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Metered Signatures
- How to restrict the Signing Capability -

Woo-Hwan Kim, HyoJin Yoon, and Jung Hee Cheon

Abstract: We propose a new notion of metered signatures. Metered
signature is an extension of k-times signatures in which a signer
can generate only k signatures. However, the restriction of metered
signatures can be more elaborate: It can be used k-times every day
or to preserve the order of signed messages in some applications.
Any violation of this regulation reveals a secret key or the signa-
ture on a predetermined message. The applications includes proxy
signatures, limited free downloads, and the rating web site. We
give two instances of metered signatures: one is based on the com-
putational Diffie-Hellman problem (CDHP) using a bilinear map
and the other is based on the RSA problem. In both schemes, the
signature and certificate size and the verification cost are constant
with respect to k. Further, we show that the proposed metered sig-
natures admit batch verification of many signatures almost at one
verification cost with small security loss.

Index Terms: digital signature, k-times, proxy signature, authenti-
cation, Diffie-Hellman problem, RSA problem

I. INTRODUCTION

In the real world, we can easily find the situation that only
limited number of actions are approved: One can withdraw
money from an ATM (Automated Teller Machine) up to pre-
determined times a day. A book of coupons consists of fixed
number of tickets. Memberships at a golf club are highly priced
by limited issuing. In digital signatures, the valid time for the
signing key may be restricted by inserting the terms of validity
into the certificate by an authority. However, it is rather difficult
to control the number of signatures by a certificate authority. A
digital signature scheme with this functionality is desirable in
many applications. In proxy signatures, a signer delegates the
signing right to the proxy signer, but he may want to restrict the
number of proxy signatures. A contents provider may adver-
tise his web site by permitting free downloads only by restrict
times. Electronic coupons or admission tickets with limited use
are another examples.

A. Revealing a Secret Key or a Signature

We adopt an approach that a secret key or a signature on a
predetermined message is revealed if the signer generates too
many signatures. Revealing the secret key would be better for
more strict restriction. If the secret key is the one that is used for
important applications (for example, the secret key for banking
account), it can be more effective. For more mild applications,
we may take the signature revealing. For example, the signer
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commits an unsigned check to get a k-times usable free ticket
and the check is automatically signed after more than k-times
signing without any further protocol.

B. Our Contributions

We introduce a new notion of metered signature scheme con-
sisting of two kinds of signature schemes: a root signature
scheme and a subsignature scheme. The root signature speci-
fies an index set, each element of which is used to generate only
one subsignature. Multiple uses of one index reveals some se-
cret information as stated above. The index set can be various
including several typical types: 1) Zk admits only k signatures;
2) Zk×Date admits k signatures for every day; and 3) Z≥0 ad-
mits infinite number of signatures, but every signature is ordered
by a unique index.

We may choose a proper type of index set for a given applica-
tion. We note that the regulation should be certified by the third
party, for example, by the service provider and is accompanied
by each subsignature.

We present two instances of metered signatures: one is based
on the computational Diffie-Hellman problem (CDHP) using a
bilinear map and the other is based on the RSA problem. Further
we show that the first scheme gives an ID-based metered signa-
ture. Differently from the previous k-times signature schemes,
the size of signature, certificate and the verification cost of our
scheme are constant with respect to k. We propose a formal def-
inition and a security model for metered signatures and prove
that our schemes are secure against adaptive chosen-[spec, in-
dex, and message] attack in the random oracle model. Also
we realize the batch verifications of our signature schemes with
provable security.

C. Related Works

One-time signature [15] is a digital signature mechanism
which can be used to sign at most one message, otherwise sig-
natures can be forged. This notion can be extended to k-times
signature in which a signer can generate at most k signatures.
Hwang et al. [9] suggested a k-times signature in which the cer-
tificate size increases linearly with respect to k. If we use a
Merkle hash tree for authenticating random commitments, we
can obtain a k-times signature scheme with a certificate of a con-
stant size [11]. Its signature size and verification cost are propor-
tional to log k. The k-times restriction technique was also devel-
oped for electronic cash in which more than k-times authentica-
tions reveal user’s identity [14], [6]. Recently several k-times
anonymous authentication schemes (k-TAA) are proposed [17],
[13], [18]. In k-TAA, each user can be authenticated anony-
mously by the application provider(AP) for a bounded number
of times. One may convert a k-TAA scheme to a metered sig-
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nature scheme by use of message hash as a random challenge
in the authentication. But the efficiency(the size of public key
of AP, computational cost, authentication message size) of pro-
posed k-TAA schemes depends on the number of users and k
(linear or log scale) while the efficiency of the schemes in this
paper does not.

