n = 0,1, · · · ,k −1. That is, α= (0, · · · ,0, xk , xk+1, · · · ).

Corollary 7. The p-adic integer α is divisible by β if and only if |α|p ≤ |β|p .

HW 6. Let x ∈ Zp and let (a0, a0 + a1p, a0 + a1p + a2p2, · · · ) be the canocial sequence that determines x. We
define the p-adic expansion of x by x = [a0a1a2 · · · ]p . Then show that x has periodic p-adic expansion if and

only if x =φ( b
a ) for some b

a ∈Z(p).

Definition 22. The sequence {ζn} = (ζ0,ζ1,ζ2, · · · ) of p-adic numbers converges to a p-adic number ζ if

lim
n→∞ |ζn −ζ|p = 0.

Theorem 9. If the p-adic integerα is determined by the sequence {xn} of rational integers, then this sequence
converges to α. An arbitrary p-adic number ζ is a limit of a sequence of rational numbers.

Proof. Observe that

(x0, x1, · · · )− (xn , xn , · · · ) = (x0 −xn , x1 −xn , · · · , xn−1 −xn ,0, xn+1 −xn , · · · )
= (0, · · · ,0, xn+1 −xn , xn+2 −xn , · · · )

since xi −xn ≡ (mod p i+1) for i = 0,1, · · · ,n −1. Thus we have the congruence

α≡ xn(mod pn+2) ∀n ∈N
and therefore |α− (xn , xn , · · · )|p ≤ 1/pn+1 → 0. This shows xn →α.
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Proposition 11. Let (k, | · |) be a valuation. If it is complete, then

∞∑
n=0

an converges ⇐⇒ lim
n→∞an = 0 .

Proof. We want to show the partial sum forms a Cauchy sequence. Observe the difference of the partial sum
Sn and Sn+k converges to zero since we have

|an+k +·· ·+an | ≤ max
n≤i≤n+k

(|ai |)

and the right hand side converges to zero as n →∞ by the hypothesis.

Define Lie group on p-adic field.
Global field : Q,R,C. Local field : Qp ,Qp , Q̂p p[t ]-adic

Completion. k, | · | has completion k̂. See J2, B-S.

HW 7. Zp : complete metric space. On the other hand, Zp = {(x0, x1, · · · ) ∈∏∞
n=1Z/(pn) |xn ≡ xn−1(mod pn)}.

Note that each Z/(pn) is discrete topology, and their product is totally disconnected and compact. Are those
two interpretation have the same topology?

Proof. The two topologies are equivalent. To begin the proof, recall that every element x ∈ Zp is determined
by a canonical sequence, i.e., x = (x0, x1, x2, · · · ) with xi ≡ xi+1(mod p i+1) and 0 ≤ xi < p i+1. Hence every
canonical sequence has the from

{a0, a0 +a1p, a0 +a1p +a2p2, · · · }. (∗)

where 0 ≤ ai < p.
First we show the product topology is finer than metric topology. Let α ∈ Zp . We first show the open ball
B(α,r ) := {x ∈ Zp | |x −α| < r } is open in the product topology. Let y = (y0, y1, · · · ) ∈ B(α,r ). Then there is a
natural number such that B(y, 1

pk ) ⊂ B(α,r ). Note that |z−α| < 1
pk if and only if the first k coordinates of z and

α are the same, which follows immediately from the cannocial expression (∗). Hence we have

B(y,
1

pk
) = {a0}×·· ·× {ak−1}×

∞∏
n=k

Z/(pn)

where the right hand side is an open set in the product topology. Thus the open ball B(x,r ) is open in the
product topology.
On the other hand, let U :=U0×·· ·×Ur ×∏∞

n=r+1Z/(pn) be an arbitrary open set in the product topology, where
each Ui is a subset of the discrete space Z/(p i ) for i = 0,1, · · · ,r . Let x = (x0, x1, · · · ) be a point in U . Let y =
(y0, y1, · · · ) ∈ B(x,1/pr+1). It follows that xi = yi for i = 0,1, · · · ,r and hence y ∈U ; this shows B(x,1/pr+1) ⊂U ,
and hence U is open in the metric topology. This shows the two "natural" topologies onZp are equivalent.
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6 COMPLETION OF A FIELD

Q∞ R,Qp Q̂.

Definition 23. Let k be a field with an absolute value | · |. A sequence {an} of elements of F is called a Cauchy
sequence if given any real ε> 0, there exists a positive integer N = N (ε) such that

|am −an | < ε
for all m,n ≥ N . F is said to be complete relative to |·| if every Cauchy sequence of elements of F converges(lim an

exists).

Let C be the set of all Cauchy sequence in k. If {an}, {bn} ∈ k, we define {an}+ {bn} = {an +bn}, {an}{bn} =
{anbn}. These are contained in C . If a ∈ k, we let {a} be the constant sequence all of whose terms are a.
Then (C ,+, ·, {0}, {1}) is a commutative ring contaning the subring of constant sequences that is isomorhic to
k under a 7→ {a}. (in fact, a k-algebra.)

Note 2. The completion in analysis is the quotient C / ∼ where the equivalence relation ∼ is given by {an} ∼
{bn} iff lim(an −bn) = 0.

Proposition 12. Let C be the set of all Cauchy sequence in (k, | · |). If {an}, {bn} ∈ k, we define {an}+ {bn} =
{an +bn}, {an}{bn} = {anbn}. These are contained in C . If a ∈ k, we let {a} be the constant sequence all of
whose terms are a. Then (C ,+, ·, {0}, {1}) is a commutative ring contaning the subring of constant sequences
that is isomorhic to k under a 7→ {a}. Now define M := {{an} ∈ C | lim an = 0}. Then following statements are
true.

(a) M is a maximal ideal in C .

(b) By part (a), k̂ := C /M is a field. We may identify k as a subfield of k̂ with the natural embedding a 7→
{a} = {a}+M . Then we may extend | · | on k to k̂ as follows:∣∣{an}

∣∣′ := lim
n→∞ |an |

(note that ||an |− |am || ≤ |an −am | shows {|an |} is a Cauchy sequence of real numbers, so lim |an | exists
in R.) This defines a well-defined absolute value on k̂.

(d) k is dense in k̂ relative to the topology provided by the absolute value | · |′.
(c) (k̂, | · |′) is complete.

Proof. (a) Suppose for contrary that there is a proper ideal M ′ of C properly containing M , and let {an} ∈
M ′\M . Then there is a nonzero elementα ∈ k such thatα= limn→∞ an . Then there is a positive integer
N such that whenever n ≥ N , we get an 6= 0. Now define a sequence {bn} by bk := 1 for k ≤ N and bk = ak

for k ≥ N . Clearly {bn} ∈C and {cn} = {an}− {bn} ∈M .

I claim that the sequence {b−1
n } is a Cauchy sequence. Generally we will show that any Cauchy sequence

{wn} ∉ M such that wn 6= 0 for all n has its inverse sequence {w−1
n } which is also a Cauchy sequence.

Note that {|wn |} forms a Cauchy sequence inR since ||wn |−|wm || ≤ |wn−wm |holds. SinceR is complete,
|wn | converges to a real number, say L, and L 6= 0 by the hypothesis {wn} ∉M . Now

|wn −wm | = |wn(1−wm w−1
n )| = |wn ||1−wm w−1

n |→ 0
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and |wn |→ L 6= 0 yields |1−wm w−1
n |→ 0. Hence we obtain

|w−1
n −w−1

m | = |w−1
m (wm w−1

n −1)| = |w−1
m ||wm w−1

n −1|→ 1

L
·0 = 0

and thereby showing that {w−1
n } forms a Cauchy sequence. This shows the claim.

Now observe that

1 = {bn}{b−1
n } = ({an}− {cn}){b−1

n } = {an}{b−1
n }− {cn}{b−1

n } ∈M ′

which contradicts the choice of M ′. Therefore M is a maximal ideal in C .

(b) To show the value of
∣∣{an}

∣∣′ does not depend on the choice of representative, let {an}, {bn} be two elements
of C which represent the same element of k̂, i.e., {an}− {bn} = {an −bn} ∈M . Now

||an |− |bn || ≤ |an −bn |→ 0

yields limn→∞ |an | = limn→∞ |bn |. Hence | · |′ on k̂ is well-defined.

We now show | · |′ defines an absolute value on k̂.

(i) |α|′ > 0 if a 6= 0 and |0| = 0

Let α= {an}+M ∈ k̂. |α|′ 6= 0 means limn→∞ an 6= 0 and hence limn→∞ |an | 6= 0. Since the limit of
a sequence of nonnegative real numbers is always nonnegative, this yields |α|′ > 0. On the other
hand, α= 0 means α ∈M so that an → 0; thus |an |→ 0 and hence |α|′ = 0.

(ii) |αβ|′ = |α|′|β|′
Let α= {an}, β= {bn} ∈C . Then we have

|αβ|′ = lim
n→∞ |anbn | = lim

n→∞ |ab ||bn | = lim
n→∞ |an | lim

n→∞ |bn | = |α|′|β|′.

