
High-Speed Parallel Implementations of the
Rainbow Method in a Heterogeneous System

Jung Woo Kim1,∗, Jungjoo Seo1,⋆, Jin Hong2,∗∗,
Kunsoo Park1,⋆,†, and Sung-Ryul Kim3,⋆

1 Department of Computer Science and Engineering and Institute of Computer
Technology, Seoul National University, Seoul, Korea

{jkim,jjseo,kpark}@theory.snu.ac.kr
2 Department of Mathematical Sciences and ISaC, Seoul National University,

Seoul, Korea
jinhong@snu.ac.kr

3 Division of Internet and Media, Konkuk University, Seoul, Korea
kimsr@konkuk.ac.kr

Abstract. The computing power of graphics processing units (GPU)
has increased rapidly, and there has been extensive research on general-
purpose computing on GPU (GPGPU) for cryptographic algorithms such
as RSA, ECC, NTRU, and AES. With the rise of GPGPU, commod-
ity computers have become complex heterogeneous GPU+CPU systems.
This new architecture poses new challenges and opportunities in high-
performance computing. In this paper, we present high-speed parallel
implementations of the rainbow method, which is known as the most
efficient time-memory tradeoff, in the heterogeneous GPU+CPU sys-
tem. We give a complete analysis of the effect of multiple checkpoints
on reducing the cost of false alarms, and take advantage of it for load
balancing between GPU and CPU. Our implementation with multiple
checkpoints requires no more time on average for resolving false alarms
and it actually finishes earlier than generating all online chains unlike
other implementations on GPU.

Keywords: Cryptanalysis, Cryptanalytic Time-Memory Tradeoff, Rain-
bow Method, GPGPU, CUDA, Heterogeneous Computing

1 Introduction

With the GPU’s rapid evolution from a graphics processor to a programmable
parallel processor, GPU is a many-core multi-threaded multiprocessor that excels

∗ This work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MEST) (No. 20120006492).

∗∗ This work was supported by the Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry of Education,
Science and Technology (2012003379)

† corresponding author

Th
is

 is
 th

e
"a

cc
ep

te
d

ve
rs

io
n"

 o
f L

N
C

S
76

68
 p

p.
30

3-
31

6
(2

01
2)

, p
re

se
nt

ed
 a

t I
N

D
O

C
R

YP
T

20
12

.
ht

tp
://

dx
.d

oi
.o

rg
/1

0.
10

07
/9

78
-3

-6
42

-3
49

31
-7

_1
8

2 Jung Woo Kim, Jungjoo Seo, Jin Hong, Kunsoo Park, and Sung-Ryul Kim

at not only graphics but also computing applications. Today’s GPUs have hun-
dreds of parallel processor cores executing tens of thousands of parallel threads.
Using a large number of processors, GPUs are used for accelerating the per-
formance of mathematical and scientific works. General-purpose computing on
GPUs (GPGPU) was first introduced in 2006 by unveiling CUDA by NVIDIA [6].
CUDA enables programmers to easily control GPUs by writing programs similar
to C.

Recently, researchers and developers have enthusiastically adopted CUDA
and GPU computing for cryptographic algorithms. In 2007, Manavski et al.
efficiently implemented the Advanced Encryption Standard (AES) algorithm
using CUDA [22]. In 2008, Szerwinski and Güneysu made use of CUDA for
GPGPU processing of asymmetric cryptosystems (RSA, DSA, ECC) [27]. In
2009, Bernstein et al. showed that GPU can be used for cryptanalysis as well as
implementation of cryptographic algorithms [9]. They implemented the elliptic-
curve method for integer factorization on GPUs. In 2010, NTRU cryptosystem
was implemented on CUDA by Hermans et al. [16].

One-way functions are fundamental tools for cryptography, and it is a hard
problem to invert them. There are three generic approaches to invert them. The
simplest approach is an exhaustive search. An attacker tries all possible values
until the pre-image is found; however, it needs a lot of time. Another simple
approach is a table lookup, in which an attacker precomputes the images of a one-
way function for all possible pre-images and stores them in a table. The attack
can be carried out quickly, but a large amount of memory is needed to store all
precomputed values. Cryptanalytic time-memory tradeoffs [21, 11, 14, 26, 20, 10,
23, 8, 28, 18] are compromise solutions between time and memory. Cryptanalytic
time-memory tradeoff was introduced by Hellman in 1980 [15]. Rivest proposed
to apply distinguished points technique [13] to Hellman’s method which reduces
the number of table lookup operations. In 2003, a new method, which is referred
to as rainbow method, was suggested by Oechslin [25]. The rainbow method saves
a factor of two in the worst case time complexity compared to Hellman’s method.
Up until now, the rainbow method is the most efficient time-memory tradeoff.
Avoine et al. introduced a technique detecting false alarms, called checkpoints [7].
Using the technique, the cost of false alarms is reduced with a minute amount
of memory.