We extend the authentication scheme by Okamoto and
Ohta [14] to the metered signature scheme based on the RSA
problem with security proof.

D. Organization of this paper

The rest of this paper is organized as follows. In Section II,
we provide the formal model and security model of metered sig-
natures. Two metered signature schemes are instantiated in Sec-
tion III and Section IV. One is based on the CDHP using a bilin-
ear map and the other is based on the RSA problem. We show
that both the scheme are secure in the random oracle model. In
Section V, we present secure batch verifications of two metered
signatures. In Section VI, we investigate applications of metered
signatures. We conclude the paper in Section VII.

II. METERED SIGNATURES

A metered signature scheme consists of two kinds of sig-
nature schemes: a root signature scheme and a subsignature
scheme. There are three players (a signer, a certifier and a ver-
ifier) in a metered signature. The signer chooses some speci-
fication (spec), which describes the restriction on the signing
capability, and obtains a certificate on spec from the certifier.

A. The Formal Model of Metered Signatures

Definition 1: A metered signature consists of 7-tuple of al-
gorithms (KeyGen, RootSign, RootVerify, Cert, SubSign,
SubVerify, Reveal) such that:
1. KeyGen is a probabilistic algorithm which takes as input a
security parameter ` and returns a secret key SK and public
parameters param that includes a public key PK.
2. RootSign takes a message m and SK as input and returns a
root signature (m,σ).
3. RootVerify takes as input a m, a root signature σ and param
and outputs Valid or ⊥.
4. Cert takes a root signature on spec, which includes param
and the specification of the usage of SubSign from spec and
returns a certificate σCA on spec if the signature is valid. When
the user (signer) generates the spec, the user may keep a (secret)
parameter tspec associated with spec for SubSign if necessary.
5. SubSign takes σCA, SK, spec (and tspec if necessary), an
index i and a message mi as input and outputs an i-th metered
signature (spec, σCA, i, mi, σi).
6. SubVerify takes as input param, an i-th metered signature
(spec, σCA, i,mi, σi) and outputs Valid or ⊥.
7. Reveal takes as input two metered signatures from spec with
the same index and outputs the secret key SK.

The certificate and spec confine the signer to generate sub-
signatures in a certain way: spec specifies the index set which
can be used in subsignatures and each subsignature is accompa-
nied by a unique index. Subsignature scheme is designed so as
to reveal the secret key of the root signature scheme if the two

subsignatures with the same index are gathered. The index set is
not only integers, but also some strings. Some typical examples
are as follows:
1. I1 = {i : i is an integer from 1 to k }
2. I2 = {(i, j) : i is an integer from 1 to k and j is a date
between January 1st, 2005 to December 31st, 2005}
3. I3 = {i : i is a positive integer}
I1 allows only k signatures and I2 does k signatures per each
day in 2005. On the other hand, I3 allows infinite number of sig-
natures, but every signature is ordered with its unique index. The
index set can be more complicated including [1, k1] × [1, k2] ×
· · · × [1, kn] where [1, k] = {i| i is an integer between 1 and
k}. Further each ki can be infinite and some index set can be
replaced by strings.

In Section III and IV, we restrict the signing capability by
limiting the randomness used in subsignatures and ID-based sig-
natures such as [5] and [8] are exploited with some modification
to realize the metered signatures.

B. Security Model of the Metered Signatures

Let F be a forger of the metered signatures. F is allowed
to make root signature queries for adaptively chosen messages,
and subsignature queries for adaptively chosen indices, root sig-
natures, and messages. F succeeds if it outputs a new root sig-
nature or a new subsignature. That is, F performs an existential
forgery. The advantage of F in this model is defined to be the
success probability of the following game.
• Setup. (param, SK) ← KeyGen(1`), where ` is the security
parameter. The forger F is given param.
• Queries. Proceeding adaptively, F can make RootSign
queries, SubSign queries and hash queries.

– RootSign queries: F chooses a spec and requests a root
signature on spec.

– SubSign queries: F makes SubSign queries on
(spec, i, mi) and is given the subsignature together with the cer-
tificate on the spec.

