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Abstract. In this paper we consider two security notions related to
Identity Based Encryption: Key-insulated public key encryption, intro-
duced by Dodis, Katz, Xu and Yung; and Timed-Release Public Key
cryptography, introduced independently by May and Rivest, Shamir and
Wagner. We first formalize the notion of secure timed-release public key
encryption, and show that, despite several differences in its formulation,
it is equivalent to strongly key-insulated public key encryption (with op-
timal threshold and random access key updates). Next, we introduce the
concept of an authenticated timed-release cryptosystem, briefly consider
generic constructions, and then give a construction based on a single
primitive which is efficient and provably secure.

Keywords: timed-release, authenticated encryption, key-insulated
encryption.

1 Introduction

Timed-Release cryptography. The goal of timed-release cryptography is to
“send a message into the future.” One way to do this is to encrypt a message
such that the receiver cannot decrypt the ciphertext until a specific time in the
future. Such a primitive would have many practical applications, a few examples
include preventing a dishonest auctioneer from prior opening of bids in a sealed-
bid auction [26], preventing early opening of votes in e-voting schemes, and
delayed verification of a signed document, such as electronic lotteries [28] and
check cashing. The problem of timed-release cryptography was first mentioned
by May [21] and then discussed in detail by Rivest et. al. [26]. Let us assume
that Alice wants to send a message to Bob such that Bob will not be able to
open it until a certain time. The possible solutions fall into two categories:

– Time-lock puzzle approach. Alice encrypts her message and Bob needs to
perform non-parallelizable computation without stopping for the required time
to decrypt it.
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– Agent-based approach. Alice encrypts a message such that Bob needs some
secret value, published by a trusted agent on the required date, in order to
decrypt the message.

The first approach puts immense computational overhead on the message
receiver, which makes it impractical for real-life scenarios. In addition, know-
ing the computational complexity of decryption, while giving us a lower bound
on the time Bob may need to decrypt the message, does not guarantee that
the plaintext will be available at a certain date. Still, this approach is widely
used for specific applications [9, 4, 28, 19, 18]. The agent-based approach, on the
other hand, relieves Bob from performing non-stop computation, sets the date
of decryption precisely and does not require Alice to have information on Bob’s
capabilities. This comes at a price, though: the agents have to be trusted and
they have to be available at the designated time.

In this paper we concentrate on the agent-based approach. Several agent-
based constructions were suggested by Rivest et. al. [26]. For example, the agent
could encrypt messages on request with a secret key which will be published on
a designated date by the agent. It also could precompute pairs of public/private
keys, publish all public keys and release the private keys on the required days.
A different scheme was proposed in [13], in which non-malleable encryption was
used and receiver would engage in a conditional oblivious transfer protocol with
the agent to decrypt the message. In [11], the authors proposed to use Boneh
and Franklin’s IBE scheme [8] for timed-release encryption: for that, one can
replace the identity in an IBE scheme with the time of decryption. Similar pro-
posals appear in [20, 7]. While some of these proposals contain informal proofs
of security, none of them consider and/or give a formal treatment of the security
properties of timed-release public key encryption (or TR-PKE).

Since all known efficient constructions rely on the Boneh-Franklin IBE con-
struction, a natural question to ask is if the existence of IBE is necessary for
an efficient timed-release public key encryption. In this paper, we formalize the
security requirements of TR-PKE and show that indeed this is the case: the ex-
istence of secure TR-PKE is equivalent to the existence of strongly key-insulated
encryption with optimal threshold and random access key updates; existence of
which in turn is known to be equivalent to the existence of IBE [5, 14].

SKIE-OTRU: Strongly key-insulated encryption with Optimal Thresh-
old and Random Access Key Updates. Strongly key-insulated encryption
addresses the problem of computer intrusion by breaking up the lifetime of a
public key into periods, and splitting the decryption key between the user (say,
a mobile device) and a trusted “helper” (say, a desktop server) so that:

– (Sequential Key Updates) At the beginning of each time period, the helper
securely transmits a “helper secret key” hski to the user, which he combines
with his previous key, uski−1, to obtain a secret key uski that will decrypt
messages encrypted during time period i.

– (Random Access Key Updates) Given any uski and hskj , the user can com-
pute uskj . This is useful for error recovery and it also allows the user to
decrypt old messages.
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– (User Compromise) An adversary who is given access to (uski, hski) for
several time periods i cannot break the encryption for a new time period.

– (Helper Compromise) An adversary given only the hsk cannot break the
encryption scheme.

Combining results of Bellare/Palacio [5] and Dodis/Katz [14] 1, it follows that
existence of SKIE-OTRU is equivalent to IBE.

Authentication for Timed-Release Encryption. Many of the applications
of timed-release cryptography mentioned above require some form of authentica-
tion as well. For example, if there is no authentication of bids in a sealed auction,
any bidder may be able to forge bids for others, or force the auction to fail by
submitting an unreasonably high bid. In this paper, we consider the security
properties required by these applications and develop formal security conditions
for a Timed-Release Public Key Authenticated Encryption (TR-PKAE) scheme.