With the rise of GPGPU, commodity computers are complex heterogeneous
GPU+CPU systems that provide high computational power [24, 12]. The GPU
and CPU can execute in parallel and have their own independent memory sys-
tems connected through the PCIe bus. The GPU+CPU co-processing and data
transfers use the bidirectional PCIe bus. This new architecture poses new chal-
lenges and opportunities in high-performance computing.

In this paper, we propose high-speed parallel implementations of the rain-
bow method in the heterogeneous GPU+CPU system through the analysis of the
behavior of time-memory tradeoffs. We give a complete analysis of the effect of
multiple checkpoints on reducing the cost of false alarms for the non-perfect rain-
bow table, and take advantage of it for load balancing between GPU and CPU.

Parallel Implementations of Rainbow Method 3

The proposed implementation requires no more time on average for resolving
false alarms by fully parallelizing the rainbow method on GPU and CPU. Our
implementation actually finishes earlier on average than generating all online
chains unlike other implementations on GPU. To the best of our knowledge, this
is the first work implementing the rainbow method in a heterogeneous system.

The rest of the paper is organized as follows. We begin with an overview
of modern GPUs and CUDA in Section 2, followed by a brief review of the
rainbow method in Section 3. In Section 4, we describe our fast implementations
in a heterogeneous GPU+CPU system. In Section 5, we analyze the checkpoint
technique. Finally, Section 6 presents the experimental results.

2 GPGPU and CUDA

While traditional GPUs were used for graphical applications, many modern
GPUs can deal with general parallel programs which had been performed nor-
mally on CPUs. CUDA [6] is NVIDIA’s software and hardware architecture
that enables GPUs to be programmed with a variety of high-level programming
languages, and it is a parallel computing architecture that is used to improve
computing performance by exploiting the power of GPU. NVIDIA has released
several improved versions of architectures since its first architecture, G80, and
the newest one is called Fermi [4], which was introduced in 2009.

One of the most attractive features of GPUs is that it has a large number
of processor cores. Basically, GPUs consist of a number of streaming multipro-
cessors (SM), and each SM contains multiple processor cores. The clock rate of
each core is relatively lower than that of a CPU core. In our experiment, we used
the GeForce GTX580 which belongs to the Fermi architecture. The GTX580 ac-
commodates 16 SMs, each of which consists of 32 processor cores operating in
the clock rate 1,544 MHz, as presented in Figure 1. Hence, the total number of
processor cores is 512.

One can program the GPU with a high-level programming language. We write
programs in CUDA C that supports the CUDA programming with a minimal
set of extensions to the C language. In the rest of this section, we will describe
the key features of the CUDA that we must take into account for programming.

Thread Hierarchy One of the key abstractions of the CUDA is a hierarchy of
threads. By this abstraction, we can divide the whole problem into coarse-
grained subproblems, blocks, which can be solved independently in parallel.
A block can be further partitioned into fine-grained subproblems that can
also be solved in parallel within the block. This fine-grained subproblem
unit is called a thread. CUDA’s hierarchy of threads maps to a hierarchy of
processors on the GPU. An SM executes one or more blocks, and CUDA
cores in the SM execute threads.

Scheduling & Branch The way threads are scheduled in GPUs is somewhat
different from that in CPUs. The unit of thread scheduling in SMs is a warp
which is a collection of 32 threads.

4 Jung Woo Kim, Jungjoo Seo, Jin Hong, Kunsoo Park, and Sung-Ryul Kim

L2 cache

Memory controller

DRAM (global memory)

Core 1 Core 2 · · · Core 32

Register file (32,768 x 32-bit)

64KB shared memory/L1 cache

?6

?6

?6

GPU

SM 1
SM 2

...
SM 16

Fig. 1. Fermi architecture

Basically, all the threads within a single warp execute the same instruction
at the same time. However, multiple threads of the same warp may execute
serially. When they meet any flow control instruction such as if A else B,
they could take different execution paths. Then, different execution paths
within a warp are serialized. It is called warp serialization [5, 6], which will
slow down the overall performance.