– Hash queries: If necessary, F can make hash queries also.
• Response. Finally F wins if F outputs one of the followings:

– A valid root signature on m such that F has not made the
RootSign query on m before. This type of forger and its advan-
tage are denoted by FR and AdvFR

respectively.
– A valid subsignature (spec, σCA, j, mj , σj) such that F has

not made the SubSign query on (spec, j, mj) before. This type
of forger and its advantage are denoted by FS and AdvFS

re-
spectively.

Definition 2: FS (FR) is a (t, qRS , qSS , qH , ε)-subsignature
(root signature) forger of a metered signature scheme in the
adaptive chosen-[index, root signature, and message] attack
model if FS (FR) runs in time t, it makes at most qRS

RootSign queries, qSS SubSign queries, qH hash queries and
AdvFS

(AdvFR
) is at least ε.

III. A CONSTRUCTION: BASED ON THE CDHP

Let G be a cyclic group of prime order p with a generator P .
We recall some problems related to the discrete logarithm.
• Decisional Diffie-Hellman Problem (DDHP). For given
P, aP, bP, cP ∈ G, decide whether ab ≡ c (mod p). If ab ≡ c
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(mod p), (P, aP, bP, cP ) is called a Diffie-Hellman (DH) tuple.
• Computational Diffie-Hellman Problem (CDHP). For given
P, aP, bP ∈ G, compute abP .

The advantage of an algorithmA on the CDHP of G is defined
as

AdvCDHPA
def= Pr

[
A(P, aP, bP ) = abP : a

r←− Zp, b
r←− Zp

]
.

Definition 3: The CDHP of G is (t, ε)-hard if there is no al-
gorithmAwhose advantage AdvCDHPA is at least ε within run-
ning time t.

Definition 4: Let G = 〈P 〉 and GT be groups with |G| =
|GT | = p for some prime p. A map ẽ : G ×G → GT is called
an admissible bilinear map if
1. (Nondegenerate) ẽ(P, P ) 6= 1.
2. (Bilinear) ẽ(aP, bP ) = ẽ(P, P )ab for all a, b ∈ Zp.
3. (Efficient) ẽ is efficiently computable.

Remark 1: Joux and Nguyen [10] showed that if G has an
admissible bilinear map ẽ, the DDHP in G can be solved by

(P, aP, bP, cP ) is a DH-tuple ⇔ ẽ(P, cP ) = ẽ(aP, bP ).

A. A Metered Signature based on the CDHP

RootSign and RootVerify are identical to those of the Cha
and Cheon [5] ID-based signature scheme except that the P1

(corresponding to QID in their scheme) is not a hash value of an
identity ID but only public key.
• KeyGen. Given a security parameter `, take two abelian
groups G = 〈P 〉 and GT such that |G| = |GT | = p for some
prime p ≥ 2` and an admissible bilinear map ẽ : G×G → GT .
Randomly choose P1 ∈ G and s ∈ Z∗p . Compute P2 = sP
and D = sP1. (P, P1, P2) is the public key and D is the
secret key. Also specifies full domain hash functions H1 :
{0, 1}∗ → Zp and H2 : {0, 1}∗ → G. The param includes
(G,GT , ẽ, P, P1, P2, H1,H2).
• RootSign. Given the param, the secret key D and a message
m, pick a random r ∈ Zp and output a root signature (m,U, V )
where U = rP1 and V = (r + H1(m,U))D.
• RootVerify. Given the root signature (m,U, V ) and param,
check whether ẽ(P, V ) = ẽ(U + H1(m,U)P1, P2).
• Cert. The signer takes a (secret) random t ∈ Z∗p and an index
set subsignatures. The message spec of the root signature is the
index set, W = tP and param. He sends the root signature
(spec, U, V ) on spec. The certifier verifies the root signature
and returns a certificate σCA on spec. t means the tspec in defi-
nition 1.
• SubSign. Given the secret key D, t in W = tP , an index i ∈
N, spec, a message mi and σCA, the signer chooses a random
string xi ∈ {0, 1}`/2 and computes σi = tH2(spec, i) + hiD
where hi = H1(i, xi,mi, spec). (spec, σCA, i, xi,mi, σi) is an
i-th subsignature from spec.
• SubVerify. Given the i-th subsignature

(spec, σCA, i, xi,mi, σi),

the verifier checks the following:
1. Checks whether i is valid with respect to spec.
2. Checks whether σCA is valid.

3. Computes hi = H1(i, xi,mi, spec) and checks whether

ẽ(P, σi) = ẽ(W,H2(spec, i)) · ẽ(hiP1, P2).