One avenue for developing a TR-PKAE scheme would be composing an unau-
thenticated TR-PKE scheme with either a signature scheme or a (non-timed-
release) PKAE scheme. Although such constructions are possible, we note that
the details of this composition are not trivial; examples from [2, 14] illustrate that
naive constructions can fail to provide the expected security properties. Addi-
tionally, we note that such schemes are likely to suffer a performance penalty
relative to a scheme based on a single primitive. Thus we also introduce a prov-
ably secure construction of a TR-PKAE scheme that is essentially as efficient as
previous constructions of non-authenticated TR-PKE schemes [11, 20, 7].

Our Contribution. This paper proposes a new primitive that provides timed-
release public key authenticated encryption (in short, TR-PKAE). The contri-
bution of this paper is four fold:

– We give the first formal analysis of the security requirements for timed-
release public key encryption (TR-PKE) and show that this notion is equiv-
alent to SKIE-OTRU.

– We introduce the notion of TR-PKAE, as satisfying four notions: IND-KC-
CCA2, security against adaptive chosen ciphertext attacks under compro-
mise of the timed-release agent and sender’s private key; TUF-CTXT, or
third-party unforgeability of ciphertexts; IND-RTR-KC-CCA2, or receiver un-
decryptability before release time under compromise of sender’s private key;
and RUF-TR-CTXT, or receiver unforgeability before release time.

– We introduce a protocol that provides authenticated timed-release public
key encryption using a single primitive. The proposed protocol is essentially
as efficient as Boneh and Franklin’s chosen-ciphertext secure IBE scheme [8]
(FullIdent, which will be referred to as BF-IBE in the rest of the paper) and is
provably secure in the random oracle model. The proposed protocol requires
minimal infrastructure (a single trusted agent) that can be shared among
many applications and can be naturally converted to a threshold version,

1 Bellare/Palacio showed that KIE-OTRU is equivalent to IBE, while Dodis/Katz
showed equivalence of SKIE-OTRU and KIE-OTRU.
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which provides robustness as well as stronger security by allowing outputs
of multiple agents to be used.

Overview of our construction. Consider a public agent (similar to NTP
server [23]), called TiPuS (Timed-release Public Server), which at discrete time-
intervals publishes new self-authenticating information IT = f(PT , s) for current
time T , where f and PT are public, and s is secret. Alice can encrypt a message
for Bob at time T using PT , her private key and Bob’s public key. Only when
IT is published on day T , will Bob be able to decrypt the message using IT , his
private key and Alice’s public key.

We implement the above setting using an admissible bilinear map e (see Sec-
tion 4.1), which along with the choice of groups and generator P is chosen
independently of TiPuS. Each TiPuS chooses a secret s ∈ Zq and publishes
Ppub = sP . At time T , the TiPuS publishes IT = sPT = sH(T ) 2 (i.e. the pri-
vate key for identity T in BF-IBE [8]), where H is a cryptographic hash function.

Let (ska, pka) = (a, aP ) and (skb, pkb) = (b, bP ) be Alice’s and Bob’s authen-
ticated private/public key pairs respectively. To encrypt message m for Bob, 1)
Alice computes bilinear map d = e(sP + r1 · bP, (r2 + a)PT ) for random r1, r2,
and applies hash function H2 to obtain K = H2(d), 2) she then encrypts mes-
sage m as EK(m), where EK is a symmetric encryption using key K. Bob also
receives r1PT and r2P . To decrypt the ciphertext, 1) Bob, having sPT , computes
d as e(r2P + aP, sPT + b · r1PT ) 3, 2) applying hash function H2, Bob computes
K and uses it to decrypt EK(m).4 The full detailed protocol and all required
definitions/discussions are presented in later sections.

Note the following practical aspects exhibited by the scheme: 1) (User Secret
vs TiPuS Secret) the secret value of TiPuS, system parameters and users’ private
keys are completely independent. It will be shown later that compromise of
TiPuS does not jeopardize confidentiality and unforgeability of user ciphertexts;
2) (Sharing) the published value sPT can be shared among multiple applications;
3) (Scalability) the protocol can take full advantage of a) several independent
TiPuS’s, 5 b) threshold generation of sPT [24]. The increase in computational
complexity is minimal when such schemes are applied to the protocol.

2 Timed-Release Public Key Encryption (TR-PKE)

In this section we formalize the functionality and security requirements for
a timed-release public key encryption system. These requirements are meant
2 The authenticity of IT can be verified by checking equality e(Ppub, PT ), since by

bilinearity e(sP, H(T )) = e(P, sH(T )) = e(P, H(T ))s.
3 Note that according to properties of bilinear map, e(r2P + aP, sPT + b · r1PT ) =

e((r2 + a)P, (s + b · r1)PT ) = e((s + r1 · b)P, (r2 + a)PT ) = d.
4 Without authentication, this scheme is similar to Bellare and Palacio’s construction

of an SKIE-OTRU scheme, in which d = e(sP + bP, r2PT ). However note that it
cannot be used for timed-release: the receiver can publish as public key bP = τP −sP
for any chosen τ allowing him to decrypt any ciphertext before designated time.

5 If siP is Ppub of the i-th token generator, then combined Ppub is
∑

siP and combined
sPT is

∑
siPT .
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to capture the required security requirements not addressed in previous work
[21, 26, 11, 20, 7]; in particular they do not address the authentication require-
ments, which we add in section 3.

