Known-Plaintext Cryptanalysis of the Domingo-Ferrer Algebraic Privacy Homomorphism Scheme

Jung Hee Cheona, Woo-Hwan Kimb,\ast, Hyun Soo Nama

aDepartment of Mathematical Sciences, Seoul National University
San56-1 Shinrim-dong, Kwanak-gu, Seoul, 151-742, Korea

bNational Security Research Institute
161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350, Korea

Abstract

We propose cryptanalysis of the First Domingo-Ferrer’s algebraic privacy homomorphism $\mathcal{E} : \mathbb{Z}_n \rightarrow (\mathbb{Z}_p \times \mathbb{Z}_q)^d$ where $n = pq$. We show that the scheme can be broken by $(d + 1)$ known plaintexts in $O(d^3 \log^2 n)$ time. Even when the modulus n is kept secret, it can be broken by $2(d+1)$ known plaintexts in $O(d^4 \log dn + d^3 \log^2 n + \epsilon(m))$ time with overwhelming probability.

Key words: Privacy Homomorphism; Cryptanalysis; Safety/security in digital systems

1 Introduction

The concept of processing encrypted data was firstly introduced by Rivest, Adleman, and Dertouzos [11] in 1978. A privacy homomorphism is an encryption function which allows processing the encrypted data without knowledge of the decryption function. More precisely, an algebraic privacy homomorphic encryption \mathcal{E} over a ring \mathcal{R} is an encryption function which has efficient algorithms to compute $\mathcal{E}(xy)$ and $\mathcal{E}(x+y)$ from $\mathcal{E}(x)$ and $\mathcal{E}(y)$ without revealing x and y. One example of an algebraic privacy homomorphism [11] is as follows:

Example 1 Let p, q be large primes, and $n = pq$.

$$\mathcal{P} = \mathbb{Z}_n, \quad \mathcal{C} = \mathbb{Z}_p \times \mathbb{Z}_q, \quad \mathcal{E}(x) = (x \mod p, x \mod q)$$

\ast Corresponding author.

Email addresses: jhcheon@math.snu.ac.kr (Jung Hee Cheon), whkim5@nsri.re.kr (Woo-Hwan Kim), hsnam@math.snu.ac.kr (Hyun Soo Nam).

Preprint submitted to Elsevier Science 26 October 2005
and decryption is done using the Chinese remainder theorem.

This function is an algebraic privacy homomorphism under the usual modular addition and modular multiplication. Unfortunately, it is shown that this algebraic privacy homomorphism can be broken using a known-plaintext attack [5].

In 1991, Feigenbaum and Merritt [8] questioned directly whether an algebraic privacy homomorphism does exist. Many schemes are suggested, but almost all of them are shown to be insecure [5,3,13,14]. In particular, Ahituv et al. showed that any algebraic privacy homomorphism can be broken efficiently by chosen ciphertext attacks [2]. Boneh and Lipton proved that any deterministic algebraic privacy homomorphism over rings \mathbb{Z}_n can be broken in sub-exponential time under a (reasonable) number theoretic assumption [4]. Domingo-Ferrer proposed two algebraic privacy homomorphisms in 1996 and 2002 [6,7]. The second one is broken by Bao [3] and Wagner [13,14]. But there is no serious attack on the first scheme. It is the only algebraic privacy homomorphism that remains secure to the authors’ knowledge.

In this paper, we analyze the original privacy homomorphism of Domingo-Ferrer [6], and show that it is not secure against known-plaintext attacks. When we consider an encryption function from \mathbb{Z}_n to $(\mathbb{Z}_p \times \mathbb{Z}_q)^d$ for $n = pq$, it can be broken by $d + 1$ plaintext-ciphertext pairs in $O(d^4 \log^2 n)$ with the probability larger than $1 - \frac{2^3}{p-1}$. Even when n is kept secret, it can be broken by $d + 1$ more pairs in $O(d^4 \log dn + d^3 \log^2 n + \epsilon(m))$ with the probability larger than $(1 - \frac{1}{2^{m-1}})(1 - \frac{2}{2^{p-1}})$ where $\epsilon(m) = O(2^{2m})$.