• Reveal. Suppose two valid i-th signatures σi =
tH2(spec, i) + hiD and σ′i = tH2(spec, i) + h′iD are given.
Then the secret key D can be computed by D = (hi −
h′i)

−1(σi − σ′i).
W = tP is included in spec and t is necessary to make subsig-
natures from spec. t in W should be kept secret. Otherwise the
secret key D can be computed from a subsignatures from spec
which include W = tP . One role of W is binding spec and
subsignatures. Another is that signer can use an index set more
than once by use of different W in spec.

The correctness of the signature schemes follows immedi-
ately from the observations:
• RootVerify: ẽ(P, V ) = ẽ(P, (r + H1(m,U))D) = ẽ(U +
H1(m,U)P1, P2).
• SubVerify: ẽ(P, σi) = ẽ(P, tH2(spec, i) + hiD) =
ẽ(W,H2(spec, i)) · ẽ(hiP1, P2).
H2 is a full-domain hash function from {0, 1}∗ onto G. When
G is a subgroup of an elliptic curve, we can use a MapToGroup
in [3].

B. Security Analysis

The security proof is in the random oracle model under the
CDH assumption. We consider two signature forgers defined in
Section II-B. Since the root signature is the same as Cha-Cheon
signature, we only analyze the security against the subsignature
forger.

Theorem 1: If there exists a (t, qRS , qSS , qH , ε) subsigna-
ture forger F of the CDHP based metered signature, then we
can construct a simulator S which solves the CDHP of G with
advantage ε′ within t′ where

ε′ ≤ (1− 1/2`)ε and t′ ≤ t + c(qH1 + qH2 + qRS + qSS)

for the security parameter ` and some constant c regarding group
operations.

Proof: The simulator S is given (P, aP, bP ) and sets P1 =
aP and P2 = bP . S chooses a random tj , computes Wj = tjP1

and give specj including the param and Wj to the forger F .
The simulator responds to the queries as follows.
• H1 query: To The H1 query, S responds with randomly cho-
sen elements in Z∗p.
• RootSign query: To the RootSign query on mi, S chooses
random value yi and returns (mi, Ui, Vi, hi) where Ui = yiP −
hiaP , Vi = yibP and hi = H1(mi, Ui).
• H2 query: To the H2 query on (specj , jk), S chooses random
sjk, hjk and returns sjkP − (hjk/tj)bP as H2(specj , jk).
• SubSign query: To the SubSign query on (specj , jk,mjk

),
S first chooses a random value xjk

. Since F is sup-
posed to make no H1 query on (specj , jk, xjk

,mjk
) pre-

viously with overwhelming probability, S is free to set
H1(specj , jk, xjk

,mjk
) = hjk

. S computes σjk
= tjsjk

P1 and
returns (specj ,Wj , σCAj , jk, xjk

,mjk
, σjk

) which is a valid
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signature, since

ẽ(Wj ,H2(specj , jk)) · ẽ(H1(specj , jk, xjk
, mjk

)P1, P2)
= ẽ(tjP1, sjk

P − (hjk
/tj)bP ) · ẽ(hjk

aP, bP )
= ẽ(P, tjsjk

aP ) = ẽ(P, σjk
).

SupposeF produces a subsignature (spec,W, σCA, α, xα,mα, σα)
such that F has not made the SubSign query on (spec, α, mα).
Then h′α = H1(spec, α, xα,mα) does not equal hα which is
used for H2(spec, α) with the probability 1− 1/2`; in this case,
S can recover abP from the forgery (h′α − hα)−1(σα − tsαP1)
where t is the value chosen for W = tP1. The success proba-
bility is (1− 1/2`)ε. 2

Remark 2: The above proof also implies that if the signer
uses an index only once, the secret key is not revealed. In fact,
the simulator in the proof can respond the SubSign query for
given (spec, i) only once, which models the legitimate signer.
The same assertion holds for the scheme based on the RSA prob-
lem described in the next section.

C. Revealing a Signature

In the above scheme, the secret key is revealed when there
are two subsignatures with the same index. A little modifica-
tion in KeyGen, RootSign and RootVerify gives “revealing a
signature" rather than the secret key as follows.
• KeyGen. Generate param similarly to the above scheme.
Randomly choose s ∈ Zp and compute Q = sP . The secret key
is s and param = (G,GT , ẽ, P, Q,H1,H2).
• RootSign. Given the param, the secret key s and a message
m, outputs a root signature σ = sH2(m) on m, as in [3].
• RootVerify. Given the root signature σ = sH2(m) on m and
param, check whether ẽ(P, σ) = ẽ(G,H2(m)).
Also the revealed signature may play the role of the secret key
in ID-based schemes such as [1] and [5] and we consider an
ID-based variant in the subsection.