Memory The physically separated place where CUDA threads are executed
is referred to as device, which includes the GPU. The host is where the C
program runs, and this includes the CPU. The host and device have their
own memory address space. The data to be processed are firstly loaded on
the host memory and then copied to the device memory, so that threads
running on the GPU can access the data. The processed data on the device
needs to be copied back to the host memory after the execution.

The device memory has a hierarchy and it consists of registers, shared mem-
ory, caches and global memory. Registers are the fastest on-chip memory and
the GTX580 contains about 32K registers for each stream multiprocessor.
The global memory resides in the off-chip DRAM on the graphics board. It
has the longest access latency but has the largest space.

3 Rainbow method

In this section, we summarize the rainbow method [25]. Let g be a one-way
function from N to H and Ri be a reduction function from H to N . The function
fi, defined by fi(x) = Ri(g(x)), maps N into N , where |N | = N .

Parallel Implementations of Rainbow Method 5

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

f0

f0

f0

f1

f1

f1

f2

f2

f2

ft−3

ft−3

ft−3

ft−2

ft−2

ft−2

ft−1

ft−1

ft−1

. . .

. . .

. . .

...
...

...
. . .

...
...

...

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

f0

f0

f0

f1

f1

f1

f2

f2

f2

ft−3

ft−3

ft−3

ft−2

ft−2

ft−2

ft−1

ft−1

ft−1

. . .

. . .

. . .

︷ ︸︸ ︷t

m

SPi EPi

Fig. 2. A rainbow table

The rainbow method consists of two phases: precomputation and online
phases. In the precomputation phase, we randomly choose m start points in
N , labeled SP0, SP1, . . . , SPm−1. For each 0 ≤ i < m, we set

xi,0 = SPi,

and compute

xi,j = fj−1(xi,j−1), 1 ≤ j ≤ t

recursively. In other words, m chains of length t are produced starting from SPi

(0 ≤ i < m) as shown in Figure 2. The last element xi,t for each i-th chain is
called an end point (EPi). The pairs of the start and end points, (SPi, EPi), are
stored in a table, and they are sorted with respect to the end points. Note that
all intermediate points are discarded to reduce memory requirements.

In the online phase, given an image y0 = g(x0), we try to invert the one-way
function g(·) to find the pre-image x0, by generating online chains that start
from y0.

At the first iteration, the online chain of length one is generated by computing
y1 = Rt−1(y0) = ft−1(x0), and we check whether it is an end point on the table
by conducting a binary search. If y1 = EPi for some i, which is referred to as
an alarm, it means that x0 is next to EPi in Figure 2 or EPi has more than
one inverse images. The latter case is referred to as a false alarm. Therefore, we
regenerate a chain starting from SPi to compute xi,t−1, and check whether it is
a false alarm or not by computing g(xi,t−1) = y0. If g(xi,t−1) = y0, we find the
pre-image x0, which is equal to xi,t−1, and the online phase stops. If y1 ̸= EPi or
a false alarm occurred, then we compute y2 = ft−1(Rt−2(y0)), the online chain of
length two, and check whether it is an end point. The above process is repeated
until x0 is found or all t online chains fail to invert the given image y0.

The online phase of the rainbow method can be divided into three parts:
online chain, lookup and regenerating chain. The online chain procedure gen-
erates the online chain of length i at the i-th iteration. The lookup procedure

6 Jung Woo Kim, Jungjoo Seo, Jin Hong, Kunsoo Park, and Sung-Ryul Kim

checks whether each of these is an end point (alarm) through a binary search
in the rainbow table. The regenerating chain procedure regenerates the chains
of length (t − i), starting from start points for resolving alarms. Because table
lookup time through a binary search is negligible in comparison to the one-way
function invocation time, the one-way function invocation is the dominant factor
in the overall cost of the rainbow method.