(iii)’ |α+β|′ ≤ |α|′+|β|′
Let α= {an}, β= {bn} ∈C . Then we have

|α+β|′ = lim
n→∞ |an +bn | ≤ lim

n→∞ |ab |+ |bn | = lim
n→∞ |an |+ lim

n→∞ |bn | = |α|′+|β|′.

(c) It suffices to show that any element α ∈ k̂ is the limit of a sequence of elements in k. Indeed, if α =
{an}+M , then limn→∞ an =α. Hence k is dense in k̂ relative to the metric topology induced by | · |′.

(d) We need to show that every Cauchy sequence {αn} in k̂ converges to some elementα in k̂. Now let {αn} be
an arbitrary Cauchy sequence in k̂. Since k is dense in k̂ relative to the metric topology given by | · |′, for
eachαn we can choose an element an ∈ k such that |αn −an |′ < 1/n. Then {an} forms a Cauchy sequece
in k, since

|an −am |′ ≤ |an −αn |′+|αn −αm |′+|αm −am |′
where the right hand side can be as small as we please by taking large N such that n,m > N , noting
that {αn} is a Cauchy sequence. Then {an} converges to a := {an} = {an}+M in k̂. But then {αn} also
converges to a, since

|αn −a|′ ≤ |αn −an |+ |an −n|
and the right hand side approches to zero as n →∞. This shows (k̂, | · |′) is a complete metric space.
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So far we have seen that any field k with absolute value | · | has a completion k with an absolute value | · |′ in
the sense that

(1) k̂ is an extension field of k and has an absolute value that is an extension of the given absolute value

(2) k̂ is complete relative to the absolute value | · |′

(3) k is dense in k̂ relative to the topology provided by the absolute value.

We now establish the uniqueness of such completion. More generally we consider two fields k̂i for i = 1,2,
which are complete relative to absolute value | |i and let ki be a dense subfield of k̂i . Suppose we have an
isomorphism s : k1 → k2 that is isometric in the sense that |a1| = |sa2| for a ∈ F1. Then s is a continuous map
of k1 into k̂2 and since k1 is dense in k̂1, s has a unique extension to a continuous map s : k̂1 → k̂2. This is

easily seen to be a homomorphism, and since s−1 is a homomorphism and s−1s = 1k1 and ss−1 = 1k2 imply

s−1s = 1k̂1
, ss−1 = 1k̂2

, it follows that s is an isomorphism. It is clear also that s is unique and is isometric.
Hence we obtain

Theorem 10. If k̂i , i = 1,2, is complete relative to an absolute value and ki is a dense subfield of k̂i , then any
isometric isomorphism s : k1 → kw has a unique extension to an isometric isomorphsm s : k̂1 → k̂2. This can
be summarized by the following commutative diagram

k̂1
∃!s

isometric iso.
// k̂2

k1
?�

OO

s

isometric iso.
// k2
?�

OO

Corollary 8. Let k be a field with absolute value | · |. Let k̂ be a completion satisfying the three conditions
(1),(2), and (3) above. Such completion is unique up to an isometric isomorphism.

Proof. Put k1 = k2 = k in Theorem 10.

If we complete Q relative to its usual absolute value | · |∞ we obtain classically the field R of real numbers. On
the other hand,

Theorem 11. The completion of (Q, | · |p ) is algebraically homeomorphic to theQp .

Proof. We first consider the closure Z of Z in the completion Ẑ relative to | |p . An element α ∈Z is the limit in

Q̂ of a sequence of integers ai . Thus if α,β ∈ Z , then there are converging sequences an → α and bn → β, so

that α+β= lim(an +bn) and αβ= lim anbn shows Z is a subring of Q̂.
Then we define a ring homomorphism φ :Z→Zp . For α ∈Z, ∃ xi ∈Z such that |α−xi | < 1

p i+2 . Since we have

|xi+1 −xi |p ≤ |xi+1 −α|+ |α−xi | ≤ 1

p i+1
+ 1

p i+2
≤ 1

p i+1
,

the map the following map
φ :Z→Zp , α 7→ (x0, x1, x2, · · · )
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is well-defined and clearly a ring homomorphism. It is straightforward to check that this map is actually a ring
isomorphism. Hence we may identify Zwith Zp .
Now let VQ := {|a|p |a ∈Q} be the value group. Observe that this is a discrete subset of R, hence closed. Thus
we have VQ = {|α| |α ∈ Q̂}. Hence given any β 6= 0 in Q̂ there exists an e ∈ Z such that |β| = |pe |, so α = βp−e

satisfies |α| = 1. Then we may write α = lim ai where ai = bi
ci

and (bi , p) = 1 = (ci , p). Now there exists xi ∈ Z
such that xi ci ≡ bi (mod p i ). Then |xi − bi

ci
| = 1

p i and so α = lim xi ∈ Z = Zp . It follows that every element of

Q̂ has the form αpe for α ∈Zp . Thus Q̂ is contained in the field of fraction Qp of Zp ; by the minimality of the
field of fraction, we see that Q̂=Qp .

Ring structure of Zp . Let α ∈ Zp be a nonzero element. Then we can write α = pkε for some k ≥ 0 and
ε ∈ (Zp )×.

HW 8. (1) Show that Zp is a Euclidean domain.

(2) Show that p is the only irreducible element in Zp . Hence every ideal is of the form pkZp for some k ≥ 0.

(3) Show that Z/pkZ≈Zp /pkZp . (see the localization exercise. Also B-S, p25 Corollary)

Zp is a typical example of "discrete valuation ring(DVR)". "Discrete" means that the value group except 0 is a
cyclic group generated by p. DVR is an example of Dedekind domain. pkZp = (pZ)k .
A finite field extension K ofQ is called a number field. Extend | · |p to K . How many different ways?

Theorem 12 (Hasse-Minkovski). Let f (x1, · · · , xn) be a quadratic form with rational coefficients. Then

∃a1, · · · , an ∈Q such that f (a1, · · · , an) = 0 ⇐⇒ ∃b1, · · · ,bn ∈Qp such that f (b1, · · · ,bn) = 0 for all p.

This theorem is a prime example of the Local-Global princible, i.e., globally true iff locally true everywhere.

Proof. B-S.
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7 INTRODUCTION TO ALGEBRAIC GEOMETRY

References : Fulton, Algebraic Curves. (classical language). Hartshorn(Modern Language, Scheme language),
EGA, SGA, 4 1

2 : Etale cohomology
Let k be an algebraically closed field. Let An

k := kn be the affine n-space. Define Zariski topology on An
k by

defining the closed sets as the zero set of polynomials. In other words, the only continuous function kn → k
relative to this topology is the polynomial functions.
"Mathematicians dream"
Lie groups over local fields : Sp2n(Qp ), one more
In analytic geometry, we consider the functions Cn →C analytic functions.
GAGA(geometric algebra=geometric analysis) principle

Notation. k : algebraically closed field. kn =An : affine n-space. Put A = k[x1, · · · , xn] .

Zariski topology onAn .
Let S be a subset of A. Then the closed sets are given by the zero set of sets of polynomials S, i.e., Z (S) = {a ∈
kn | f (a) = 0∀ f ∈ S}) where S ⊂ A. Note that Z (S) = Z (〈S〉). To see this defines a topology, we need to check if
artitrary intersection and finite union of closed sets are closed. The empty set and whole space is closed since
Z (1) =;, Z (0) =An .

Example 26. k =A1.

(1) for f ∈ k[x] we have |Z ( f )| <∞.

(2) for nonempty S ⊂ k[x], we have Z (S) =⋂
f ∈S Z ( f ) and has finite cardinality.

Hence closed sets ofA1 are finite sets.

Define a map sending a subset ofAn to a subset of A, by

I (Y ) = 〈 f ∈ A | f (y) = 0∀y ∈ Y 〉ideal ofA.

Obserce that

(1) S1 ⊂ S2 ⇒ I (S1) ⊃ I (S2)

(2)

By Hilbert basis theorem(A = k[x1, · · · , xn] is Noetherian), Z (S) = Z (〈S〉) = Z ( f1, · · · , fr ) for some polynomials
f1, · · · , fr ∈ S. Hence the closed sets in Zariski topology is the zero sets of finite number of polynomials.

HW 9. Let X be a subset ofAn .

(1) X ⊂ Z (I (X ))

(2) Z (I (X )) = X (topological closure)

(3) Z I Z (a) = Z (a)
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(4) Let a be an ideal of A. The radical
p
a is the ideal defined by
p
a := { f ∈ A | f r ∈ a for some r ≥ 1}.

Then it holds that I Z (a) =p
a. (Hillbert’s Nullstellensatz)

(5) An ideal a of A is a radical ideal if
p
a= a. Then

p
I (S) is a radial ideal.

(6) I Z I (X ) = I (X )

Note that (4) in the above homework is a weak form of Hilbert Nullstellensats. Its strong form is that for every
proper ideal a of A, we have Z (a) 6= ;.

Example 27. x2 ∈ k[x]. 〈x2〉 is not radical since x ∈
√
〈x2〉 and Z (x) = Z (x2) = {0}.

HW 10. Show that a maximal ideal is a radical ideal.

Definition 24. Let X be a topological space. X is reducible if X = X1 ∪ X2 for some non-empty closed sets
X1, X2.

Note that every irreducible set is connected.