D. An ID-based Variant

We describe an ID-based variant of the metered signature
based on the CDHP. We divide KeyGen of the metered signa-
ture scheme into two steps, Setup and Extract. A new hash
function H3 : {0, 1}∗ → G is introduced.
• Setup. Generate param in the same way as III-A except P1

and P2. Generate an additional full domain hash function H3 :
{0, 1}∗ → G. There is an entity called the PKG (private key
generator) which generates secret keys of users. PKG randomly
chooses s ∈ Z∗p and sets Ppub = sP . s is the master secret and
(G,GT , ẽ, P, Ppub,H1,H2,H3) is a system parameter.
• Extract. Given ID, PKG computes QID = H3(ID) and
DID = sQID. DID is the secret key corresponding to the ID.
• Cert, RootSign, RootVerify, SubSign, SubVerify, Reveal.
As in the metered signature except that P1 and P2 are replaced
by QID and Ppub.

The ID-based variant of a metered signature scheme can be
easily discourage a malicious signer who generates two subsig-
natures of the same index from a spec. Combining [5, Lemma
1] and the technique of the proof of Theorem 1, we can show
that our ID-based scheme is secure against existential forgery in

adaptive chosen-[ID, index, root signature, and message] attack
model under the CDH assumption.

IV. A CONSTRUCTION: BASED ON THE RSA
PROBLEM

In Crypto’89, Okamoto and Ohta [14] introduced the notion
of disposable zero knowledge proof for electronic coupon tick-
ets. The payment protocol in the electronic coupon ticket is ex-
tended to the metered signature scheme.

The RSA problem is to find a such that ae = b (mod n)
from given (n, e, b) where n is an `-bit RSA modulus for the
security parameter `, the exponent e is larger than 1 and b ∈ Z∗n
is randomly chosen. The advantage of an algorithm A on the
RSA problem is defined as

AdvRSAA
def= Pr

[
A(n, e, b) = b1/e : b

r←− Z∗n
]
.

Definition 5: The RSA problem is (t, ε)-hard if there is no
algorithmAwhose advantage AdvRSAA is at least ε within run-
ning time t.

A. A Metered Signature based on the RSA Problem

RootSign and RootVerify are identical to Guillou-Quisquater
ID-based signature [8].
• KeyGen. Let `1 and `2 be security parameters. Generate
an `1-bit RSA modulus n = pq and an (`2 + 1)-bit prime e
relatively prime to φ(n). Compute 1/e mod φ(n). Choose a
random a ∈ Z∗n and compute b ≡ ae (mod n). Also specify
full domain hash functions H1 : {0, 1} → {0, 1}`2 and H2 :
{0, 1}∗ → Z∗n. The secret key is (a, 1/e mod φ(n)) and the
param includes (n, e, b,H1,H2).
• RootSign. Given the public key (n, e, b), the secret key a and
a message m, randomly choose k ∈ Z∗n and compute r ≡ ke

(mod n). Compute s ≡ kaH1(m,r) (mod n). σ = (m, r, s) is
a root signature on m.
• RootVerify. Given the root signature (m, r, s) and the
param, check whether se ≡ rbH1(m,r) (mod n).
• Cert. The signer sends a root signature on spec, which con-
tains an index set of subsignatures and param. The certifier
returns a certificate σCA on them.
• SubSign. Given the secret key a, spec, an index i ∈ N, a
message mi and σCA, choose a random string xi ∈ {0, 1}`2/2

and computes

σi = H2(spec, i)1/eaH1(spec,i,xi,mi) (mod n).