Note that the rainbow method is a probabilistic algorithm. That is, success
is not guaranteed and the success probability depends on the time and memory
allocated for cryptanalysis. If the pre-image x0 that we want to find exists in
the rainbow table, the rainbow method will succeed in finding it; Otherwise, it
will fail. The success probability can be computed by the equation presented in
[19, 25]. In the case of failure, the online phase generates t online chains, and
it carries out t lookups. Also, it regenerates some chains starting from start
points whenever alarms occur in the lookup procedure. On the other hand, if
the rainbow method succeeds in finding the pre-image x0, it immediately stops
in the middle of the online phase.

4 Implementation in a heterogeneous GPU+CPU system

In this section, we describe our implementations in a heterogeneous GPU+CPU
system. Using both GPU and CPU, we implement the rainbow method in paral-
lel. The key factors for achieving good performance are: (i) eliminating the warp
serialization by splitting the online phase of the rainbow method, and (ii) load
balancing between GPU and CPU using checkpoints.

Before explaining our implementations, we first present the table used in our
experiment. Cryptographic hash algorithm SHA-1 was used as the one-way func-
tion. We assumed that our table is used for cracking passwords which consist of
lowercase, uppercase alphabets (a-z, A-Z) and numbers (0-9), and their lengths
are shorter than or equal to 7. That is, N = 62+622+ · · ·+627 ≈ 3.58× 1012 ≈
241.7. We created a single non-perfect4 rainbow table with 70% success proba-
bility, in which m = 80, 530, 636, t = 73, 403. For reasons of efficient memory
access, a start point of ⌈log2 m⌉ = 27 bits is stored in a 32-bit data type, uint32 t,
and an end point of ⌈log2 N⌉ = 42 bits5 is stored in a 64-bit data type, uint64 t.
Thus, the total size of the table is about 0.9 GB. We conducted our experiments
on an Intel i7 2.8GHz quad-core CPU and a GTX580 1544MHz 512-core GPU.
We used Microsoft Visual Studio 2008 environment on Window 7.

The naive implementation of the parallel rainbow method is that each thread
generates the corresponding online chain in parallel. That is, the i-th thread
(1 ≤ i ≤ t) generates the online chain of length i (the online chain procedure),
and it checks whether an alarm occurs (the lookup procedure). If an alarm occurs,
the i-th thread regenerates the chain of length (t− i) and it checks whether the
element in the (t − i)-th column is x0 or a false alarm (the regenerating chain

4 None of the colliding chains in the rainbow table are removed.
5 For the simple implementation, efficient storage techniques [19] such as the index
file and the end point truncation were not considered.

Parallel Implementations of Rainbow Method 7

procedure). We created 896 threads per SM, i.e., total 896×16 = 14, 336 threads.
Thus, at first, threads generate the online chains whose lengths are between 1
and 14,336, and some of them in which alarms occur regenerate the chains and
check whether each of these is a success or a false alarm. If some SM finishes
its workload, the next 896 online chains, whose lengths are between 14,337 and
15,232, are assigned to the SM. We call this implementation the Naive GPU.

Table 1 shows the execution time when it fails to find a pre-image. The sec-
ond row represents the time for executing all three procedures, and the third
row represents the time for executing the online chain and the lookup proce-
dures excluding the regenerating chain procedure. The third column in the table
represents the total length of the chains generated in the online chain and re-
generating chain procedures.

Table 1. Time of online phase when it fails

procedures time chain length

online chain+lookup+regenerating chain 258 sec 4.2× 109

online chain+lookup 13 sec 2.7× 109

Generally, the sum of the chain lengths in the regenerating chain procedure
is smaller than that of the lengths in the online chain procedure, because alarms
occur only in some of the online chains. [17] As can be seen in Table 1, the sum
of chain lengths in the online chain procedure (2.7× 109) is larger than that in
the regenerating chain (1.5 × 109). However, the regenerating chain procedure
takes much more time than the online chain procedure in the Naive GPU. This
is because of warp serialization. Since alarms occur in some of the 32 threads
within a warp, only these threads regenerate chains for resolving alarms. Thus,
the other threads within a warp should wait until the threads finish the regen-
erating chain procedure. We should eliminate the warp serialization to improve
the performance.