2.1 Functional Requirements

Formally, we define a timed-release public-key encryption system Γ to be a tuple
of five randomized algorithms:

– Setup, which given input 1k (the security parameter), produces public pa-
rameters πg, which include hash functions, message and ciphertext spaces
among others.

– TRSetup, which on input πg, produces a pair (δ, πtr) where δ is a master
secret and πtr the corresponding timed-release public parameters. This setup
is carried out by TiPuS which keeps the master secret key confidential, while
all other parameters are public. We denote the combined public parameters
of πg and πtr by π.

– KeyGen, given public parameters πg, outputs a pair of secret key and public
key (sk, pk).

– TG(π, δ, T ) computes the token tknT corresponding to time T using (δ, π).
This functionality is performed by TiPuS which publishes tknT at time T .

– Encrypt(π, pk, m, T ) computes the timed-release ciphertext c denoting the
encryption with public key pk of message m with public parameters π and
time encoding T .

– Decrypt(π, sk, ĉ, tknT ) outputs the plaintext corresponding to ĉ if decryption
is successful or the special symbol fail otherwise.

For consistency, we require that Decrypt(π, sk, Encrypt(π, pk, m, T ), TG(π, δ, T ))=
m, for all valid (pk, sk), (π, δ), T , and m,

2.2 Security

It is standard to require that the PKE cryptosystem be secure against adap-
tive chosen-ciphertext (IND-CCA2) adversaries [25, 3, 2]. Ideally, in TR-PKE,
one should separate the timed-release security from security of PKE. Namely,
TR-PKE should maintain receiver confidentiality properties even if the timed-
release master secret is compromised. To that effect, we require that IND-CCA2
security against a third party is provided even when master secret is given to the
adversary. We model this attack by a slightly modified IND-CCA2 game, shown
in Figure 1. Here, in addition to adaptively choosing two “challenge plaintexts”
that the adversary will need to distinguish between, he also adaptively chooses
a “challenge time” for which his challenge ciphertext will be decrypted; he wins
when he can tell whether his challenge ciphertext is an encryption of his first or
second plaintext for the challenge time, given access to a decryption oracle and
the master secret key of the TiPuS.

The timed-release functionality is provided by the token-generating infras-
tructure (i.e. TiPuS). Not knowing the corresponding token is what keeps the
receiver from decrypting ciphertext until a designated time. To effect secure
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Algorithm 2.1: ExpIND−CCA2
A,Γ (k)

πg ← Setup(1k)

(δ, πtr) ← TRSetup(1k)
(pk, sk) ← KeyGen(πg)

(m0, m1, T
∗) ← ADecrypt(π,sk,·,·)(π, δ, pk)

β ←R {0, 1}
c∗ ← Encrypt(π, pk, mβ , T ∗)

β′ ← ADecrypt(π,sk,·,·)(π, δ, pk, c∗)
if (A queried Decrypt(π, sk, c∗, tknT∗))
then return (false)
else return (β′ = β)

Algorithm 2.2: ExpIND−RTR−CCA2
A,Γ (k)

πg ← Setup(1k)

(δ, πtr) ← TRSetup(1k)
(m0, m1, pk∗, T ∗)

← ATG(π,δ,·),Decrypt∗(π,δ,·,·,·)(π)
β ←R {0, 1}
c∗ ← Encrypt(π, pk∗, mβ , T ∗)

β′ ← ATG(π,δ,·),Decrypt∗(π,δ,·,·,·)(π, c∗)
if (A queried Decrypt∗(π, sk∗, c∗, T ∗),
where sk∗ corresponds to pk∗,
or A queried TG(π, δ, T ∗))
then return (false)
else return (β′ = β)

AdvIND−CCA2
A,Γ (k) = Pr[ExpIND−CCA2

A,Γ (k) = true] − 1
2

AdvIND−RTR−CCA2
A,Γ (k) = Pr[ExpIND−RTR−CCA2

A,Γ (k) = true] − 1
2

Fig. 1. TR-PKE security experiments for the IND-CCA2 and IND-RTR-CCA2 games

timed-release, any TR-PKE cryptosystem must provide confidentiality against
the receiver itself until the corresponding token is made available. We model
this property by the IND-RTR-CCA2 game, shown in Figure 1; in this game,
we modify the basic IND-CCA2 game by allowing the adversary to adaptively
choose receiver public key pk∗ and time T ∗ for the challenge. Instead of access
to the timed-release secret, the adversary is given access to arbitrary tokens
tknT , where T �= T ∗, and a decryption oracle Decrypt∗(π, δ, ·, ·, ·) which com-
putes Decrypt(π, ·, ·, TG(π, δ, ·). The adversary may thus compute the decryption
of any ciphertext for any time, except the challenge ciphertext in the challenge
time T ∗ with chosen public key pk∗. We say a timed-release public-key cryptosys-
tem Γ is secure if every polynomial time adversary A has negligible advantages
AdvIND−CCA2

A,Γ (k) and AdvIND−RTR−CCA2
A,Γ (k).

