
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2013;00:1–18
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

High-Speed Parallel Implementations of the Rainbow Method
Based on Perfect Tables in a Heterogeneous System†

Jung Woo Kim1, Jungjoo Seo1, Jin Hong2, Kunsoo Park1∗and Sung-Ryul Kim3

1Department of Computer Science and Engineering and Institute of Computer Technology, Seoul National University,
Seoul 151-747, Korea

2Department of Mathematical Sciences and ISaC, Seoul National University, Seoul 151-747, Korea
3Division of Internet and Media, Konkuk University, Seoul 143-701, Korea

SUMMARY

The computing power of graphics processing units (GPU) has increased rapidly, and there has been extensive
research on general-purpose computing on GPU (GPGPU) for cryptographic algorithms such as RSA, ECC,
NTRU, and AES. With the rise of GPGPU, commodity computers have become complex heterogeneous
GPU+CPU systems. This new architecture poses new challenges and opportunities in high-performance
computing. In this paper, we present high-speed parallel implementations of the rainbow method based
on perfect tables, which is known as the most efficient time-memory tradeoff, in the heterogeneous
GPU+CPU system. We give a complete analysis of the effect of multiple checkpoints on reducing the
cost of false alarms, and take advantage of it for load balancing between GPU and CPU. For GTX460,
our implementation is about 1.86 and 3.25 times faster than other GPU-accelerated implementations,
RainbowCrack and Cryptohaze, respectively, and for GTX580, 1.53 and 2.40 times faster. Copyrightc©
2013 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: GPGPU; CUDA; Heterogeneous Computing; Cryptanalysis; Cryptanalytic Time-
Memory Tradeoff; Rainbow Method

1. INTRODUCTION

With the GPU’s rapid evolution from a graphics processor to a programmable parallel processor,
GPU is a many-core multi-threaded multiprocessor that excels at not only graphics but also
computing applications. Today’s GPUs have hundreds of parallel processor cores executing tens of
thousands of parallel threads. Using a large number of processors, GPUs are used for accelerating
the performance of mathematical and scientific works. General-purpose computing on GPUs
(GPGPU) was first introduced in 2006 by unveiling CUDA by NVIDIA [2]. CUDA enables
programmers to easily control GPUs by writing programs similar to C.

Recently, researchers and developers have enthusiastically adopted CUDA and GPU computing
for cryptographic algorithms. In 2007, Manavski et al. efficiently implemented the Advanced
Encryption Standard (AES) algorithm using CUDA [3]. In 2008, Szerwinski and Güneysu made
use of CUDA for GPGPU processing of asymmetric cryptosystems (RSA, DSA, ECC) [4]. In
2009, Bernstein et al. showed that GPU can be used for cryptanalysis as well as implementation of

∗Correspondence to: Kunsoo Park, Department of Computer Science and Engineering and Institute of Computer
Technology, Seoul National University, Seoul 151-747, Korea. E-mail: kpark@theory.snu.ac.kr
†This article shares much of its material with our previous work [1], presented at INDOCRYPT 2012. However, this
work treats the perfect table case, whereas the previous work covered the non-perfect table case.

Copyright c© 2013 John Wiley & Sons, Ltd.

Prepared usingspeauth.cls [Version: 2010/05/13 v3.00]

T
h
i
s

i
s

t
h
e

a
c
c
e
p
t
e
d

v
e
r
s
i
o
n

o
f

S
o
f
t
w
.

P
r
a
c
t
.

E
x
p
e
r
.

4
5
(
6
)
,

p
p
.
8
3
7
–
8
5
5
,

(
2
0
1
5
)
.

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
1
0
0
2
/
s
p
e
.
2
2
5
7

2 J.W. KIM ET AL.

cryptographic algorithms [5]. They implemented the elliptic-curve method for integer factorization
on GPUs. In 2010, NTRU cryptosystem was implemented on CUDA by Hermans et al. [6].

One-way functions are fundamental tools for cryptography,and it is a hard problem to invert
them. There are three generic approaches to invert them. Thesimplest approach is an exhaustive
search. An attacker tries all possible values until the pre-image is found; however, it needs a lot
of time. Another simple approach is a table lookup, in which an attacker precomputes the images
of a one-way function for all possible pre-images and storesthem in a table. The attack can be
carried out quickly, but a large amount of memory is needed tostore all precomputed values.
Cryptanalytic time-memory tradeoffs [7, 8, 9, 10, 11, 12, 13, 14, 15] are compromise solutions
between time and memory. Cryptanalytic time-memory tradeoff was introduced by Hellman in
1980 [16]. Rivest proposed to applydistinguished points[17] to Hellman’s method which reduce
the number of table lookup operations. Borst et al. suggested to use aperfecttable [18] where no
merging chain exists. It is more efficient time-memory tradeoff than the non-perfect table, although
more precomputation effort is required. In 2003, a new method, which is referred to as therainbow
method, was suggested by Oechslin [19]. The rainbow method saves a factor of two in the worst
case time complexity compared to Hellman’s method. Up untilnow, the rainbow method is the most
efficient time-memory tradeoff. Avoine et al. introduced a technique detecting false alarms, called
checkpoints[20]. Using the technique, the cost of false alarms is reduced with a minute amount of
memory.

The rainbow method has been used widely in practice for cracking passwords, and there are
some executable files publicly available [21, 22, 23]. Amongthese, RainbowCrack [23] and
Cryptohaze [21] provide GPU-accelerated implementationsof the rainbow method, and they are
significantly faster than any other implementations on CPU.

With the rise of GPGPU, commodity computers are complex heterogeneous GPU +CPU systems
that provide high computational power [24, 25]. The GPU and CPU can execute in parallel and
have their own independent memory systems connected through the PCIe bus. The GPU+CPU
co-processing and data transfers use the bidirectional PCIe bus. This new architecture poses new
challenges and opportunities in high-performance computing.

In this paper, we propose high-speed parallel implementations of the rainbow method based
on perfect tables in the heterogeneous GPU+CPU system through the analysis of the behavior
of time-memory tradeoffs. We give a complete analysis of theeffect of multiple checkpoints on
reducing the cost of false alarms for the perfect rainbow table, and take advantage of it for load
balancing between GPU and CPU. We compare the performance ofour implementation with those
of RainbowCrack and Cryptohaze in two platforms (GTX460 andGTX580). For GTX460, the
proposed implementation is about 1.86 and 3.25 times fasterthan RainbowCrack and Cryptohaze,
respectively, and for GTX580, 1.53 and 2.40 times faster. Tothe best of our knowledge, this is the
fastest implementation of the rainbow method so far.

The rest of the paper is organized as follows. We begin with preliminaries including an overview
of modern GPUs and a brief review of the rainbow method in Section 2. In Section 3, we analyze
the checkpoint technique. In Section 4, we describe our fastimplementations in a heterogeneous
GPU+CPU system. Finally, Section 5 compares our implementation with other implementations on
GPU, and Section 6 concludes the paper.

2. PRELIMINARIES

2.1. GPGPU and CUDA

While traditional GPUs were used for graphical applications, many modern GPUs can deal with
general parallel programs which had been performed normally on CPUs. CUDA [2] is NVIDIA’s
software and hardware architecture that enables GPUs to be programmed with a variety of high-
level programming languages, and it is a parallel computingarchitecture that is used to improve
computing performance by exploiting the power of GPU. NVIDIA has released several improved

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2013)
Prepared usingspeauth.cls DOI: 10.1002/spe

PARALLEL IMPLEMENTATIONS OF RAINBOW METHOD 3

L2 cache

Memory controller

DRAM (global memory)

Core 1 Core 2 · · · Core 32

Register file (32,768 x 32-bit)

64KB shared memory/L1 cache

?6

?6

?6

GPU

SM 1
SM 2

...
SM 16

Figure 1. Fermi architecture

versions of architectures since its first architecture, G80, and the newest one is called Fermi [26],
which was introduced in 2009.

