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Fast Exponentiation Using Split Exponents
Jung Hee Cheon, Stanislaw Jarecki, Taekyoung Kwon, and Mun-Kyu Lee

Abstract—We propose a new method to speed up discrete log-
arithm (DL)-based cryptosystems by considering a new variant
of the DL problem, where the exponents are formed as e1 + αe2

for some fixed α and two integers e1, e2 with a low weight
representation. We call this class of exponents split exponents,
and we show that with certain choice of parameters the DL
problem on split exponents is essentially as secure as the standard
DL problem, while the exponentiation operation using exponents
of this class is significantly faster than best exponentiation
algorithms given for standard exponents. For example, the speed
of scalar multiplication on the standard Koblitz curve K163 is
estimated to be accelerated by up to 51.5% and 23.5% at the
cost of memory for one precomputed point, compared to the
TNAF and window TNAF methods, respectively. As for security,
we show that the provable security of the DL problem using
split exponents is only by a small constant, e.g. 1/4, worse than
the security of the standard DL problem. Split exponents can
be adopted to speed up various DL-based cryptosystems. We
exemplify this on the recent CCA-secure public key encryption
of Bellare, Kohno, and Shoup.

Index Terms—Exponentiation, Koblitz Curves, Low Hamming
Weight, Discrete Logarithm

I. INTRODUCTION

Exponentiation ge on an abelian group (including modular
exponentiation in a finite field and scalar multiplication on
an elliptic curve) is the most common primitive operation
in public-key cryptography. Since exponentiation consists of
repeated field multiplications and squarings, the research on
speeding up exponentiation strives to reduce the total number
of these component operations as well as the complexity of
individual operations. However, while the number of squarings
necessary for an exponentiation can be reduced by various
(off-line) precomputation methods, and the cost of squarings is
even more dramatically reduced in binary fields using normal
basis or in Koblitz elliptic curves using Frobenius map [1], it
remains a challenge to reduce the number of multiplications.

The most well-known methods for reducing the number of
multiplications are the sliding window method [2] and the
fixed-base comb method [3]. Though from the details of these
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algorithms they seem to be quite different, they share the
property that repeated patterns are computed only once and
reused many times. In other words, they can be reformulated
in a unified framework as follows: First, convert the exponent e
to a linear combination e =

∑
i eiαi of some fixed exponents

α1 = 1, α2, . . . , αt. Then compute ge =
∏

i gei

i using the
precomputed values gi = gαi for each i. In the sliding
window method with window size w, the set of αi’s consists
of all the additive combinations of small powers of 2, i.e.
20, 21, . . . , 2w−1, whereas the fixed-base comb method uses
as the set of αi’s all the additive combinations of elements
20, 2n/w, . . . , 2(w−1)n/w, where n is the bit-length of the
group order p. (Observe that the fixed-base comb method
can be used only with off-line precomputation since many
operations are required to compute gαi .) In both cases, the
number of multiplications required for an exponentiation is
bounded below by wt(e)/w − 1 for relatively small w where
wt(e) is the Hamming weight of e assuming that gαi’s are
given as precomputed values. (Given gαi’s, both methods
require

∑2w

i=1 wt(ei) − 1 multiplications to compute ge for
e =

∑2w

i=1 eiαi. Since wt(e) ≤ ∑2w

i=1 wt(αi)wt(ei) ≤
w
∑2w

i=1 wt(ei), the lower bound is obtained.)
We observe that this lower bound comes from the fact that

αi’s have a regular form and they have quite small Hamming
weights in both methods. Hence, it is an interesting question
to look for an exponentiation method to improve this lower
bound by using a new form of αi’s.

1) Our Contribution: As the first step in this direction of
research, we consider the case with α1 = 1 and α2 = α
where α has a large Hamming weight. To be more precise,
we consider the set of exponents

S1 + αS2 := {e1 + αe2|e1 ∈ S1, e2 ∈ S2},
where α ∈ Zp and S1 and S2 are arbitrary subsets of Zp. Let
us call an element of S1 + αS2 a split exponent. Surprisingly,
it turns out that if the product of the cardinalities of S1 and
S2 is greater than p, the average cardinality of S1 + αS2

over all α ∈ Zp is at least p/2. Furthermore, we show an
algorithm for picking a specific good α such that S1 + αS2

covers a significant portion of Zp, and we show that the
provable security of the discrete logarithm problem using split
exponents is only by a small constant, e.g. 1/4, worse than
the security of the standard discrete logarithm problem. Our
algorithm for picking a good α is efficient only when the sizes
of S1 and S2 are unbalanced. We pose an open problem to
develop a similar algorithm for the case that S1 and S2 are of
same size.

To reduce the number of multiplications, S1 and S2 should
be composed of the elements having small Hamming weights.
As a specific instance, we take S1 and S2 to be the sets
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of w-NAFs with small Hamming weight, where w-NAF is
a generalization of non-adjacent form (NAF) [4]. Then the
number of multiplications required for the exponentiation ge

for e ∈ S1 + αS2 given g and gα is substantially reduced.
The advantage of using this new class of exponents is most
pronounced in groups where multiplication is much more
expensive than squaring, e.g. on binary fields with normal
basis representation or on Koblitz curves where we interpret
the point addition as a multiplication and the Frobenius map as
a squaring, respectively. For example, a scalar multiplication
on the standard Koblitz curve K163 [5] requires only 26
point additions, which is a speed-up by 51.5% and 23.5%
compared to the TNAF and window TNAF methods [6], [7],
respectively. The only overhead to obtain this speedup is
memory space for one precomputed point. We remark that to
achieve the same speed using precomputation methods (fixed-
base window TNAF method), more than seven points should
be precomputed and stored.1

Finally, we show how split exponents can be used for
more efficient implementation of some existing cryptographic
schemes based on the discrete logarithm (DL) problem.
Namely, we apply the split exponent exponentiation method to
the recent encryption scheme of Bellare, Kohno, and Shoup [8]
which is the most efficient CCA-secure encryption whose
security is provably related to a DL-like problem (the Gap
DH problem). Similar adaptations should be possible for long-
term secrets in many other DL-based cryptosystems. Also we
discuss how to use small Hamming weight exponents to speed
up the verification of Schnorr signature.

2) Remark on Applicability: Fast exponentiation is the most
required for real-world applications of public key cryptography
and such a trend is not changing even in the future ubiquitous
computing environments. The notion of split exponent is
general in our method, which means that it can be applied to an
exponentiation on any abelian group used by public key cryp-
tographic techniques. With regard to usefulness, however, it is
more desirable that the group may have fast squaring operation
or fast endomorphism for the best performance. Fortunately,
there are a number of real-world applications implementing
such groups as finite fields of small characteristics and elliptic
curves with complex multiplications. They may include not
only general applications of public key encryption, digital
signature, and authenticated key exchange, but also resource-
constrained implementation of them.