Example 28. f (x, y) = x y . Z ( f ) = {(x, y) ∈ A2 |x y = 0} = Z (x)∪ Z (y). Note that Z (x) = {(x, y) ∈ A2 |x = 0} is
irreducible.

Hartshorn(or perhaps Fulton) : everything is irreducible.
Algebraic group is not necessarily irreducible.

Theorem 13 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field and let A = k[x1, · · · , xn]. Then
the following hold:

(1) Every maximal ideal m ⊂ A is of the form

m = (x1 −a1, · · · , xn −an) = I (P )

for some point P = (a1, · · · , an) ∈An
k .

(2) If J ( A is a proper ideal, then V (J ) 6= ;.

(3) For every ideal J ⊂ A we have

I (Z (J )) =
√

J

Proof. See Hulek, Elementary Algebraic Geometry.

Corollary 9. For A = k[x1, · · · , xn], the maps V and I

{ideals of A}
Z ,I←→ {subsets ofAn

k }

induce the following bijections:

{radical ideals of A}
1:1←→ {subvarieties ofAn

k }
∪ ∪

{prime ideals of A}
1:1←→ {irreducible subvarieties ofAn

k }
∪ ∪

{maximal ideals of A}
1:1←→ {points ofAn

k }
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Proof. See HW 13.

Definition 25 (Temporary). Category of algebraic sets. Objects are the closed subsets of affine space. Mor-
phism φ : X ⊂An → Y ⊂Am is a polynomial map, namely,

φ(x1, · · · , x1) = ( f1(x1, · · · , xn), · · · , fm(x1, · · · , xn))

where each fi is a polynoimal function.

But this definition has some problem. For instance, 〈x y = 1〉 ⊂ An is not an algebraic set according to this
definition. More generally, the general linear group would not be an algebraic set. Hence it might be better to
allow "rational functions" as being morphisms.

Definition 26 (Hartshorne). Let k be a fixed algebraically closed field. A variety over k(or simply variety) is
any affine, quasi-affine, projective, or quasi-projective variety as defined above. If X ,Y are two varieties, a
morphism φ : X → Y is a continuous map such that for every open set V ⊂ Y , and for every regular function
f : V → k, the composition f ◦φ :φ−1(V ) → k is regular, i.e., φ carries regular functions to regular functions.

Clearly the composition of two morphisms is a morphism, so we have a category.

Definition 27. Let A = k[x1, · · · , xn] and X be an algebraic set. Then the affine coordinate k-algebra of X is
defined by k[X ] := A/I (X ). Note that this equals the k-algebra of polynomial functions on X .

Definition 28. An algebra A is reduced if it has no nonzero nilpotent, i.e., ar = 0 for some a ∈ A and r ∈ N,
then a = 0.

Note that k[X ] is a finitely generated reduced k-algebra. Next proposition implies that two algebraic sets X ,Y
are isomorphic if and only if their coordinate k-algebras k[X ], k[Y ] are isomorphic as k-algebra. It is also the
first example of non-trivial categorical equivalence.
In the following propoisition, we regard the only the polynomial maps between two algebraic sets as mor-
phisms.

Proposition 13. The category of algebraic set A S is anit-equivalent to the category of finitely generated
reduced k-Algebra A , by the full and faithful contravariant functor

F : A S −→ A

X 7−→ k[X ]

Mor(X ,Y )
1:1−→ Homk−Al g (k[Y ],k[X ])

f 7−→ f ∗.

Proof. We first show that the map F defined above defines a full and faithful contravariant functor.

(i) F is a well-defined contravariant functor into A . That F maps into A is clear; k[X ] = k[x1, · · · , xn]/I (X ) is
finitely generated since k[x1, · · · , xn] is so(Hilbert’s theorem). It is reduced if and only if I (X ) is radical,
and it is the case here. Clearly the dual map f ∗ is a k-algebra homomorphism and is a contravariant
functor.
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(ii) Conversely, suppose we have a homomorphism h : k[Y ] → k[X ] of k-algebra. By definition k[Y ] =
k[x1, · · · , xn]/I (Y ). Denote by xi the image of xi in k[Y ], and recall that k[Y ] is generated by the co-
ordinate functions y1, · · · , ym . Now suppose we have a map ψ : X → Y such that ψ∗ = h. This means for
the generators we have

yi ◦ψ= h(yi ).

Hence we define ψ : X →Am ⊃ Y by ψ(P ) = (ζ1(P ), · · · ,ζn(P )) where ζi := h(yi ). ψ is a polynomial map
since each h(yi ) is a polynomial functions on X .

We show next that the image of ψ is contained in Y . Since Y = Z (I (Y )), it suffices to show for any P ∈ X
and any f = f (y1, · · · , ym) ∈ I (Y ) that f (ψ(P )) = 0. But

f (ψ(P )) = f (ζ1(P ), · · · ,ζn(P )).

Now f is a polynomial, and h is a k-algebra homomorphism, so we have

f (ζ1(P ), · · · ,ζn(P )) = h( f (y1, · · · , yn))(P ) = h( f (y1, · · · , ym))(P ) = 0

since f ∈ I (Y ) so that f = 0. So ψ defines a map from X to Y , which induces the given homomorphism
h. In addition, such ψ uniquely exists according to the argument. This uniqueness yields that F is full
and faithful.

(iii) In order to construct an inverse functor G we proceed as follows. For a finitely generated reduced k-
algebra A choose generators a1, · · · , an of A and consider the homomorphism

π : k[x1, · · · , xn] → A = k[a1, · · · , an],

given by π(xi ) = ai . Hence we write A ' k[x1, · · · , xn]/J where J = kerπ is a radical ideal. Now we set
G(A) = V (J ). On the other hand, for any homomorphism φ : A → B , there is a unique polynomial map
h : G(B) →G(A) according to part (ii), and we define G(φ) = h. This shows G is a contravariant functor.
Finally, observe that k[V ] = k[x1, · · · , xn]/I (V (J )) = k[x1, · · · , xn]/J ' A, which shows F ◦G ' i dA . On the
other hand, we clearly have G ◦F = i dA S . This

So we only need to study the category of k-algebra for that of algebraic sets.

Lemma 1. Let X be any variety, and let Y ⊂An be an affine variety. A map of sets ψ : X → Y is a morphism if
and only if xi ◦ψ is a regular function on X for each i , where x1, · · · , xn are the coordinate functions onAn .

Proof. Ifψ is a morphism, then the composition xi ◦ψmust be regular functions, by definition of a morphism.
Conversely, suppose the xi ◦ψ are regular. Then for any polynomial f = f (x1, · · · , xn), f ◦ψ is also regular on
X and in particular, continuous. Now we show that ψ is continuous on X by showing that the inverse image
of closed sets in Y under ψ is closed. Let V = Z (J ) be a closed set in Y . Since k[x1, · · · , xn] is Noetherian,
J is finitely generated; write J = 〈 f1, · · · , fr 〉 for some polynomials fi . Then V = ⋂r

i=1 Z ( fi ). Sinc ψ−1(V ) =⋂r
i=1ψ

−1(Z ( fi )), and intersection of closed sets is closed, it suffices to show thatψ−1(Z ( fi )) is closed in X . But
since

ψ−1(Z ( fi )) = ( fi ◦ψ)−1({0}),
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which is the inverse image of the closed set {0} under the continuous map fi ◦ψ, we see ψ−1(Z ( fi )) is closed
in X . This shows ψ : X → Y is continuous.
Now we show ψ is a morphism, i.e., for any regular function g on any open subset U ⊂ Y , g ◦ψ is regular on
ψ−1(U ). We need to show for any P ∈ψ−1(U ) that this function is locally rational. Since g is regular on U , it is
regular on ψ(P ), hence there are polynomial functions f ,h ∈ k[x1, · · · , xn] such that g = f /h and h is nowhere
vanishing on some open neighborhood VψP ⊂U ofψP . Recall that we know the composite f ◦ψ and h ◦ψ are
regular; hence those functions can be expressed as a fational functions near P . Let us write f ◦ψ= p1/q1 and
g ◦ψ= p2/q2 which is valid on a small neighborhood W ⊂ X of P . We may assume that W is small enough so
that ψ(W ) ⊂Vψ(P ).(e.g, take the intersection W ∩ψ−1(Vψ(P )).) Since h does not vanish near ψP (on VψP ), p2 is

never zero on W ⊂ψ−1(Vψ(P )). Thus g ◦ψ= f ◦ψ
h◦ψ = p1

q1
/ p2

q1
= p1q2

p2q1
and p2q1 does not vanish on W . This shows

f ◦ψ is regular on P . Since P was arbitrary, g ◦ψ is regular onψ−1(U ). Thereforeψ is a morphism. This shows
the Lemma.

From now on we may assume every objects are commutative.

Definition 29. A topological space X is Noetherian if DCC(descending chain condition) holds for closed sets.

HW 11 (Hartshorne Ex 1.7). Show the followings.

(a) Show that the following conditions are equivalent for a topological space X : (i) X is Noetherian; (ii)
every nonempty family of closed subsets has a minimal element; (iii) X satisfies the ascending chain
condition for open subsets; (iv) every nonempty family of open subsets has a maximal element

(b) A Noetherian topological space is quasi-compact, i.e., every open cover has a finite subcover.