One of the most attractive features of GPUs is that it has a large number of processor cores.
Basically, GPUs consist of a number of streaming multiprocessors (SM), and each SM contains
multiple processor cores. The clock rate of each core is relatively lower than that of a CPU core.
For example, the GeForce GTX580 accommodates 16 SMs, each ofwhich consists of 32 processor
cores operating in the clock rate 1,544 MHz, as presented in Figure 1. Hence, the total number of
processor cores is 512.

One can program the GPU with a high-level programming language. We write programs in CUDA
C that supports the CUDA programming with a minimal set of extensions to the C language. In the
rest of this section, we will describe the key features of theCUDA that we must take into account
for programming.

Thread Hierarchy One of the key abstractions of the CUDA is a hierarchy of threads. By this
abstraction, we can divide the whole problem into coarse-grained subproblems,blocks, which
can be solved independently in parallel. A block can be further partitioned into fine-grained
subproblems that can also be solved in parallel within the block. This fine-grained subproblem
unit is called athread. CUDA’s hierarchy of threads maps to a hierarchy of processors on the
GPU. An SM executes one or more blocks, and CUDA cores in the SMexecute threads.

Scheduling & Branch The way threads are scheduled in GPUs is somewhat different from that in
CPUs. The unit of thread scheduling in SMs is awarpwhich is a collection of 32 threads.

Basically, all the threads within a single warp execute the same instruction at the same time.
However, multiple threads of the same warp may execute serially. When they meet any flow
control instruction such asif A else B, they could take different execution paths. Then,
different execution paths within a warp are serialized. It is calledwarp serialization[27, 2],
which will slow down the overall performance.

Memory The physically separated place where CUDA threads are executed is referred to asdevice,
which includes the GPU. Thehost is where the C program runs, and this includes the CPU.
The host and device have their own memory address space. The data to be processed are firstly
loaded on the host memory and then copied to the device memory, so that threads running on
the GPU can access the data. The processed data on the device needs to be copied back to the
host memory after the execution.

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2013)
Prepared usingspeauth.cls DOI: 10.1002/spe

4 J.W. KIM ET AL.

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

f0

f0

f0

f1

f1

f1

f2

f2

f2

ft−3

ft−3

ft−3

ft−2

ft−2

ft−2

ft−1

ft−1

ft−1

. . .

. . .

. . .

...
...

...
.. .

...
...

...

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

f0

f0

f0

f1

f1

f1

f2

f2

f2

ft−3

ft−3

ft−3

ft−2

ft−2

ft−2

ft−1

ft−1

ft−1

. . .

. . .

. . .

︷ ︸︸ ︷
t

m

SPi EPi

Figure 2. A rainbow table

The device memory has a hierarchy and it consists of registers, shared memory, caches and
global memory. Registers are the fastest on-chip memory andthe GTX580 contains about
32K registers for each stream multiprocessor. The global memory resides in the off-chip
DRAM on the graphics board. It has the longest access latencybut has the largest space.

2.2. Rainbow Method

In this section, we summarize the rainbow method [19]. Letg be a one-way function fromN toH
andRi be a reduction function fromH toN . The functionfi, defined byfi(x) = Ri(g(x)), maps
N intoN , where|N | = N .

The rainbow method consists of two phases: precomputation and online phases. In the
precomputation phase, we randomly choosem start points inN , labeledSP0, SP1, . . . , SPm−1.
For each0 ≤ i < m, we set

xi,0 = SPi,

and compute
xi,j = fj−1(xi,j−1), 1 ≤ j ≤ t

recursively. In other words,m chains of lengtht are produced starting fromSPi (0 ≤ i < m) as
shown in Figure 2. The last elementxi,t for eachi-th chain is called an end point (EPi). The pairs
of the start and end points,(SPi, EPi), are stored in a table, and they are sorted with respect to the
end points. Note that all intermediate points are discardedto reduce memory requirements. To make
the tableperfect, only one chain among the chains that have same end points is stored; the rest of
chains are removed. In a perfect table, therefore, all end points are distinct.

In the online phase, given an imagey0 = g(x0), we try to invert the one-way functiong(·) to find
the pre-imagex0, by generating online chains that start fromy0.

At the first iteration, the online chain of length one is generated by computingy1 = Rt−1(y0) =
ft−1(x0), and we check whether it is an end point on the table by conducting a binary search. If
y1 = EPi for somei, which is referred to as analarm, it means thatx0 is next toEPi in Figure 2
or EPi has more than one inverse images. The latter case is referredto as afalse alarm. Therefore,
we regenerate a chain starting fromSPi to computexi,t−1, and check whether it is a false alarm
or not by computingg(xi,t−1) = y0. If g(xi,t−1) = y0, we find the pre-imagex0, which is equal
to xi,t−1, and the online phase stops. Ify1 6= EPi or a false alarm occurred, then we compute
y2 = ft−1(Rt−2(y0)), the online chain of length two, and check whether it is an endpoint. The
above process is repeated untilx0 is found or allt online chains fail to invert the given imagey0.

The online phase of the rainbow method can be divided into three parts:online chain, lookupand
regenerating chain. For1 ≤ k ≤ t, theonline chainprocedure generates the online chain of lengthk.
The lookupprocedure checks whether each of these is an end point (alarm) through a binary search
in the rainbow table. Theregenerating chainprocedure regenerates the chains of length(t− k),
starting from start points for resolving alarms. Because table lookup time through a binary search is

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2013)
Prepared usingspeauth.cls DOI: 10.1002/spe

PARALLEL IMPLEMENTATIONS OF RAINBOW METHOD 5

Figure 3. Sizes of the pre-images of end points at the(t− γ)-th column

negligible in comparison to the one-way function invocation time, the one-way function invocation
is the dominant factor in the overall cost of the rainbow method.

Note that the rainbow method is a probabilistic algorithm. That is, success is not guaranteed
and the success probability depends on the time and memory allocated for cryptanalysis. If the
pre-imagex0 that we want to find exists in the rainbow table, the rainbow method will succeed in
finding it; Otherwise, it will fail. The success probabilitycan be computed by the equation presented
in [28, 19]. In the case of failure, the online phase generates t online chains, and it carries outt
lookups. Also, it regenerates some chains starting from start points whenever alarms occur in the
lookup procedure. On the other hand, if the rainbow method succeeds in finding the pre-imagex0,
it immediately stops in the middle of the online phase.

3. CHECKPOINTS

By using checkpoints [20], we can reduce the time for the regenerating chain procedure. We store not
only the start and end points of the chains in the table but also the information of some intermediate
points, i.e.,checkpoints. The least significant bits of the intermediate points are usually stored. Using
the information, we can detect false alarms in advance without regenerating the chains starting from
start points. If alarms occur, we compare the information stored in the table with those of the online
chain for each checkpoint. If they differ at least for one checkpoint, we know for certain that this
is a false alarm. In [20], Avoine et al. analyzed the effect ofcheckpoints for themaximalperfect
rainbow table. Hong [29] took an approach different from that of [20]. In [29], the effect of multiple
checkpoints is analyzed for Hellman’s table, but for the rainbow table only a single checkpoint is
analyzed. In this section, we extend the analysis of [29] into multiple checkpoints for the perfect
rainbow table. We also analyze the performance improvements for three cases in terms of the order
of online chain generation. These results are used for efficient implementations in Section 4.