The outline of the paper is as follows: In Section 2, we introduce the Domingo-Ferrer’s scheme. In Section 3, we propose known-plaintext attacks for the scheme. The analysis consists of two parts. One is the case that the modulus of the input space is public and the second is the case that the modulus is kept secret. We conclude in Section 4.

2 Domingo-Ferrer’s Algebraic Privacy Homomorphism

In this section, we introduce the first Domingo-Ferrer scheme [6]. Let p,q be large primes and $n = pq$. For a positive integer d, we set $\mathcal{P} = \mathbb{Z}_n$, $\mathcal{C} = (\mathbb{Z}_p \times \mathbb{Z}_q)^d$.

(1) **Setup.** Take two large primes p and q and compute $n = pq$. Choose a positive integer d. $r_p \in \mathbb{Z}_p^*$ and $r_q \in \mathbb{Z}_q^*$ are randomly selected so that each of them generates a large subgroup of \mathbb{Z}_p and \mathbb{Z}_q, respectively. The public parameter is (d, n) and the secret parameter is (p, q, r_p, r_q). To increase
the security n can be kept secret, but in this case encrypted data can be processed less efficiently.

(2) **Encrypt.** Randomly split $x \in \mathbb{Z}_n$ into x_1, x_2, \ldots, x_d so that $x = \sum_{i=1}^{d} x_i \mod n$ and $x_i \in \mathbb{Z}_n$.

$$\mathcal{E}(x) = ([x_1 r_p \mod p, x_1 r_q \mod q], \ldots, [x_d r_p^d \mod p, x_d r_q^d \mod q]).$$

(3) **Decrypt.** For each j, to retrieve the $[x_j \mod p, x_j \mod q]$, compute the scalar product of the j-th coordinate $[x_j r_p^j \mod p, x_j r_q^j \mod q]$ pair by $(r_p^{-j} \mod p, r_q^{-j} \mod q))$. Add them up to get $[x \mod p, x \mod q]$. Use the Chinese remainder theorem to get $x \mod n$.

To explain the operation of ciphertexts, we adopt a polynomial notation: Denote a polynomial $f(X) = a_1 X + a_2 X^2 + \cdots + a_d X^d$ by its coefficient vectors (a_1, a_2, \ldots, a_d). Then we have $\mathcal{E}(x) = (f_x(r_p X) \mod p, f_x(r_q X) \mod q)$ for a polynomial $f_x(X) \in \mathbb{Z}_n[X]$ with $f_x(0) \equiv 0 \mod n$ and $f_x(1) \equiv x \mod n$. Given $\mathcal{E}(x) = (p_x(X), q_x(X))$ and $\mathcal{E}(x') = (p_{x'}(X), q_{x'}(X))$, we have

$$\mathcal{E}(x + y) = (p_x(X) + p_{x'}(X) \mod n, q_x(X) + q_{x'}(X) \mod n)$$

$$\mathcal{E}(xy) = (p_x(X)p_{x'}(X) \mod n, q_x(X)q_{x'}(X) \mod n).$$

Note that a multiplication doubles up the number of components in a ciphertext. If n is secret, the operations are done in $\mathbb{Z}[x]$. Domingo-Ferrer’s scheme is an algebraic privacy homomorphism with respect to the operation of addition and multiplication in $\mathbb{Z}_n[X]$ or $\mathbb{Z}[X]$. This scheme is claimed to be secure against known-plaintext attacks when $d > 1$. Note that if $d = 1$, $r_p = 1$, and $r_q = 1$, Domingo-Ferrer’s scheme is simply the scheme in Example 1.

