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Abstract. Impossible differential attacks against Rijndael and Crypton
have been proposed up to 5-round. In this paper we expand the impos-
sible differential attacks to 6-round. Although we use the same 4-round
impossible differential as in five round attacks, we put this impossible
differential in the middle of 6-round. That is, we will consider one round
before the impossible differential and one more round after. The com-
plexity of the proposed attack is bigger than that of the Square attack,
but still less than that of the exhaustive search.

1 Introduction

The ciphers Rijndael [6] and Crypton [7] were submitted to the AES (Ad-
vanced Encryption Standard) candidates and Rijndael was later selected as the
AES [1]. Both of them are based on the Square cipher [5] and so have SPN
(Substitution-Permutation Network) structure. The original design of Square ci-
pher concentrates on the resistance against differential and linear cryptanalysis.
So it’s known that two ciphers have the resistance against those attacks. Al-
though these ciphers have those merits, they have a weakness which results from
the characteristic of the optimal linear layer. The known attacks against each
cipher, using this weakness, are impossible differential attack [3,9] and Square
attack [3,4], which were described by the designers of the Square cipher. These
attacks are chosen plaintext attacks and are independent of the specific choice
of Sbox, the multiplication polynomial of MixColumn, and the key schedule.
They are only related to the characteristic of the linear layer. That is the branch
number which is introduced by the designers to explain the diffusion power.

Definition 1 (branch number).
Let W (·) be the byte weight function. The branch number of a linear transfor-
mation F : Z2

8 → Z2
8 is

mina�=0,a∈Z2
8(W (a) + W (F (a))).
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This branch number makes the following property for each cipher.

– Rijndael: Rijndael has a branch number 5, that is, if a state is applied with
a single nonzero byte, the output has 4 nonzero bytes.

– Crypton: Crypton has a branch number 4 (designer refers this as diffusion
order), namely, if a state is applied with a single nonzero byte, the output
has 3 nonzero bytes

Next, each attack is described as the following:

1. Square attack
Using the above property of branch number, we can deduce the characteristic
for the relation of input and output of each cipher reduced to 4 rounds: if two
plaintext differ by one byte then before the third MixColumn the data differ
by all 16 bytes. It leads to the following interesting properties: Consider a
set 256 plaintexts which are equal in all bytes except for one and in this
one assume all the possible values. Because of the property the inputs of the
third MixColumn assume all 256 possible values in each byte. So the XOR
of them in each byte is 0. Since the MixColumn is a linear transformation,
this property holds after the MixColumn too. This is the property on which
Square attack is based. Here we guess one byte in the round key of the fourth
round and decrypt the forth round in the corresponding byte in all of the
256 ciphertexts. We get the 256 inputs of the ByteSubstitution of the fourth
round. If the key is right, then XOR of them is equal to 0. Through this way
we can derive the forth round key.
This attack was extended to Rijndael reduced to 5 and 6 rounds by adding
one round in the beginning or in the end or both of them. At recent, this
attack succeed to the 7 round Rijndael assuming the whole seventh round
key.

2. Impossible differential attack
Consider two plaintexts which differ by only one byte. Then, the correspond-
ing ciphertexts of the 4-round variant should differ in the special combina-
tions of bytes. We call those combinations impossible differential. This is the
property on which impossible differential attack is based. The 5-round im-
possible differential attack is briefly introduced as the followings: Let’s add
one round at the end of the 4-round impossible differential and decrypt one
round with assuming the fifth round key. Then, if there appears the impos-
sible differential among them, that is a wrong key. Continuing this process
we can find the fifth round key.

In this paper, we propose impossible differential attacks against each cipher
reduced to six rounds. Our attacks are based on the four round impossible dif-
ferentials each of which was used in the impossible differential attack against
each cipher reduced to five rounds [3,9]. While the previous attacks have one ad-
ditional round with the four round impossible differential, the proposed method
has additional two rounds. In this method, we assume two round keys (the first
round key and the last round key) and get rid of all wrong key pairs using the
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impossible differentials. The complexity of the proposed attack is larger than
that of the Square attack against each cipher reduced to six rounds, but still
less than that of the exhaustive attack. We expect that this method may be
applicable to other ciphers with SPN structure.
The rest of the paper is organized as follows: The description and 5-round im-
possible differential attack of Rijndael and Crypton is given in section 2 and 3,
respectively. In section 4 we conclude by summarizing the efficiency of our attack
together with those of previous works.