The set of elements in thej-th column of the rainbow table is denoted byRTj, whose size ism for
all 1 ≤ j ≤ t in the perfect table. Letc1, c2, . . . , cn (c1 < c2 < · · · < cn) be the positions ofn 1-bit
checkpoints. That is,n checkpoints are located at(t− cj)-th columns of the table forj = 1, . . . , n.
If an online chain of lengthγ is generated such thatγ ≤ c1, the checkpoints cannot filter out false
alarms. Thus, we assume that an alarm is observed when an online chain of lengthγ is generated
such thatcj < γ ≤ cj+1 for j = 1, . . . , n, wherecn+1 = t. This means that the pre-imagex0 is in
f−γ
? (RTt), wheref? is functionfj whose indexj is not explicitly specified andf−γ

? (RTt) is the

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2013)
Prepared usingspeauth.cls DOI: 10.1002/spe

6 J.W. KIM ET AL.

x0

SP EPcj· · ·cu+1 cu · · · c1
-

-
�

︸ ︷︷ ︸

γ
Figure 4. Merge beforecj

x0

SP EPcj· · ·cu+1 cu · · · c1
-

-
�

︸ ︷︷ ︸

γ
Figure 5. Merge between

cu andcu+1

x0

SP EPcj· · ·cu+1 cu · · · c1
-

-
�

︸ ︷︷ ︸

γ
Figure 6. Merge afterc1

set of pre-images underfγ
? (= f? ◦ · · · ◦ f?) of the end pointsRTt. As can be seen in Figure 3, the

following relations hold:

RTt−γ ⊂ f
−(γ−cj)
? (RTt−cj) ⊂ · · · ⊂ f

−(γ−c1)
? (RTt−c1) ⊂ f−γ

? (RTt).

Lemma 1
Let z0,γ = |f−γ

? (RTt)| andzj,γ = |f
−(γ−cj)
? (RTt−cj)| for j = 1, . . . , n. The expected decreasing

number of false alarms due to checkpoints when an online chain of lengthγ such thatcj < γ ≤ cj+1

is generated is

D(j, γ) =
1

N

{

(1−
1

2j
)z0,γ −

j−1
∑

u=0

1

2j−u
zu+1,γ

}

,

wherez0,γ ≈ m(1 + γ)(1 − mγ
4N) andzu,γ ≈ m(1 + γ − cu) +

(γ−cu)(γ−cu+2)
c2u

{m · cu + 2N ln(1−
m·cu
2N)}.

Proof
We compute the cost of false alarms when checkpoints are used. For ∀x0 ∈ f

−(γ−cj)
? (RTt−cj) \

RTt−γ (Figure 4), a false alarm always occurs. It is because the online chain starting from
x0 is merged with an precomputed chain in the rainbow table before the (t− cj)-th column,
and j checkpoints are thus useless in detecting false alarms. For∀x0 ∈ f

−(γ−cu)
? (RTt−cu) \

f
−(γ−cu+1)
? (RTt−cu+1

) for 1 ≤ u ≤ j − 1 (Figure 5), this means that the online chain is merged
with an chain in the table betweencu andcu+1. Hence, a false alarm occurs with probability1/2j−u

by (j − u) 1-bit checkpoints, i.e.,cu+1, . . . , cj . Finally, for ∀x0 ∈ f−γ
? (RTt) \ f

−(γ−c1)
? (RTt−c1)

(Figure 6), a false alarm occurs with probability1/2j.
We now compute the improvement in the number off? applications due to checkpoints. The

expected number of false alarms without checkpoints whenx0 ∈ f
−(γ−cj)
? (RTt−cj) \RTt−γ is

1

N

∣
∣
∣f

−(γ−cj)
? (RTt−cj) \RTt−γ

∣
∣
∣ =

1

N
(zj,γ −m),

whereN is the size ofN . In this case, a false alarm always occurs. The expected number of false
alarms without checkpoints whenx0 ∈ f

−(γ−cu)
? (RTt−cu) \ f

−(γ−cu+1)
? (RTt−cu+1

) is

1

N

∣
∣
∣f

−(γ−cu)
? (RTt−cu) \ f

−(γ−cu+1)
? (RTt−cu+1

)
∣
∣
∣ =

1

N
(zu,γ − zu+1,γ).

In this case, the(j − u) checkpoints cannot filter out false alarms with probability1/2j−u. The
expected number false alarms without checkpoints whenx0 ∈ f−γ

? (RTt) \ f
−(γ−c1)
? (RTt−c1) is

1

N

∣
∣
∣f−γ

? (RTt) \ f
−(γ−c1)
? (RTt−c1)

∣
∣
∣ =

1

N
(z0,γ − z1,γ)

In this case, thej checkpoints cannot filter out false alarms with probability1/2j. Therefore,
the expected number of false alarms when an online chain of length γ is generated such that

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2013)
Prepared usingspeauth.cls DOI: 10.1002/spe

PARALLEL IMPLEMENTATIONS OF RAINBOW METHOD 7

cj < γ ≤ cj+1 (j = 1, . . . , n) can be written as

1

N

{

(zj,γ −m) +

j−1
∑

u=0

1

2j−u
(zu,γ − zu+1,γ)

}

. (1)

Also, the expected number of false alarms without checkpoints when an online chain of lengthγ is
generated is

1

N
(z0,γ −m). (2)

Hence, the expected decreasing number of false alarms due tocheckpoints when an online
chain of lengthγ is generated is(2)− (1), which simplifies to the claimed value. In addition,
according to Propositions 4 and 5 in [29],z0,γ ≈ m(1 + γ)(1 − mγ

4N), zu,γ ≈ m(1 + γ − cu) +
(γ−cu)(γ−cu+2)

c2u
{m · cu + 2N ln(1 − m·cu

2N)}.

Now, we analyze the performance improvement for three casesin terms of the order of online
chain generation: at thek-th iteration,(i) the online chain of lengthk is generated, i.e., the online
chains are generated from shortest to longest;(ii) the online chain of length(t− k + 1) is generated,
i.e., the online chains are generated from longest to shortest; (iii) for a fixed1 ≤ α ≤ t, if k ≤ α,
the online chain of lengthk is generated; otherwise, the online chain of length(t− k + α+ 1) is
generated, i.e., the third case is a hybrid of(i) and(ii).

Theorem 2(From shortest to longest online chains)
Assume that the online chain of lengthk is generated at thek-th iteration. The expected number of
f? applications that can be removed throughn 1-bit checkpoints is

n∑

j=1

{ ∑

cj<k≤cj+1

(t− k + 1) ·D(j, k) ·
(

1−
m

N

)k−1 }

,

wherecn+1 = t.

Proof
At the k-th iteration, the online chain of lengthk is generated, i.e.,γ = k. Hence, forcj < γ =
k ≤ cj+1, the expected decreasing number of false alarms due to checkpoints isD(j, k) and the
number off? applications for checking false alarms ist− k + 1†. The probability that thek-th
iteration is processed is equal to the probability to fail until the (k − 1)-th iteration. This probability

is
(
1− m

N

)k−1
. Therefore, we obtain the claimed value.