3 Cryptanalysis of Domingo-Ferrer’s scheme

We show that Domingo-Ferrer’s scheme can be broken with $d + 1$ known plaintexts when n is known and with one more known plaintext when n is unknown. Without loss of generality, we assume $p < q$ throughout this paper.

3.1 The case that n is public

Assume we have $d + 1$ plaintext-ciphertext pairs $\{(x_i, Y_i, Z_i) \mid i = 1, \ldots, d + 1\}$ where $x_i = x_{i1} + \cdots + x_{id} \mod n$ and

$$Y_i = (y_{i1}, \ldots, y_{id}) = (x_{i1} r_p \mod p, \ldots, x_{id} r_p^d \mod p),$$

$$Z_i = (z_{i1}, \ldots, z_{id}) = (x_{i1} r_q \mod q, \ldots, z_{id} r_q^d \mod q).$$

for $i = 1, \ldots, d + 1$. By letting $t = r_p^{-1}$, we have

$$f_i(t) = -x_i + y_{i1} t + y_{i2} t^2 + \cdots + y_{id} t^d \equiv 0 \mod p$$

3
for \(i = 1, \ldots, d + 1 \). This can be written as the following matrix:

\[
\begin{pmatrix}
x_1 & y_{11} & y_{12} & \cdots & y_{1d} \\
x_2 & y_{21} & y_{22} & \cdots & y_{2d} \\
\vdots & & & & \\
x_{d+1} & y_{d+1,1} & y_{d+1,2} & \cdots & y_{d+1,d}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_{d+1}
\end{pmatrix}
\equiv
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_{d+1}
\end{pmatrix}
\begin{pmatrix}
-1 \\
t \\
\vdots \\
t^d
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
\vdots \\
0
\end{pmatrix}
\mod p. \tag{1}
\]

Since the homogeneous equation (1) has a nontrivial solution in \(\mathbb{Z}_{p+1}^d \), the determinant \(\det(A_p) \) of the coefficient matrix \(A_p \) of the equation (1) is zero \(\mod p \). We may apply Gaussian elimination to \(A_p \) over \(\mathbb{Z}_n \) to compute \(\det(A_p) \) since a prime factor of \(n \) can be obtained when a failure happens in Gaussian elimination. Gaussian elimination of a \((d+1) \times (d+1)\) matrix over \(\mathbb{Z}_n \) takes \(O(d^3 \log^2 n) \) bit operations. On the other hand, \(\Pr[\det(A_p) \neq 0 \mod q] \) is overwhelming as in the following lemma:

Lemma 2 Let \(p \) and \(q \) be primes with \(p < q \) and \(M = (v_{ij}) \) be an \(\ell \times \ell \) random matrix with \(0 \leq v_{ij} < p \). Then the probability that \(\det(M) \neq 0 \mod q \) is larger than \(e^{-\frac{3}{20(p-1)}} \).

Proof. Let \(v_i = (v_{i1}, \ldots, v_{i\ell}) \) be the \(i \)-th column vector of \(M \). Then \(\det(M) \neq 0 \mod q \) if and only if \(\{v_1, \ldots, v_\ell\} \) is linearly independent over \(\mathbb{Z}_q \). Thus we estimate the size of the set

\[
I = \{(v_1, \ldots, v_\ell) \mid \{v_1, \ldots, v_\ell\} \text{ is linearly independent over } \mathbb{Z}_q, 0 \leq v_{ij} < p \}.
\]

Suppose that \(\{v_1, \ldots, v_\ell\} \) is linearly independent over \(\mathbb{Z}_q \) and each entry of \(v_i \) is contained in \([0, p-1]\). Consider an \(\ell \times k \) matrix whose \(i \)-th column is \(v_i \). Since the rank of the matrix is \(k \), there is a submatrix of rank \(k \) made by \(k \) rows of the matrix:

\[
\begin{pmatrix}
v_{j1} & v_{j1} & \cdots & v_{jk} \\
\vdots & & & \\
v_{jk1} & v_{jk2} & \cdots & v_{jkk}
\end{pmatrix}
\]