2 Rijndael

2.1 Description of Rijndael

Rijndael is a block cipher. The length of the block and the length of the key can
be specified to be 128, 192 or 256 bits, independently of each other. In this paper
we discuss the variant with 128-bit blocks and 128-bit keys. In this variant, the
cipher consists of 10 rounds. We represent 128-bit data in 4 × 4 matrix as in
Fig. 1.

1 2 3 4

5 6 7 8

13 14 15 16

10 11 129

Row 0

Column 0

Fig. 1. Byte Coordinate of 128-bit

Every round except for the last consists of 4 transformation:

– ByteSubstitution is applied to each byte separately and is a nonlinear byte-
wise substitution to use the Sbox.

– ShiftRow is a cyclic shift of the bytes of each row by 0, 1, 2, or 3, respectively.
– MixColumn is a linear transformation applied to columns of the matrix. The

branch number of this layer is 5.
– AddRoundKey is a key XOR.

Before the first round AddRoundKey is performed using the key as the round
key. In the last round the MixColumn is omitted.

Observe that MixColumn is a linear transformation over four bytes of input
differences, since it is a linear transformation over four input bytes. If three bytes
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of output difference are zero, the choice of input differences is 28 −1 since MC is
invertible. Hence the probability that output difference is zero at three bytes is
4× (28 − 1)/232 since there are four choices on nonzero byte of output difference
and the output difference is not zero for nonzero input difference.

Lemma 1. The output of MC (or MC−1 transformation) has zero difference
in three bytes with probability about 2−22 over all possible input pairs.

This lemma holds even if some values of input differences for fixed bytes
are restricted. This lemma will be used when analyzing the complexity of the
proposed impossible differential attack.

2.2 Impossible Differential

We use the same impossible differential described in [3]. See Fig. 2.

SR

SR

MC

BS MC ARK

ARK

BS SR

SR MC ARK

−1 −1

−1 −1−1

 Contradiction!

BS−1

Fig. 2. Four Rounds Impossible Differential of Rijndael

Property 1 (Impossible Differential of Rijndael). Given plaintext pair which are
equal at all bytes but one, the ciphertexts after 4-round cannot be equal in
any of the following prohibited combinations of bytes: (1,6,11,16), (2,7,12,13),
(3,8,9,14), nor (4,5,10,15).

This property follows from the property of MixColumn transformation: if two
inputs of this transformation differ by one byte then the corresponding outputs
differ by all the four bytes.
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2.3 Rijndael Reduced to Six Rounds

In this subsection, we describe an impossible differential cryptanalysis of Rijn-
dael reduced to six rounds. The attack is based on the four round impossible
differential with additional one round at each of the beginning and the end as
in Fig. 3. Note that the last round of Rijndael does not have MixColumn trans-
formation before KeyAddition.

BS

SRBS

MC ARKSR

MC ARK

−1 ARK

ARK0

6
−1 −1

q

p

ARK is replaced by5

5

5ARK
eq

The 4−Round Impossible Characteristic

−1 −1

Fig. 3. Impossible Attack against Rijndael Reduced to Six Rounds

The procedure is as follow:

1. A structure is defined as a set of plaintexts which have certain fixed values
in all but the four bytes (1,8,11,14). One structure consists of 232 plaintexts
and proposes 232 × 232 × 1

2 = 263 pairs of plaintexts.
2. Take 259.5 structures (291.5 plaintexts, 2122.5 plaintext pairs). Choose pairs

whose ciphertext pairs have zero difference at the row 2 and 3. The expected
number of such pairs is 2122.5 × 2−64 = 258.5.

