
Asian Journal Of Computer Science And Information Technology 2: 6 (2012) 153 – 157.

Contents lists available at www.innovativejournal.in

Asian Journal of Computer Science and Information Technology

Journal homepage: http://www.innovativejournal.in/index.php/ajcsit

INCREASING TCP’S INITIAL CONGESTION WINDOW AS A MANIFEST CONSTANT TO
SCALE

Oludele Awodele*, Enem Theophilus Aniemeka

Computer Science Department, Babcock University, Ilisan-Remo, Ogun state, Nigeria.

This is a plagiarism that combines parts ripped out from
(at least) the following three works.

John Kristoff (?)
TCP Congestion Control
March 2000 (?)
https://condor.depaul.edu/jkristof/technotes/congestion.pdf
This note, which is similar to Ref-[6], does not seem to have been published
formally.

Van Jacobson
Congestion Avoidance and Control
ACM SIGCOMM '88 Communication Architecture and Protocols, (1988)
https://doi.org/10.1145/52324.52356
This is cited as Ref-[7].

Nandita Dukkipati, Tiziana Refice, Yuchung Cheng, Jerry Chu, Tom
Herbert, Amit Agarwal, Arvind Jain, Natalia Sutin
An argument for increasing TCP’s initial congestion window
ACM SIGCOMM Computer Communication Review 40(3), July 2010
https://doi.org/10.1145/1823844.1823848

The material include below (CC BY 3.0) was obtained from
http://innovativejournal.in/index.php/ajcsit/article/view/295

mailto:delealways@yahoo.com

Asian Journal Of Computer Science And Information Technology 2: 6 (2012) 153 – 157.

Contents lists available at www.innovativejournal.in

Asian Journal of Computer Science and Information Technology

Journal homepage: http://www.innovativejournal.in/index.php/ajcsit

153

INCREASING TCP’S INITIAL CONGESTION WINDOW AS A MANIFEST CONSTANT TO
SCALE

Oludele Awodele*, Enem Theophilus Aniemeka

Computer Science Department, Babcock University, Ilisan-Remo, Ogun state, Nigeria.

 ARTICLE INFO ABSTRACT

Corresponding Author:
Oludele Awodele,
Computer Science Department,
Babcock University, Ilisan-Remo,
Ogun state, Nigeria

This paper discusses some Transmission Control Protocol (TCP) congestion
control algorithm, and proposes increasing TCP’s initial congestion window to
at least fifteen segments (about 25 KB). Transmission Control Protocol (TCP)
flow start with an initial congestion window at most three (3) segments or
about 4 KB of data. Most Web transactions are short-lived and TCP’s initial
congestion window is a critical parameter in determining how quickly flows
can finish. The rapid growth of the internet in terms of the volume of activity
and traffic it carries over the past decades represents a remarkable example of
the scalability of the internet architecture, which in spite of the growth, the
standard TCP’s initial congestion value has not changed.

©2012, AJCSIT, All Right Reserved.

INTRODUCTION
Internet network have experienced an explosive

growth over the past few years and with that growth have
come severe congestion problems. For Internet to continue
to thrive, its congestion control algorithm must remain
effective [1]. TCP is the most widely used protocol in the
transport layer on the Internet. Frankly speaking, TCP has
changed very little since its design in the early 1980’s. a
few “tweaks” and “knobs” have been added, but the
standard value of TCP’s initial congestion window has
remained unchanged since 2002 [2].

This paper proposes to increase TCP’s initial
congestion window to reduce Web latency during the slow
start phase of a connection. TCP uses the slow start
algorithm early in the connection lifetime to grow the
amount of data that may be outstanding at a given time.
Slow start increases the congestion window by the number
of data segments acknowledged for each received
acknowledgment. Thus the congestion window grows
exponentially and increases in size until packet loss occurs,
typically because of router buffer overflow, at which point
the maximum capacity of the connection has been probed
and the connection exits slow start to enter the congestion
avoidance phase. The initial congestion window is at most
four segments, but more typically is three segments for
standard Ethernet (approximately 4KB) [3]. The majority
of connections on the Web are short-lived and finish before
exiting the slow start phase, making TCP’s initial
congestion window (init_cwnd) a crucial parameter in
determining flow completion time. The premise is that the
initial congestion window should be increased to speed up
short Web transactions while maintaining robustness. A
2009 study [4], reveals that the average connection
bandwidth globally is 1.7Mbps with more than 50% of
clients having bandwidth above 2Mbps, while the usage of

narrowband (<256Kbps) has shrunk to about 5% of clients.
At the same time, applications devised their own
mechanisms for faster download of Web pages. Popular
Web browsers, including Internet Explorer 8 (IE8) [5],
Firefox 3 and Google’s Chrome, open up to six TCP
connections per domain, partly to increase parallelism and
avoid head-offline blocking of independent HTTP
requests/responses, but mostly to boost start-up
performance when downloading a Web page.
This paper does not cover the basics of the TCP protocol
itself, but rather the underlying designs and algorithm as
they apply to problem of network overload and
congestion.[6]
2.0 STANDARD TCP CONGESTION CONTROL
ALGORITHMS