Theorem 3(From longest to shortest online chains)
Assume that the online chain of length(t− k + 1) is generated at thek-th iteration. The expected
number off? applications that can be removed throughn 1-bit checkpoints is

n∑

j=1

{ ∑

t+1−cj+1≤k<t+1−cj

k ·D(j, t− k + 1) ·
(

1−
m

N

)k−1 }

.

Proof
At thek-th iteration, the online chain of length(t− k + 1) is generated, i.e.,γ = t− k + 1. Hence,
for cj < γ ≤ cj+1 ,i.e., t+ 1− cj+1 ≤ k < t+ 1− cj , the expected decreasing number of false
alarms due to checkpoints isD(j, t− k + 1) and the number off? applications for checking false

alarms isk. The probability that thek-th iteration is processed is
(
1− m

N

)k−1
. Therefore, we obtain

the claimed value.

†Strictly speaking, one extrag application follows(t− k) number off? applications in order to check false alarms.

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2013)
Prepared usingspeauth.cls DOI: 10.1002/spe

8 J.W. KIM ET AL.

Theorem 4(Hybrid)
Assume that, for a fixed1 ≤ α ≤ t, the online chain of lengthk is generated ifk ≤ α and otherwise
that of length(t− k + α+ 1) at thek-th iteration. The expected number off? applications that can
be removed throughn 1-bit checkpoints is

n∑

j=1

{ ∑

cj<k≤cj+1

1≤k≤α

(t− k + 1) ·D(j, k) ·
(

1−
m

N

)k−1

+

∑

t+α+1−cj+1≤k<t+α+1−cj
α+1≤k≤t

(k − α) ·D(j, t+ α+ 1− k) ·
(

1−
m

N

)k−1 }

.

Proof
At the k-th iteration such that1 ≤ k ≤ α, the expected number off? applications that can be
removed throughn 1-bit checkpoints is the same as the first case (from shortestto longtest). At
thek-th iteration such thatα+ 1 ≤ k ≤ t, the online chain of length(t+ α+ 1− k) is generated,
i.e.,γ = t+ α+ 1− k. Hence, forcj < γ ≤ cj+1, i.e., fort+ α+ 1− cj+1 ≤ k < t+ α+ 1− cj,
the expected decreasing number of false alarms due to checkpoint is D(j, t+ α+ 1− k) and the
number off? applications for checking false alarms isk − α. The probability that thek-th iteration
is processed is

(
1− m

N

)k−1
. Therefore, we obtain the claimed value.

Tables I and II show the performance improvement due to the checkpoints and the optimal
positions of those for three cases (from shortest to longestonline chains, from longest to shortest,
and a hybrid withα = 15, 360)‡, whereN = 3.58× 1012, m = 80, 530, 636, andt = 71, 535. The
optimal positions represent the ratio from the rightmost column of the table. One way to find
the optimal positions of checkpoints is to test all possiblecombinations of the checkpoints and
choose the positions that maximize the improvement due to the checkpoints. However, it is too time
consuming to test all

(
t
n

)
combinations. We make use of an approximate algorithm. At the first

stage, we globally find an approximate solution. Lets = 5, 000 be an initial interval, and we test
all n-combinations of{i · s+ 1 : i = 0, ..., 14}, i.e., the set of points in [1..71,535] starting from
1 with intervals of 5,000. Letpi for i = 1, . . . , n be the points we obtain from the first stage. We
repeatedly find a more accurate solution nearpi’s by reducing the interval. At the next stage, the
interval is set tos2 (s← s

2), and we test the pointspi ± j · s for i = 1, . . . , n andj = 0, 1, 2, and then
updatepi’s to the values that maximize the improvement. This processis repeated whiles > 10.
We used our CUDA C program to calculate the improvements in parallel. We verified that the
approximate solution was the same as the exact solution computed by all possible combinations for
n = 1, 2, . . . , 7 (andt = 71, 535).

The number off? applications in the regenerating chain procedure without checkpoints for the
first case (from shortest to longest) can be calculated from Theorem 2 of [29], and those for the
other cases (from longest to shortest and hybrid) can be calculated from the following theorems.
These theorems can be easily obtained in a way similar to Theorem 2 of [29].

Theorem 5(From longest to shortest online chains)
Assume that the online chain of length(t− k + 1) is generated at thek-th iteration. The number of
f? applications in the regenerating chain procedure without checkpoints is

t∑

k=1

k ·
m

N
(t− k + 2)

{

1−
m(t− k + 1)

4N

}

·
(

1−
m

N

)k−1

.

Theorem 6(Hybrid)
Assume that, for a fixed1 ≤ α ≤ t, the online chain of lengthk is generated ifk ≤ α and otherwise

‡The reason thatα is set as15, 360 will be explained in Section 4.

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2013)
Prepared usingspeauth.cls DOI: 10.1002/spe

PARALLEL IMPLEMENTATIONS OF RAINBOW METHOD 9

Table I. Expected numbers off? applications (unit:t2) in the regenerating chain procedure and performance
improvement due to checkpoints at the optimal positions. (STL: from shortest to longest online chains, LTS:

from longest to shortest online chains)

of checkpoints 1 2 3 4 5 6 7

STL

of f? applications
without checkpoints
(1)

0.1062

Reduced # of f?
applications with
checkpoints (2)

0.0198 0.0327 0.0419 0.0490 0.0545 0.0591 0.0628

Improvement ((2)/(1)) 18.6% 30.8% 39.5% 46.1% 51.3% 55.6% 59.1%
Optimal positions 0.2412 0.1809 0.1472 0.1250 0.1091 0.0970 0.0874

0.3188 0.2471 0.2048 0.1760 0.1548 0.1384
0.3767 0.2998 0.2525 0.2193 0.1944

0.4224 0.3433 0.2929 0.2566
0.4599 0.3800 0.3275

0.4915 0.4114
0.5184

LTS

of f? applications
without checkpoints
(3)

0.0981

Reduced # of f?
applications with
checkpoints (4)

0.0210 0.0342 0.0433 0.0501 0.0553 0.0594 0.0628

Improvement ((4)/(3)) 21.4% 34.9% 44.1% 51.1% 56.4% 60.6% 64.0%
Optimal positions 0.3994 0.3165 0.2647 0.2284 0.2013 0.1804 0.1635

0.4902 0.4036 0.3459 0.3038 0.2715 0.2457
0.5522 0.4669 0.4077 0.3632 0.3280

0.5980 0.5157 0.4567 0.4113
0.6335 0.5546 0.4967

0.6621 0.5865
0.6855

of f? applications
without checkpoints
(5)

0.0882

Reduced # of f?
applications with
checkpoints (6)

0.0149 0.0249 0.0328 0.0384 0.0434 0.0470 0.0505

Hybrid Improvement ((6)/(5)) 16.9% 28.2% 37.2% 43.5% 49.2% 53.3% 57.3%
(α = 15, 360) Optimal positions 0.3994 0.1443 0.1316 0.1036 0.0974 0.0812 0.0777

0.4389 0.3583 0.1662 0.1557 0.1279 0.1221
0.5199 0.3856 0.3352 0.1786 0.1702

0.5395 0.4587 0.3552 0.3197
0.5920 0.4744 0.4208

0.6034 0.5262
0.6412

that of length(t− k + α+ 1) at thek-th iteration. The number off? applications in the regenerating

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2013)
Prepared usingspeauth.cls DOI: 10.1002/spe

10 J.W. KIM ET AL.

Table II. Reduced numbers off? applications (unit:t2) in the regenerating chain procedure when 22 1-bit
checkpoints are used.