It should be noted that our method is the fastest exponenti-
ation algorithm, compared to existing schemes, since we have
achieved the fastest exponentiation (scalar multiplication) on
Koblitz curves as explained in Section III-B. Our claim is
justified easily due to the well-known fact that in general the

1For groups in which squaring requires non-negligible cost, existing algo-
rithms may outperform our algorithm. For example, by precomputing a group
element g2n/2

, the fixed-base comb method [3] can perform an exponentiation
faster than our algorithm. Note that our approach does not try to reduce the
number of squarings (or point doublings), but it tries to reduce the number
of multiplications (or point additions). On the other hand, the most efficient
existing precomputation method for Koblitz curves is not the method of [3],
but it is the fixed-base window TNAF method [6], [7]. Our method requires
significantly smaller amount of memory than the fixed-base window TNAF
method to achieve the same speed.

scalar multiplication on Koblitz curves is always much faster
than on other curves. In addition, the memory overhead is
only a single elliptic curve point αP , where P is the primitive
element of the point group. As a result, there should be a great
number of promising applications requiring fast exponentiation
through our scheme, e.g., an implementation of public key
cryptographic techniques in resource-constrained devices such
as embedded devices and tiny sensor nodes [9].

3) Related Work: There are many well known general
methods for exponentiation including the binary method, the
M -ary method and the sliding window method [2]. Further-
more, if the base g is fixed, precomputation methods such
as BGMW [10], de Rooij [11], and the fixed-base comb
method [3] can be used to speed up the computation at the
cost of memory.

There are works which consider uniformly generated expo-
nents, but represented in a form which makes exponentiation
faster. For example, using the property that a point addition
and a point subtraction have almost the same complexity on
an elliptic curve, one can speed up scalar multiplication with
scalars in a signed-digit form such as NAF [4]. Also, for a
special class of curves with fast endomorphism, a scalar can
be expanded using a complex radix τ , to reduce the number
of point doublings [1], [4], [12], [13]. If we are dealing with
a fixed point, we can use precomputation methods such as the
fixed-base window TNAF method [6], [7].

Recently, Dimitrov, Imbert and Mishra proposed a double-
base expansion method for fast scalar multiplication [14], and
there are also various extensions to their work [15], [16], [17],
[18], [19], [20], [21]. We are more interested in their Koblitz
curve variants [22], [23], [24], [25], because these methods
concentrate on reduction in the number of point additions
rather than point doublings as our method does. However, the
fastest algorithm among them [23] requires 31.09 additions on
average for a scalar multiplication over K163, which is slower
than our algorithm by 16.4%. While there is also another
interesting approach combining τ -adic expansion and point
halving [26], [27], it is slower than the algorithm in [23] as
well as ours.

Of a special interest to us are the methods which reduce
the number of multiplications (or point additions) by consid-
ering exponents of special form. Studies of small Hamming
weight exponents [28], [29] and the more recent study of an
exponent class of products of random small Hamming weight
factors [30] belong to this category. However, none of these
schemes is provably as hard as the standard discrete logarithm
problem.

4) Organization: In Section 2 we introduce split exponents
and show that the discrete logarithm problem on split ex-
ponents can be provably almost equivalent to the standard
discrete logarithm problem. In Section 3, we give a practical
instance of split exponents, analyze the performance of the
exponentiations by split exponents and compare it with that of
previous algorithms. In Section 4 we show how split exponents
can be used to speed up the Bellare-Kohno-Shoup CCA-secure
public key encryption and other DL-based schemes. Section 5
devotes to the Schnorr signature scheme with faster signature
verification. We conclude in Section 6.
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II. DISCRETE LOGARITHM WITH SPLIT EXPONENTS

In this section, we introduce a new class of exponents and
show the hardness of the discrete logarithm problem with such
exponents.

Let G be an additive abelian group of prime order p.
All addition and multiplication operations, except when noted
otherwise, are in Zp. If S1, S2 ⊆ Zp and α ∈ Zp, we denote
as S1 + αS2 a set of elements x ∈ Zp such that there exists
(x1, x2) ∈ S1 × S2 s.t. x = x1 + αx2. We call an element
x ∈ S1+αS2, which can be represented as (x1, x2) ∈ S1×S2

s.t. x = x1 + αx2, a “split exponent”. Let x
r← X denote

assignment of a random uniformly chosen value in set X to
variable x. The standard Discrete Logarithm (DL) problem is
thus the problem of computing x given P, xP where x

r← Zp

and P is a generator of G. We define the split exponent discrete
logarithm problem as the problem of computing x given P, xP
for x

r← S1 + αS2, where the adversary is additionally given
αP :

Definition 1: Let S1, S2 ⊆ Zp. Let P be a generator of
G. Let α be an element in Zp. Let A be any probabilis-
tic algorithm. We define A’s success probability in solving
the Split Exponent Discrete Logarithm [SEDL] problem on
(S1, S2, α, G) as

Advsedl
A,S1,S2,α,G

def= Pr[A(P, xP ) = x | x r← S1 + αS2].

We say that an algorithm A (t, ε)-breaks the SEDL on
(S1, S2, α, G) if A runs in time at most t, and Advsedl

A,S1,S2,α,G

is at least ε. The (t, ε)-SEDL assumption on (S1, S2, α, G) is
that no adversary (t, ε)-breaks the SEDL on (S1, S2, α, G).

A. Average Hardness of the Split Exponent DL Problem

The main factor in deciding the hardness of the SEDL
problem is the size of set S1 + αS2. In the following lemma,
we give a lower bound on the average size of this set for a
random α in Zp, defined as:

CS1,S2 =
1
p

∑
α∈Zp

|S1 + αS2|.

Lemma 1: For any S1, S2 ⊆ Zp we have:

CS1,S2 ≥
( |S1||S2|
|S1||S2|+ p− |S1|

)
× p.

In particular, if |S1||S2| ≥ p then CS1,S2 ≥ p/2.
In other words, for |S1||S2| ≥ p the average hardness of the

SEDL problem is just factor of 1/2 away from the hardness
of the DL problem. Perhaps this fact can be directly used
in some DL-based cryptosystem. We use it in section II-B
to lower-bound the probability of finding some α for which
the set S1 + αS2 is guaranteed to be large enough so that
the hardness of SEDL for this particular α is only a small
constant away from the hardness of the DL problem.

Proof: For any α ∈ Zp, we define

Wα = {(x, x′, y, y′) ∈ S2
1×S2

2 | x+yα = x′+y′α, y �= y′}.
For any 4-tuple v = (x, y, x′, y′) ∈ S2

1 × S2
2 with y �= y′, we

have v ∈Wα for α = (x′−x)/(y−y′). Therefore, if Wα∩Wα′

is nonempty then α = α′. Consequently, sets Wα for α ∈ Zp

form a partition of all 4-tuples (x, y, x′, y′) ∈ S2
1 × S2

2 with
y �= y′. In particular we have:∑

α∈Zp

|Wα| = |S1|2|S2|2 − |S1|2|S2|. (1)

For each α ∈ Zp, we define a relation ∼α on the set S1×S2:

(x, y) ∼α (x′, y′)⇔ x + yα = x′ + y′α.