To solve this problem (warp serialization), we split the online phase of the
rainbow method into the online chain+lookup procedures (A) and the regener-
ating chain procedure (B). A is processed in the GPU, and B is processed in
the CPU, as in Figure 3. Each thread in the GPU (i) generates the online chain
assigned to itself and (ii) checks whether it is an end point (alarm). (iii) If an
alarm occurs, the number and the length of the corresponding chain are copied
to the alarm table in the host memory. At the same time, (i) the threads in the
CPU check whether the values copied from the GPU exist in the alarm table. (ii)
If so, they read the copied values and (iii) regenerate chains for resolving alarms.
By doing this, we can eliminate the warp serialization that occured in the Naive
GPU. We call this implementation the GPU+CPU.

The execution time of the GPU+CPU is shown in Table 2. The GPU pro-
cesses A in 13 seconds, whereas on the CPU it takes 102 seconds to process B.
While the workload on the GPU is heavier than that on the CPU, the com-

8 Jung Woo Kim, Jungjoo Seo, Jin Hong, Kunsoo Park, and Sung-Ryul Kim

Fig. 3. Implementation in a heterogeneous GPU+CPU system

puting power of the GPU is much better than that of the CPU. Therefore, it
is necessary to reduce the workload on the CPU for the efficient GPU+CPU
implementation.

Table 2. Time of online phase when it fails

online chain+lookup (GPU) regenerating chain (CPU) total

13 sec 102 sec 102 sec

We take advantage of checkpoints [7] for load balancing between GPU and
CPU. By decreasing the number of false alarms with checkpoints, we can reduce
the workload on the CPU. The more checkpoints we use, the less workload the
CPU have to process. In the following section, we analyze the performance im-
provement using checkpoints and their optimal positions. In Section 6, we present
the experimental results when the checkpoints are applied to the GPU+CPU.

5 Checkpoints

By using checkpoints [7], we can reduce the time for the regenerating chain
procedure. We store not only the start and end points of the chains in the
table but also the information of some intermediate points, i.e., checkpoints.
The least significant bits of the intermediate points are usually stored. Using
the information, we can detect false alarms in advance without regenerating the
chains starting from start points. If alarms occur, we compare the information
stored in the table with those of the online chain for each checkpoint. If they
differ at least for one checkpoint, we know for certain that this is a false alarm. In
[7], Avoine et al. analyzed the effect of checkpoints for the perfect rainbow table.
Analysis for the non-perfect rainbow table was done only for one checkpoint in

Parallel Implementations of Rainbow Method 9

Fig. 4. Sizes of the pre-images at the (t− k)-th column

[17]. In this section, we analyze the performance improvement of checkpoints and
their optimal positions when multiple checkpoints are used for the non-perfect
rainbow table.

The set of elements in the k-th column of the rainbow table is denoted byRTk.
Let c1, c2, . . . , cn (c1 < c2 < · · · < cn) be the positions of n 1-bit checkpoints.
That is, n checkpoints are located at (t − cj)-th columns of the table for j =
1, . . . , n.

First, at the k-th iteration (an online chain of length k is generated) for
k ≤ c1, the checkpoints cannot filter out false alarms. Thus, we assume that an
alarm is observed at the k-th iteration such that cj < k ≤ cj+1 for j = 1, . . . , n,
where cn+1 = t. This means that the pre-image x0 is in f−k

⋆ (RTt), where f⋆ is
function fj whose index j is not explicitly specified and f−k

⋆ (RTt) is the set of
pre-images under fk

⋆ (= f⋆ ◦ · · · ◦ f⋆) of the end points RTt. As can be seen in
Figure 4, the following relations hold:

RTt−k ⊂ f
−(k−cj)
⋆ (RTt−cj) ⊂ · · · ⊂ f

−(k−c1)
⋆ (RTt−c1) ⊂ f−k

⋆ (RTt).

We compute the probability of false alarms when checkpoints are used. If

x0 ∈ RTt−k, x0 can be found. If x0 ∈ f
−(k−cj)
⋆ (RTt−cj) \ RTt−k (Figure 5),

a false alarm always occurs. It is because the online chain starting from x0 is
merged with an precomputed chain in the rainbow table before the (t − cj)-
th column, and j checkpoints are thus useless in detecting false alarms. If x0 ∈
f
−(k−cu)
⋆ (RTt−cu)\f

−(k−cu+1)
⋆ (RTt−cu+1

) for 1 ≤ u ≤ j−1 (Figure 6), this means
that the online chain is merged with an chain in the table between cu and cu+1.
Hence, a false alarm occurs with probability 1/2j−u by (j−u) 1-bit checkpoints,

i.e., cu+1, . . . , cj . Finally, if x0 ∈ f−k
⋆ (RTt) \ f−(k−c1)

⋆ (RTt−c1) (Figure 7), a false
alarm occurs with probability 1/2j .