Reduced # Improvement Optimal positions

STL 0.0861 81.1%

0.0363, 0.0555, 0.0754, 0.0957, 0.1167, 0.1385,
0.1609, 0.1843, 0.2084, 0.2334, 0.2596, 0.2871,
0.3159, 0.3463, 0.3785, 0.4128, 0.4496, 0.4895,
0.5334, 0.5826, 0.6396, 0.7102

LTS 0.0826 84.2%

0.0692, 0.1036, 0.1379, 0.1719, 0.2058, 0.2396,
0.2733, 0.3070, 0.3406, 0.3743, 0.4081, 0.4421,
0.4763, 0.5109, 0.5459, 0.5816, 0.6180, 0.6555,
0.6946, 0.7359, 0.7804, 0.8308

0.0707 80.2%

0.0318, 0.0483, 0.0655, 0.0830, 0.1011, 0.1195,
0.1385, 0.1580, 0.1782, 0.1990, 0.2661, 0.3102,
0.3542, 0.3985, 0.4430, 0.4880, 0.5338, 0.5808,
0.6293, 0.6801, 0.7346, 0.7961

Hybrid
(α = 15, 360)

chain procedure without checkpoints is

α∑

k=1

(t− k + 1) ·
m

N
(1 + k)(1−

mk

4N
) ·

(

1−
m

N

)k−1

+

t∑

k=α+1

(k − α) ·
m

N
(t− k + α+ 2)

{

1−
m(t− k + α+ 2)

4N

}

·
(

1−
m

N

)k−1

.

Note that the required numbers off? applications in the regenerating chain procedure without
checkpoints vary with the orders of online chain generation. (According to Table I,0.1062t2,
0.0981t2, and0.0882t2 for STL, LTS, and hybrid, respectively) Also, the effect of checkpoints
are similar regardless of the orders of online chain generation. As a result, for LTS and
hybrid, the expected total lengths of the chains generated in the regenerating chain procedure
with 22 checkpoints are reduced by about 23% (= (0.1062−0.0861)−(0.0981−0.0826)

(0.1062−0.0861)) and 13% (=
(0.1062−0.0861)−(0.0882−0.0707)

(0.1062−0.0861)), respectively, compared to STL.
Table III shows the effects of LTS and Hybrid over STL in the regenerating chain procedure

without checkpoints. The effects are measured for various values ofm andN . For hybrid, we select
the optimalα that maximizes the improvement. The ratio of the optimal position of α from the
rightmost column is 0.1676 for all values ofm andN that we tested§. As can be seen from the
table, the effects do not depend onm andN . The cost of LTS and Hybrid in the regenerating chain
procedure are reduced by about 7.6% and 17.6% compared to STLfor all m andN , respectively.
Therefore, changing the order would be effective for allm andN .

4. IMPLEMENTATION IN A HETEROGENEOUS GPU+CPU SYSTEM

In this section, we describe our implementations of the perfect rainbow method in a heterogeneous
GPU+CPU system. Using both GPU and CPU, we implement the rainbow method in parallel. The
key factors for achieving good performance are:(i) eliminating the warp serialization by splitting the
online phase of the rainbow method,(ii) load balancing between GPU and CPU using checkpoints,
(iii) changing the order of the online chain generation, and(iv) fully parallelizing the rainbow method
by reinvoking GPU for resolving false alarms.

§The value ofα can be easily computed by using Maple [30].

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2013)
Prepared usingspeauth.cls DOI: 10.1002/spe

PARALLEL IMPLEMENTATIONS OF RAINBOW METHOD 11

Table III. Effects of LTS and Hybrid over STL in the regenerating chain procedure without checkpoints for
variousm andN , wherem0 = 80, 530, 636.

m Order
N

240 245 250 255 260

m0/4
LTS 7.656% 7.656% 7.656% 7.656% 7.656%

Hybrid 17.612% 17.612% 17.612% 17.612% 17.612%

m0
LTS 7.656% 7.656% 7.656% 7.656% 7.656%

Hybrid 17.612% 17.612% 17.612% 17.612% 17.612%

4m0
LTS 7.656% 7.656% 7.656% 7.656% 7.656%

Hybrid 17.612% 17.612% 17.612% 17.612% 17.612%

8m0
LTS 7.656% 7.656% 7.656% 7.656% 7.656%

Hybrid 17.612% 17.612% 17.612% 17.612% 17.612%

Before explaining our implementations, we first present thetable used in our experiment.
Cryptographic hash algorithm SHA-1 was used as the one-way function. We assumed that our
table is used for cracking passwords which consist of lowercase, uppercase alphabets (a-z, A-Z) and
numbers (0-9), and their lengths are shorter than or equal to7. That is,N = 62 + 622 + · · ·+ 627 ≈
3.58× 1012 ≈ 241.7. We intend to create a single perfect rainbow table with 80% success probability
with m = 80, 530, 636 and t = 71, 535. According to [31], we can make such a table withm0 =
412, 383, 272 precomputed chains. After removing the chains, except onlyone, that have same end
points in the precomputation phase,80, 529, 164 chains among them0 chains actually remained. As
a result, we used a perfect table ofm = 80, 529, 164 andt = 71, 535 in our experiment. For reasons
of efficient memory access, a start point ofdlog2 m0e = 29 bits is stored in a 32-bit data type,
uint32 t, and an end point ofdlog2 Ne = 42 bits¶ is stored in a 64-bit data type,uint64 t. Thus,
the total size of the table is about0.9 GB. Throughout this section, we conducted our experiments
on two Intel Xeon E5506 2.13GHz quad-core CPUs (8 cores in total) and a GTX580 1544MHz
512-core GPU. We used Microsoft Visual Studio 2008 environment on Window 7.

The naive implementation of the parallel rainbow method is that each thread generates the
corresponding online chain in parallel. That is, thei-th thread (1 ≤ i ≤ t) generates the online
chain of lengthi (the online chain procedure), and it checks whether an alarmoccurs (the lookup
procedure). If an alarm occurs, thei-th thread regenerates the chain of length(t− i) and it
checks whether the element in the(t− i)-th column isx0 or a false alarm (the regenerating chain
procedure). We created 640 threads per SM, i.e., total640× 16 = 10, 240 threads. Thus, at first,
threads generate the online chains whose lengths are between 1 and 10,240, and some of them in
which alarms occur regenerate the chains and check whether each of these is a success or a false
alarm. If some SM finishes its workload, the next 640 online chains, whose lengths are between
10,241 and 10,880, are assigned to the SM. We call this implementationthe Naive GPU.

Table IV shows the execution time when it fails to find a pre-image. The second row represents the
time for executing all three procedures, and the third row represents the time for executing the online
chain and the lookup procedures excluding the regeneratingchain procedure. The third column in
the table represents the total length of the chains generated in the online chain and regenerating
chain procedures.

Table IV. Time of the online phase when it fails

procedures time chain length

online chain+lookup+regenerating chain96.6 sec 3.6× 109

online chain+lookup 5.6 sec 2.6× 109

¶For the simple implementation, efficient storage techniques [28] such as the index file and the end point truncation were
not considered.