(spec, σCA, i, xi,mi, σi) is an i-th subsignature from spec.
• SubVerify. Given the subsignature (spec, σCA, i, xi,mi, σi),
param and the certificate σCA, the verifier checks the follow-
ing:

1. Checks whether i is valid with respect to spec.
2. Checks whether σCA is valid.
3. Checks whether σe

i = H2(spec, i) · bH1(spec,i,xi,mi)

(mod n).
• Reveal. Suppose two valid i-th subsignatures

σi = H2(spec, i)1/eaH1(spec,i,xi,mi)



KIM et al.: METERED SIGNATURE - HOW TO RESTRICT THE SIGNING CAPABILITY 5

and
σ′i = H2(spec, i)1/eaH1(spec,i,x′i,m

′
i)

are given. Let h = H1(spec, i, xi,mi) and h′ =
H1(spec, i, x′i,m

′
i). Since e is (`2 +1)-bit prime and (h−h′) is

`2-bit, e and h−h′ are mutually prime. Thus there exist integers
α, β such that α(h − h′) + βe = 1 and the secret key a can be
computed by

(σi/σ′i)
α · bβ = (ah−h′)α · (ae)β = aα(h−h′)+βe = a.

B. Security Analysis

The security proof is in the random oracle model. We con-
sider a signature forger defined in section II-B. Since the root
signature is the same as Guillou-Quisquater signature, we only
analyze the security against the subsignature forger.

Theorem 2: If there exists a (t, qRS , qSS , qH , ε)-subsignature
forger F , then we can construct a simulator S which solves the
RSA problem with advantage ε′ within t′ where

ε′ ≤ (1− 1/2`2)ε and t′ ≤ t + c(qH1 + qH2 + qRS + qSS)

for the security parameter ` and some constant c regarding group
operations.

Proof: The simulator S is given (n, e, b) where n is an
`1-bit RSA modulus, b ∈ Z∗n and e is (`2 + 1)-bit prime. S sets
(n, e, b) to be the public key and its goal is to use the adversary’s
forgery to compute b1/e (mod n). The simulator responds to
the queries as follows.
• H1 query: To the H1 query, S responds with randomly chosen
`2-bit strings.
• RootSign query: To the RootSigh query on mi, S chooses
random si ∈ Zn and returns (mi, ri, si, hi) where ri = se

i b
−hi

and hi = H1(m, ri).
• H2 query: To the H2 query on (specj , jk), S chooses a ran-
dom number tjk

∈ Zn and a random exponent cjk
∈ {0, 1}`2

and sets rjk
= H2(specj , jk) = tejk

b−cjk (mod n).
• SubSign query: To the Subsign query on (specj , mjk

), S
first chooses a random value xjk

. Since F will not have had H1

query on (specj , jk, xjk
,mjk

) previously with overwhelming
probability, so S is free to set H1(specj , jk, xjk

,mjk
) = cjk

.
S can then compute

σjk
= (H2(specj , jk)bH1(specj ,jk,xjk

,mjk
))1/e

= (tejk
b−cjk bcjk )1/e = tjk

(mod n).

Suppose F produces a subsignature (spec, σCA, α, xα,mα)
such thatF has not made the SubSign query on (spec, σCA, α,mα).
Then the value of c′α = H1(spec, α, xα, mα) does not equal cα

which is used for H2(spec, α) with the probability 1 − 1/2`2 ;
in this case, S can recover b1/e from the forgery (teαbc′α−cα)1/e

(mod n). The success probability is (1− 1/2`2)ε. 2

Remark 3: As the CDHP based metered signature scheme,
revealing a signature is possible. If b is replaced by H2(M) for
some message M , H2(M)1/e which is the RSA signature [16],
would be revealed.

Remark 4: While an ID-based variant is possible for the me-
tered signature based on the CDHP, it seems not for the me-
tered signature based on the RSA. Differently from Guillou-
Quisquater ID-based signature, the signer should know 1/e

(mod φ(n)) to generate subsignatures of the metered signature
based on the RSA.

V. BATCH VERIFICATION OF METERED
SIGNATURES

Batch cryptography was introduced first by Fiat [7] and batch
verifications for the DSS and the RSA signature scheme have
been studied in [2], [4]. Roughly speaking, the batch verifica-
tion is to verify a set of signatures at one time. So it can be more
efficient than verifying signatures individually. If a set of sig-
natures passes the batch verification algorithm, each signature
of them should be valid. On the other hand, a weaker notion of
batch verification is “screening" [2]. The difference between the
batch verification and the screening is that even though a set of
signatures passes the screening, each of them is not necessarily
a valid signature of its message. However, the screening guar-
antees that every message is authenticated by the signer, which
is enough for most of applications. In fact, the batch verification
in metered signatures is also screening which is enough for our
applications.