In other words, (x, y) ∼α (x′, y′) if (x, x′, y, y′) ∈ Wα or
(x, y) = (x′, y′).

It is easy to see that∼α is an equivalence relation on S1×S2

and the number of its equivalence classes is Nα := |S1+αS2|.
Let Vα,1, . . . , Vα,Nα denote the distinct equivalence classes of
this relation. Then we have:

Nα∑
i=1

|Vα,i| = |S1||S2|,
Nα∑
i=1

(|Vα,i|
2

)
2! = |Wα|. (2)

The second equality comes from the fact that an ordered pair of
two distinct elements in the same equivalent class corresponds
to one element of Wα. In other words, we have:

Nα∑
i=1

|Vα,i|2 = |Wα|+ |S1||S2|.

By applying Cauchy-Schwarz inequality, we have:

|S1|2|S2|2 =

(
Nα∑
i=1

|Vα,i|
)2

≤
(

Nα∑
i=1

12

)(
Nα∑
i=1

|Vα,i|2
)

= Nα(|Wα|+ |S1||S2|). (3)

We use Cauchy-Schwarz inequality again to obtain:⎛
⎝∑

α∈Zp

1

⎞
⎠

2

≤
⎛
⎝∑

α∈Zp

(|Wα|+ |S1||S2|)
⎞
⎠

×
⎛
⎝∑

α∈Zp

1
|Wα|+ |S1||S2|

⎞
⎠ . (4)

Applying equation (1) we have:∑
α∈Zp

(|Wα|+ |S1||S2|) = |S1|2|S2|2 +(p−|S1|)|S1||S2|. (5)

Finally, applying inequalities (3) and (4) we derive:

1
p

∑
α∈Zp

Nα ≥ |S1|2|S2|2
p

∑
α∈Zp

1
|Wα|+ |S1||S2|

≥ p|S1||S2|
|S1||S2|+ p− |S1| .

Corollary 1: Let S1, S2 be two subsets of Zp.

1
p

∑
α∈Zp

(|S1||S2|−|S1 +αS2|) ≤ |S1|2|S2|2 − |S1|2|S2|
|S1||S2|+ p− |S1| . (6)
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In particular, if |S1||S2| ≤ √p, the upper bound is less than
1, and hence the average size of set S1 + αS2 is between
|S1||S2| − 1 and |S1||S2|.

B. Hardness of the Split Exponent DL Problem for good α’s

In the previous subsection we established that for |S1||S2| ≥
p the average size of set S1+αS2 is at least 1/2 the size of Zp

over all α ∈ Zp. Trivially, if S1+αS2 = Zp for some S1, S2, α
then SEDL on S1, S2, α is at least as hard as the ordinary DL
problem. Moreover, if the size of the set S1 + αS2 is at least
a fraction c of the size of the standard DL domain Zp then
the SEDL problem is related by factor c to the standard DL
problem:

Definition 2: Let S1, S2 ⊆ Zp. We call α ∈ Zp “c-good”
for S1, S2 if |S1 + αS2| ≥ cp.

Theorem 1: Let S1, S2 ⊆ Zp. If α is c-good for S1, S2 then
the SEDL problem on S1, S2, α, G is at least (t, ε/c)-hard if
the DL problem on G is (t, ε)-hard.

Proof: The proof is immediate: If algorithm A breaks
SEDL on S1, S2, α, G in time t with probability ε/c then same
A breaks DL with probability ε because if |S1 + αS2| ≥ cp
then a random x ∈ Zp is in S1 + αS2 with probability c.

Therefore, security of any DL-based cryptosystem degrades
only by a factor of c if we replace standard exponents with
split exponents for a c-good α. Two issues remain in order
to enable us to utilize this fact in a cryptosystem. We need
an efficient procedure to pick c-good α’s for a good enough
constant c, e.g. c = 1/4, and we need an efficient way to
sample the split exponents given S1, S2, α. (Note that choosing
(x1, x2)

r← S1×S2 and setting x = x1+αx2 is not equivalent
to choosing x

r← S1 + αS2!) These two tasks are handled,
respectively, by Algorithms 2 and 1 below. Both algorithms
are geared to sets S1, S2 where S2 is small and |S1+αS2| ≈ p
as their running times are linear in |S2| and p/|S1 + αS2|.

Algorithm 1 Choosing a Random Split Exponent
On input S1, S2, α:
1. Randomly select z

r← Zp.
2. For all y ∈ S2, check if x = z − yα ∈ S1. Output (x, y)
and stop if it is.
3. If no (x, y) ∈ S1 × S2 is found, go to State 1.

Algorithm 1 outputs a uniformly distributed element z of
S1 + αS2 (represented as pair (x, y) ∈ S1 × S2), with the
expected number of 1/c iterations provided that α is c-good.
Hence the expected running time of this algorithm is at most
|S2|/c modular multiplications and checks of membership in
S1.

Algorithm 2 Finding a c-good Element α

On input S1, S2 ⊆ Zp and τ ∈ Z. Let ĉ = 2c.
1. Randomly select α

r← Zp.
2. Randomly select x1, x2, . . . , xτ ∈ Zp and test if each of
them belongs to S1 + αS2 by Step 2 of Algorithm 1.
3. If the number of xi’s in S1 + αS2 is at least ĉτ , output
α. Otherwise go to State 1.

We first estimate the probability Pfail that some inner loop
of Algorithm 2 outputs α which is not c-good. Suppose that
the outer loop picks α which is not c-good, i.e. |S1 + αS2| =
c′p < cp. Let X1, . . . , Xτ be random variables s.t. Xi = 1 if
xi ∈ S1 + αS2, and 0 otherwise. Let X = X1 + · · · + Xτ .
Using this notation, Pfail = Pr[X > ĉτ ] for ĉ = 2c. If we
let X ′ = c

c′ X then the expected value of X ′ is μ = cτ . Let
δ = ĉ/c− 1 = 1. By a Chernoff bound we have:

Pfail = Pr[X ′ > (c/c′)ĉτ ] ≤ Pr[X ′ > ĉτ = (1 + δ)μ]

<

(
eδ

(δ + 1)δ+1

)cτ

< 2−0.557cτ .

In other words, we can set the probability that Algorithm 2
outputs an incorrect α arbitrarily low by setting a large enough
τ .

Now we can estimate the expected running time of Al-
gorithm 2. Let θ = |S1||S2|/p ≥ 1. Lemma 1 says that
E(Xα) ≤ p

θ+1 for a random variable Xα := p− |S1 + αS2|.
Applying Markov inequality for Xα, we obtain:

Pr[Xα ≥ (1 − ĉ)p] ≤ E(Xα)
(1 − ĉ)p

≤ 1/(θ + 1)
1− ĉ

,

which implies that a random α in Zp is ĉ-good with probability

P1 ≥ θ/(θ + 1)− ĉ

1− ĉ
.