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2013)
Prepared usingspeauth.cls DOI: 10.1002/spe

12 J.W. KIM ET AL.

Figure 7. Implementation in a heterogeneous GPU+CPU system

Generally, the sum of the chain lengths in the regenerating chain procedure is smaller than that
of the lengths in the online chain procedure, because alarmsoccur only in some of the online
chains. [29] As can be seen in Table IV, the sum of chain lengths in the online chain procedure
(2.6× 109) is larger than that in the regenerating chain (1.0× 109). However, the regenerating chain
procedure takes much more time than the online chain procedure in the Naive GPU. This is because
of warp serialization. Since alarms occur in some of the 32 threads within a warp, only these threads
regenerate chains for resolving alarms. Thus, the other threads within a warp should wait until
the threads finish the regenerating chain procedure. We should eliminate the warp serialization to
improve the performance.

GPU+CPU. To solve this problem (warp serialization), we split the online phase of the rainbow
method into the online chain+lookup procedures (A) and the regenerating chain procedure (B). A is
processed in the GPU, andB is processed in the CPU, as in Figure 7. Each thread in the GPU(i)
generates the online chain assigned to itself and(ii) checks whether it is an end point (alarm).(iii) If
an alarm occurs, the number and the length of the corresponding chain are copied to the alarm table
in the host memory. At the same time,(i) the threads in the CPU check whether the values copied
from the GPU exist in the alarm table.(ii) If so, they read the copied values and(iii) regenerate
chains for resolving alarms. By doing this, we can eliminatethe warp serialization that occurred in
the Naive GPU. We call this implementationthe GPU+CPU.

Table V. Time of the online phase when it fails

online chain+lookup (GPU) regenerating chain (CPU) total
5.6 sec 52 sec 52 sec

The execution time of the GPU+CPU is shown in Table V. The GPU processesA in 5.6 seconds,
whereas on the CPU it takes52 seconds to processB. While the workload on the GPU is heavier than
that on the CPU, the computing power of the GPU is much better than that of the CPU. Therefore,
it is necessary to reduce the workload on the CPU for the efficient GPU+CPU implementation.

Load Balancing Through Checkpoints. We take advantage of checkpoints [20] for load balancing
between GPU and CPU. By decreasing the number of false alarmswith checkpoints, we can reduce
the workload on the CPU. The more checkpoints we use, the lessworkload the CPU have to process.
We made use of 22 1-bit checkpoints. BecauseN = 3.58× 1012 ≈ 241.7, we useduint64 t, which
is the data type of 64 bits, to store an end point, as mentionedabove. An end point was stored in
the lower 42 bits, and 22 1-bit checkpoints were stored in theupper 22 bits which remained empty.
Therefore, no additional memory is needed to store the checkpoints. When the online chains are

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2013)
Prepared usingspeauth.cls DOI: 10.1002/spe

PARALLEL IMPLEMENTATIONS OF RAINBOW METHOD 13

 0

 20

 40

 60

 80

 100

CPU Naive GPU GPU+CPU GPU+CPU

T
im

e
(s

ec
)

93

55

25

5.6

with checkpoints

Figure 8. Timings of searching for a pre-image. Each bar represents the average time for the whole 50
experiments.

generated from shortest to longest, the 22 checkpoints are expected to decrease the number off?
applications due to false alarms by about 81.1% and their optimal positions are in Table II.

So far, we introduced three different kinds of implementations using the GPU: naive GPU,
GPU+CPU and GPU+CPU with checkpoints. Figure 8 also shows the experimental results using
the CPU, as well as those of the three implementations presented in this paper. In the case of the
CPU, thei-th thread generates the online chain of lengthi and regenerates the chain of length
(t− i) from a start point if an alarm occurs, as in the naive GPU. We used two Intel Xeon E5506
CPUs for our experiment. Every experiment was carried out 50times, and numerical values in the
figure represent the average times for searching a pre-image. As can be seen from the figure, the
GPU+CPU with checkpoints is 17 times faster than the CPU and 9.8 times faster than the naive
GPU. Also, the GPU+CPU with checkpoints is 4.5 times faster than the GPU+CPU.

Order of Online Chain Generation. We can further improve the performance by changing the
order of online chain generation. Generally, it is efficientto generate the online chains from shortest
to longest. However, it is not true in the GPU+CPU implementations. Because the computing power
of the CPU is much worse than that of the GPU, it is important toreduce the workload on the CPU,
i.e., the number off? applications in the regenerating chain procedure.

Figure 9 shows the expected number off? applications in the regenerating chain procedure with
respect to the length of an online chain when 22 1-bit checkpoints are applied. The cost of the
regenerating chain procedure is{m

N
(1 + γ)(1 − mγ

4N)−D(j, γ)} · (t− γ + 1) when the online chain
of lengthγ such thatcj < γ ≤ cj+1 is generated. In Figure 9, some decreasing steps occur at the
positions of checkpoints, and there is a clear trend of decreasing cost as the length of the online chain
increases. Therefore, in order to reduce the expected length of chains created in the regenerating
chain procedure, it should generate the online chains from longest to shortest. As explained in
Section 3, the expected total length of the chains generatedin the regenerating chain procedure is
reduced by about 23%, compared to STL.

Figure 10 shows the average times of the GPU+CPU with checkpoints to search for a pre-image in
three cases in terms of the order of online chain generation.Every case uses its optimal checkpoints
calculated in Table II. The first and the second bars represent the average times only for success
and failure cases, respectively. The third bar represents the average time for all 50 experiments.
Contrary to our expectations, the GPU+CPU with checkpointsfrom longest to shortest online

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2013)
Prepared usingspeauth.cls DOI: 10.1002/spe

14 J.W. KIM ET AL.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10000 20000 30000 40000 50000 60000 70000

C
os

t

Length of Online Chain

Figure 9. The expected number off? applications in the regenerating chain procedure when 22 1-bit
checkpoints for LTS are applied.

 2

 4

 6

 8

 10

 12

 14

STL LTS Hybrid

T
im

e
(s

ec
)

4.786 4.936

3.668

10.254

13.087

11.293

5.879
6.566

5.193

(α = 15,360)

success
failure

total

Figure 10. Average time of the GPU+CPU with 22 1-bit checkpoints to search for a pre-image in 50
experiments. (STL: from shortest to longest online chains,LTS: from longest to shortest online chains)

chains is slightly slower than that from shortest to longestonline chains. It is owing to the long
start-up time of the regenerating chain procedure on the CPU(i.e., the time until the first alarm
occurs and the alarm information is copied to the alarm tablein the host memory). In the case
that online chains are generated from longest to shortest, it takes long time to generate the first
online chain. However, if we generate online chains from shortest to longest, a large number of
online chains are quickly generated at the same time in the GPU, and a sufficient number of alarms
occur not to make the CPU idle. In GPU, thousands of online chains could be generated in parallel.
Therefore, the implementation from longest to shortest online chains takes longer start-up time than

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2013)
Prepared usingspeauth.cls DOI: 10.1002/spe

PARALLEL IMPLEMENTATIONS OF RAINBOW METHOD 15

that from shortest to longest online chains. We can infer from the average times of the failure case in
Figure 10 that the start-up time of the implementation from longest to shortest online chains is about
13.087− 10.254 = 2.833 seconds longer than that of the implementation from shortest to longest
online chains.