3. Assume a 64-bit value at the row 0 and 1 of the last round key K6.
4. For each ciphertext pair (C, C∗), compute C5 = BS−1 ◦ SR−1(C ⊕ K6) and

C∗
5 = BS−1 ◦SR−1(C∗ ⊕K6) and choose pairs whose difference MC−1(C5 ⊕

C∗
5 ) is zero at the prohibited four bytes (1,6,11,16), (2,7,12,13), (3,8,9,14) or

(4,5,10,15) after the inverse of MC transformation. Since the probability is
about p = 2−32 × 4 = 2−30, the expected number of the remaining pairs is
258.5 × 2−30 = 228.5.

5. For a pair (P, P ∗) with such ciphertext pairs and 32-bit value at the four
bytes (1,8,11,14) of the initial key K0, calculate

MC ◦ SR(BS(P ⊕ K0) ⊕ BS(P ∗ ⊕ K0))
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Row 0

Column 0

A[0][0]

A[1][0]

A[2][0]

A[3][0] A[3][1]

A[2][1]

A[1][1]

A[3][2]

A[2][2]

A[1][2]

A[0][2]A[0][1] A[0][3 ]

A[1][3 ]

A[2][3 ]

A[3][3 ]

Fig. 4. Byte Coordinate of 128-bit

and choose pairs whose difference is zero except only one byte after MC
transformation. The probability is about q = 2−24 × 4 = 2−22 since MC is
linear for each byte of input values.

6. Since such a difference is impossible, every key that proposes such a difference
is a wrong key. After analyzing 228.5 ciphertext pairs, there remain only about
232(1 − 2−22)2

28.5 ≈ 232e−26.5 ≈ 2−98.5 wrong values of the four bytes of K0.
7. Unless the initial assumption on the final round key K6 is correct, it is

expected that we can get rid of the whole 32-bit value of K0 for each 64-bit
value of K6 since the wrong value (K0, K6) remains with the probability
2−34.5. Hence if there remains a value of K0, we can assume the key K6 is
a right key. So if we repeat Step 2 through Step 5 after changing the row 2
and 3 into the row 0 and 1, we can get the whole value of K6.

8. Step 4 requires about 2123.5(= 2 × 264 × 258.5) one round operations. Step 5
requires about 2119 one round operations since

264 × 2 × 232{1 + (1 − 2−22) + (1 − 2−22)2 + · · · + (1 − 2−22)2
28.5} ≈ 2119.

Consequently, since we repeat this procedure two times, this attack requires
about 291.5 chosen plaintexts and 2122 encryptions of Rijndael reduced to 6
round.

3 Crypton

3.1 Description of Crypton

Crypton is a 128-bit block cipher. We represent 128-bit data in 4 × 4 matrix as
in Fig. 4. The component functions, σ, τ , π, and γ, are as follows.

– γ is a nonlinear byte-wise substitution. There are two versions of γ: γo is for
odd rounds and γe is for even rounds.

– π is a linear bit permutation. It bit-wisely mixes each column (4 bytes). In
fact, there are two versions of π: πo in odd rounds and πe in even rounds.
One important fact is both versions have the branch number 4 as maps from
4-byte input to 4-byte output [7].



Improved Impossible Differential Cryptanalysis of Rijndael and Crypton 45

– τ is a linear transposition. It simply moves the byte at A[i][j] to A[j][i].
– σ is a key XOR. We will use notation σ

K
when the given key is K.

The 2n-round encryption of Crypton can be described as

φe ◦ ρeK2n
◦ ρoK2n−1

· · · ◦ ρeK2
◦ ρeK1

◦ σ
K0

,

where ρoKi
= σ

Ki
◦ τ ◦ πo ◦ γo for odd rounds and ρeKi

= σ
Ki

◦ τ ◦ πe ◦ γe for
even rounds, and the linear output transformation φe = τ ◦ πe ◦ τ is used at the
last round.

3.2 Impossible Differential of Crypton
We introduce a four round impossible differential of Crypton. Fig. 5 describes
one pattern of impossible differentials. The impossible differentials comes from
the following observation.