If α is ĉ-good, at least ĉτ elements from randomly selected τ
elements from Zp belong to S1 + αS2 with probability

P2 =
∑
i≥ĉτ

(
τ

i

)
ĉi(1− ĉ)τ−i ≈ 1/2.

If |S1||S2| ≥ p and we use Algorithm 1 to test if xi’s belong
to S1 + αS2, the expected running time of Algorithm 2 is at
most

T = (P1P2)−1 × τ × |S2|.

Example: If θ ≥ 1, we may take c = 1/4 and τ = 576.
Then Pfail ≤ 2−80. We also have P1 ≥ (θ − 1)/(θ + 1) and
P2 ≈ 1/2, which gives the running time of Algorithm 2:

T = 1152|S2| · (θ + 1)/(θ − 1),

which is less than 212|S2| for θ ≥ 2.

III. IMPLEMENTATION OF SPLIT EXPONENTS

In this section, we propose to use small Hamming weight
w-NAFs as a possible instance of the split sets S1 and
S2. We show that split exponents implemented in this form
substantially accelerate scalar multiplication on Koblitz curves,
where a w-NAF is interpreted as a τ -adic representation for
a complex number τ . We also show that w-NAF based split
exponents give similar speed-up for exponentiation on binary
fields represented in normal bases.
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A. Low Hamming Weight Exponents

We define w-NAFs following the definitions given in [4],
[31], [32]:

Definition 3: Let w be an integer ≥ 2 and D a subset of Z
with 0 �∈ D. A w-NAF with the digit set D is a sequence of
digits satisfying the following two conditions:

1) Each non-zero digit belongs to D.
2) Among any w consecutive digits, at most one is non-

zero.

We denote a w-NAF as a string a = (am−1 · · · a1a0), where
m is the length of a. The length of a is defined to be the
smallest i such that ai−1 �= 0. The (Hamming) weight of a
is defined to be the number of non-zero digits in its w-NAF
representation. In this paper, we are especially interested in
w-NAFs of small Hamming weight.

We will consider the set of split exponents S1 + αS2 for
α ∈ Zp where S1 and S2 are the sets of w-NAFs of fixed
Hamming weight. The number of w-NAFs of length ≤ m and
weight t with a coefficient set D is given [31] by(

m− (w − 1)(t− 1)
t

)
|D|t.

Given a base k, a w-NAF form can be naturally mapped into
the k-adic representation of an integer via (am−1 · · · a1a0) 
→∑m−1

i=0 aik
i. Therefore we can identity a w-NAF with its

conversion to an integer, and we can use a w-NAF as an
exponent of modular exponentiations in finite fields and scalar
multiplications in elliptic curves.

B. Scalar Multiplication on Koblitz Curves by Split Exponents

In this subsection, we introduce a fast scalar multiplication
algorithm by split exponents based on small Hamming weight
w-NAFs and analyze its performance.

Consider an ordinary elliptic curve E defined over Fq with
#E(Fq) = q + 1 − t and gcd(q, t) = 1. The Frobenius map
τ is defined as follows:

τ : E(Fq)→ E(Fq); (x, y) 
→ (xq, yq),

where Fq is the algebraic closure of Fq. The Frobenius map τ
is a root of the characteristic equation χE(T ) = T 2 − tT + q
in End(E). We denote E(Fqn) by the subgroup of E(Fq)
consisting of Fqn -rational points. Let G be the subgroup of
E(Fqn) generated by P with a prime order � satisfying �2 �
#E(Fqn) and � � #E(Fq).

We may consider a w-NAF as a τ -adic representation of an
integer with the nonzero digit set D = {±1, . . . ,±(2w−1 −
1)}. It is called a τ -adic w-NAF and denoted by a =
(am−1 · · · a1a0)τ or a =

∑m−1
i=0 aiτ

i. Note that given a τ -
adic w-NAF a = (am−1 · · ·a1a0)τ and a point Q ∈ G,
aQ is defined as aQ :=

∑m−1
i=0 aiτ

i(Q). The following
theorem [31], [33] shows that different τ -adic w-NAFs act
as different scalars for scalar multiplication if their lengths
are bounded.

Theorem 2: [31], [33] a = (am−1, . . . , a0)τ and b =
(bm′−1, . . . , b0)τ be two τ -adic w-NAFs. Then aQ = bQ for

some nonzero Q ∈ G implies that m = m′ and ai = bi for
all i if both of m and m′ are equal to or less than

Mq,�,w = logq

(
�/(qw/2 + 1)2

)
− (w − 1). (7)

A scalar multiplication by a τ -adic w-NAF can be done
similarly to the window TNAF method [6], [7]. The only
difference is to use Pi = iP instead of Pi = (i mod τw)P .
(Refer to Algorithm 4 in Appendix A.) If a scalar is of
the form k = k1 + αk2 and Q = αP is given together
with P , then kP can be computed as k1P + k2Q using
simultaneous scalar multiplication sharing the τ operations. It
requires (2w−1− 2) + (wt(k1) + wt(k2)− 1) point additions,
two point doublings and (m − 1) τ operations. (For w = 2,
no doublings are required.)

We can further reduce the number of point additions by shar-
ing the point additions in the table construction stage. More
precisely, given k1 =

∑m−1
j=0 k1,jτ

j and k2 =
∑m−1

j=0 k2,jτ
j ,

we first compute Ri =
∑

k1,j=±i sign(k1,j)τ j(P ) +∑
k2,j=±i sign(k2,j)τ j(Q) for each i and then compute

kP = k1P + k2Q = R1 + 3R3 + · · ·+ (2w−1 − 1)R2w−1−1

using the BGMW technique [10]. The detailed procedure is
given in Algorithm 3. It requires wt(k1)+wt(k2)+2w−2−2
point additions, one point doubling, and 2(m−1) τ operations.
(For w = 2, no doubling is required, since Step 3 is not
executed.) Thus it significantly reduces the number of point
additions at the cost of additional (m− 1) τ operations.