(c) Any subset of a Noetherian topological space is Noetherian in its induced topology.

(d) A Noetherian space which is also Hausdorff must be a finite set with the discrete topology.

Proof. (a)

(i)⇔(ii) Let F be any family of closed sets. If there is no minimal element, then for any element C ∈ F
we can find a smaller one C ′ (C ′ in F . Repeating this process , we get a strictly descending chain
of infinite length C ) C ′ ) · · · , which contradicts that X is Noetherian. Hence F has a minimal
element.

Conversely, suppose every family of closed sets has a minimal element. Now given a descending
chain of closed sets C1 ⊃C2 ⊃C3 ⊃ ·· · , the collection F = {Ci | i ∈N} must have a minimal element,
say Cn . Then for any m ≥ n, we must have Cm = Cn since Cn ⊃ Cm and Cn is a minimal element.
This shows X is Noetherian.

(i)⇔(iii) (iii) is the compliment of (i) and vice versa.

(ii)⇔(iv) (iv) is the compliment of (ii) and vice versa.

(b) Let X be a Noetherian space and
⋃
α∈I Xα be an open covering. We may suppose for contrary that there is

no finite subcovering of this.(hence we assume |I | =∞) We may further assume that this open covering
is not redundant, i.e.,

⋃
α∈I \{β} Xα ( X for every β ∈ I . Now put V1 = X − X1, V2 = X − X1 − X2, V3 =

X −X1 −X2 −X3 and so on. Then we have a descending chain of closed sets

V1 ⊃V2 ⊃V3 ⊃ ·· · .
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By DCC, there is some n such that Vn = Vm for all m ≥ n. In particular, we have Vn+1 = Vn , but this
means Vn+1 = Vn − Xn+1 = Vn and hence Xn+1 ⊂ ⋃n

i=1 Xi , contradicting the assumption. Thus X is
quasi-compact.

(c) Let Y ⊂ X be a subspace, and V1 ⊃V2 ⊃ ·· · be a descending chain of closed sets in Y . Let Vi be the closure
of Vi in X . Since taking closure preserves inclusion, we get a descending chain of closeds sets in X :

V1 ⊇V2 ⊇V3 ⊇ ·· · .

Since X is Noetherian, there is some n ∈N such that Vm =Vn whenever m ≥ n. Note that for any closed
subset C ⊂ Y we have C = Y ∩C ; for, if we write C = Y ∩V for some closed subset V ⊂ X , then C ⊂C ⊂V ,
so that C ⊂ Y ∩C ⊂ Y ∩V =C . Thus we have

Vm = Y ∩Vm = Y ∩Vn =Vn

and hence Y is Noetherian.

(d) Let X be Noetherian Hausdorrf space and suppose for contradiction that X is infinite. Pick two distinct
points x, y and choose open separation U1,V1 of them; x ∈U1, y ∈V1, U1∩V1 =;. Either of X \U1 or X \
V1 is infinite. We may assume the former. Then X \U1 is a subspace of X , which is again Noetherian(by
(c)) and Hausdorff. In similar way, we can choose a nonempty open subset U2 of X \U1 such that X \(U1∩
U2) is infinite. Inductively, we choose open subset Uk of X \ (U1 ∪·· ·∪Uk−1) such that X \ (U1 ∪·· ·∪Uk )
is infinite. Now for each Uk , there is an open subset U ′

k of X such that Uk =U ′
k ∩X \(U1∪·· ·∪Uk−1). Put

Dk =U ′
1 ∪·· ·∪U ′

k . Then D1 ⊂ D2 ⊂ ·· · is an ascending chain of open subsets of X and it never stabilizes
for its construction. This contradicts the condition (iii) of part (a), and hence X must be finite. Since X
is Hausdorff, every point set is closed and hence X has discrete topology.

Proposition 14. The affine n-spaceAn is Noetherian space.

Proof. Recall that the polynomial ring A := k[x1, · · · , xn] is Noetherian. Hence ACC for ideals holds. This yields
DCC for closed sets ofAn . To see this, let

X1 ⊃ X2 ⊃ X3 · · · (1)

be a descending chain of closed sets inAn . By the corollary of Hilbert’s Nullstellensatz, every closed set inAn

is the zero set of some radical ideal. Hence we may write Xi = Z (Ji ) for some radical ideal Ji ⊂ A. Hence (∗)
becomes

Z (J1) ⊃ Z (J2) ⊃ Z (J3) · · ·
and hence we obtain an ascending chain of ideals

I (Z (J1)) ⊂ I (Z (J2)) ⊂ I (Z (J3)) · · · (2)

By ACC for the Noetherian ring A, there is a natural number n such that I Z (Jn) = I Z (Jm) for all m ≥ n. But by
Hilbert’s Nullstellensatz (2), (∗∗) beceoms

J1 ⊂ J2 ⊂ J3 ⊂ ·· · ⊂ Jn = Jn+1 = Jn+2 = ·· · . (3)

Applying Z to (3), we get minimal element for the descending chain (1). ThusAn is Noetherian.
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Remark 2. X is Noetherian and Hausdorff =⇒ |X | <∞
X is irreducible and Hausdorff =⇒ |X | = 1
So we are interested in non-Hausdorff spaces.

HW 12. Let X ⊂An
k be an affine algebraic set. Show that these followings are equivalent:

(i) X is irreducible.

(ii) every two nonempty open set in X have a nonempty intersection.

(iii) every nonempty open set in X is dense in X .

Proof. (i)⇐⇒ (ii) For any subsets U ,V of X we have

U ∩V =; ⇐⇒ (X −U )∪ (X −V ) = X . (∗)

Suppose X is irreducibe. Note that if both U ,V are nonempty open and U ∩V =;, then X is a union of
two nonempty closed subsets X −U and X −V which are properly contained in X . Since a closed subset
of X is an intersection of X and a closed set ofAn

k , and since X is closed, we see that closed subsets of X
is closed inAn

k . Hence this contradicts that X is irreducible.

On the other hand, assume (ii). If X is not irreducible, then there are nonempty closed sets C1,C2 ⊂An
k

such that C1,C2 ( X and X =C1∪C2. Put U = X ∩CC
1 and V = X ∩CC

2 . They are nonempty open subsets
of X , and but (∗) yields U ∩V =;. This contradictions shows X is irreducible.

(ii)⇐⇒ (iii) It follows from the fact that a subset D ⊂ X is dense in X if and only if D ∩U 6= for all open subset
U of X .

Proposition 15. Let X be a closed subset in a Noetherian space. Then there are irreducible subsets X1, · · · , Xr

such that
X = X1 ∪·· ·∪Xr .

Such expression is unique if Xi * X j for all i 6= j . Such Xi s are called irreducible components of X .

Standard agrument. Let C be the collection of closed sets in X that violates the assertion. Since X is Noethe-
rian, there is a minimal element X ⊂ C. We may assume X is not irreducible. Hence we can write X = Y1 ∪Y2

for some closed sets Y1,Y2. By the minimality, each Yi is the union of some irreducible sets, so that X is a
union of some irreducible sets, which is a contradiction.

HW 13. Show that for A = k[x1, · · · , xn], the maps Z and I

{ideals of A}
Z ,I←→ {subsets ofAn

k }

induce the following bijections:

{radical ideals of A}
1:1←→ {subvarieties ofAn

k }
∪ ∪

{prime ideals of A}
1:1←→ {irreducible subvarieties ofAn

k }
∪ ∪

{maximal ideals of A}
1:1←→ {points ofAn

k }
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Proof. We know Z (I (X )) = X and I (Z (a)) = a for every closed set X ⊂ An
k and ideal a in A from Hilbert’s

Nullstellensatz and (2) of Problem 1. Hence it suffices to show the maps Z , I restricted on the prescribed
domains map into the prescribed codomains.

(i) It suffices to show that I maps closed sets into radical ideals. We have seen this in (5) of Problem 1.

(ii) To show the second bijection, it suffices to show that I maps irreducible closed sets into prime ideals and
Z maps prime ideals into irreducible closed sets. For this, we show that a closed set X is irreducible if
and only if I (X ) is a prime ideal in A. First suppose X is irreducible, and assume for contradiction that
I (X ) is not prime. Then there are polynomials f , g ∈ A \ I (X ) such that f g ∈ I (X ). Now consider the
closed sets V1 := V (I (X )∪ { f }) and V2 := V (I (X )∪ {g }). Clearly those are contained in X , and not equal
to X since f , g ∉ I (X ). Also clear is that X ⊂V1∪V2. Any x ∈ X is a zero of f g ∈ I (X ), and hence it belongs
to the union. Therefore X =V1 ∪V2, contrary to the assumption that X is irreducible.

Second, suppose I (X ) is prime. If X is not irreucible, there are closed sets V1 = Z (S1),V2 = Z (S2) prop-
erly contained in X such that X = V1 ∩V2. Pick elements a1 from X \ V1 and a2 from X \ V2. Let f ∈ S1

and g ∈ S2. Then f (a1) 6= 0 and g (a2) 6= 0, which implies f , g ∉ I (X ), but f g ∈ I (X ) since X = V1 ∪V2.
This contradicts that I (X ) is prime.

