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Abstract

Cryptanalytic time memory trade-off is a probabilistic algorithm for inverting a generic one-way function. Since its
first introduction by Hellman, many variants and their analysis results have appeared. We present a new estimate for
the success probability of the original Hellman trade-off, that is more accurate than the lower bound that is widely
being used today.
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1. Introduction

Let f : X → Y be any one-way function, i.e.,
a function which is easy to compute, but which is
hard to invert. An example of interest would be the
function mapping a secret key to the encryption of
a specific fixed known plaintext. A way to efficiently
invert this map would imply total breakdown of the
encryption system. In fact, much of cryptanalysis
can be interpreted as the process of inverting an
appropriate one-way function.

There are two trivial ways to invert a generic one-
way function. Given a target y = f(x) ∈ Y to invert,
one may exhaustively search for x′ ∈ X such that
f(x′) = y. One could also choose to pre-compute
and store the pairs (x, f(x)) in a table. Then, when
a target y = f(x) ∈ Y is given, one can search for
it among the second components of the table and
give the corresponding first component as an an-
swer. Whereas the exhaustive search method takes a
long time, the table lookup method requires a large
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storage space. Cryptanalytic time memory trade-off
(TMTO) is a technique that comes between these
two extremes. It inverts a one-way function in time
shorter than the exhaustive search method, using a
storage smaller than the table lookup method.

The first TMTO algorithm was given by Hell-
man [5], and many of its extensions [1,3] and vari-
ants [2,6,8] have appeared. All cryptanalytic TMTO
algorithms consist of two phases. For a fixed one-
way function to invert, certain tables are created in
the pre-computation phase. Then, the inversion of
a given target point is done in the online phase, uti-
lizing the pre-computed tables. TMTO is a prob-
abilistic process whose success probability depends
on the created tables.

The asymptotic behaviors of various TMTO algo-
rithms are well understood up to small constant fac-
tors, and it has even been shown [2] that, in a certain
sense, the algorithms we have are already optimal.
On the other hand, practical use of TMTO still re-
quires much experience. One has to choose a TMTO
algorithm, and for a fair comparison between algo-
rithms, their success probabilities have to be com-
putable. The comparison is further complicated by
the choice of table storage techniques affecting stor-
age size, the less understood behavior of the so called
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false alarms contributing to online time, and the fact
that these issues are all interrelated.

Let us briefly discuss a concrete example. The
rainbow table method [8] is a widely used trade-off
technique. Under typical parameters for the Hell-
man and the rainbow trade-offs that naturally corre-
spond to each other and lead to equal storage sizes 3 ,
experience shows that the success probability of the
former is higher than the latter by about 2 percent-
age points. When this probability difference is lev-
eled by increasing the rainbow chain lengths, it re-
sults in a 15.4% increase of the rainbow online time
with no change to storage size. Hence a more accu-
rate evaluation of the success probability will have
a meaningful impact on algorithm comparisons.

Any practical approach to the TMTO techniques
leads one to consider their success probabilities, and
while previous works [7,8] did take success proba-
bilities into account, our knowledge of the success
probability for the Hellman trade-off is less than
satisfactory, especially when compared to our corre-
sponding knowledge for the rainbow table method.

In this work, we present evidence that the previ-
ous known lower bounds on the success probability
of the Hellman trade-off are not very tight and give a
new approximation for this probability that closely
matches experiment data.

2. Coverage rate of the Hellman matrix

Let us explain the central concepts of this work,
and point out what needs to be improved.

Hellman matrix We will briefly explain a very
small part of the Hellman trade-off algorithm, refer-
ring readers to the original paper [5] for the complete
algorithm.

We shall fix the search space of size N to

X = Y = {0, 1, . . . , N − 1},
for notational simplicity. There are positive integer
parameters t and m, that are usually chosen to sat-
isfy the matrix stopping rule, mt2 = N . As part of
the pre-computation, m points from X , which we
denote as X1,0, . . . , Xm,0, are chosen, randomly and
each independently of other points. Then, for each
fixed 1 ≤ i ≤ m, the points

Xi,j+1 = f(Xi,j) (0 ≤ j < t)

3 A non-perfect rainbow table is considered and, in this dis-
cussion, we are disregarding implementation specific mem-
ory issues addressed in [2] and false alarms.

are iteratively computed. The resulting m× (t + 1)
matrix H = (Xi,j) is called the Hellman matrix. The
first and last columns of H are gathered to form a
Hellman table.