Denote the set of linear combinations of \(\{v_1, \ldots, v_\ell\} \) over \(\mathbb{Z}_q \) by \(\langle v_1, \ldots, v_\ell \rangle \). Suppose \(v_{k+1} \) is contained in \(\langle v_1, \ldots, v_\ell \rangle \) and \(v_{j,k+1} \in [0, p-1] \) for all \(j \). Then \(a_1, \ldots, a_k \in \mathbb{Z}_q \) are uniquely determined such that

\[
\begin{pmatrix}
v_{j,k+1} \\
\vdots \\
v_{j+k,1}
\end{pmatrix}
= a_1 \begin{pmatrix} v_{j1} \\
\vdots \\
v_{j+k,1}
\end{pmatrix} + \cdots + a_k \begin{pmatrix} v_{jk} \\
\vdots \\
v_{jk}
\end{pmatrix}.
\]
Other places of v_{k+1} are determined according to $v_{k+1} = \sum a_i v_i$ and the number of such v_{k+1}'s cannot exceed p^k. Therefore $|I|$ is larger than $(p^f-1)(p^f-p)\cdots(p^f-p^{f-1})$. The probability that \{v_1,v_2,\ldots,v_t\} is linearly independent is larger than

$$
\frac{(p^f-1)(p^f-p)\cdots(p^f-p^{f-1})}{(p^f)^t} = (1 - \frac{1}{p^f})(1 - \frac{1}{p^{f-1}})\cdots(1 - \frac{1}{p})
$$

$$
\geq e^{-\frac{3}{2}t(1+p+\cdots+p^f)} \geq e^{-\frac{3}{2n(p-1)}} \quad (\because 1-x \geq e^{-\frac{3}{2}x} \text{ for } 0 \leq x \leq \frac{1}{2}). \quad \square
$$

From the Lemma 2, we can obtain $\gcd(\det(A) \mod n, n) = p$ and $q = n/p$ with probability larger than $e^{-\frac{3}{2n(p-1)}}$. Once p is known, r_p can be obtained by computing

$$
g(t) := \gcd(f_0(t), \ldots, f_{d+1}(t))
$$

since $(t-r_p^{-1})$ divides $g(t)$. The greatest common divisor of two polynomials in $\mathbb{Z}_p[x]$ of degrees less than d can be computed by $O(d^2 \log^2 p)$ bit operations [10]. Thus $g(t)$ can be computed by $O(d^3 \log^2 p)$ bit operations. The degree of $g(t)$ may not be 1 but we show that the probability is negligible. Let $f'_i = f_i/(t-r_p^{-1})$ for $i = 1, \ldots, d+1$. We may assume that f'_i's are random polynomials of degree $d-1$ over \mathbb{Z}_p.

Lemma 3 Let g_1, \ldots, g_k be random polynomials of degree ℓ over \mathbb{Z}_p. Then there is no common root of g_i's with probability larger than $(1 - 1/p^k)^{\ell}$.

Proof. Assume g_1 has ℓ distinct roots x_1, \ldots, x_ℓ. For each $i = 2, \ldots, k$, the probability that $g_i(x_1) = 0$ is $1/p$. Thus

$$
\Pr[\exists i \text{ such that } g_i(x_1) \neq 0] = 1 - 1/p^{k-1},
$$

$$
\Pr[\forall j, \exists j_i \text{ such that } g_{j_i}(x_j) \neq 0] = (1 - 1/p^{k-1})^{\ell}.
$$

Since the number of distinct roots of g_1 may be less than ℓ, the probability is larger than $(1 - 1/p^{k-1})^{\ell}$. \quad \square