Algorithm 3 Scalar multiplication by a split scalar
1. Input P, Q, k1 and k2.
2. Scanning stage:

2.1 Set Ri ← O for i = 1, 3, 5, . . . , 2w−1 − 1.
2.2 For j = 0 upto m− 1

2.2.1 Set R|k1,j | ← R|k1,j | + sign(k1,j)τ j(P ).
2.2.2 Set R|k2,j | ← R|k2,j | + sign(k2,j)τ j(Q).

3. Computation stage for
k1P + k2Q = R1 + 3R3 + . . . + (2w−1 − 1)R2w−1−1:
3.1 Set S ← R2w−1−1; Set T ← R2w−1−1.
3.2 For i = 2w−1 − 3, 2w−1 − 5, . . . , 5, 3

3.2.1 Set S ← S + Ri.
3.2.2 Set T ← T + S.

3.3 Set T ← 2T .
3.4 Set T ← T + S + R1.

4. Output T .

Now we compare the performances of these algorithms with
those of existing scalar multiplication algorithms. We consider
the standard methods such as the TNAF and window TNAF
methods [6], [7] as well as more recently proposed methods
using double bases [23], [25], since to our knowledge, they are
the fastest algorithms for scalar multiplication with a non-fixed
point over a Koblitz curve.

Table I shows appropriate parameters m and t1, t2 for
various w’s. m is chosen to guarantee the uniqueness of τ -
adic w-NAFs according to Theorem 2 and t1, t2 are chosen so
that |S2| ≈ 240 and |S1| × |S2| ≈ 2162 where Si (i = 1, 2) is
the set of τ -adic w-NAFs of length m and weight ti. The last
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three columns show the numbers of point operations required
for the window TNAF algorithm and two proposed algorithms
over the Koblitz curve K163. The number of point operations
for the window TNAF algorithm is 2w−2−1+ 162

w+1 additions
and 162 + κ applications of τ where κ comes from the table
construction [6].

If we use a normal basis to represent the underlying field
elements of an elliptic curve, then the computation of a
Frobenius map is almost free, and we can ignore the ‘T’ terms
in the table. In this case, the optimal value of w for the window
TNAF method is w = 5, and its cost is 34A. On the other hand,
for the split scalars, the optimal choice is Algorithm 3 with
w = 4, which requires 25A+1D. Thus assuming the cost for a
doubling is approximately the same as that of an addition, the
expected speed-ups over TNAF (the special case with w = 2)
and window TNAF are 51.5% and 23.5%, respectively. Note
that the methods in [23] and [25] require 31.09 and 36.37
point additions over K163, respectively, which implies that
our method is faster than them by 16.4% and 28.5%.

On the other hand, if a polynomial basis is used, the
performance analysis becomes a tedious task because the
cost for squaring operations cannot be completely ignored.
According to our precise analysis given in Appendix B, the
speed-ups over the TNAF and window TNAF methods are
expected to be 36–40% and 10–15%, respectively.

C. Binary Fields with Split Exponents

In binary fields, we consider the set of split exponents
S1 + αS2 ⊆ Zp where S1 and S2 are the sets of w-
NAFs of fixed Hamming weights with the nonzero digit set
D = {1, 3, 5, . . . , 2w−1}. They are called unsigned w-NAFs.
If we use normal basis representation and replace by a squaring
the endomorphism τ in Koblitz curve, we can obtain a similar
speed-up to the Koblitz curve case.

Given a split exponent x = x1 +αx2 for unsigned w-NAFs
x1 and x2 with length m, each of which has weight t1 and t2
respectively, we can compute gx for a finite field element g in
two ways as in the previous subsection. The first method is to
individually compute gx1 and (gα)x2 and multiply them. (For
an individual exponentiation by an unsigned w-NAF, refer to
Algorithm 5 in Appendix C.) It requires t1 + t2 + 2w − 3
multiplications.

The second algorithm is to reduce the number of multi-
plications using the BGMW technique [10]. Its complexity
is t1 + t2 + 2w−1 − 2. (For the detailed procedure, refer to
Algorithm 6 in Appendix C.)

Now we need to consider how to generate unsigned w-NAFs
uniformly. One can easily show that every positive integer has
exactly one unsigned w-NAF [29]. Moreover, all unsigned w-
NAFs of length ≤ �log p� − w + 1 are distinct.

Table II compares the performance when m is the largest
integer less than or equal to �log p�−w+1. Note that typical
cryptographic applications use short exponents of 160 bits
over finite fields of order 21024 to guarantee the 280 security.
Thus we assume that the exponentiation algorithms use 160-
bit exponents and |S1||S2| ≈ 2160. According to this table, the
expected speed-up is 23.7%, which is similar to the case of
Koblitz curves.

We remark that as m gets larger, the performance gain is
expected to be better since we can reduce t1 and t2. But
when m is larger than �log p� − w + 1, distinct unsigned w-
NAFs of length m can be congruent modulo p. It would be
an interesting problem to devise an algorithm to pick w-NAFs
almost uniformly from Zp for larger m.

IV. APPLICATIONS OF EXPONENTIATION BY SPLIT

EXPONENTS

In this section, we show how split exponents can be adopted
in cryptographic schemes based on the discrete logarithm
problem, and we show the efficiency gains resulting from these
modifications.

A. Public Key Encryption

Bellare, Kohno, and Shoup [8] proposed a CCA-secure ver-
sion of ElGamal encryption that achieves the fastest encryption
and decryption among ElGamal-based schemes by re-using the
ephemeral ElGamal key. We show that usage of split exponents
can speed up both the encryption and the decryption operations
even further at the cost of doubling the size of public keys and
increasing the setup cost.

Setup: Let G be a prime-order subgroup of elliptic curve
points from a Koblitz curve defined over F2163 , where
p is its order and P is a generator. Let S1 and S2 be
two subsets of Zp s.t. |S1||S2| ≥ 2160, |S1| ≈ 2120, and
|S2| ≈ 240. A 1/4-good element α ∈ Zp for S1, S2 is
chosen using Algorithm 2, and the public parameters are
Param = 〈G, S1, S2, P, P1 := αP, P2 := α2P, E , H〉,
where E is a CCA-secure symmetric key encryption
scheme and H is a collision resistant hash function from
bit strings onto group G, modeled as a random oracle in
the security analysis.
Key Generation: Each user Ui chooses a secret key
xi+αyi uniformly from S1+αS2, and publishes a public
key 〈Xi, Yi〉 such that Xi = xiP +yiP1 and Yi = xiP1+
yiP2. Similarly (s)he chooses an ephemeral secret key
ui+αvi uniformly from S1+αS2, and computes 〈Ri, Si〉
such that Ri = uiP + viP1 and Si = uiP1 + viP2.
Encryption: The encryption of a message m of the user
Uj to the user Ui is 〈Rj , Sj, C〉 where C = EK(m) and
K = H(Rj , Sj , Xi, Yi, ujXi + vjYi).
Decryption: Given 〈Rj , Sj , C〉, compute K =
H(Rj , Sj, Xi, Yi, xiRj+yiSj) and decrypt the ciphertext
C = EK(m) using K .