10 Jung Woo Kim, Jungjoo Seo, Jin Hong, Kunsoo Park, and Sung-Ryul Kim

x0

SP EPcj · · ·cu+1 cu · · · c1
-

-
�

︸ ︷︷ ︸
k

Fig. 5. Merge before cj

x0

SP EPcj · · ·cu+1 cu · · · c1
-

-
�

︸ ︷︷ ︸
k

Fig. 6.Merge between cu
and cu+1

x0

SP EPcj · · ·cu+1 cu · · · c1
-

-
�

︸ ︷︷ ︸
k

Fig. 7. Merge after c1

We now compute the improvement in the number of f⋆ applications due to

checkpoints. Let z∗ = |RTt−k|, z0 = |f−k
⋆ (RTt)|, and zj = |f−(k−cj)

⋆ (RTt−cj)| for
j = 1, . . . , n. The probability that x0 ∈ f

−(k−cj)
⋆ (RTt−cj) \RTt−k is

1

N

∣∣∣f−(k−cj)
⋆ (RTt−cj) \RTt−k

∣∣∣ = 1

N
(zj − z∗),

whereN is the size ofN . In this case, a false alarm always occurs. The probability

that x0 ∈ f
−(k−cu)
⋆ (RTt−cu) \ f

−(k−cu+1)
⋆ (RTt−cu+1) is

1

N

∣∣∣f−(k−cu)
⋆ (RTt−cu) \ f

−(k−cu+1)
⋆ (RTt−cu+1)

∣∣∣ = 1

N
(zu − zu+1).

In this case, a false alarm occurs with probability 1/2j−u. The probability that

x0 ∈ f−k
⋆ (RTt) \ f−(k−c1)

⋆ (RTt−c1) is

1

N

∣∣∣f−k
⋆ (RTt) \ f−(k−c1)

⋆ (RTt−c1)
∣∣∣ = 1

N
(z0 − z1)

In this case, a false alarm occurs with probability 1/2j . Therefore, the expected
number of false alarms at the k-th iteration such that cj < k ≤ cj+1 (j =
1, . . . , n) can be written as

1

N

{
(zj − z∗) +

j−1∑
u=0

1

2j−u
(zu − zu+1)

}
. (1)

Also, the expected number of false alarms at the k-th iteration without check-
points is

1

N
(z0 − z∗). (2)

Hence, the expected decreasing number of false alarms at the k-th iteration due
to checkpoints is (2)− (1), which simplifies to

1

N

{
(1− 1

2j
)z0 −

j−1∑
u=0

1

2j−u
zu+1

}
. (3)

Parallel Implementations of Rainbow Method 11

According to Propositions 4 and 5 in [17], z0 ≈ m(1 + k), zu ≈ m(1 + k − cu).
Simplification of (3) using these approximations results in

m

N

j−1∑
u=0

(cu+1

2j−u

)
.

We shall write D(j) for this. At the k-th iteration such that cj < k ≤ cj+1, the
expected decreasing number of false alarms due to checkpoints is D(j) and the
number of f⋆ applications for checking false alarms is t−k+16. The probability
that the k-th iteration is processed is equal to the probability to fail until the
(k − 1)-th iteration. This probability is

k−1∏
i=1

(
1− mt−i

N

)
,

where mj denotes the distinct number of elements in the j-th column of the
rainbow table, i.e., mj ≈ N

N/m+j/2 [7]. Therefore, the expected number of f⋆
applications that can be removed through n 1-bit checkpoints is

n∑
j=1

{ ∑
cj<k≤cj+1

(t− k + 1) ·D(j) ·
k−1∏
i=1

(
1− mt−i

N

)}
,

where cn+1 = t.
Table 3 shows the performance improvement due to the checkpoints and

the optimal positions of those, where N = 3.58 × 1012, m = 80, 530, 636, and
t = 73, 403. The optimal positions represent the ratio from the rightmost column
of the table. We used Maple 12 [3] to obtain these positions. The number of f⋆
applications in the regenerating chain procedure without checkpoints can be
calculated from Theorem 3 of [17].