Coverage rate We take the m × t sub-matrix
of H, consisting of the first t columns, and collect
their entries in a set. That is, we consider

H̄ = {Xi,j | 1 ≤ i ≤ m, 0 ≤ j < t}.
As there could be duplications within this set, the set
size |H̄| can be strictly smaller than mt. We define
the expected coverage rate to be

ECR(N, m, t) = E(|H̄|/mt), (1)

which is a measure of how efficiently the search
space X has been covered by f -iterations. Here, the
average for expectation is taken over all choices of
functions f on X and the starting points Xi,0, so
that the computed value is what is expected of a
random function.

Under suitable assumptions concerning certain
reduction functions, the success probability of the
Hellman trade-off can be computed as

1−
(
1− ECR ·mt

N

)`

,

when ` Hellman tables are utilized. Thus to obtain
the success probability of the Hellman trade-off, it
suffices to understand and evaluate the expected
coverage rate of a Hellman matrix. This is the main
subject of the current work.

Assuming f to be a random function, Hellman
provided the lower bound

ECR(N, m, t) ≥ 1
mt

m∑

i=1

t−1∑

j=0

(
(N − it)/N

)j+1
, (2)

and states that this numerically evaluates to 0.80,
when mt2 = N . The work [7] carefully evaluates the
right hand side of the above inequality and provides
the bound

ECR ≥
∫ 1

0

1− e−x

x
dx ≈ 0.796599, (3)

which is valid when m À 1, t À 1, and mt2 = N .

Experiments Even though the validity of these
bounds were not at question, it was not clear as to
how tight these bounds were, so we conducted tests
to see the actual coverage rates.

Our one-way function f was constructed from
AES-128. More explicitly, the key to ciphertext map-
ping under a fixed plaintext was used. Since it is not
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Fig. 1. Real-world coverage rates for 1 ≤ t ≤ √
N and its

magnified partial view

possible to deal with N = 2128, we reduced the in-
put space by fixing most key bits to zero and also
truncated the ciphertext accordingly. Even though
this choice of f would be widely acceptable, as a
precaution, we verified that f exhibits characteris-
tics of a random function [4], by measuring iterated
image space sizes. The random starting points Xi,0

were similarly generated from AES-128 with another
fixed plaintext and a counter as input key.

Then we explicitly computed |H̄|/mt on search
space sizes N of 216, 220, 224, and 228, with varying m
and t, subject to mt2 = N . Numerous test instances
were conducted for each parameter set, with each
instance using newly chosen plaintexts. The average
coverage rates obtained are given in Fig.1.

It can be seen that the curves for different N are
almost indistinguishable from each other for most
values of t. The curves part from each other only
when one of them nears its maximum possible t of√

N . For larger N and values of t that would be of
interest, it is clear that the actual coverage rate will
be much higher than what is given by the current
known bound of ECR ≥ 0.80. For example, when
N = 224 and m = t = 28, the observed coverage
rate was 0.8605.

3. New estimate for Hellman coverage rate

In this section, we shall give a formula estimating
the expected coverage rate of a Hellman matrix more
accurately than the previous bounds (2) and (3).

We start with an easy lemma. Let us say we have
an urn containing N distinctly marked balls. Sup-
pose m balls are drawn from this urn, one at a time,

with replacements. We will compute how many dif-
ferent balls one can expect to see at the end.

Let ni denote the number of distinct balls one is
expected to see up to the i-th draw. For example,
one starts with n0 = 0 and n1 = 1. After ni distinct
balls have made their appearance, the probability
that the (i + 1)-th draw will reveal a new ball is
1− ni/N . Hence we have

ni+1 = ni +
(
1− ni

N

)
.

Solving this, with the initial condition n1 = 1, gives

nm = N{1− (
1− 1

N

)m}.

Recalling that exp(−1) = limN→∞(1 − 1/N)N , we
arrive at the following lemma.

Lemma When N is large, we can expect to see
approximately N

(
1−exp(−m/N)

)
distinct balls,

when m balls are randomly drawn, with replace-
ments, from an urn containing N balls.