A corresponding argument to Theorem 1 shows that if α
is 1/4-good then the hardness of the Gap Diffie Hellman
Problem on group G on split exponents is related by factor
1/16 to the hardness of the Gap Diffie Hellman Problem (see
e.g. [8]). Therefore the “chosen sender and receiver” security
of the BKS encryption scheme (where the adversary attacks
a fixed sender/receiver pair of players) is provably related by
factor 1/16 to the Gap Diffie Hellman Problem. The reduction
that shows this follows the reduction in [8]. Since the reduction
is for “chosen sender chosen receiver” adversary, the reduction
does not have to sample the split exponent keys of other
players in the network. Also, note that the encryption and
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TABLE I
PERFORMANCE OF VARIOUS SCALAR MULTIPLICATION ALGORITHMS ON K163 (A: ADDITION, D: DOUBLING, T: COMPUTATION OF THE τ MAP)

Parameters |S1| |S2| Number of point operations
w m t1 t2 Win.TNAF [6] 2×Alg. 4 Alg. 3
2 157 28 6 1.1 × 2122 1.8 × 239 54A+162T 33A+156T 33A+312T
3 156 23 5 1.5 × 2124 1.0 × 239 42A+163T 29A+2D+155T 28A+1D+310T
4 154 18 5 1.5 × 2119 1.7 × 243 36A+165T 28A+2D+153T 25A+1D+306T
5 152 17 4 1.1 × 2127 1.8 × 239 34A+168T 34A+2D+151T 27A+1D+302T
6 150 14 4 1.7 × 2121 1.6 × 244 38A+174T 47A+2D+149T 32A+1D+298T

TABLE II
PERFORMANCE OF VARIOUS EXPONENTIATION ALGORITHMS FOR 160-BIT EXPONENT

Parameters |S1| |S2| Number of multiplications
w m t1 t2 Alg. 5 2×Alg. 5 Alg. 6
2 159 27 6 1.2 × 2120 1.0 × 240 53 34 33
3 158 22 5 1.8 × 2121 1.1 × 239 42 32 29
4 157 19 4 1.7 × 2124 1.1 × 236 38 36 29
5 156 16 4 1.1 × 2123 1.0 × 240 41 49 34
6 155 13 4 1.5 × 2116 1.8 × 243 53 78 47

decryption procedures can avoid having to verify whether the
receiver’s or sender’s keys are elements in group G because
points on this Koblitz curve form a group G′ of size 2p, and
existence of the DDH oracle on G′ is therefore implied by the
existence of the DDH oracle on G. (The first oracle can be
implemented with a single call to the second one together and
a single test of membership in G.)

Compared with the original scheme, we could see from
Table I that both encryption and decryption are accelerated
by 23.5% with normal basis (and 10–15% with polynomial
basis) by virtue of split exponents. Though the size of public
key is doubled and the setup cost is increased to select a 1/4-
good element α, the computational cost of both encryption and
decryption are significantly reduced by using split exponents.

B. Other Diffie-Hellman and ElGamal Variants

The same speed-up can be achieved in any Diffie-Hellman
system which uses fixed exponents, where the relatively high
cost of uniform sampling of set S1 + αS2 can be amortized.
For example, the Diffie-Hellman Key Agreement with fixed
exponents can be made more efficient at the cost of doubling
the public key size. If the public key is 〈Xi, Yi〉 where
Xi = (xi + αyi)P and Yi = αXi, we could speed up the
shared key computation by 23.5% again, since xjXi +yjYi =
(xi + αyi)(xj + αyj)P = xiXj + yiYj .

In versions of ElGamal encryption where the ephemeral key
is refreshed for each encryption the split exponents can only be
used for the public keys, i.e. Ui’s public key is a pair Xi, Yi

but the ephemeral key is just Ri = uP for u
r← Zp. This

would slow down encryption process, but it would accelerate
the decryption operation by 23.5%.

V. SCHNORR SIGNATURES WITH w-NAF

Note that the advantage of split exponents comes from
the condition that each of Si consists of

√
p elements of

small Hamming weight chosen from p elements. Thus if the
set of challenges of the Schnorr signature consists of

√
p

elements, we can enjoy the advantage of small Hamming
weight exponents without using split exponents.

In Asiacrypt 2000, Schnorr and Jacobson analyzed [34] the
security of Schnorr signatures in the generic group model and
the random oracle model for the hash function, and showed
that the scheme has 280 security level in the model as long
as the challenge c is chosen uniformly in any set with 280

elements.
We describe a variant of the Schnorr signature scheme on

Koblitz curves where the challenge c in the NIZK for the
discrete logarithm on which the Schnorr signature scheme is
based is not a random element in Zp but a value c uniformly
chosen from the set S of w-NAFs of fixed weight. Since there
is an efficient algorithm to pick up a w-NAF integer of fixed
weight t [31], we can easily obtain an efficient full-domain
hash function to S by the standard technique.

Setup: Let G be a prime-order subgroup of elliptic curve
points from a Koblitz curve defined over F2163 , where p
is its order and P is a generator. Let S be a subset of
Zp. The public parameters are Param = 〈G, S, P, H〉,
where H is a collision resistant full domain hash function
H : {0, 1}∗ → S.
Key Generation: Each user Ui chooses a secret key
xi

r← Zp and publishes a public key Xi = xiP .
Signing: A signature on message m is a tuple 〈m, c, s〉
where R = −kP , c = H(m, R) and s = k + cxi, for
k

r← Zp.
Verification: Signature 〈c, s〉 on m is accepted if

c = H(m,−sP + cXi).

The verification of Schnorr signature mainly consists of two
scalar multiplications, that is, −sP and cXi. The above variant
improves the speed of cXi computation. If we use w = 4 and
t = 11, Algorithm 4 requires only 14 elliptic curve additions,
so the speed-ups using a normal basis is (19 − 14)/19 =
26.3% over the window TNAF. For the number of elliptic
curve additions required to compute cXi for other parameters,
refer to Table III. Note that the first scalar multiplication is a
fixed point multiplication, so it can be easily sped up using
various fixed-base precomputation methods.

We may consider split exponents for challenges of Schnorr
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TABLE III
COMPUTATIONAL REQUIREMENTS FOR cXi (A: ADDITION D: DOUBLING

T: COMPUTATION OF THE τ MAP)

Parameters |S| Number of point operations
w m t Win.TNAF [6], [7] Alg. 4
2 157 15 1.0 × 281 27A+79T 14A+156T
3 156 13 1.1 × 284 21A+80T 13A+1D+155T
4 154 11 1.5 × 283 19A+82T 13A+1D+153T
5 152 9 1.2 × 279 21A+85T 15A+1D+151T
6 150 8 1.1 × 279 27A+91T 22A+1D+149T

signatures. That is, the challenge value c = (c1, c2) is chosen
uniformly from S1 × S2 where each of Si is a set of w-NAF
of fixed Hamming weight. Then we need to publish one more
public parameter αP for α ∈ Zp and one more public key
Yi = αXi for each user Ui. Then the signature is a tuple
〈m, c1, c2, s〉 for a message m where R = −kP , (c1, c2) =
H(m, R), and s = k+(c1+αc2)xi for k

r← Zp. The signature
is verified by checking (c1, c2) = H(m,−sP + ciXi + c2Yi).