2.3 Strongly Key-Insulated Public Encryption and Timed-Release

The notion of key-insulated public key encryption has been discussed in [15, 16, 5].
As mentioned previously, combining Bellare/Palacio [5] and Dodis/Katz [14] one
obtains that the existence of secure SKIE-OTRU is a necessary and sufficient
condition for the existence of secure IBE. Briefly, a SKIE-OTRU consists of
following algorithms: KG, which generates a triple (pk, usk0, hsk) of public key,
initial user secret key, and master helper key; HKU which computes a stage
i helper secret key hski given (pk, hsk, i); UKU, which computes the stage i
user secret key uski given i, pk, hski, uski−1; RUKU, which computes the stage i
user secret key uski given i, j, pk, hski, uskj , ∀i ≥ 1, j ≥ 0; Enc, which produces
a ciphertext corresponding to m to be decrypted in stage i, given (pk, m, i);
and Dec, which, given (i, pk, uski, c) attempts to decrypt a ciphertext for stage
i. Intuitively, hsk is given to a “helper”, who will securely transmit, at the
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beginning of each stage i, the secret hski to the user. The user can then compute
uski, delete any old usk’s in his possession, and use uski to decrypt messages
sent to him during stage i. Existence of RUKU facilitates error recovery and
allows for decryption of old ciphertexts.

A SKIE (and SKIE-OTRU) scheme is considered CCA-secure with optimal
threshold if two conditions hold: (1) given access to pk, a decryption oracle,
and pairs (hski, uski) of his choosing, an adversary cannot break the encryption
scheme for a stage j for which he has not been given hskj ; and (2) given pk, hsk,
and a decryption oracle, an adversary cannot break the encryption scheme for
any stage [15, 16, 5]. The idea of separation of the timed-release master and user
secrets in a TR-PKE very closely parallels the notions of helper and user secrets
in a key-insulated cryptosystem; and both involve a “time period” parameter for
encryption and decryption. Furthermore, the two security conditions for a SKIE
scheme, in which either user keys or helper keys are assumed to be compromised,
closely resemble the conditions IND-CCA2 and IND-RTR-CCA2 developed here.

However, there is a key difference between the SKIE-OTRU and TR-PKE no-
tions. In the SKIE-OTRU setting, a helper is associated with at most one user,
and cooperates exclusively with that user, whereas in the TR-PKE setting, it
is assumed that many users may use the services of the TiPuS server, but the
interaction between each user and the server will be minimal. This results in sev-
eral operational differences: 1) User and Master Key Generation – in a TR-PKE
scheme, they are generated independently, whereas in a SKIE-OTRU they are
generated jointly; 2) Dissemination of secrets per time period – a SKIE scheme
must use a secure channel to send the hski to only one user, whereas the tokens
generated by a TiPuS are assumed to be publicly disseminated; 3) Security no-
tion of “user compromise” – a SKIE scheme’s notion of “user compromise” is
limited to chosen time periods and the keys are generated by the victim, whereas
in TR-PKE’s notion the attacker is the user itself and can generate its public
key adaptively (perhaps without necessarily knowing the corresponding secret
key) in order to break timed-release confidentiality. The following theorem shows
that despite these differences, these notions are essentially equivalent.

Theorem 1. There exists a (chosen-ciphertext) secure timed-release public key
cryptosystem if and only if there exists a secure strongly key-insulated public-key
encryption scheme with optimal threshold that allows random-access key updates.

Proof. (Sketch) Suppose we have a secure TR-PKE scheme Γ = (Setup, TRSetup,
TG, Encrypt, Decrypt). We construct a SKIE-OTRU scheme from Γ as fol-
lows. Set KG(1k) = ((π, pk), sk, δ), where (π, δ) ← TRSetup(1k) and (pk, sk) ←
KeyGen(π); HKU((π, pk), δ, i) = tkni, where tkni ← TG(π, δ, i); UKU(i, (π, pk),
tkni, (sk, tkni−1)) = (sk, tkni);RUKU(i, j, (π, pk), tkni, (sk, tknj)) = (sk, tkni);
Enc((π, pk), m, i) = c, where c ← Encrypt(π, pk, m, i); and set Dec(i, (π, pk),
(sk, tkni), c) = Decrypt(π, sk, c, tkni). This scheme essentially makes the TiPuS
server in TR-PKE scheme Γ into a helper for an SKIE-OTRU scheme.

It is easy to see that this scheme must be a secure SKIE-OTRU scheme.
Suppose an attacker given access to spk = (π, pk), hsk = δ and a decryption
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oracle can break the scheme; then it is easy to see that such an adversary can also
be used to mount an IND-CCA2 attack on Γ , since these are exactly the resources
given to an adversary in the IND-CCA2 game. Likewise, an adversary who can
break the scheme given access to spk = (π, pk), selected (uski, hski) = (sk, tkni)
pairs, and a decryption oracle can easily be used to mount an IND-RTR-CCA2
attack on Γ : when the SKIE adversary makes a corruption request for stage i,
the corresponding RTR-CCA2 adversary queries its TG oracle for tkni and can
forward (sk, tkni) to the SKIE adversary since the RTR-CCA2 adversary gets sk
as an input; all other queries made by the SKIE adversary can be passed directly
to the corresponding oracles of the RTR-CCA2 adversary.