Now we know that I maps irreducible closed sets into prime ideals. On the other hand, if S is a prime
ideal in A then Z (S) is a irreducible closed set since I (Z (S)) = S = S is prime ideal.

(iii) By Hilbert’s Nullstellensatz, the maximal ideals in A are precisely the ones given by

I (P ) = (x1 −a1, · · · , xn −an)

for some P = (a1, · · · , an). This and (2) of Problem 1 gives the third assertion.

Convention : compact = compact + Hausdorff. quasi-compact = compact but not necessarily Hausdorff.

Proposition 16. Every Noetherian space is quasi-compact.

Proof. Use ACC for open sets.

Projective Algebraic Sets. Recall that the projective space Pn is the quotient space kn+1 − {0}/ ∼ where the
equivalence relation ∼ is given by x ∼ λy for all λ ∈ k. In the projective space, we only need to say about the
zeros of homogeneous polynomials.

Definition 30. Let S ⊂ k[x0, · · · , xn] such that elements of S are homogeneous. Then define

Z (S) = {x ∈Pn | f (x) = 0∀ f ∈ S} = Z (〈S〉)

where 〈S〉 is a homogeneous ideal in A. Also define

I (Y ) = { f ∈ Ah | f (y) = 0∀y ∈ Y }.
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Then the properties that holds for affine algebraic sets such as I Z (J ) = p
J (Nullstellensatz), Z I (J ) = J also

holds in the projective algebraic sets.
Put Ui = {(x0 : x1 : · · · : xn) ∈Pn |xi 6= 0} =Pn −Z (xi ). Then

Pn =
n⋃

i=0
Ui .

Proposition 17 (Hartshorne 2.2). Ui 'An homeo.

Hence Pn locally looks likeAn . Also let X be a closed set in Pn . Then we can write

X =
n⋃

i=0
(X ∩Ui ).

Note that X ∩Ui is closed in Ui , hence homeomorphic to algebraic sets.
Let variety means the object that locally looks like affine algebraic sets. Everything will become clear once we
use the language of sheaf.

Sheaf (in a category C ) on X (topological space).

Example 29 (Typical example). X : C∞-manifold. U is open set in X . Then C∞(U ) := { f : U →R | f is C∞}.

A presheaf O (in C ) on X is a collection of O (U ) ∈ C for each open set U ⊂ X together with (restriction)
ρU

V : O (U ) →O (V ) if V is open in U (this means C∞-ness is locally defined) such that

(0) O (;) = 0;

(i) ρU
U = i d ;

(ii) ρV
W ◦ρU

V = ρU
W .

O is called a sheaf if elements in O (U ) are "locally determined", i.e.,

(1) (Local identity) If U =⋃
αUα is an open covering, then s ∈O (U ), S|Uα = 0 for all α implies s = 0.

(2) (Gluing) Let U = ⋃
αUα be an open covering and let sα ∈ O (Uα) for each α. If sα|Uα∩Uβ

= sβ|Uα∩Uβ
for all

α,β, then there exists unique(by (1)) s ∈O (U ) such that s|Uα = sα.

Definition 31. Let X ,Y be C∞-manifolds. Then a map φ : X → Y is C∞ if for every open V ⊂ Y , we have map

C∞(X ) →C∞(φ−1(V )), f 7→ f ◦φ|φ−1(V )

Definition 32. (1) (X ,OX ) is a k-algebra(ringed) space if X is a topological space and OX is a sheaf of k-
algebras on X .

(2) A morphism φ : (X ,OX ) → (Y ,OY ) in the category of ringed space is a continuous map X → Y which
induces a k-algebra homomorphism φ∗ : OY (V ) →OX (φ−1(V )), f 7→ f ◦φ for every open set V ⊂ Y .
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C∞-manifold
Let X be a topological space. It is an n-dimensional manifold if for all P ∈ X , there is an open neighborhood
Uα of p such that there is a homeomorphism φα : U →φα(U ) ⊂Rn . We call such pair (Uα,φα) a chart.
Given the local homeomorphisms from X to the Euclidean space Rn , we can give X manifold structure by
requiring the chart transitions to satisfy certain condition. We call X a smooth(C∞) manifold if the chart
transition maps are smooth, i.e., if (Uα,φα), (Uβ,φβ) are two charts such that Uα∩Uβ 6= ;, then φα ◦φ−1

β
is C∞

on φβ(Uα∩Uβ) and β◦α−1 is C∞ on φα(Uα∩Uβ).

Definition 33. Let U ⊂ X be open. A map f : U →R is C∞ if it is locally represented by a smooth function, i.e.,
for each p ∈U , there is a coordinate neighborhood x ∈Uα ⊂ X such that f ◦φ−1

α :φα(U ) ⊂Rn →R is C∞.

Definition 34. Let X ,Y be C∞-manifolds. A map φ : X → Y is smooth if it is locally represented by a smooth
map on Rn . That is, φβ ◦φ◦φ−1

α is C∞ on φα(Uα) for all chart (Uα,φα)

Uα ⊂ X

φα

��

f // Vβ ⊂ Y

ψβ

��
φα(Uα) ⊂Rn

φβ f ◦φ−1
α ∈C∞

// ψβ(Vβ) ⊂Rn

Question : The coordinate chart map φα is smooth by tautology. If another atlas (Vβ,ψβ) gives a smooth
structure on X , then is the previous chart map φα smooth with respect to the second smooth structure?

Notation. U ⊂ X open. Denote C∞
X (U ) = { f : U →R | f : C∞}. Hence C∞

X is a sheaf of k-algebra.

Proposition 18. φ : X → Y is C∞ ⇐⇒ for every V ⊂ Y open, φ induces k-algebra homomorpihsm φ∗ :
C∞

Y (V ) →C∞
X (φ−1(V )) by g 7→ g ◦φ|φ−1(V ).

Proof. (=⇒) C∞ ◦C∞ =C∞.

(⇐=) Note that the projection map is C∞ and a map f : Rn → Rn is smooth if and only if each coordinate
function is smooth. Put g be the projection maps.

Thus the category of C∞ manifolds is a category of ringed space.

On could wish that given a sheaf OX (U ) of R-valued functions, we might get C∞ manifolds. But it could be
the case that our sheaf might contain two functions which do not get along with each other. This statement is
actually an emphasized one of that a C∞-manifold is determined by its sheaf. Hence we might call the sheaf
O∞

X of C∞ manifold its structure.

Definition 35. Let OX be a sheaf on X . Let U ⊂ X be an open set. The restriction sheaf OU = OX |U is defined
by OU (V ) =OX (V ) for V ⊂U open.

Let X be a topological space.

(i) Given a sheaf OX of R-valued functions
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(ii) X locally looks like open subsets of Rn , i.e., ∀P ∈ X , ∃(P ∈)U ⊂ X open such that (U ,OX (U )) ' (B ,C∞(B))
as ringed space for some open subset B ⊂Rn .

HW 14. Show that the above two conditions are equivalent to "X is C∞ manifold with OX (U ) 'C∞(U ) for all
open subset U ."

HW 15. C∞ ◦C∞ =C∞, π ∈C∞, mophism◦morphism = morphism

Now we define the sturcture sheaf of algebraic sets.

Example 30. Let k be an algebraically closed field. k× → Z (x y −1) ⊂ A2
k , α 7→ (α, 1

α ). The domain is Zariski
open, where the range is Zariski closed.

Definition 36. Let X be a closed or open subset of An
k , and U be an open subset of X . Define the sheaf of

"regular functions" OX as follows.

f : U → k is regular ⇐⇒ f is locally a rational polynomial function on U

⇐⇒ ∀P ⊂U , ∃V ⊂U open nbh of P and ∃g ,h ∈ A s.t. f (Q) = f (Q)

g (Q)
∀Q ∈V , g (Q) 6= 0.

Definition 37. Let X ⊂An
k be an algebraic set. Then the pair (X ,OX ) is called affine variety. More generally,

(Y ,OY ) is an affine variety if (Y ,OY ) ' (X ,OX ) as ringed space for some algebraic set X .

Example 31. X = {(x, y) ∈ A2 |x y = 0}. Reducible. U = {(x, y) ∈ X |x 6= 0} = {(x,0) |x 6= 0} ⊂ X is affine open.
V = {(0, y) | y 6= 0}. On U ∪V = X \ {0}, we define

f (x,0) = x on U , f (0, y) = 1

y
on V .

Hence f ∈OU∪V .

Table for geometry and its hometown

Question : X : irreducible. Locally rational iff Globally rational? Seems to be a fundamental and hard question.
Given a geometry : always ask "what is the hometown? what is the structure sheaf?"

Recall that a topological space X is a smooth manifold if it locally looks like the hometown, Rn , now con-
sidering the smooth maps altogether. We can view Rn as a smooth manifold with smooth maps defined on
Rn . Hence (Rn ,C∞

Rn ) is a ringed space. Then, given a ringed space (X ,C∞
X ) of smooth manifold, is there "local

isomorphism" between the two ringed spaces?
We can ask a question about the converse. Given a sheaf C∞

X on the topological space X , can we define a
smooth manifold structure on X ?