The best solution (hybrid) is to combine the two ordering ways above in order to reduce both the
start-up time and the workload on the CPU. At thek-th iteration, ifk ≤ α for a fixed1 ≤ α ≤ t,
we generate online chains from shortest to longest in order to reduce the start-up time of CPU;
otherwise, we generate online chains from longest to shortest in order to reduce the workload on
CPU. That is, ifk ≤ α, the online chain of lengthk is generated; otherwise, the online chain of
length(t− k + α+ 1) is generated. By settingα as a large integer, we can reduce the start-up time,
but the workload on CPU increases. Hence, it is important to choose appropriate valueα to balance
the start-up time and the workload on CPU. We empirically found outα = 15, 360 to minimize the
average time of searching for a pre-image. As explained in Section 3, the expected total length of
the chains generated in the regenerating chain procedure isreduced by about13%, compared with
the implementation from shortest to longest online chains.Figure 10 shows that the hybrid with
α = 15, 360 improves the performance of the GPU+CPU with checkpoints byabout13% by simply
changing the order of online chain generation.

Reinvoking GPU. In the GPU+CPU, the GPU generates online chains and deliverstheir alarm
information to the CPU; the CPU regenerates chains using thealarm information received from the
GPU. Hence, the GPU usually finishes earlier than the CPU. Table VI shows the average time of the
GPU+CPU with checkpoints in the hybrid order. As can be seen from Table VI, the GPU finishes
1.174 seconds earlier than the CPU on average, and the GPU becomes idle for this time. Therefore,
to achieve the best performance, it is required to fully exploit the computation power of the GPU.

Table VI. Average time of the online phase for 50 experiments(Hybrid with α = 15, 360)

online chain+lookup (GPU) regenerating chain (CPU) total
4.019 sec 5.193 sec 5.193 sec

We reinvoke the GPU for resolving false alarms, i.e., the GPUand the CPU could regenerate
chains together. If the regenerating chain procedure on theCPU is not finished yet after the online
chain+lookup procedure on the GPU is finished, the GPU reads the alarm information from the
alarm table and regenerates chains for resolving false alarms. Since the CPU is also regenerating
chains at this moment, the GPU reads the alarm table in the reverse order of the CPU. Each thread
in the GPU first reads each of the last 3,840 entries of the alarm table and regenerates chains for
resolving false alarms with the threads in the CPU.

Table VII shows the average time of the implementation, reinvoking GPU. From the table, we can
see that the time for the regenerating chain procedure is reduced by about 10%, and so is the total
time.

5. COMPARISON

In this section, we compare the performance of ours with those of other GPU-accelerated
implementations. There are several implementations of therainbow method publicly available
now [21, 22, 23]. Ophcrack [22] provides only a CPU-accelerated implementation, whereas
RainbowCrack [23] and Cryptohaze [21] provide not only a CPU-accelerated implementation
but also a GPU-accelerated one. As the implementations on GPU are much faster than the

Table VII. Average time of online phase for 50 experiments (Reinvoking GPU)

online chain+lookup regenerating chain total
4.059 sec 4.665 sec 4.665 sec

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2013)
Prepared usingspeauth.cls DOI: 10.1002/spe

16 J.W. KIM ET AL.

implementations on CPU, we compare ours with only GPU-accelerated ones of RainbowCrack and
Cryptohaze. The source codes of RainbowCrack and Cryptohaze are not publicly available (only
their executable files are available), and thus we can just run their executable files for making the
perfect tables and cracking the target images.

Table VIII. Tradeoff parameters and size (GB) of the perfecttables

RainbowCrack Cryptohaze Ours
m0 412,383,272 562,383,272 412,383,272
m 80,532,743 80,555,916 80,529,164
t 71,535 71,535 71,535

Size (GB) 1.2 1.6 0.9
Success Prob. 80.00% 80.01% 80.00%

We created the perfect rainbow tables for each implementation: RainbowCrack, Cryptohaze,
and ours. Table VIII shows the tradeoff parameters and the table size in GB. To make the
perfect table of 80% success probability forN = 3.58× 1012, in which m = 80, 530, 636 and
t = 71, 535, we createdm0 precomputed chains of length71, 535 for the three implementations,
wherem0 = 412, 383, 272 for RainbowCrack and ours butm0 = 562, 383, 272 for Cryptohaze.
About 1.4 times more precomputed chains for Cryptohaze weregenerated to make the perfect table
with m distinct end points, i.e., the cost of the precomputation phase of Cryptohaze is 1.4 times
larger than those of RainbowCrack and ours. The success probabilities of the three perfect tables are
approximately equal to 80%. The size of the perfect table of Cryptohaze is the biggest among the
three implementations. The checkpoint technique is not available in RainbowCrack and Cryptohaze,
and our implementation uses the table of 0.9 GB including checkpoints as explained in Section 4.

Table IX. Specifications of GTX460 and GTX580

GTX460 GTX580
Clock rate (Mhz) 1,430 1,544

of SM 7 16
of cores per SM 48 32
Total # of cores 336 512

We tested the three implementations using two different GPUs: GTX460 and GTX580. The
specifications of these GPUs are shown in Table IX. For example, the GTX580 accommodates
16 SMs, each of which consists of 32 cores operating in the clock rate 1,544 MHz. The GTX580
has better performance than the GTX460. With each of these GPUs, we used two Intel Xeon E5506
2.13 GHz quad-core CPUs.

Table X shows the timings of RainbowCrack, Cryptohaze and ours of searching for a pre-image.
We randomly generated 200 input images and executed the three implementations using these
input images. The 80.5%, 80.5% and 80.0% out of the input images were actually succeeded for
RainbowCrack, Cryptohaze and ours, respectively. The timings were measured as an average value
over 200 trials. The second to the fourth rows represent the timings over two Xeon CPUs and
GTX460. The fifth to the seventh rows represent the timings over two Xeon CPUs and GTX580.
RainbowCrack and Cryptohaze regenerate chains on GPU for resolving false alarms after the online
chain and lookup procedures are finished, whereas the onlinechain+lookup procedures and the
regenerating chain procedure are simultaneously executedin GPU and CPU in our implementation.
Hence, the total time of RainbowCrack and Cryptohaze is the sum of the times for the online
chain+lookup and the regenerating chain procedures, but our total time is equal to the maximum
of the two. As a result, for GTX460, our implementation is about 1.86 and 3.25 times faster than
RainbowCrack and Cryptohaze, respectively, and for GTX580, 1.53 and 2.40 times faster. Our
implementation fully exploits GPU and CPU but the others take advantage of only GPU. Hence,
the better the relative performance of CPU to GPU is, the better is our implementation, compared

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2013)
Prepared usingspeauth.cls DOI: 10.1002/spe

PARALLEL IMPLEMENTATIONS OF RAINBOW METHOD 17

Table X. Timings of searching for a pre-image. (sec)

GPU implementation online chain+lookup regenerating chain total

GTX460
RainbowCrack 11.181 2.027 (0.383) 13.208 (11.564)

Cryptohaze 10.505 12.525 (2.367) 23.030 (12.872)
Ours 6.602 7.091 7.091

GTX580
RainbowCrack 6.268 1.118 (0.211) 7.386 (6.479)

Cryptohaze 5.445 6.170 (1.166) 11.615 (6.611)
Ours 4.238 4.832 4.832

to the others. The values in parentheses are hypothetic timings of RainbowCrack and Cryptohaze,
assuming that the 22 checkpoints for STL are applied and thusthe cost for the regenerating chain
procedure is reduced by 81.1%. Our implementation would be better than the other implementations
even under this assumption (for GTX460, 1.63 and 1.82 times better than RainbowCrack and
Cryptohaze, respectively).