Now suppose we have a secure SKIE-OTRU scheme Σ. If Σ has the ad-
ditional property that KG can be implemented as two independent keying al-
gorithms that generate (pkh, hsk) and (pku, usk), then it is straightforward to
transform Σ into a TR-PKE scheme. Since we would not expect this property
to hold in general, we work around this problem as follows. We know that by
the existence of Σ there also exists an ordinary chosen-ciphertext secure PKC
Π = (PKGen, PKEnc, PKDec). The idea behind our construction is that TRSetup
will sample (spk, hsk, usk0) ← Σ.KG(1k) and set π = spk and δ = (hsk, usk0);
KeyGen will sample (pk, sk) ← Π.PKGen(1k) and output (pk, sk). TG(π, δ, i) will
first compute hski = HKU(spk, hsk, i) and then use usk0 and hski to compute
tkni = uski = RUKU(i, 0, spk, usk0, hski). Encryption and Decryption will use
the multiple-encryption technique of Dodis and Katz [14].6 Applying the results
of [14], an IND-CCA2 attack on this scheme reduces to a chosen-ciphertext attack
on Π , while an IND-RTR-CCA2 attack (even when receiver chooses its public key
adaptively) on this scheme reduces to an SKIE chosen-ciphertext attack on Σ.

3 Authenticated TR-PKE (TR-PKAE)

The notion of authenticated encryption has been explored in depth in [2, 1]. In
this section we adapt these definitions to give formal security and functionality
requirements for a TR-PKAE scheme.

3.1 Basic Cryptosystem

The syntactic definition of a TR-PKAE is essentially the same as that of a TR-
PKE with the addition of the sender’s public and secret key. Namely, the types
of Setup, TRSetup, KeyGen and TG stay the same, but Encrypt and Decrypt are
modified to take into account sender’s keys:

– Encrypt(π, skA, pkB, m, T ) returns an authenticated timed-release ciphertext
c denoting the encryption from sender A to receiver B of m for time T .

6 Specifically, to encrypt message m for time T , we: (1) pick s1 ← U|m|, and set
s2 = m⊕s1, (2) pick signing and verification keys (SK, V K) for a one-time signature
scheme, (3) let c1 = Σ.EncV K(spk, s1, T ), c2 = Π.PKEncV K(pk, s2), and (4) output
(V K, c1, c2, Sig(V K, (T, c1, c2))). Decryption follows the scheme of [14], except that
c1 is decrypted using tknT = uskT .
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Algorithm 3.1: ExpIND−KC−CCA2
A,Γ (k)

πg ← Setup(1k)

(δ, πtr) ← TRSetup(1k)
(pka, ska) ← KeyGen(πg)
(pkb, skb) ← KeyGen(πg)
κ ← (π, δ, pka, ska, pkb)
(m0, m1, T

∗)

← ADecrypt(π,pka,skb,·,·)(κ)
β ←R {0, 1}
c∗ ← Encrypt(π, ska, pkb, mβ , T ∗)

β′ ← ADecrypt(π,pka,skb,·,·)(κ, c∗)
if (A queried

Decrypt(π, pka, skb, c
∗, tknT∗))

then return (false)
else return (β′ = β)

Algorithm 3.2: ExpIND−RTR−KC−CCA2
A,Γ (k)

πg ← Setup(1k)

(δ, πtr) ← TRSetup(1k)
(pka, ska) ← KeyGen(πg)
κ ← (π, pka, ska)
(m0, m1, pk∗

b , T ∗)

← ATG(π,δ,·),Decrypt∗(π,δ,pka,·,·,·)(κ)
β ←R {0, 1}
c∗ ← Encrypt(π, ska, pk∗

b , mb, T
∗)

β′ ← ATG(π,δ,·),Decrypt∗(π,δ,pka,·,·,·)(κ, c∗)
if (A queried Decrypt∗(π, pka, sk∗

b , c∗, T ∗)
or TG(π, δ, T ∗))
then return (false)
else return (β′ = β)

AdvIND−KC−CCA2
A,Γ (k) = Pr[ExpIND−KC−CCA2

A,Γ (k) = true] − 1
2

AdvKC−RTR−KC−CCA2
A,Γ (k) = Pr[ExpIND−RTR−KC−CCA2

A,Γ (k) = true] − 1
2

Fig. 2. TR-PKAE experiments for the IND-KC-CCA2 and IND-RTR-KC-CCA2 games

– Decrypt(π, pkA, skB, ĉ, tknT ) outputs plaintext m̂ if both decryption and au-
thentication are successful and the special symbol fail otherwise.

The consistency requirement is modified to require that, for all valid (pkA, skA),
(pkB, skB), (π, δ), T , and m, Decrypt(π, pkA, skB, Encrypt(π, skA, pkB , m, T ),
TG(π, δ, T ))=m.

3.2 Security

Confidentiality. The confidentiality requirements of a TR-PKAE are essen-
tially the same as the confidentiality requirements of a TR-PKE; except that
we make the conservative assumption that the third party (in the case of IND-
CCA2) or the receiver (in the case of IND-RTR-CCA2) has compromised the
sender’s secret key. This results in two new notions, IND-KC-CCA2 and IND-
RTR-KC-CCA2, which we define formally in Figure 2. As before, we say that a
TR-PKAE scheme provides confidentiality if every polynomial time adversary
has negligible advantage, as defined in Figure 2.