By Corollary 1, if |S1| = |S2| = 240 then the average
size of |S1 + αS2|, for random α, is at least 280 − 1. Hence
we may assume that for an overwhelming fraction of α’s the
size of |S1 + αS2| is indeed very close to 280, which would
imply almost the same

√
p lower bound on the complexity of

forging a signature as the argument in [34]. If we use 3-NAF
of weight 5 for (c1, c2), the ciXi + c2Yi takes only 11 elliptic
curve additions which is an improvement of 42.1% over the
window TNAF in normal basis representation. For a specific
α, however, we need to investigate more the distribution of
|S1 + αS2|.

VI. CONCLUSION AND FURTHER STUDY

In this paper, we proposed a new variant of the discrete
logarithm problem, called SEDL, which is the discrete loga-
rithm on a class of exponents we call split exponents, and we
showed how to adopt these exponents to speed up encryption
and decryption operations in a BKS encryption scheme [8].

An interesting open problem is to show hardness of the
SEDL problem on all but negligible fraction of α’s. In this
paper, we showed that the SEDL problem is hard for a random
α, and hence we also showed that the hardness of the SEDL
problem is a small constant away from the hardness of the
standard DL problem for certain “good” α’s. However, we
showed an efficient generation of such α’s only if S1 and S2

are unbalanced, e.g. |S1| = 2120 and |S2| = 240. Furthermore,
we showed an efficient sampling algorithm from the set of
split exponents for such a fixed good α, also only in the case
when set S2 is much smaller than S1. Finally, both algorithms,
the one for finding good α’s and the sampling algorithm,
are time consuming, which limits their applicability. If the
SEDL problem was hard for all but negligible α’s then split
exponents could be used to speed up a much larger class of
DL-based cryptosystems, because they could then be applied
to ephemeral values in these cryptosystems, and not just to
the long-term private keys, as in our variant of the BKS
encryption scheme. Similarly, extending our results to sets S1

and S2 of the same size would result in further speeding up
of exponentiation operations.

In this paper, we compared the performance of split
exponent-based exponentiation with those of existing expo-
nentiation algorithms only in the 80-bit security setting. But
it will also be interesting to analyze the significance of split
exponents from an asymptotic point of view as the security
parameter grows. In addition, incorporating split exponents
in the double-base setting such as [22], [23], [25] will be a
promising research direction.
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APPENDIX A
SCALAR MULTIPLICATION ALGORITHM FOR τ -ADIC

w-NAFS

We introduce a simple scalar multiplication algorithm using
τ -adic w-NAF, Algorithm 4. Note that the window TNAF
method, i.e., τ -adic NAF window method, given in [6], [7],
is similar to Algorithm 4, but it uses Pi = αiP instead of
Pi = iP , where αi = i mod τw. We can easily see that
Algorithm 4 requires (2w−2−1)+(wt(k)−1) point additions,
one point doubling and (m− 1) τ operations, where wt(k) is
the weight of k. It also requires temporary memory to store
2w−2 − 1 points, i.e., 3P, 5P, . . . , (2w−1 − 1)P . For w = 2,
we need no doubling, since the table construction stage is not
required.

APPENDIX B
COMPARISON OF THE WINDOW TNAF ALGORITHM,

ALGORITHM 4 AND ALGORITHM 3 IN POLYNOMIAL BASIS

REPRESENTATION

In this section, we precisely compare the performances
of the TNAF algorithm, the window TNAF algorithm,

Algorithm 4 Scalar Multiplication by a τ -adic w-NAF

1. Input P and k = (km−1km−2 . . . k0)τ , where k is given
as a τ -adic w-NAF.
2. Table construction stage:

2.1 Set P0 ← O, P1 ← P and P2 ← 2P .
2.2 For j = 1 upto 2w−2 − 1, set P2j+1 ← P2j−1 + P2.

3. Scalar multiplication stage:
3.1 Find the largest i s.t. ki �= 0. Set Q← sign(ki)P|ki|.
3.2 For j = i− 1 downto 0

3.2.1 Set Q← τQ.
3.2.2 if kj �= 0 then set Q← Q + sign(kj)P|kj |.

4. Output Q.

2×Algorithm 4 and Algorithm 3 when the underlying binary
field is represented as a polynomial basis. First, we revise
Table I to discriminate the computational requirements for
each part of the algorithms, and construct Table IV. That is,
we denoted the cost for table construction or scanning and the
cost for other parts as separate terms in the new table.

If the point operations are done in affine coordinates, we can
obtain the relations 1A = 1I+2M+1S, 1D = 1I+2M +2S,
and 1T = 2S, where I, M, S represent the computational costs
for a field inversion, a field multiplication, and a field squaring,
respectively. On the other hand, if we consider projective coor-
dinates, it is desirable to use a mixed coordinate system where
a doubling is performed using two points in López-Dahab
(LD) projective coordinates and an addition is performed with
one point represented in LD projective coordinates and the
other in affine coordinates [35]. In this case, the costs for
a doubling and an addition are 3M + 5S and 8M + 5S,
respectively [7], [35]. However, in order to use this coordinate
system, some part of the scalar multiplication should still be
done in affine coordinates. For example, for the window TNAF
method, table construction is done in affine coordinates and the
remaining part is done in mixed coordinates. The final result of
a scalar multiplication is obtained by converting the result of
the last point operation into affine coordinates, which requires
1I+2M+1S since an LD projective point (X : Y : Z), Z �= 0
corresponds to the affine point (X/Z, Y/Z2).

For 2×Algorithm 4, we have two options to use mixed
coordinates. The first choice is to apply a similar approach to
the window TNAF method. That is, table construction is done
in affine coordinates and the remaining part is computed using
mixed-coordinate additions and LD Frobenius maps. Another
choice is to use mixed coordinates in table construction
and LD projective additions and LD Frobenius maps in the
remaining computation. Note that the costs of an LD projective
addition and an LD Frobenius map are 13M + 6S and 3S,
respectively. According to our analysis, the first option is
preferred in most cases. Therefore we consider only the first
option.