The Hellman bound for coverage rate, given
by (2), was obtained by carefully estimating the
number of new entries added by each row of the
Hellman matrix. We shall present a new estimate
for coverage rate by going through each column,
applying the above lemma. This is similar in spirit
to the arguments of [8].

For each 0 ≤ k < t, let mk denote the expectation
for the number of distinct entries appearing in the
k-th column of the Hellman matrix, which had not
appeared in any of the previous columns. Formally,
we are setting H̄k = {Xi,j | 1 ≤ i ≤ m, 0 ≤ j ≤ k}
and mk = E(|H̄k \ H̄k−1|), where the average for
expectation is taken over all choices of f and Xi,0.
We shall also use the notation pk = mk/N , so that
solving for pk is equivalent to solving for mk.

Our Lemma shows that, in the 0-th column, we
can expect to find N(1 − exp(−m/N)) distinct en-
tries. So we can start with

p0 = 1− exp
(− m

N

)
.

Let us find expressions for other mk terms.
Note that if Xi,j ∈ H̄k−1, then f(Xi,j) ∈ H̄k

so that, of the entries Xi,k belonging to the k-th
column of H, only those belonging to H̄k \ H̄k−1

may produce new Hellman matrix entries in the (k+
1)-th column. Thus, with f modeled as a random
function, producing the (k + 1)-th column can be
seen as selecting mk-many balls, with replacements,
from an urn of N balls. Our Lemma tell us that there
are N(1−exp(−mk/N)) distinct entries produced in

3



·

·

·

·

·
·
· · · · · · · · · ·

0 2 4 6 8 10 12 14

0.65

0.70

0.75

0.80

0.85

log t

co
ve

ra
ge

ra
te

Fig. 2. Theoretically obtained ECR(t) for 1 ≤ t ≤ 215

the (k + 1)-th column, which are not automatically
old. A certain fraction of these will have appeared
before, and we can write

mk+1 =
(
1−

k∑

j=0

pj

) ·N(
1− exp

(− mk

N

))
,

or equivalently,

pk+1 =
(
1−

k∑

j=0

pj

)(
1− exp(−pk)

)
. (4)

Now, using the notation sk =
∑k−1

j=0 pj and the
condition s1 = p0 = 1 − exp(−m/N), after some
computation, one can turn the above equation into

s0 = 0, sk+1 = 1− exp
(− m

N

)
exp(−sk). (5)

Finally, by definition of sk, the expected coverage
rate (1) of a Hellman table can now be written as

ECR(N, m, t) =
N

mt
st, (6)

for all t ≥ 1. Notice that, under the matrix stopping
rule mt2 = N , the above is equivalent to

s0 = 0, sk+1 = 1− exp
(− 1

t2
)
exp(−sk),

ECR(t) = t · st,

which is a function of only t, and not of N or m.
The graph of this function is given in Fig.2. Our new
estimates are very close to the test results. In fact,
except for the t =

√
N case of each N , most of our

theoretic estimates and test results agree up to the
third significant digit.

In practice, the starting points Xi,0 are chosen to
be distinct rather than taken independently of each
other. In such a case, (4) remains valid with the
initial condition p′0 = m

N , and (5) becomes

s′0 = 0, s′k+1 = 1− (
1− m

N

)
exp(−s′k).

We have also verified this claim with experiments.
Finally, we give a closed form approximation

for (5). With the Euler method 4 we can derive

d

dk
sk = (1− sk)− exp

(− sk − m

N

)
.

Applying exp(x) ≈ 1 + x + x2

2 to this and solving
with initial condition s0 = 0 brings one to

sk ≈ 2(1− 1
τ2

)
ek/τ − e−k/τ

(τ + 1)ek/τ + (τ − 1)e−k/τ
,

where τ =
√

2N
m .

4. Coverage rate for the m = 1 case

The only discrepancy between Fig.1 (experiment)
and Fig.2 (theory) is that, with the experiment data,
the coverage rates drop slightly as t reaches its max-
imum possible value of

√
N , or equivalently, when

m = 1. Explicitly, for N = 224 and t = 212, our tests
show ECR ≈ 0.8557 ± 0.0005 at 95% confidence,
while our theoretically computed ECR is 0.8610 for
the same N and t. So we cannot dismiss this differ-
ence as experimental error. While the m = 1 case is
not of practical interest, let us look into this for the
sake of completing our understanding of the Hell-
man trade-off success probability.