As in the case of TR-PKE, the difference between IND-KC-CCA2 and IND-
RTR-KC-CCA2 is in reversal of adversary roles. In IND-RTR-KC-CCA2, the goal
is to ensure security against the receiver itself prior to the designated time.
Ciphertext (Plaintext) Forgery. For authentication properties of TR-PKAE,
we concentrate on ciphertext forgery (plaintext forgery is defined analogously).
We consider two types of ciphertext forgery: third-party forgery (TUF-CTXT),
by an adversary that does not know the sender’s and receiver’s private keys but
knows the master secret; and forgery by the ciphertext receiver (RUF-CTXT) [2].
If the TR-PKAE is not secure against TUF-CTXT then the scheme cannot claim
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authentication properties since a third party may be able to forge new (perhaps
decrypting to junk) ciphertexts between two users. If a TR-PKAE is not secure
against RUF-CTXT, then the scheme does not provide non-repudiation 7 and fur-
thermore, if the receiver’s private key is compromised, the attacker can imperson-
ate any sender to this receiver. We introduce the following games to model un-
forgeability (see Figure 3).

Timed-Release RUF-CTXT (RUF-TR-CTXT). We introduce a slightly weaker
timed-release notion of RUF-CTXT 8, which requires that the receiver should
not be able to forge ciphertext to himself for a future date. This notion has two
important implications: (1) the receiver should discard any ciphertexts received
past decryption dates if his private key may be compromised; and (2) the re-
ceiver may be able to prove to a third party that a ciphertext was generated
by the alleged sender if he can produce a proof of ciphertext existence prior
to the decryption date. The game in Figure 3 is an enhancement of the RUF-
CTXT condition proposed by An [2] to allow adaptive adversarial behavior: the
receiver is not given access to the token for a single, adaptively-chosen challenge
time period; in addition, the adversary can choose any receiver public key in
the encryption queries. We say that a TR-PKAE encryption is secure against
RUF-TR-CTXT, if every polynomial-time adversary A has negligible advantage,
AdvRUF−TR−CTXT

A,Γ (k), against the challenger in the RUF-TR-CTXT game.

TUF-CTXT. In addition to timed-release receiver unforgeability, we also require
a time-independent third-party unforgeability (TUF-CTXT) condition, which al-
lows to separate timed-release functionality from PKAE. Thus, in the TUF-CTXT
game defined in Figure 3, the master key is given to the adversary. We say that
a TR-PKAE scheme Γ is secure against TUF-CTXT if every polynomial time
adversary A has negligible advantage, AdvTUF−CTXT

A,Γ (k), in k.

4 The Proposed TR-PKAE 9

Following the proof of Theorem 1, one approach to achieve TR-PKAE would be
to combine a key-insulated encryption scheme with a PKAE scheme in a modular
fashion using techniques such as given in [14]. However, it is desirable for modern
authenticated encryption to have one primitive that achieves the desired security
7 Since the receiver can generate the ciphertext allegedly coming from another user to

himself, the receiver will not be able to prove to anybody that ciphertext was gener-
ated by the alleged sender even if all secret information is disclosed.

8 This allows us to avoid use of digital signature mechanisms.
9 We can easily adapt the proposed TR-PKAE to SKIE-OTRU. However, receiver

unforgeability will be lost although third-party unforgeability remains, resulting in
a weaker form of authenticated SKIE-OTRU. This is expected since the proposed
TR-PKAE does not use digital signature mechanisms, which can be added if receiver
unforgeability is needed. Still, note that attacker which compromises “helper” of user
A, still will not be able to forge ciphertexts to A from another user, and if user A’s
decryption keys are compromised for some time-periods attacker will not be able to
forge ciphertexts to A for a new time-period.
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Algorithm 3.3: ExpTUF−CTXT
A,Γ (k)

πg ← Setup(1k)

(δ, πtr) ← TRSetup(1k)
(pka, ska) ← KeyGen(πg)
(pkb, skb) ← KeyGen(πg)
(c∗, T ∗)

← AEncrypt∗(π,ska,pkb,·,·)(π, δ, pka, pkb)
if (Decrypt∗(π, δ, pka, skb, c

∗, T ∗) = fail

or
Encrypt∗(π, ska, pkb, ·, T

∗) returned c∗)
then return (false)
else return (true)

Algorithm 3.4: ExpRUF−TR−CTXT
A,Γ (k)

πg ← Setup(1k)

(δ, πtr) ← TRSetup(1k)
(pka, ska) ← KeyGen(πg)
(c∗, T ∗, pk∗

b , sk∗
b )

← ATG(π,δ,·),Encrypt∗(π,ska,·,·,·)(π, pka)
if (Decrypt∗(π, δ, pka, sk∗

b , c∗, T ∗) = fail

or Encrypt∗(π, ska, pk∗
b , ·, T ∗) returned c∗

or (pk∗
b , sk∗

b ) �∈ [KeyGen(1k)]
or A queried TG(T∗))
then return (false)
else return (true)

AdvTUF−CTXT
A,Γ (k) = Pr[ExpTUF−CTXT

A,Γ (k) = true] .

AdvRUF−TR−CTXT
A,Γ (k) = Pr[ExpRUF−TR−CTXT

A,Γ (k) = true .