1. If an input pair has zero difference at a byte, then the output pair after σ,
γ, σ−1, or γ−1 also has zero difference at the byte.

2. If an input pair has zero difference at byte[i][j], then the output pair after τ
or τ−1 has zero difference at byte[j][i].

3. π, the word transformation has the branch number 4 as a map from 4-
byte input to 4-byte output. That is, if input pair has only one nonzero
difference out of four bytes, then the output difference has at least three
nonzero difference.

Property 2 (Impossible Differential). Given input pair to τ whose difference is
zero at all bytes but one, the output difference after the four round starting with
τ and ending with γ cannot be zero at all but two rows in the left two columns.

3.3 An Attack against Crypton Reduced to Six Rounds
In this subsection, we describe an impossible differential cryptanalysis on Cryp-
ton reduced to 6 rounds. The attack is based on the four round impossible
differential. We compose the 6 rounds as in Fig. 6. One thing we need to notice
is that we replace the 5th and 6th round key addition σ

K5
and σ

K6
by σ

null

which is a key addition with zero key. We can compose the same encryption
system by putting σ

K
eq
5

and σ
K

eq
6

between γ and π of their rounds. Here Keq

means the equivalent key i.e. π−1 ◦ τ−1(K)
The procedure is as follow:

1. A structure is defined as a set of plaintexts which have certain fixed values in
the column 1, 2, and 3. One structure consists of 232 plaintexts and proposes
232 × 232 × 1

2 = 263 pairs of plaintexts.
2. Take 259 structures (291 plaintexts, 2122 plaintext pairs). Choose plaintext

pairs (P, P ∗) such that the pairs (C6, C
∗
6 ) has zero difference at the row 0

and 1, where C6 = π−1
e ◦τ−1 ◦σ

null
◦τ−1 ◦π−1

e ◦τ−1(C) and C is a ciphertext
of P . The expected number of such pairs is 2122 × 2−64 = 258.
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π τ

τ σ

σγ

π τ σγ

Contradiction!

π τ σγ

γ−1

−1 −1 −1 −1

Fig. 5. Four Round Impossible Differential of Crypton

3. Assume a 64-bit value of the row 2 and 3 of the last round key Keq
6 .

4. For each pair (C6, C
∗
6 ) satisfying Step 2, compute C5 = γ−1

e (C6 ⊕ Keq
6 ) and

C∗
5 = γ−1

e (C∗
6 ⊕ Keq

6 ) and choose pairs whose difference π−1
o ◦ τ−1(C5 ⊕ C∗

5 )
is zero at any two rows. Since the probability is about p = 2−32 ×6 ≈ 2−29.5,
the expected number of the remaining pairs is 258 × 2−29.5 = 228.5.

5. For a pair (P, P ∗) satisfying Step 4, consider 32-bit values of the first column
of K0 such that π(γo(P ⊕ K0) ⊕ γo(P ∗ ⊕ K0)) is zero at all but one byte of
the first column. The probability is q = 2−24 × 4 = 2−22

6. Since such a difference is impossible, every key that proposes such a difference
is a impossible key with the chosen key Keq

6 in Step 3. After analyzing 228.5

plaintext pairs, there remain only about 232(1 − 2−22)2
28.5 ≈ 232e−26.5 ≈

2−98.5 possible values for the four bytes of the first column of K0, which
means no possibility.