Given any 0 < k < t, for a random walk to in-
tersect itself at length k, its first k elements must
be distinct and its (k + 1)-th element must be one
of the previous k elements. Probability of such an
event happening is

(1)(1− 1
N

)(1− 2
N

) · · · (1− k − 1
N

) · k

N
.

Similarly, the probability of reaching the full chain
length t without collision is

(1)(1− 1
N

)(1− 2
N

) · · · (1− t− 1
N

).

Thus, the exact value of ECR(N, 1, t) is

1
t

{( t−1∑

k=1

k · k

N
·
k−1∏

i=0

(
1− i

N

))
+ t ·

t−1∏

i=0

(
1− i

N

)}
.

Taking note of the identity

k
N

∏k−1
i=0 (1− i

N ) =
∏k−1

i=0 (1− i
N )−∏k

i=0(1− i
N ),

4 This was suggested by Nurdan Saran during private com-
munication.

4



one can simplify the above into

ECR(N, 1, t) =
1
t

t∑

k=1

k−1∏

i=0

(1− i

N
). (7)

Numerical computation shows that the above
ECR is approximately 0.8556 for N = 224 and
t = 212, which is in good agreement with our exper-
iment result of 0.8557.

We can gain more insight into the m = 1 case
through an approximation of the above ECR. When
i ¿ N , we have 1− i

N ≈ exp(− i
N ), so that

k−1∏

i=0

(
1− i

N

) ≈ exp(− k2

2N
),

for k ¿ N . We can now interpret the sum (7) as an
integral and write

lim
t→∞

ECR(N, 1, t) ≈
∫ 1

0

exp(− t2

2N
x2) dx

=
√

2π

√
N

t

∫ t√
N

0

ϕ0,1(z) dz,

where ϕ0,1(z) = 1√
2π

exp(−z2/2) is the probability
density function for the standard normal distribu-
tion. Returning to the condition t =

√
N , we can

conclude

lim
N→∞

ECR(N, 1,
√

N) ≈
√

2π · 0.3413 ≈ 0.8555.

It only remains to explain where we introduce er-
ror, when arguments of the previous section are fol-
lowed with the m = 1 case. Let us use the tempo-
rary notation qk =

∏k
i=0(1 − i/N). It is easy to see

that qk is the probability for a random chain to be
of length strictly greater than k. When m = 1, the
number of new entries at the k-th column will be ei-
ther 0 or 1. As this is 1 if and only if a chain is longer
than k, the expectation mk for this number is qk,
and pk = mk/N should be equal to qk/N . In fact,
this argument may be seen as another proof of (7),
as its right hand side is a sum of the qk divided by t.

Note that, by definition of qk, we have

q0

N
=

1
N

,
qk+1

N
= (1− k + 1

N
)
qk

N
. (8)

In comparison, when pk is small, so that pk ≈ 1 −
exp(−pk), we can read the previous argument (4) as

p0 =
1
N

, pk+1 ≈ (1−
k∑

j=0

pj) · pk. (9)

Since
∑k

j=0 pj ≤ k+1
N , the ECR obtained through (9)

will be greater than that obtained through (8). This

error will build up with each iteration and explains
the discrepancy between the two estimates for the
m = 1 case.

5. Conclusion

Cryptanalytic time memory trade-offs are proba-
bilistic algorithms for inverting a one-way function.
Hellman gave a lower bound for the success proba-
bility of his original algorithm, and all further anal-
yses of the Hellman trade-off were done assuming
this lower bound to be a good measure of its success
probability.

In this work, we first identified a long overlooked
gap between the Hellman’s lower bound and the ac-
tual success probability. Then a new estimate for the
coverage rate of a Hellman matrix was given, from
which the success probability can directly be com-
puted. We have also verified our theoretic analysis
with test results.

As the success probability of a trade-off algorithm
is of fundamental importance in any comparison be-
tween trade-off algorithms or in their practical use,
our analysis sets a more fair and robust working
ground for these tasks.

Another contribution of this work is in quantifying
the increase in search space coverage induced by the
addition of each new column. This gives more insight
into the inner workings of the Hellman trade-off and
may be of use in future studies.
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