By the Lemma 3, f'_i's have no common root other than r_p^{-1} with the probability larger than $(1 - 1/p^d)^{d-1}$. Similarly r_q can be computed. The success probability of determining r_p and r_q uniquely is larger than

$$
(1 - 1/p^d)^{d-1} \cdot (1 - 1/q^d)^{d-1} \geq e^{-\frac{3(d-1)}{2p^d}} \cdot e^{-\frac{3(d-1)}{2q^d}} \geq e^{-\frac{3(d-1)}{p^d}} \geq e^{-\frac{1}{2p-1}}
$$

if $d \geq 2$ and $q > p > 6d$. Hence the overall success probability is larger than $e^{-\frac{1}{2p-1}} \cdot e^{-\frac{1}{2q-1}} \geq e^{-\frac{1}{p+1}} \geq 1 - \frac{2}{p+1}$ because $e^{-x} \geq 1 - x$ for $0 < x < \frac{1}{2}$.

In summary, we have the following theorem.

Theorem 4 Suppose the modulus $n = pq$ is public with $6d < p < q$ and $d \geq 2$ in Domingo-Ferrer’s privacy homomorphism. The scheme can be broken by
\(d + 1\) known plaintext-ciphertext pairs in time \(O(d^3 \log^2 n)\) with probability larger than \(1 - \frac{2}{\log p}\).

For example, when \(n \approx 2^{1024}\) and \(p \approx q \approx 2^{512}\), the probability that the algorithm fails is less than \(2^{-511}\).

3.2 The case that \(n\) is not public

Domingo-Ferrer suggested that his scheme could be more secure by hiding the modulus \(n\). In this case, however, we can not perform many multiplications since one multiplication makes the length of ciphertexts four times longer. We will show that even if \(n\) is not public, a similar cryptanalysis can be applied.

Assume that we have \(2(d + 1)\) known plaintext-ciphertext pairs. From each \(d + 1\) pairs, we can induce two \((d + 1) \times (d + 1)\) coefficient matrices, \(A_1\) and \(A_2\) as (1).

First, we compute the determinant of \(A_i\)'s viewed as integer matrices. When \(A = (a_{ij})\) is a \((d + 1) \times (d + 1)\) integer matrix, it is known that \(\det(A)\) can be computed by \(O(d^4 \log d + \log ||A|| + d^3 \log^2 ||A||)\) bit operations where \(||A|| = \max_{i,j} \{|a_{ij}\}\) [1] (and there are algorithms with the lower complexity. For more detail, see [9]). For the matrix \(A_i\), we may assume that \(||A_i|| \leq n\) and \(\det(A_i)\) can be computed by \(O(d^3 \log dn + d^3 \log^2 n)\) bit operations.

Second, we compute \(p\) from the gcd of determinants of \(A_i\)'s. We claim that \(\gcd(\det(A_1), \det(A_2)) = p\), equivalently

\[
\gcd(\det(A_1)/p, \det(A_2)/p) = 1
\]

with high probability. More precisely, we have

Lemma 5 Assume that divisibility of an integer by different primes is independent. Let \(N\) be a positive integer. If positive integers \(n_1, \ldots, n_k\) are randomly drawn from the interval \((0, N)\), then the probability \(P_k(i)\) of the greatest common divisor of \(k\) integers \(n_1, \ldots, n_k\) is equal to \(i\),

\[
P_k(i) = \lim_{N \to \infty} \Pr\{\gcd(n_1, n_2, \ldots n_k) = i\} \approx \frac{1}{i \zeta(k)}
\]

where \(\zeta(k)\) is the Riemann’s zeta function. *

* The approximate value of \(\frac{1}{\zeta(k)}\) for \(k = 2, 4, 6, 8, 10\) is

\[.6079271016, .923934016, .9829525910, .9959391987, .9990064106\]
Proof. See [12, Section 4.4]. □