Definition 38. Let (X ,OX ), (Y ,OY ) be ringed space, where OX , OY are collectionof k-valued functions. Then
a map φ : X → Y is a ringed space morphism if
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(i) φ is continuous and

(ii) ∀V ⊂ Y open, the dual map φ∗ : OY (V ) → OX (φ−1(V )) defined by f 7→ f ◦φ|φ−1(V ) is a k-algebra homo-
morphism.

Proposition 19. Let X be a C∞-manifold. Then the ringed space (X ,C∞
X ) is locally isomorphic to the ringed

space (Rn ,C∞
Rn ), i.e., for each p ∈ X , there is an admissible coordinate chart (Uα,φα) containing p such that

φα : (Uα,C∞
X |Uα ) −→ (A,C∞

Rn |A)

is a ringed space isomorphism, where A =φα(Uα).

Proof.

Conversely,

Proposition 20. Suppose a ringed space (X ,OX ) locally looks like the "hometown", i.e., there is a local iso-
morphism from (X ,OX ) to (Rn ,C∞

Rn ). That is, for every p ∈ X , there is an open neighborhood U ⊂ X , open
subset A ⊂Rn , and a homeomorpihsm φ : U → A such that

φ : (U ,OX |U ) −→ (A,C∞
Rn )

is a ringed space isomorphism. Then, X is a unique C∞-manifold with C∞
X =OX with the collection of all such

pair (U ,φ) being an atlas.

Proof.

On the other hand, consider the affine space An with OA the sheaf of regular functions for each algebraic set
A ⊂An . Then we can think of a ringed space (X ,OX ) which locally looks like this "hometown" (An ,OAn ), i.e.,
for each p ∈ X , there is an open neighborhood U ⊂ X such that we have the ringed space isomorphism

(U ,OX |U ) ' (A,OA).

Think of the local ringed space isomorphism from given ringed space to the well-known "hometown" ringed
space for geometry.
Recall directed system in a category C .

Definition 39. I is a directed index set if

(i) : I is a poset

(ii) : If i , j ∈ I , then there is k ∈ I such that i , j ≤ k.

Definition 40. Let C be a category, and I a directed index set. For each indices i ≤ j , let ρ j
i : A j → Ai be a

morphism. Then we call A =
{

Ai , {ρ j
i }i≤ j

}
a directed system if

(i) : ρi
i = i d

(ii) : i ≤ j ≤ k ⇒ ρ
j
i ◦ρk

j = ρk
i .
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Example 32 (Typical example). X : smooth manifold. C∞(U ) = { f : U
C∞
→ R}. ρU

V : C∞(U ) →C∞(V ) : f 7→ f |V :
restriction onto V if U ⊂V . Germ. f = f |V . Considering two images identical ↔ quotient.

Definition 41 (Direct limit).

Ai

ρi
j //

φi

!!
αi

��

A j

φ j

||
α j

��

lim−−→ Ai

��
B

Existence of direct limit in ModR . Since it is the dual of the inverse limit, which was a subset of the categorical
product, the direct limit must be the image of coproduct. That is, the "maximal quotient module" of the
coproduct

⊕
i Ai for which the above diagram for direct limit commutes.

A = lim−−→ Ai =
⊕

i
Ai /〈ι jρ

i
j ai − ι j ai 〉R-submodule

Definition 42. (X ,OX ) : ringed space. OX (U ) is a k-algebra of k-valued functions on U , where the operations
are given by the operations in k.(think of the typical example of smooth manifolds with smooth maps). Define
an equivalence relation on OX as follows: for fixed point P ∈ X , consider f ∈OX (U ) and g ∈OX (V ) where U ,V
are some open neighborhoods of P . We define relation

f ∼P g

if f = g one some neighborhood W of P that is contained in U ∩V . This defineds an equivalence relation,
and each equivalence class [ f ]P is called the germ at P . The set of all germs at P is called the stalk at P and
denoted OP .

Roughly speaking, the germ [ f ]P at P is the collection of all functions g ∈OX that is locally the same as f near
P . When considering the stalk OP , we only considers the local behavior of functions f of the sheaf OX . One
can predict that the stalk might be given as a local ring

HW 16. [ f + g ] = [ f ]+ [g ], [ f g ] = [ f ][g ]. That is, Op has a quotient ring structure.

Theorem 14. Show that OP ' lim−−→P∈U⊂X
OX (U ) as abelian groups, under the mapΦ : [ f ]P 7→φU ( f ), i.e.,

[ f ]P 7−→ (0, · · · ,0, f ,0, · · · ,0)

where f ∈OX (U ).

Proof. Let f ∼P g , where f ∈ OX (U ) and g ∈ OX (V ). We need to show φU ( f ) = φ(V )(g ). Since f ∼P g , there
is an open neighborhood W of P contained in U ∩V such that f = g on W . Denote h = f |W = g |W ∈ OX (W ).
Hence we have

φU ( f ) =φW ( f |W ) =φW (h) =φ(g |W ) =φV (g ).
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This shows the mapΦ is well-defined. ThatΦ is an additive group homomorphism is clear, since

Φ([ f ]P + [g ]P )(x) = (φU ( f )+φV (g ))(x) =φU ( f )(x)+φU (g )(x)

for every x ∈U ∩V . It remains to show the surjectivity. This follows from the following proposition. Assuming
it, indeed, if f ∈ lim−−→P∈U

OP (U ), then we may write f = φU (g ) for some g ∈ OX (U ). Then f = Φ([g ]P ), and
thereforeΦ is surjective.

Proposition 21. Let Ai ∈ ModR and a ∈ lim−−→ Ai . Then ∃ j ∈ I , ∃a j ∈ A j such that φ j a j = a.

Proof. Let a = (0, · · · , ai1 , · · · , ai2 , · · · , ai3 , · · ·0). Since the index set I is a directed set, there is j ≥ i1, i2, i3. Put

b1 = (0, · · · ,0,ρi1
j ai1 ,0, · · · ,0)

b2 = (0, · · · ,0,ρi2
j ai2 ,0, · · · ,0)

b2 = (0, · · · ,0,ρi2
j ai2 ,0, · · · ,0).

Then we have

b1 +b2 +b3 = (0, · · · ,0, ai1 ,0, · · · ,0)+ (0, · · · ,0, ai2 ,0, · · · ,0)+ (0, · · · ,0, ai3 ,0, · · · ,0)

= a

Proposition 22. (1) ak ∈ Ak , φk ak = 0 =⇒ ∃≥ k such that ρk
l ak = 0.

(2) φi ai =φ j a j where ai ∈ Ai , a j ∈ A j ⇐⇒∃k ≥ i , j such that ρi
k ai = ρ j

k a j .

Proof. (1) Obvious in stalk. "if locally identical, then still identical if restricted".

(2) Try for 1 hour, and refer to Babakhanian.

HW 17. Details for the proof of theorem 14.

Note that the coproduct of two k-algebras is a tensor product. But arbitrary coproduct of k-algebras might
not exists. Hence the similar construction of the direct limit in the category of R-modules as the image of
coproduct does not work in the category of k-algebras. However, there is a clever detour for this.

Theorem 15. Direct limit exists in the category of k-algebra.

Proof. Let A be the direct limit of Ai in the category of k-modules. Need to define multiplication. Let a,b ∈ A.
Then a =φi ai , b =φ j a j for some indices i , j and ai ∈ Ai , a j ∈ A j . Let k ≥ i , j . Then define

a ·b :=φk [(ρi
k ai ) · (ρ j

k a j )].

where the product (ρi
k ai ) · (ρ j

k a j ) takes place in Ak . We need to ensure following points. In vector notation, if

a ·b = (0, · · · ,0, ai ,0, · · · ,0) · (0, · · · ,0, a j ,0, · · · ,0) = (0, · · · , · · · ,0, ai a j ,0, · · · ,0)
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(1) Well-defined?

We need to show the product a ·b does not depend on the choice of k and also of the choice of ai , a j .
Use the notation a ·k b temporarily. Let k,k ′ ≥ i , j . We may assume k ′ ≥ k. We need to show a ·k b = a ·k ′ b.
This follows from the commutative diagram below and the fact tha ρk

k ′ is a k-algebra homomorphism.

(2) φk is a k-algebra homomorphism?

Clear from the construction.

(3) lim−−→ Ai is a k-algebra?

Distributivity. Check.

Theorem 16. OP ' lim−−→P∈U⊂X
OX (U ) as k-algebra.

T.A. Springer, Linear Algebraic Groups, Chapter 1.
variety + group ⊂GLn(k).
J.E. Humphreys, Linear Algebraic Groups A.Borel, Linear Algebraic Groups

Example 33. k∗ ←→ Z (x y −1) ⊂A2 by α−→ (α, 1
α ) ⊂A2. Isomorphic as locally ringed space.

Example 34. f (x1, · · · , xn) ⊂ k[x1, · · · , xn]. An − Z ( f ) ≈ Z ( f (x1, · · · , xn)xn+1 −1) : closed in An+1. LHS is open
inAn , affine open subset.

k[Z ( f · xn+1 −1)] = k[x1, · · · , xn+1]/( f · xn+1 −1)

≈ k[x1, · · · , xn] f .

Let X be an affine variety inAn .(algebraic set) f ∈ k[X ] = A/I (x). Define D( f ) = X −V ( f ).