We made use of 22 1-bit checkpoints. Because N = 3.58 × 1012 ≈ 241.7,
we used uint64 t, which is the data type of 64 bits, to store an end point, as
mentioned in Section 4. An end point was stored in the lower 42 bits, and 22 1-bit
checkpoints were stored in the upper 22 bits which remained empty. Therefore,
no additional memory is needed to store the checkpoints. The 22 checkpoints
are expected to decrease the number of f⋆ applications due to false alarms by
about 84%. The optimal positions of 22 checkpoints are 0.0416, 0.0633, 0.0855,
0.1083, 0.1316, 0.1556, 0.1802, 0.2056, 0.2318, 0.2589, 0.2870, 0.3162, 0.3465,
0.3783, 0.4117, 0.4470, 0.4845, 0.5247, 0.5684, 0.6168, 0.6718, and 0.7381.

6 Experimental Results

In this paper, we introduced three different kinds of implementations using the
GPU: naive GPU, GPU+CPU and GPU+CPU with checkpoints. Figure 8 also

6 Strictly speaking, one extra g application follows (t − k) number of f⋆ applications
in order to check false alarms.

12 Jung Woo Kim, Jungjoo Seo, Jin Hong, Kunsoo Park, and Sung-Ryul Kim

Table 3. Expected numbers of f⋆ applications (unit: t2) in the regenerating chain
procedure and performance improvement due to checkpoints at the optimal positions.

of checkpoints 1 2 3 4 5 6 7 8

of f⋆ applications
without checkpoints† (1)

0.1676

Reduced # of f⋆ applica-
tions with checkpoints†

(2)
0.0354 0.0577 0.0732 0.0847 0.0936 0.1008 0.1066 0.1115

Improvement ((2)/(1)) 21.1% 34.4% 43.7% 50.5% 55.9% 60.1% 63.6% 66.5%

Optimal positions 0.2792 0.2123 0.1732 0.1470 0.1281 0.1136 0.1022 0.0930
0.3591 0.2827 0.2356 0.2028 0.1785 0.1597 0.1446

0.4179 0.3379 0.2863 0.2495 0.2216 0.1996
0.4637 0.3826 0.3287 0.2894 0.2590

0.5008 0.4199 0.3649 0.3239
0.5317 0.4517 0.3962

0.5579 0.4792
0.5806

† The f⋆ applications in the online chain procedure are not included.

shows the experimental results using the CPU, as well as those of the three
implementations presented in this paper. In the case of the CPU, the i-th thread
generates the online chain of length i and regenerates the chain of length (t− i)
from a start point if an alarm occurs, as in the naive GPU. We used the i7
quad-core CPU for our experiment. Every experiment was carried out 50 times,
and numerical values in the figure represent the average times for searching a
pre-image.

There are several GPU-accelerated implementations of the rainbow method:
RainbowCrack [2] and Cryptohaze [1]. The overall performance of the rainbow
method depends on the implementations of the one-way function and the re-
duction function. Because their source codes are not publicly available, however,
direct comparisons are not possible. Also, our work does not focus on the opti-
mized implementations of these functions. Thus, we show the advantage of ours
through an indirect comparison with RainbowCrack and Cryptohaze. Assume
that the implementations of the one-way function and the reduction function
are the same. Then, the online chain procedures of all implementations will take
more or less the same time, since the parallelization of the online chain procedure
is straightforward. The time for the lookup procedure is negligible compared to
the other two procedures. We regard the time for the online chain procedure
as 100%, and measure the total time as its percentage. According to our ex-
periments, RainbowCrack and Cryptohaze take about 56% and 158% time for
the regenerating chain procedure, respectively. Therefore, RainbowCrack and
Cryptohaze take about 156% and 258% for the total time, since they regenerate
chains for resolving false alarms after the online chain and lookup procedures
are finished. However, our method requires no more time on average for the
regenerating chain procedure because the online chain+lookup procedures and

Parallel Implementations of Rainbow Method 13

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

CPU Naive GPU GPU+CPU GPU+CPU

T
im

e
(s

ec
)

190

174

69

12

with checkpoints

Fig. 8. Timings for searching a pre-image. Each bar represents the average time for
the whole 50 experiments.

the regenerating chain procedure are simultaneously executed in GPU and CPU.
Our GPU+CPU with checkpoints (12 seconds) actually finishes earlier on av-
erage than the worst case of the online chain+lookup procedures (13 seconds).
That is, our implementation takes about 92% on average for the total time.