If \(\ell = \gcd(\det(A_1), \det(A_2)) \) is not prime and \(\ell \) has only small factors other than \(p \), then we can easily calculate \(p \) by trial divisions or some integer factoring algorithms. By the Lemma 5, we have the probability for finding \(p \) greater than

\[
\sum_{i=1}^{2^m} P_2(i) = \sum_{i=1}^{2^m} \frac{1}{i^2 \zeta(2)} = \frac{1}{\zeta(2)} \sum_{i=1}^{2^m} \frac{1}{i^2} = 1 - \frac{1}{\zeta(2)} \sum_{i=2^m+1}^{\infty} \frac{1}{i^2}
\]

assuming that prime factors of \(\ell \) smaller than \(2^m \) can be easily calculated. We can find \(q \) by the same method. After getting \(p \) and \(q \), we can compute the other secret keys \(r_p \) and \(r_q \) as the case that \(n \) is known.

Theorem 6 Suppose the modulus \(n = pq \) is secret with \(2p > q > p \geq 6d \) and \(d \geq 2 \) in Domingo-Ferrer’s algebraic privacy homomorphism. The scheme can be broken by \((2d+1) \) known plaintext-ciphertext pairs in time \(O(d^4 \log d n + d^3 \log^2 n + \varepsilon(m)) \) with the success probability larger than \((1 - \frac{1}{2m-2})(1 - \frac{2}{p-1}) \) where \(\varepsilon(m) = O(2^{2m}) \) is the complexity of a factorization algorithm to find all factors less than \(2^m \).

Proof. The computing time of \(\det(A_i) \) for \(i = 1, 2 \) in \(\mathbb{Z} \) is estimated as \(O(d^4 \log d n + d^3 \log^2 n) \). Next, using a suitable factorization algorithm (whose complexity is \(\varepsilon(m) \)), we can discard prime factors smaller than \(2^m \) and obtain \(p \) by computing the gcd of \(\det(A_i) \)'s. The number of primes less than \(2^m \) is approximately \(\frac{2^m}{\log 2} \). Let \(M \) be the product of primes less than \(2^m \), then

\[
M = \prod_{p < 2^m} p_i \leq 2^m \prod_{p < 2^m} \frac{p_m}{2^m} = 2^{m^2/2}
\]

and \(\log M \leq \frac{2^m}{\log 2} \leq 2^{m+1} \). The computation of \(\gcd(M, \det(A_i)) \) takes \(O((2^{m+1})^2) \) bit operations and \(\varepsilon(m) = O(2^{2m}) \) follows. By the Lemma 5, we have

\[
\Pr[\gcd(\det(A_1), \det(A_2)) = p] \geq 1 - \frac{1}{\zeta(2)} \sum_{i=2^m+1}^{\infty} \frac{1}{i^2}.
\]

Also the same probability holds for computing \(q \). Let \(\text{Error} \) be the event that \(p \) or \(q \) is not determined. Since \(\sum_{i=2^m+1}^{\infty} \frac{1}{i^2} \leq \frac{1}{2m-1} \) and \(\zeta(2) \geq 1 \), \(\Pr[\text{Error}] \leq 1 - \left(1 - \frac{1}{\zeta(2)} \sum_{i=2^m+1}^{\infty} \frac{1}{i^2} \right)^2 \leq 1 - \left(1 - \frac{1}{2m-1} \right)^2 \leq \frac{1}{2m-1} \). The computation of \(r_p \), \(r_q \) and its complexity is the same as the case when \(n \) is known. The total complexity is \(O(d^4 \log d n + d^3 \log^2 n + 2^{2m}) \). The success probability is \(\Pr[-\text{Error} \land \text{Find } r_p \land \text{Find } r_q] \geq \left(1 - \frac{1}{2m-1} \right) \left(1 - \frac{2}{p-1} \right). \)

□

Note that the probability that the algorithm fails, is less than \(10^{-3} \) if \(m \geq 12 \), \(n \approx 2^{1024} \) and \(d \approx 10 \).
Remark 7 In fact, \((d + 2)\) known plaintext-ciphertext pairs are enough to make two \((d + 1) \times (d + 1)\) matrices by use of a plaintext-ciphertext pair twice. In Lemma 5, it is assumed that the integers are chosen randomly and in order to apply the lemma, we assume \(2(d + 1)\) known plaintext-ciphertext pairs.