Fig. 3. TR-PKAE security experiments for the TUF-CTXT and RUF-TR-CTXT games

properties [10]: such solutions generally allow for a more efficient scheme, tighter
security bounds and more stringent security. Below we construct an example of
such a scheme that satisfies all of the above security requirements and is nearly as
efficient as BF-IBE scheme [8]. We start with a review of Bilinear Diffie-Hellman
Problem.

4.1 Bilinear Diffie-Hellman Problem

Let G1 and G2 be two abelian groups of prime order q. We will use additive
notation for group operation in G1 (where aP denotes P added a times for
P ∈ G1, a ∈ Zq) and multiplicative notation for G2 (ga denotes the g multiplied
a times for element g of G2). Let e : G1 × G1 → G2 be an admissible bilinear
map [8]. The properties of the groups and constructions of e are explained in
detail in [8]. We assume that the Decisional Diffie-Hellman Problem (DDHP)
is hard in G2. Note that as a trivial consequence of DDHP assumption, the
Discrete Logarithm Problem (DLP) is also hard in G2. As a consequence of the
above assumptions, it follows that DLP is hard in G1 [22].

Let G be a Bilinear Diffie-Hellman (BDH) Parameter Generator [8], i.e. a
randomized algorithm that takes positive integer input k, runs in polynomial
time in k and outputs prime q, descriptions of G1, G2 of order q, description of
admissible bilinear map e : G1 × G1 → G2 along with polynomial deterministic
algorithms for group operations and e and generators P ∈ G1, Q ∈ G2. We say
that algorithm A has advantage ε(k) in solving the computational BDH Problem
(BDHP) for G if there exists k0 such that:

Advcbdh
A,G (k) = Pr[〈q, G1, G2, e〉 ← G(1k), P ← G

∗
1, a, b, c ← Z

∗
q :

A(q, G1, G2, e, P, aP, bP, cP ) = e(P, P )abc] ≥ ε(k), ∀k > k0 (1)
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We say that G satisfies the computational BDH Assumption if for any ran-
domized polynomial-time algorithm A and any polynomial f ∈ Z[x] we have
Advcbdh

A,G (k) < 1/f(k) for sufficiently large k

4.2 Description of the Scheme

Let G be a BDH Parameter Generator. Figure 4 gives a complete description of
our construction10. The symmetric encryption scheme used is a straightforward
adaptation of the Fujisaki-Okamoto scheme [17]. We briefly demonstrate the
consistency of the scheme before moving on to security considerations. Given
ciphertext c = 〈Q1, Q2, σ ⊕ K, m ⊕ H4(σ)〉 computed using skA, pkB and T , we
note that in the corresponding Decrypt computations we have 1) K̂ = K since
e(Q2+pka, sPT +skb ·Q1) = e(r2P +skaP, sPT +skb ·r1PT ) = e([r2 +ska]P, [s+
r1 · skb]PT ) = e([s + r1 · skb]P, [r2 + ska]PT ) = e(Ppub + r1 · pkb, [r2 + ska]PT ), 3)
as in Fujisaki-Okamoto, it follows that σ̂ = σ, m̂ = m and 4) Q1 = H3(σ̂, m̂)P
and Q2 = H4(σ̂, m̂)P . Thus the original plaintext is retrieved.

4.3 Security of the Scheme

The following security results apply to TR-PKAE. The hash functions are mod-
eled as random oracles [6]. Due to space considerations, the detailed proofs
of these results are omitted from this extended abstract and are available on-
line [12]. First, we note the confidentiality properties of the proposed scheme.

Theorem 2 (IND-KC-CCA2) Let A be a IND-KC-CCA2 adversary that makes
q2 queries to H2. Assume that AdvIND−KC−CCA2

A,TR-PKAE (k) ≥ ε. Then there exists an
algorithm B that solves computational BDHP with advantage Advcbdh

B,G (k) ≥ 2ε
q2

and running time O(time(A)).

Theorem 3 (IND-RTR-KC-CCA2) Let A be a IND-RTR-KC-CCA2 adversary
that makes qd decryption queries, q2 queries to H2 and qtok queries to TG. Assume
that AdvIND−RTR−KC−CCA2

A,TR-PKAE (k) ≥ ε. Then there exists an algorithm B that solves

computational BDHP with advantage Advcbdh
B,G (k) ≥ 1

4q2·max(q2,qd)

[
ε

e·(1+qtok)

]3
and

running time O(time(A)), where e = 2.71828....

The proposed protocol also satisfies the authentication properties specified in
the previous section, i.e., TUF-CTXT and RUF-TR-CTXT.

Theorem 4 (TUF-CTXT) Let A be a TUF-CTXT adversary that makes qe en-
cryption queries and q2 queries to H2, and let AdvTUF−CTXT

A,TR-PKAE(k) ≥ ε. Then there
exists an algorithm B with computational BDHP advantage Advcbdh

B,G (k) ≥ ε
2·qe·q2

and running time O(time(A)).
10 As in [8], we can weaken surjectivity assumption on hash function H1. The security

proofs and results will hold true with minor modifications. We skip the details and
refer reader to [8].

.

.

.