A. Security Model for the Batch Verification of Metered Signa-
tures

Let σI = {(spec, σCA, i, xi,mi, σi) | i ∈ I} be a set of
subsignatures for some index set I . Let BatchVer be a batch
verification algorithm which takes param, σI and outputs Valid
or ⊥. Let FB be a forger against the batch verification. The
advantage of FB is defined as the success probability in the fol-
lowing game.
• Setup, Queries. Identical to the game in Section II-B.
• Response. Finally, FB outputs (I, σI) which passes the batch
verification and there is at least one index i ∈ I or one message
mj which has not been made in SubSign query with spec.

B. Batch Verification of Metered Signatures based on the CDHP

Suppose there are subsignatures of the metered signature
based on the CDHP ,

{(spec, σCA, i, xi,mi, σi) | i ∈ I}

for some index set I . Then the batch verification can be done by
checking whether

ẽ

(
P,

∑

i∈I

σi

)

=ẽ

(
W,

∑

i∈I

H2(spec, i)

)
· ẽ

((∑

i∈I

hi

)
P1, P2

)

holds where hi = H1(spec, i, xi,mi). The batch verification re-
quires only three bilinear map computations which are the same
as the verification of one signature. We compare the number of
cryptographic operations of batch verifications with that of k in-
dividual verifications in Table 1. In practice, G is a subgroup
of a supersingular elliptic curve over a finite field Fq , GT is a
multiplicative subgroup of an extension field of Fq and ẽ is a
Tate pairing. For more detail, refer to [5]. Ignoring the time for
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some light computations such as ordinary hash functions, finite
field operations and elliptic curve addition, we need to compute
3 pairings, 1 MapToGroup and 1 scalar multiplication to verify
a single metered signature. Thus it takes about 73.91 ms and
73.91k ms for the verification of a signature and the individual
verification of k signatures, respectively. The batch verification
of k signatures takes about (72.09 + 1.82k) ms which is com-
parable to that of a single signature if k is moderate.

Table 1. Efficiency comparison of the batch verification based on the
CDHP

Individual verification Batch verification
Operations of k signatures of k signatures

Operations / Time(ms) Operations / Time(ms)
Bilinear map 3k / 66.54k 3 / 66.54

Scalar mult. on G k / 5.55k 1 / 5.55
MapToGroup hash k / 1.82k k / 1.82k

To evaluate the performance, optimized MIRACL (using comba method) library
v.4.8.3 [12] in Xeon(TM) CPU 2.8GHz with 1 Gbytes memory is used. In Map-
ToGroup and Pairing, a subgroup of order p in a supersingular elliptic curve E
over Fq is used, where q is a 512 bit prime and p is a 160 bit prime.

Theorem 3: The above batch verification is secure.
Proof: Suppose (P, aP, bP ) is given. S puts them in

param as P is a generator, aP = P1 and bP = P2. We
construct an algorithm S which outputs abP using the forger
FB . S executes a simulation as the same way in the proof of
Theorem 1. Suppose S does not abort the simulation and the
forger FB outputs {(spec, σCA, i, xi, mi, σi) | i ∈ I} which
passes the batch verification. Then S can compute abP =
(
∑

h′i − hi)−1
∑

(σi − tsiaP ). 2

C. Batch Verification of Metered Signatures based on the RSA
Problem

Suppose there are subsignatures of the metered signature
based on the RSA problem,

{(spec, σCA, i, xi,mi, σi) | i ∈ I}
for some index set I . Then the batch verification can be done by
checking whether

(∏

i∈I

σi

)e

=

(∏

i∈I

H2(spec, i)

)
· b
P

H1(spec,i,xi,mi)

holds.
For individual verifications of k signatures, we need to com-

pute 2k modular exponentiations, 2k hash functions and k mul-
tiplication on Z∗n. But the batch verification requires only two
modular exponentiations, k− 1 integer addition of H1 hash val-
ues, 2k hash computations and 2k − 1 multiplication on Z∗n.
More detailed comparison on modular exponentiations is given
in Table 2. Recall that `1 is the bit-size of the RSA modulus and
`2 is the bit-size of the verifying exponent e. In practice `1 is
1024 and `2 is 160. Note that one `2-bit exponentiation and one
(`2 +log k)-bit exponentiation are required in batch verification.