References

1. Cryptohaze gpu rainbow cracker, https://www.cryptohaze.com.

2. RainbowCrack Project, http://project-rainbowcrack.com.

3. Maplesoft, Maple 12 user manual, 2007.

4. Nvidia, Nvidia’s next generation CUDA compute architecture: Fermi, 2009.

5. Nvidia, CUDA best practices guide, 2012.

6. Nvidia, CUDA C programming guide, 2012.

7. G. Avoine, P. Junod, and P. Oechslin. Characterization and improvement of time-
memory trade-off based on perfect tables. ACM Trans. Inf. Syst. Secur., 11(4),
2008.

8. E. Barkan, E. Biham, and A. Shamir. Rigorous bounds on cryptanalytic
time/memory tradeoffs. In CRYPTO, pages 1–21, 2006.

9. D. J. Bernstein, T.-R. Chen, C.-M. Cheng, T. Lange, and B.-Y. Yang. ECM on
graphics cards. In EUROCRYPT, pages 483–501, 2009.

10. A. Biryukov, S. Mukhopadhyay, and P. Sarkar. Improved time-memory trade-offs
with multiple data. In Selected Areas in Cryptography, pages 110–127, 2005.

11. J. Borst, B. Preneel, and J. Vandewalle. On the time-memory tradeoff between
exhaustive key search and table precomputation. In Proc. of the 19th Symposium
in Information Theory in the Benelux, WIC, pages 111–118, 1998.

14 Jung Woo Kim, Jungjoo Seo, Jin Hong, Kunsoo Park, and Sung-Ryul Kim

12. A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O. Storaasli.
State-of-the-art in heterogeneous computing. Scientific Programming, 18(1):1–33,
2010.

13. D. E. Denning. Cryptography and Data Security. Addison-Wesley, 1982. p.100.
14. A. Fiat and M. Naor. Rigorous time/space trade-offs for inverting functions. SIAM

J. Comput., 29(3):790–803, 1999.
15. M. Hellman. A cryptanalytic time-memory trade-off. Information Theory, IEEE

Transactions on, 26(4):401 – 406, July 1980.
16. J. Hermans, F. Vercauteren, and B. Preneel. Speed records for NTRU. In CT-RSA,

pages 73–88, 2010.
17. J. Hong. The cost of false alarms in Hellman and rainbow tradeoffs. Des. Codes

Cryptography, 57(3):293–327, 2010.
18. J. Hong, G. W. Lee, and D. Ma. Analysis of the parallel distinguished point

tradeoff. In INDOCRYPT, pages 161–180, 2011.
19. J. Hong and S. Moon. A comparison of cryptanalytic tradeoff algorithms. Journal

of Cryptology. To appear.
20. J. Hong and P. Sarkar. New applications of time memory data tradeoffs. In

ASIACRYPT, pages 353–372, 2005.
21. K. Kusuda and T. Matsumoto. Optimization of time-memory trade-off crypt-

analysis and its application to DES, FEAL-32 and Skipjack. IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences, E79-
A(1):35–48, 1996.

22. S. A. Manavski. CUDA compatible GPU as an efficient hardware accelerator for
AES cryptography. In ICSPC, 2007.

23. S. Mukhopadhyay and P. Sarkar. Application of LFSRs in time/memory trade-off
cryptanalysis. In WISA, pages 25–37, 2006.

24. J. Nickolls and W. J. Dally. The GPU computing era. IEEE Micro, 30(2):56–69,
2010.

25. P. Oechslin. Making a faster cryptanalytic time-memory trade-off. In CRYPTO,
pages 617–630, 2003.

26. F.-X. Standaert, G. Rouvroy, J.-J. Quisquater, and J.-D. Legat. A time-memory
tradeoff using distinguished points: New analysis & FPGA results. In CHES, pages
593–609, 2002.

27. R. Szerwinski and T. Güneysu. Exploiting the power of GPUs for asymmetric
cryptography. In CHES, pages 79–99, 2008.

28. W. Wang, D. Lin, Z. Li, and T. Wang. Improvement and analysis of VDP method
in time/memory tradeoff applications. In ICICS, pages 282–296, 2011.