.
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Setup: Given security parameter k ∈ Z
+, the following steps are followed

1: G takes k and generates a prime q, two groups G1, G2 of order q, an admis-
sible bilinear map e : G1 × G1 → G2 and arbitrary generator P ∈ G1.

2: The following cryptographic hash functions are chosen: 1) H1 : {0, 1}∗ →
G

∗
1, 2) H2 : G2 → {0, 1}n for some n, 3) H3, H4 : {0, 1}n × {0, 1}n → Z

∗
q

and 4) H5 : {0, 1}n → {0, 1}n. These functions will be treated as random
oracles in security considerations.

3: The message space is chosen to be M = {0, 1}n and the ciphertext space
is C = G

∗
1 × {0, 1}n × {0, 1}n. The general system parameters are πg =

〈q, G1, G2, e, n, P, Hi, i = 1...5〉
TRSetup :

1: Choose s ∈R Z
∗
q and set Ppub = sP .

2: The timed-release public system parameter is πtr = Ppub and the mas-
ter key δ is s ∈ Z

∗
q . The combined public parameters are π = πg||πtr =

〈q, G1, G2, e, n, P, Ppub, Hi, i = 1...5〉
KeyGen: Uniformly choose private key sk = a ∈ Z

∗
q , and compute the corresponding

public key pk as 0 	= aP ∈ G
∗
1 .

TG: On input the time encoding T ∈ {0, 1}n, output sPT where PT = H1(T )
Encrypt: Given the private key ska of the sender, public key pkb of receiver, plain-

text m ∈ M and time encoding T , encryption is done as follows: 1) sample
σ ∈R {0, 1}n, compute r1 = H3(σ, m) and r2 = H4(σ, m); set Q1 = r1PT and
Q2 = r2P ; 2) compute L = e(Ppub + r1 · pkb, (r2 + ska)PT ) and symmetric key
K = H2(L) and 3) the ciphertext c is set to be c = 〈Q1, Q2, σ ⊕K, m ⊕H5(σ)〉

Decrypt: Given ciphertext c = 〈Q1, Q2, c1, c2〉 encrypted using ska, pkb and time
T , one decrypts it as follows: (1) obtain tknT = sPT ; (2) K̂ = H2(e(Q2 +
pka, sPT + skb · Q1)); 3) retrieve σ̂ = c1 ⊕ K̂ and compute m̂ = c2 ⊕ H5(σ̂)
and 4) verify that Q1 = H3(σ̂, m̂)P and Q2 = H4(σ̂, m̂)P ; if so, output m̂,
otherwise output fail.

Fig. 4. The proposed TR-PKAE scheme

Theorem 5 (RUF-TR-CTXT).Let A be a RUF-TR-CTXT adversary that makes
qe encryption queries, q2 queries to H2, and qtok queries to TG, and let
AdvRUF−TR−CTXT

A,TR-PKAE (k) ≥ ε. Then there exists an algorithm B with computational
BDHP advantage Advcbdh

B,G (k) ≥ ε
2·q2·qe·e·(1+qtok) and running time O(time(A)),

where e = 2.71828....

5 Efficiency of TR-PKAE

To compare the proposed scheme to BF-IBE [8], note that, in terms of significant
operations – bilinear pairings, MapToPoint, exponentiations – TR-PKAE adds
3 additional exponentiations in G1 for encryption and 2 for decryption. More
precisely, encryption in TR-PKAE involves 1 bilinear map, 4 exponentiations
in G1 and 1 MapToPoint (to compute PT ). The decryption involves 1 bilinear
map and 3 exponentiations in G1 (assuming PT is pre-computed). Second, the
proposed scheme adds additional point in G1 to the ciphertext. Taking into
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account functionality of TR-PKAE and the fact that naive combinations yielding
hybrid protocols generally fail to provide required security, we expect hybrid
constructions of TR-PKAE to be at least as expensive as our scheme.

We implemented the proposed primitives using Miracl library v.4.8.3 [27] with
Tate pairing for the bilinear map. The group G1 was chosen to be a subgroup
of order q in a supersingular elliptic curve E over Fp, where p is a 512 bit and
q is a 160 bit primes. Group G2 was a subgroup of a finite field of order 1024
bits. We used a P4-3.2 GHz ”Northwood” (800MHz FSB) with 2GB of 400
MHz RAM desktop. The performance measurements are summarized in Table 1
and are all averaged over 10000 runs, except that the RSA results were ob-
tained by running OpenSSL v.0.9.8 speed command. As expected, the proposed
TR-PKAE is somewhat more expensive than BF-IBE in encryption/decryption,
but when BF-IBE is extended to provide comparable functionality to TR-PKAE
we expect the resulting scheme to be at least as expensive as the proposed
protocol.

Table 1. Cost of basic operations

Function modulus (bits) exponent (bits) performance (msec)
RSA(Sig/Dec) 1024 1024 2.96
RSA(Ver/Enc) 1024 16 (e = 216 + 1) 0.14

Scalar Mul in EC over Fp 160 160 2.23
MapToPoint 512 - 1.52

Pairing 512 160 18.15
TR-PKAE Enc 512 160 29
TR-PKAE Dec 512 160 25

BF-IBE Enc 512 160 24
BF-IBE Dec 512 160 21
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