HW 18. {D( f ) | f ∈ k[X ]} is a base for the topology of X .
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Proof. We need to show that any open subset in X is a union of the sets of the form D( f ). Let U = X −
Z ( f1, · · · , fr ) be any open subset of X , for some polynomials f1, · · · , fr ∈ k[x1, · · · , xn]. Observe that

U = X −Z ( f1, · · · , fr )

= X ∩
(

r⋂
i=1

Z ( fi )

)c

= X ∩
(

r⋃
i=1

Z ( fi )c

)

=
k⋃

i=1
(X ∩Z ( fi )c )

=
k⋃

i=1
(X −Z ( fi )) =

k⋃
i=1

D( fi )

where fi is image of fi under the cannonical projection k[x1, · · · , xn] → k[X ].

Note that
D( f ) ≈ {(x1, · · · , xn , xn+1) ∈An+1 ∣∣ (x1, · · · , xn) ∈ X , f (x1, · · · , xn)xn+1 = 1}

is a closed subset ofAn+1. Then

HW 19. k[D( f )] ≈ k[X ] f .

Proof. Let X = Z ( f1, · · · , fk ) for some polynomials f1, · · · , fk ∈ k[x1, · · · , xn]. Then

k[D( f )] = k[x1, · · · , xn+1]/( f1, · · · , fk , f · xn+1 −1).

We show the map

φ : k[x1, · · · , xn+1] −→ k[X ] f , g (x1, · · · , xn+1) = g (x1, · · · , xn ,1/ f (x1, · · · , xn))

is a surjective ring homomorphism with kernel ( f1, · · · , fk , f · xn+1 −1). That the kernel is as claimed is clear.
Thatφ is a ring homomorphism is also clear sinceφ can be viewed as an evaluation homomorphimsm xn+1 7→
1/ f . The surjectivity is also clear, since for any g / f r ∈ k[X ] f , we have φ(g · xr

n+1) = g / f r . Hence we have
k[D( f )] ≈ k[X ] f as desired.

Theorem 17. Let (X ,OX ) be affine variety. Then

(a) OX (X ) ≈ k[X ]

(b) P ∈ X . OP ≈ k[X ]mP where
mP = { f ∈ k[X ] | f (P ) = 0}

is a maximal ideal in k[X ]. (That’s why it is called "localization")

Proof. (a) Define k[X ] →OX (X ), f 7→ f . Surjective?

Surjectivity proof

(1) Hartshorne (X : irreducible)
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(2) T.A. Springer, p.8. Elementary proof (not necessarily for X irreducible ) (compare with Hartshorne
pp. 71-72 "scheme")

(b) Germ OP ←→ k[X ]mP by
[k/h,U ] ←→ k/h

for some h,k ∈ k[X ] with h(P ) 6= 0.

Question. Concerning (a), why didn’t we defined the regular functions globally as follows?

OX (U ) = {g |g : U → k is a polynomial }

No counter example in affine variety. Maybe some in projective.
We ommit the dimension of algebraic varieties. Similar assertion holds for projective varieties.

Definition 43. Let (X ,OX ) be a ringed space, where OX is a sheaf of k-valued functions. It is called a prevariety
if it locally looks like our hometown(affine variety), i.e., ∀P ∈ X ∃P ∈U ⊂ X open such that (U ,OX |U ) ≈ (Y ,OY )
as rined space for some algebraic set Y ⊂An with the structure sheaf OY .

Definition 44. A ringed spcae (X ,OX ) is a C∞-manifold if it is locally looks like (Rn ,C∞
Rn ) and X is Hausdorff,

2nd countable.

Definition 45. A ringed space (X ,OX ) is called an algebraic variety if it is a prevariety + "separation axiom".
(note that even our hometown-affine variety- is not Hausdorff.)

Definition 46. (X ,OX ) is an affine variety if it is the hometown in An , and projective variety if it is the home-
town in Pn .

Theorem 18. (X ,OX ) : projective variety. Then OX (X ) ≈ k.

Note :

functor : Affine Variety −→ finitely generated reduced k-Alg

(X ,OX ) 7−→ k[X ] = A/I (X )

Given φ : X → Y , define φ∗ : k[Y ] → k[X ] f 7→ f ◦φ. Anti-equivalence.

Theorem 19. X any pre variety, Y : affine variety. Then

Mor(X ,Y )
∼−→ Homk−al g (k[Y ],OX (X )).

Proof. Given h ∈ Homk−al g (k[Y ],OX (X )), define h 7→ψ by

ψ(P ) = (ζ1(P ), · · · ,ζn(P ))

where ζi = h(xi ) for xi ∈ k[x1, · · · , xn], xi ∈ k[x1, · · · , xn]/I (Y ). We need to check ψ(P ) ∈ Y , i.e., f (ψ(P )) = 0 for
all f ∈ I (Y ). Obseve

f (ζ1(P ), · · · ,ζn(P ))
∗= h( f (x1, · · · , xn))(P )

∗∗= 0
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HW 20. Verify ∗ and ∗∗ for f (x1, x2) = x2
1 x2 +x1 +3, h:k-alge hom.

Theorem 20. Category of affine variety = Category of finitely generated reduced k algebra

HW 21. Let X ,Y be algebraic sets. φ : X → Y morphism iff φ : polyomial map. regular = poly.

Proposition 23. k[X ] ≈O (X ).

Proof. Define map φ : k[X ] →O (X ) by f 7→ f . surjectivity?
∀ f ∈OX (X ) for all x ∈ X there is Ux : nbh of x, gx ,hx ∈ k[X ] such that f |Ux = gx

hx
.

{D f } : basis. WMA Ux = D(ax ), ax ∈ j [X ].
D(ax ) ⊂ D(hx ) ⇒ Z (ax ) ⊃ Z (hx ).
Hence

p
(ax ) = I Z (ax ) =⊂ I Z (hx ) =

√
(hx ). Thus ax ∈

√
(hx ).

Hence there is h′
x ∈ k[X ], nx ≥ 1 such that anx

x = hx h′
x .

f |Ux = gx h′
x

anx
x

, D(ax ) = D(anx
x ).

We set anx
x 7→ ax , gx h′

x 7→ g (x). (WMA hx = ax ).
Since X is quasi-compact, ∃h1, · · ·hs ∈ k[X ] such that {D(hi )} covers X .
f |D(hi ) = gi

hi
, ∃gi ∈ k[X ].

gi
hi

= g j

h j
on D(hi )∩D(h j ), hi hi = 0 on X \ D(hi )∩D(h j ).

hi h j (gi h j − g j hi ) = 0.
{D(h2

i )} covers X .
Thus Z ({h2

i }) =⋂s
i=1 Z ({hi }) = 0√

(h2
1, · · · ,h2

s ) = I Z ({h2
i }) = k[X ].

1n ∈ (h2
1, · · ·h2

s ). Thus (h2
1, · · ·h2

s ) = k[X ].
∃bi ∈ k[X ] s.t.

∑s
i=1 bi h2

i = 1.
∀x ∈ D(hi ), h2

j

∑s
i=1 bi gi hi (x) =∑s

i=1 bi h2
i h j g j = h2

j f .

f =φ(
∑s

i=1 bi gi hi ). Surjective.

HW 22. Let R be a ring, and a⊂ R an ideal. Show that

p
a = ⋂

a≤P
P :PI in R

P.
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8 SCHEME LANGUAGE

Product of Affine varieties. We want An ×Am ≈An+m homeo. Let X ⊂An , Y ⊂Am be closed subsets. Then
X ×Y ⊂An ×Am is a closed subset, and we want to identifyAn ×Am ≈An+m . Note that

{(x1, · · · , xn , y1, · · · , ym) ∈An+m | f (x1, · · · , xn) = 0, g (y1, · · · , ym) = 0 for all f ∈ I and g ∈ J }

Now we define the product topology of X ×Y as the induced topology inAn+m .
Let X ⊂An ,Y ⊂Am be affine prevarieties;

X = Z ( f1(x1, · · · , xn), · · · ), Y = Z (g1(y1, · · · , ym), · · · ).

Define
X ×Y = {(x, y) ∈An+m | fi (x) = 0 g j (x) = 0 for all i , j }

Then we claim that X ×Y is a categorical product in A f f V ar . We need to show that

(1) the maps p : X ×Y → X , q : X ×Y → Y are morphisms. This is clear since they are polynomial map.

(2) the commuting diagram.

Note that (1) implies that the topology on X ×Y is finer than the product topology

Example 35. A1 ×A1 ≈A2. If LHS is product topology, closed set=finite set. But RHS has more closed sets.

k[X ×Y ] ≈ k[X ]⊗k k[Y ].

Note 3. Let X be a topological space. Then X is Hausdorff iff the diagonal ∆(X ) is a closed subset of X ×
X ("diagonal is closed")

Recall that a prevariety is a ringed space that is locally homeomorphic to Rn .

Definition 47 (Hausdorff separation axiom). A prevariety X is a variety iff it satisfies the Hausdorff separation
axiom, i.e., ∆(X ) ⊂ X ×X is closed, where X ×X has Zariski topology.

Theorem 21. There exists categorical product in the category of prevariety.

Proof. X =⋃r
i=1 Ui , Y =⋃

j=1 U j where Ui ,V j are affine open. We know the categorical product Ui ×U j . Then
define

X ×Y =⋃
i , j

Ui ×U j .