Theorem 4: The above batch verification is secure.
Proof: Suppose (n, e, b) is given. S puts them the public

parameters. We construct an algorithm S which outputs b1/e us-
ing the forger FB . S executes a simulation as the same way in

Table 2. Efficiency comparison of the batch verification based on the
RSA problem

Individual verification Batch verification
of k signatures of k signatures

# of modular exp. time(ms) # of modular exp. time(ms)

2k (`2-bit) 4.78k
1(`2-bit) + ≈ 4.78

1((log k + `2)-bit)

To evaluate the performance, optimized MIRACL (using comba method) library
v.4.8.3 [12] in Xeon(TM) CPU 2.8GHz with 1 Gbytes memory is used.

the proof of Theorem 1. Recall that to the H2 query on (spec, i),
S responds with ri = H2(spec, i) = tib

−ci for randomly cho-
sen ci and ti. In H1 queries, S chooses a random string and re-
turns. Suppose that FB outputs {(spec, σCA, i, xi,mi, σi) | i ∈
I}. Let c′i = H1(spec, i, xi,mi) which passes the batch verifi-
cation and c =

∑
i∈I c′i −

∑
i∈I ci. With overwhelming proba-

bility, (c, e) = 1. S computes (
∏

i∈I σi)(
∏

i∈I ti)−1 = (bc)1/e.
From (b1/e)e and (b1/e)c with (c, e) = 1, S computes b1/e. 2

VI. APPLICATIONS OF METERED SIGNATURES

A. k-times Delegation

Metered signature can be used to restrict the signing capa-
bility by k times. In proxy signatures, the original signer, say
Alice, can delegate her signing right to a proxy signer, say Bob,
only for k times: First Bob generates U = rP and sends it to
Alice. Second, Alice makes a certificate on U , k and some war-
rant information by her private key and sends it to Bob. Bob can
generate k metered signatures with his secret key and r, which
can be verified by Alice’s public key, the Bob’s public key, U ,
and the certificate. In case Bob generates these metered signa-
tures more than k times, the signing key is revealed from two
signatures with the same index. This restriction can be more ef-
fective if the proxy signer’s key is also used for more important
purpose at the same time. For example, Alice may enforce Bob
to use the secret key of his banking account for proxy signatures
in very critical applications. We note that the restriction can be
extended to k-times a day.

B. Signature Commitment

We can use metered signatures to reveal a signature on some
contract, rather than a signing key. If spec in the root signature
contains an appropriate contract, the contract is automatically
signed on any violation of the agreement. For example, sup-
pose that a web site provides free trial downloads by five times
a month and demands ten dollars payments for more than five
times. A user registers to this site by giving an unsigned check
on ten dollars and a root signature and receives a certificate on
it. He can issue only five signatures with this certificate in each
month to access the trial download. Otherwise, the internet site
can obtain the signed check on ten dollars from two signatures
with the same index.

C. Integrity of Signature Chains

Another application of metered signatures is to guarantee the
order of previously issued signatures without using time stamp-
ing authority. It can be used to audit any removal or replacement
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of signed messages in a public bulletin board. For example, con-
sider the situation that the owner of a restaurant runs a web site
on which customers post their evaluation on it. One problem
of this site is that the owner can easily add a good evaluation
and remove a bad evaluation. Adding a good evaluation can be
partially restricted, for example, by admitting only one posting
by one pseudonym which can be issued anonymously from each
real identity. Our metered signature provides a solution for pre-
venting removal or replacement of a bad reputation. When a
customer wants to give an evaluation on the restaurant, he re-
ceives an indexed token (a metered signature) signed by the web
site manager and uploads it with his evaluation. In this case, any
removal, insertion, or change of order is detected. Further, any
replacement of a bad reputation requires issuing two tokens with
the same index, which reveals the secret key of the manager and
can ruin all of the evaluation values in the web site.

VII. CONCLUSION

We proposed a new notion of metered signatures and two in-
stances are exemplified. It can be used to restrict the signing
ability by k-times or more specifically k-times a day. This prop-
erty is desirable for many applications including proxy signa-
tures, internet polling systems, and electronic coupons. Further,
when all the signatures issued by a signer are publicly obtainable
as in bulletin board, metered signatures can be used to enforce
the signer to sign a message with a serial index. In that case, any
removal, replacement, insertion, or order change is not allowed.

We have two kinds of penalties against violation in metered
signatures: One is to reveal the secret key and the other is to
reveal a signature on some contract. Revealing secret key can
be used for more strict restrictions. For more mild applications,
we may use signature revealing techniques. It would be an in-
teresting problem to add the anonymity such as the unlinkability
on metered signatures. Then revealing the identity of the signer
rather than a secret key or a signature becomes a countermeasure
against the violation.
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