<table>
<thead>
<tr>
<th>Case</th>
<th>(n) is known</th>
<th>(n) is unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>The number of known-plaintexts</td>
<td>(d + 1)</td>
<td>(2(d + 1))</td>
</tr>
<tr>
<td>The success probability</td>
<td>(1 - \frac{2}{p-1}) ((\approx 1 - 2^{-511}))</td>
<td>((1 - \frac{2}{2^m-2})(1 - \frac{2}{p-1})) ((\approx 1 - 10^{-3}))</td>
</tr>
<tr>
<td>Time complexity (bit operations)</td>
<td>(O(d^3 \log^2 n))</td>
<td>(O(d^4 \log d n + d^3 \log^2 n + 2^m))</td>
</tr>
</tbody>
</table>

Table 1
The Summary of the the Proposed Attacks

3.2.1 Example

This example is in the paper of Domingo-Ferrer [6]. We illustrate the above analysis by this example. Let \(p = 17\), \(q = 13\), \(r_p = 2\), and \(r_q = 3\) be secret key. We can encrypt \(-1, 3, 1, 2, 4,\) and \(5\) as follows:

\[
\mathcal{E}(-1) = \mathcal{E}(2, -3) = ([4, 6], [5, 12]), \quad \mathcal{E}(3) = \mathcal{E}(2, 1) = ([4, 6], [4, 9]),
\]

\[
\mathcal{E}(1) = \mathcal{E}(4, -3) = ([8, 12], [5, 12]), \quad \mathcal{E}(2) = \mathcal{E}(3, -1) = ([6, 9], [13, 4])
\]

\[
\mathcal{E}(4) = \mathcal{E}(3, 1) = ([6, 9], [4, 9]), \quad \mathcal{E}(5) = \mathcal{E}(6, -1) = ([12, 5], [13, 4]).
\]

We use three plaintext-ciphertext pairs, \{\((-1, \mathcal{E}(-1)), (3, \mathcal{E}(3)), (1, \mathcal{E}(1))\}\} to make a coefficient matrix \(A\) where

\[
A = \begin{pmatrix}
-1 & 4 & 5 \\
3 & 4 & 4 \\
1 & 8 & 5
\end{pmatrix}, \quad \det(A) = 68, \quad \gcd(\det(A), 13 \cdot 17 = 221) = 17.
\]

If \(n = 221\) is unknown, with three more plaintext-ciphertext pair, make another matrix for \{(2, \mathcal{E}(2)), (4, \mathcal{E}(4)), (5, \mathcal{E}(5))\},

\[
B = \begin{pmatrix}
2 & 6 & 13 \\
4 & 6 & 4 \\
5 & 12 & 13
\end{pmatrix}, \quad \det(B) = 102, \quad \gcd(\det(A), \det(B)) = 34.
\]

8
We next calculate r_p by using $1 + 4t + 5t^2 = 0,-3 + 4t + 4t^2 = 0$ then by elimination $−19 + 4t = 0 \mod 17$ so $t = 9 \mod 17, r_p = t^{-1} \mod 17 = 2$.

4 Conclusion

Domingo-Ferrer proposed two algebraic privacy homomorphisms in 1996 [6] and 2002 [7]. The second was analyzed by Bao [3] and Wagner [13,14], but no attack against the first one was announced. In this paper we firstly analyzed the first Domingo-Ferrer’s algebraic privacy homomorphism. It can be broken by $(d + 1)$ plaintext-ciphertext pairs by known plaintext attacks when the modulus is public. Even when the modulus is kept secret, it can be broken by $2(d+1)$ pairs. Therefore, it is still open to decide whether an algebraic privacy homomorphism exists.

References