"Glue together".

Note 4. Let X be a nice(locally compact Hausdorff ) space. Then X is compact iff the proejction map

X ×Y → Y

is closed map for all (...) space Y .
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Definition 48. Let X be a variety. We call X complete if for all variety Y , the projection map

X ×Y → Y

is closed map.

Theorem 22. Affine algebraic group(affine var and alg gp) is isomorphic(as gp and aff var.) to a Zariski closed
subgroup of GLn(k) for some n.

Proof. Omitted.

Thus we call affine algebraic group a linear algebraic group.
Exception : elliptic curves. lives in projective space
Know X ×Y : categorical product of X ×Y in AffVar. Thus k[X ×Y ] is a coproduct of k[X ] and k[Y ] in f.g.
reduced k-Alg. Thus k[X ×Y ] ≈ k[X ]⊗k[Y ].

Scheme. Hometown : A : ring. Spec A = the set of prime ideals of A ⊃ maximal ideals(↔ points)
Define structure sheaf (Spec A,O ).
Locally ringed space. Look up for definitions. (Harshorne Ch2.)
Sturcture sheaf O (U ) is a ring. Up until now it was a k-algebra. Recall that a ring is a Z-algebra.
We want to reduce the hypothesis on the algebraically closedness of k. So searched for alternative languages.
Now fix a ring k. We can lift up or restrict the theory itself. So suffices to do for algbraically closed field.
Question : Why Spec A? Why locally ringed space?
Scheme language is not the unique solution. (a better one)
Now its a normal science. It has been a paradigm.
Up until now φ : X → Y is a morphism if (by def) it induces k-algebra homomorphism if φ∗ : OY (V ) →
OX (φ−1(V )) by g 7→ g ◦φ|φ−1(V ).

in locally ringed space, (φ,φ#), φ# : OY →OX . φ and φ# is independent. totally different two data.

Example 36. SLn(R) = {(ri j ) ∈ Rn2 | det(ri j )−1 = 0}, E(R) = {(r, s) ∈ R2 | s2 −5r 3 +p
2r −1}. We want to under-

stant SL2, E as functors. −5,
p

2 ∈ k : ring.
To define polynomials R must be a k-algebra.
Thus it is a functor from k-algbra to Set .

Category of dreams. A dream F is a covariant functor k-alg → Set . It satiesfies following properties.

(i) I : index set, Xi : indeterminate (i ∈ I ), T ⊂ k[{Xi }i∈I ].

F (R) = {(ri ) ∈∏
i∈I R | f ((ri )) = 0∀ f ∈ T }.

F : a covariant functor? Need to check φ : R → S k-alg homomorphism. F (R) → F (S).

(We assume everything is commutative. hom : 1 7→ 1. )

(ri ) 7→ (φri ).

F maps id to id

preserves composition

Object is Functor!
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Definition 49. Let C , D be categories. F (C ,D) : functor category. An object is a functor F : C → D.
MorF (C ,D)(F,G) = N atTr ans f (F,G) natrual transformation = {ηX }.

Fundamental Question : N atTr ans f (F,G) is a set? Not necessarily.
Ob can be more than a set, while Mor must be a set. Why?
Foundation of Category theory. One can avoid the axiom of choice.
If C , D are small categories, then everything is a set.
the category of gp is not a small category. But if we consider the isomorphism classes, then it can be a small
category. Really? for cyclic groups we knew the classification.
FI ,T (R) = {(ri ) ∈∏

i∈I R | f ((ri )) = 0∀ f ∈ T }. Hence the "dreams" can be at most #set many.
We may only consider small categories.
The category of dreams is a full subcategory of F (k − Al g ,Set ).
The category of dreams = representable functors( = equivalent to Hom functor)

Definition 50. F : k − Ale −→ Set is a representable functor if F ≈ Homk−Al g (A,−) for some k-algebra A,
where the isomorphism is in the functor category = natural equivalence. "F is represented by A".

Category of representable functors k − Al g
anti−equi v

Yoneda Lemma
oo

anti−equi v
// Affine Schemes over k

Example 37. R:ring. Spec(R) is an affine scheme over Z . k =Z.

There is a geometry, locall structure in the category of affine schemes over k. From the equivalence, we can
consider geometric structure for each dream.

Definition 51. G : k − Al g → Set is a representable functor if and only if G ≈ Homk−Al g (A,−) for some k-
algebra A.

Theorem 23. The category of dreams and the category of representable functors is isomorphic.

Notation : Hom = Homk−al g

Proof. Define F 7−→ Hom(A,−) where A = k[(Xi )]/〈T 〉.

Example 38. Ga : the additive group. Ga(R) = R
set≈ Hom(k[X ],R)

Example 39. Gm : the multiplicative group. GL1(R) = Gm(R) = R× set≈ Hom(k[X ,Y ]/〈X Y − 1〉,R) GLn(R) ≈
Hom(k[{Xi j }]/〈det(Xi j )−1〉,R)

Category of dreams = Category of representable functors

Example 40. dream F : F (R) = {r ∈ R |r = 0} ↔ A = k[X ]
〈X 〉

dream G :
dream F : F (R) = {r ∈ R |r 2 = 0} ↔ C = k[X ]

〈X 2〉
and A,B are not isomorphic. Thus Spec(A) 6= Spec(C ). F 6= H in general. There could be

Big dreams = representable functors
∪ ∪

dreams = Hom functors
(8.1)
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Lemma 2 (Yoneda).

Homk−al g
1−1−→ Mor(Hom(A,−),Hom(B ,−))

ψ 7−→ [ψ]

ΦA(i dA) ←− Φ

Category of sheaves on X . An object = a sheaf on X . φ : F →G is a sheaf morhism if and only if we have the
commutative diagram for each open sets V ⊂U ⊂ X .

F (U )
φU //

ρU
V
��

G (U )

ρU
V
��

F (V )
φV // G (V )

Notation. k =Z, A,R,S, · · · :ring.

Definition 52. Spec(R) = {p |prime ideals of R}

Example 41. Spec(C [X ]) = {〈p(x)〉 |p:irreducible}∪ {0}

why including the zero ideal is good? future study.
Let a be an ideal in R. We define closed sets in R as the sets

V (a) = {p ∈ Spec R |a⊂ p}.

This gives a topology on SpecR.

Example 42. V (R) =, V (0) = Spec(R), V (a ·b) =V (a)∪V (b), V (
∑

i ai ) =⋂
i V (ai )

Definition 53.

OSpec(U ) =
{

f : U → ⊔
p∈Spec(R)

Rp

∣∣∀p⊂U ∃W ⊂U ∃a,b ∈ R s.t. f (q) = a

b
∈ Rq ∀q ∈W

}

Definition 54. (Spec(R),OSpec(U )) : Spectrum. (X ,OX ) is a spectrum if and only if (X ,OX )
LRS≈ (Spec(R),OSpec(R))

{r i ng } → Spectrums.

HomZ−al g
1−1−→ MorLRS (Spec(R),Spec(S))

f : S → R 7−→ (p 7→ f −1(p))

Define LRS so that the image of the above map is the morphism of LRS
Locally Ringed Space (X ,OX ).

Definition 55. Let f : X → Y be a continuous map. For all open subset V ⊂ Y , we define

( f∗OX )(V ) :=OY ( f −1(V ))

: direct image sheaf.
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Check : f∗OX is a sheaf.

Definition 56. Let k =Z. X is a topological space, OX a sheaf of rings. Assume for all P ∈ X ,OP = lim←−−P⊂U⊂X
OX (U )

: local ring. Then a map
(φ,φ#) : (X ,OX ) −→ (Y ,OY )

is a locally ringed space morphism if

(i) φ : X →U is continuous;

(ii) φ# : OY →φ∗OX is a sheaf morphism

(iii) φ#
P : OY ,φ(P ) →PX ,P is a local homomorphism for all P ∈ X

Definition 57. Let A,B be local rings. g : A → B is a local homomorphism if g−1(mB ) =mA .

Why the definitions are so complicated? Unique reason : "dream".

Definition 58. (X ,OX ) is an affine scheme over Z if (X ,OX )
LRS≈ (Spec(A),OSpec(A)).

Homk−al g (B , A)
1−1←→ MorLRS (Spec(A),Spec(B))

µ 7−→Ψ(µ), Ψ(µ)(p) =µ−1(p).

to make the dream of making the correspondenceΨ bijective.
Now we are done for k =Z.

Category of k-algebra.(Lang) Obejects : (k
f→ R) ring homomorphism, Morphisms : commutative triangle

k
f

��

g

��
R

φ
// S

Fix a ring k. Given a k-algebra k
r i ng→ R. Get Spec(k)

LRS← Spec(R); this is called an affine scheme over k.
Morphisms : commutative triangle

Spec(k)
(φ,φ#)

yy

(ψ,ψ#)

%%
Spec(R)

(µ,µ#)
// Spec(S)

Definition 59. Scheme over k = locally affine scheme over k.

Recall O (X )(X ) = k[X ]. Similarly OSpec(R)(Spec(k)) ' R.
Hartshorne Proposition 2.6(p.78)
Let k be an algebraically closed field. functor t : V ar → Schk full an faithfull.
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