We also have two options for Algorithm 3. The first choice
is to use affine coordinates in Step 2. Then in Step 3, the
computation of S’s is done in mixed coordinates, and T ’s are
computed using LD projective additions. The second choice
is to use affine Frobenius maps and mixed additions in Step
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TABLE IV
PERFORMANCE OF VARIOUS SCALAR MULTIPLICATION ALGORITHMS ON K163 WITH |S1||S2| ≈ 2162 AND |S2| ≈ 240 (A: ADDITION, D: DOUBLING, T:

COMPUTATION OF THE τ MAP)

Parameters |S1| |S2| Number of point operations
w m t1 t2 Win.TNAF [6] 2×Alg. 4 Alg. 3†
2 157 28 6 1.1 × 2122 1.8 × 239 (0A+0T)+(54A+162T) (0A+0D)+(33A+156T) (33A+312T)+(0A+0D)
3 156 23 5 1.5 × 2124 1.0 × 239 (1A+1T)+(41A+162T) (2A+2D)+(27A+155T) (26A+310T)+(2A+1D)
4 154 18 5 1.5 × 2119 1.7 × 243 (3A+3T)+(33A+162T) (6A+2D)+(22A+153T) (19A+306T)+(6A+1D)
5 152 17 4 1.1 × 2127 1.8 × 239 (7A+6T)+(27A+162T) (14A+2D)+(20A+151T) (13A+302T)+(14A+1D)
6 150 14 4 1.7 × 2121 1.6 × 244 (15A+12T)+(23A+162T) (30A+2D)+(17A+149T) (2A+298T)+(30A+1D)

†We assume that every possible coefficient appears at least once.

2, and LD projective additions in Step 3. Let us denote these
two options as m-1 and m-2.

TABLE VI
TOTAL COST REPRESENTED IN THE NUMBER OF SQUARINGS USING THE

ESTIMATION I/M = 5, M/S = 7 [7]

Win. TNAF [6] 2×Alg. 4 Alg. 3
w affine mixed affine mixed affine m-1 m-2
2 3024 3830 1962 2531 2274 2324 2687
3 2426 3089 1862 2364 2071 2154 2476
4 2130 2705 1808 2253 1913 2112 2429
5 2036 2545 2104 2525 2005 2436 2831
6 2248 2713 2750 3136 2247 3142 3704

TABLE VII
TOTAL COST REPRESENTED IN THE NUMBER OF SQUARINGS USING THE

ESTIMATION I/M = 8, M/S = 7 [7]

Win. TNAF [6] 2×Alg. 4 Alg. 3
w affine mixed affine mixed affine m-1 m-2
2 4158 3851 2655 2552 2967 3038 2708
3 3308 3131 2513 2469 2680 2721 2497
4 2886 2789 2438 2442 2459 2532 2450
5 2750 2713 2860 2882 2593 2730 2852
6 3046 3049 3779 3829 2940 3205 3725

TABLE VIII
TOTAL COST REPRESENTED IN THE NUMBER OF SQUARINGS USING THE

ESTIMATION I/M = 10, M/S = 10 [6]

Win. TNAF [6] 2×Alg. 4 Alg. 3
w affine mixed affine mixed affine m-1 m-2
2 6858 5197 4305 3394 4617 4738 3550
3 5408 4215 4063 3367 4130 4143 3258
4 4686 3781 3938 3420 3759 3730 3199
5 4450 3761 4660 4212 3993 3880 3769
6 4946 4401 6229 5887 4590 4309 5002

Tables V shows the number of field operations for the three
scalar multiplication algorithms using the above coordinate
systems. Tables VI, VII and VIII present the total costs rep-
resented in the number of squarings using typical estimations
for the ratios I/M and M/S according to the data given in
[6], [7]. The minimum values over possible choices of w are
highlighted. We can summarize the three tables as follows:

• If I/M = 5, then affine coordinates are preferable. In this
case, the parallel execution of Algorithm 4 with window
size w = 4 is the best choice for the computation of
k1P + k2(αP ), and it is faster than the TNAF algorithm
(w = 2) and the window TNAF algorithm for kP by
40.21% and 11.20%, respectively.

• If I/M = 8, then mixed coordinates are better than
affine coordinates for the window TNAF algorithm. But
these two coordinates provide similar performances for
the other two algorithms. Consequently, the parallel exe-
cution of Algorithm 4 with window size w = 4 is the best
choice, and the speed-ups over the TNAF and window
TNAF methods are 36.69% and 10.14%, respectively.

• If I/M = 10, mixed coordinates are preferable in most
cases. Algorithm 3 (w = 4) with m-2 coordinates is
the best choice, and it is faster than the TNAF and
the window TNAF algorithms by 38.45% and 14.94%,
respectively.

APPENDIX C
EXPONENTIATION USING SPARSE UNSIGNED w-NAFS

In this section, we present exponentiation algorithms using
split sparse exponents. First, we start with a simple algorithm
(Algorithm 5) that uses free squaring over a normal basis,
which can be seen as an improved version of [36]. It requires
(2w−1−1)+(wt(x)−1) = 2w−1+wt(x)−2 multiplications,
where wt(x) denotes the weight of x.

Algorithm 5 Exponentiation gx using normal basis represen-
tation

1. Input g and x = (xm−1 . . . x0)2, where g is represented
by a normal basis and x is given as an unsigned w-NAF.
2. Table construction stage:

2.1 Set g0 ← 1, g1 ← g and g2 ← g2.
2.2 For j = 1 upto 2w−1 − 1, set g2j+1 ← g2j−1 × g2.

3. Exponentiation stage:
3.1 Find the largest i such that xi �= 0. Then set y ← gxi .
3.2 For j = i− 1 downto 0

3.2.1 Set y ← y2.
3.2.2 if xj �= 0 then set y ← y × gxj .

4. Output y.

If an exponent is of the form x = x1 + αx2 and h = gα

is given as input together with g, then gx can be computed
as gx1hx2 . A naive algorithm to compute gx1hx2 is to use
Algorithm 5 twice, and it requires 2(2w−1−1)+(wt(x1)−1)+
(wt(x2)−1)+1 = 2w +wt(x1)+wt(x2)−3 multiplications.
However, a modification of the BGMW method [10] gives a
significant speed-up: the number of required multiplications
for Algorithm 6 is wt(x1) + wt(x2) + 2w−1 − 2.
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TABLE V
COMPARISON OF THE NUMBER OF FIELD OPERATIONS FOR THREE SCALAR MULTIPLICATION ALGORITHMS

Win. TNAF [6] 2×Alg. 4 Alg. 3
affine mixed affine mixed affine m-1 m-2

w I M S I M S I M S I M S I M S I M S I M S
2 54 108 378 1 434 757 33 66 345 1 266 634 33 66 657 34 68 658 1 266 790
3 42 84 368 2 332 695 31 62 343 5 226 607 29 58 650 27 78 663 1 239 768
4 36 72 366 4 272 661 30 60 338 9 194 580 26 52 639 20 106 670 1 235 749
5 34 68 370 8 232 641 36 72 340 17 194 572 28 56 633 14 178 700 1 291 759
6 38 76 386 16 216 641 49 98 349 33 202 567 33 66 630 3 324 769 1 411 792

Algorithm 6 Exponentiation by a split exponent
1. Input g, h, x1 and x2.
2. Set s← 1, t← 1.
3. For i = 2w − 1, 2w − 3, . . . , 3, 1

3.1 For each j such that x1,j = i, set s← s× g2j

.
3.2 For each j such that x2,j = i, set s← s× h2j

.
3.3 if i = 1 then set t← t× s; else set t← t× s2.

4. Output t.
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