6. CONCLUSION

In this paper, we proposed the parallel implementations of the rainbow method based on perfect
tables in a GPU+CPU heterogeneous system. For achieving thebest performance, we first split the
online phase into two procedures: the online chain+lookup procedure and the regenerating chain
procedure. Second, we gave a complete analysis of the effectof multiple checkpoints for the perfect
rainbow table, and we made use of it for load balancing between GPU and CPU. Third, we changed
the order of the online chain generation for the heterogeneous system. Finally, we fully exploited a
GPU+CPU heterogeneous system by reinvoking GPU for resolving false alarms. According to our
experimental result, our implementation is faster than anyother implementations on GPU.

ACKNOWLEDGEMENTS

This work was supported by the National Research Foundationof Korea (NRF) grant funded by the Korea
government (MEST) (No. 20120006492) and the Basic Science Research Program through NRF funded by
MEST (2012R1A1B4003379).

REFERENCES

1. Kim JW, Seo J, Hong J, Park K, Kim SR. High-speed parallel implementations of the rainbow method in a
heterogeneous system.INDOCRYPT, 2012; 303–316.

2. Nvidia, CUDA C programming guide 2012.
3. Manavski SA. CUDA compatible GPU as an efficient hardware accelerator for AES cryptography.ICSPC, 2007.
4. Szerwinski R, Güneysu T. Exploiting the power of GPUs forasymmetric cryptography.CHES, 2008; 79–99.
5. Bernstein DJ, Chen TR, Cheng CM, Lange T, Yang BY. ECM on graphics cards.EUROCRYPT, 2009; 483–501.
6. Hermans J, Vercauteren F, Preneel B. Speed records for NTRU. CT-RSA, 2010; 73–88.
7. Barkan E, Biham E, Shamir A. Rigorous bounds on cryptanalytic time/memory tradeoffs.CRYPTO, 2006; 1–21.
8. Biryukov A, Mukhopadhyay S, Sarkar P. Improved time-memory trade-offs with multiple data.Selected Areas in

Cryptography, 2005; 110–127.
9. Fiat A, Naor M. Rigorous time/space trade-offs for inverting functions.SIAM J. Comput.1999;29(3):790–803.

10. Kusuda K, Matsumoto T. Optimization of time-memory trade-off cryptanalysis and its application to DES, FEAL-
32 and Skipjack.IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
1996;E79-A(1):35–48.

11. Standaert FX, Rouvroy G, Quisquater JJ, Legat JD. A time-memory tradeoff using distinguished points: New
analysis & FPGA results.CHES, 2002; 593–609.

12. Hong J, Sarkar P. New applications of time memory data tradeoffs.ASIACRYPT, 2005; 353–372.
13. Mukhopadhyay S, Sarkar P. Application of LFSRs in time/memory trade-off cryptanalysis.WISA, 2006; 25–37.
14. Wang W, Lin D, Li Z, Wang T. Improvement and analysis of VDPmethod in time/memory tradeoff applications.

ICICS, 2011; 282–296.
15. Hong J, Lee GW, Ma D. Analysis of the parallel distinguished point tradeoff.INDOCRYPT, 2011; 161–180.
16. Hellman M. A cryptanalytic time-memory trade-off.Information Theory, IEEE Transactions onJul 1980;26(4):401

– 406, doi:10.1109/TIT.1980.1056220.

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2013)
Prepared usingspeauth.cls DOI: 10.1002/spe

18 J.W. KIM ET AL.

17. Denning DE.Cryptography and Data Security. Addison-Wesley, 1982. P.100.
18. Borst J, Preneel B, Vandewalle J. On the time-memory tradeoff between exhaustive key search and table

precomputation.Proc. of the 19th Symposium in Information Theory in the Benelux, WIC, 1998; 111–118.
19. Oechslin P. Making a faster cryptanalytic time-memory trade-off.CRYPTO, 2003; 617–630.
20. Avoine G, Junod P, Oechslin P. Characterization and improvement of time-memory trade-off based on perfect tables.

ACM Trans. Inf. Syst. Secur.2008;11(4).
21. Cryptohaze gpu rainbow cracker,https://www.cryptohaze.com. [25 January 2013].
22. Ophcrack,http://ophcrack.sourceforge.net. [25 January 2013].
23. RainbowCrack Project,http://project-rainbowcrack.com. [25 January 2013].
24. Nickolls J, Dally WJ. The GPU computing era.IEEE Micro2010;30(2):56–69.
25. Brodtkorb AR, Dyken C, Hagen TR, Hjelmervik JM, Storaasli OO. State-of-the-art in heterogeneous computing.

Scientific Programming2010;18(1):1–33.
26. Nvidia, Nvidia’s next generation CUDA compute architecture: Fermi 2009.
27. Nvidia, CUDA best practices guide 2012.
28. Hong J, Moon S. A comparison of cryptanalytic tradeoff algorithms.Journal of Cryptology2012; doi:10.1007/

s00145-012-9128-3.
29. Hong J. The cost of false alarms in Hellman and rainbow tradeoffs.Des. Codes Cryptography2010;57(3):293–327.
30. Maplesoft, Maple 12 user manual 2007.
31. Lee GW, Hong J. A comparison of perfect table cryptanalytic tradeoff algorithms.Technical Report, Cryptology

ePrint Archive, Report 2012/540 2012.
32. Warren HS.Hacker’s Delight (2nd Edition), chap. Integer division by constants. Addison-Wesley, 2003.

A. OPTIMIZED DIVISION & MODULAR ARITHMETIC

The iterating functionfi in our implementation consists of miscellaneous procedures such as the reduction
function Ri. In such procedures other than the one-way functiong, a number of division and modular
arithmetic operations on 64-bit integers are executed. These two operations cause significant performance
degradation since their costs are much more expensive than the other simple primitive instructions such as
addition and logical operations.

Table XI. Timings of searching for a pre-image in 50 experiments

Previous version [1]
Reinvoking GPU Reinvoking GPU
w/o optimization w/ optimization

Time 6.599 sec 6.211 sec 4.665 sec

In our current implementation throughout this paper, the division and the modular arithmetic operations
are replaced by a couple of operations that consist of addition and logical shift operations. Table XII shows
the optimized procedure that performs the division and the modular arithmetic operations for a constant
divisor to compute quotientq and remainderr on dividenda. In our implementation, the division and the
modular arithmetic operations with divisor 62 are frequently used when the points, which are represented as
integers between 0 andN − 1, are converted to their corresponding passwords, where 62 is the number of
symbols (a-z, A-Z, and 0-9). We refer to [32] for the detailedexplanation of the optimized procedure. The
performance improvement on GTX580 is shown in Table XI. The same perfect table of ours was used, and
the average times of searching for a pre-image on the same random images of Section 4 were measured. The
second column represents the time of GPU+CPU with checkpoints in hybrid order without optimization.
The third and fourth columns represent the time of reinvoking GPU with checkpoints in hybrid order. The
optimized procedure reduces the time by about 25%.

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2013)
Prepared usingspeauth.cls DOI: 10.1002/spe

PARALLEL IMPLEMENTATIONS OF RAINBOW METHOD 19

Table XII. Optimized integer division and modular arithmetic

Previous version [1] Optimized one
q = a/62 q = (a >> 5)
r = a%62 q = (q >> 5) + q

q = (q >> 10) + q
q = (q >> 20) + q
q = (q >> 20) + q
r = ((((((((q << 1) + q) << 1) + q) << 1) + q) << 1) + q) << 1
r = a− r
if (r >= 124)
{

q+ = 2
r− = 124

}
else if(r >= 62)
{

q ++
r− = 62

}

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Pract. Exper.(2013)
Prepared usingspeauth.cls DOI: 10.1002/spe