7. Unless the initial assumption on the final round key Keq
6 is correct, it is

expected that we can get rid of the whole 32-bit values of K0 for each 64-bit
value of Keq

6 since the wrong value (K0, K
eq
6 ) remains with the probability

264 × 2−98.5 = 2−34.5. Hence if there remains a value of K0, we can assume
the key Keq

6 is a right key. So if we repeat Step 2 through Step 6 after
changing the row 0 and 1 with the row 2 and 3, we can get the whole value
of Keq

6 .
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0
γ π

Impossible Differential

γ π τ
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q

σK

σnull

σnullτπ

−1 −1 −1

−1−1γ

−1

−1 −1

r

σ

σ
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K

K
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o
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e

Fig. 6. Impossible Attack against Crypton Reduced to Six Rounds

8. Step 2 requires about 2123(= 2 × 2122) of π−1
e ◦ π−1

e ◦ τ−1 ◦ 6round. Step 4
requires about 2125.5(= 264 × 2 × 260.5) of π−1

o ◦ τ−1 ◦ σ−1. Step 6 requires
about 2119 of πo ◦ γo operations since

264 × 2× = 232{1 + (1 − 2−22) + (1 − 2−22)2 + · · · + (1 − 2−22)2
28.5} ≈ 2119.

Consequently, since we repeat this procedure twice, this attack requires
about 291 chosen plaintexts and 2124 encryptions of Crypton reduced to
6 rounds.

3.4 A Variant of the Attack Using Memory

In this subsection, we describe a variant of the impossible differential cryptanal-
ysis of the former subsection using memory.

Precomputation Stage
Take all 232×28×4 = 242 pairs of four bytes in the first column which differ only
in one byte(this is the data after one round encryption except the first round
key addition). For these pairs, we undo the encryption of the first round, i.e.,
perform τ−1, π−1 and γ−1, and create a hash table containing one of the inputs
of γ transformation and the XOR of two inputs x ⊕ y, indexed by x ⊕ y, where
x, y are the inputs of the γ transformation.
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Table 1. Complexity of 6-Round Impossible Differential Attack

Cipher Attack Round Chosen Ciphertexts Complexity

Square attack 6 round 232 272

Rijndael Impossible differential attack 5 round 229.5 231

6 round 291.5 2122

Square attack 6 round 232(232Mem.) 256

Crypton Impossible differential attack 5 round 283.4 243

6 round 291 2124

Step 4’
At first, perform π−1 ◦ γ−1 ◦ π−1 ◦ τ−1 operations for all 293.5 ciphertexts, and
store the pairs (C, UC) where C is a ciphertext and UC is a corresponding result
after π−1 transformation. For each ciphertext pair (C, C∗), compare UC and
UC∗ and choose pairs whose difference UC ⊕ UC∗ is zero at the row 0 and 1.
Since the probability is p = 2−32, the expected number of the remaining pairs is
260.5 × 2−32 = 228.5.

Step 5’
For a pair (P, P ∗) with ciphertext pairs passing Step 4, we compute x ⊕ y and
use the hash table to fetch the about 210 possibility of x which correspond to
the computed x⊕y. This process identities about 210 wrong key by XORing the
plaintexts and the x’s.

If we replace Step 4 and Step 5 by Precomputation stage, Step 4’ and Step
5’, the complexity is as follows:

– Step 4 requires 293.5 π−1 ◦ γ−1 ◦ π−1 ◦ τ−1 operations and 2−124.5 opera-
tions of two times memory access and comparison which is about 214 times
faster than the 6-round Crypton . Hence Step 4 is equivalent to about 2110.5

encryptions. In addition, Step 4 requires 293.5 × 128 × 128 = 2104.5 memory.
– In Step 5’, for 228.5 remaining plaintext pairs we get rid of 210 impossible

keys by XORing the plaintext and x’s which requires about 232 encryptions
for each assumed key Keq

6 .
– To sum up, this attack requires 293.5 plaintexts, 2110.5 encryptions and 2104.5

bytes of memory.

4 Conclusion

In this paper, we described an impossible differential attack against Rijndael and
Crypton reduced to 6 rounds. The attack against Rijndael reduced to 6 rounds
requires about 291.5 chosen plaintexts and 2122 encryptions. The attack against
Crypton reduced to 6 rounds requires about 291 chosen plaintexts and 2124 en-
cryptions, or 293.5 plaintexts, 2110.5 encryptions and 2104.5 bytes of memory. We
summarize the complexities of our attacks together with those of previous works
in Table 1. We expect that this method can be applied to other block ciphers
with SPN Structure.
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