The standard fare in TCP implementations today
can be found in RFC 2581. This reference document
specifies five standard congestion control algorithms that
are now in common use. Each of the algorithms noted
within that document was actually designed long before
the standard was published [7].
The five algorithms, Slow Start, Congestion Avoidance, Fast
Retransmit, Fast Recovery and Selective Acknowledgement
are described below.
2.1 Slow Start

Slow Start, a requirement for TCP software
implementations is a mechanism used by the sender to
control the transmission rate, otherwise known as sender-
based flow control. This is accomplished through the return
rate of acknowledgements from the receiver. In other
words, the rate of acknowledgements returned by the
receiver determine the rate at which the sender can
transmit data. When a TCP connection first begins, the Slow
Start algorithm initializes a congestion window to one

pl
ag
ia
ri
sm

mailto:delealways@yahoo.com
Most of this section is a verbatim copy of Section-3.0 found in https://condor.depaul.edu/jkristof/technotes/congestion.pdfNote that Ref-[6] is also similar, but the above note matches even better.

Oludele et. al/Increasing TCP’s Initial Congestion Window as a Manifest Constant to Scale

154

segment, which is the maximum segment size (MSS)
initialized by the receiver during the connection
establishment phase. When acknowledgements are
returned by the receiver, the congestion window increases
by one segment for each acknowledgement returned. Thus,
the sender can transmit the minimum of the congestion
window and the advertised window of the receiver, which
is simply called the transmission window. Slow Start is
actually not very slow when the network is not congested
and network response time is good. It takes time Rlog2W
where R is the round-trip-time and W is the window size in
packets (fig. 1). For example, the first successful
transmission and acknowledgement of a TCP segment
increases the window to two segments. After successful
transmission of these two segments and
acknowledgements completes, the window is increased to
four segments. Then eight segments, then sixteen segments
and so on, doubling from there on out up to the maximum
window size advertised by the receiver or until congestion
finally does occur. At some point the congestion window
may become too large for the network or network
conditions may change such that packets may be dropped.
Packets lost will trigger a timeout at the sender. When this
happens, the sender goes into congestion avoidance mode
as described in the next section.

Figure 1: The Chronology of a Slow-start
2.2 Congestion Avoidance

During the initial data transfer phase of a TCP
connection the Slow Start algorithm is used. However,
there may be a point during Slow Start that the network is
forced to drop one or more packets due to overload or
congestion. If this happens, Congestion Avoidance is used
to slow the transmission rate [9]. However, Slow Start is
used in conjunction with Congestion Avoidance as the
means to get the data transfer going again so it doesn’t
slow down and stay slow. In the Congestion Avoidance
algorithm a retransmission timer expiring or the reception
of duplicate ACKs can implicitly signal the sender that a
network congestion situation is occurring. The sender
immediately sets its transmission window to one half of the
current window size (the minimum of the congestion
window and the receiver’s advertised window size), but to
at least two segments. If congestion was indicated by a
timeout, the congestion window is reset to one segment,
which automatically puts the sender into Slow Start mode.

If congestion was indicated by duplicate ACKs, the Fast
Retransmit and Fast Recovery algorithms are invoked.

As data is received during Congestion Avoidance,
the congestion window is increased.

However, Slow Start is only used up to the halfway
point where congestion originally occurred. This halfway
point was recorded earlier as the new transmission
window. After this halfway point, the congestion window is
increased by one segment for all segments in the
transmission window that are acknowledged. This
mechanism will force the sender to more slowly grow its
transmission rate, as it will approach the point where
congestion had previously been detected.
2.3 Fast Retransmit

When a duplicate ACK is received, the sender does
not know if it is because a TCP segment was lost or simply
that a segment was delayed and received out of order at the
receiver. If the receiver can re-order segments, it should
not be long before the receiver sends the latest expected
acknowledgement. Typically no more than one or two
duplicate ACKs should be received when simple out of
order conditions exist. If however more than two duplicate
ACKs are received by the sender, it is a strong indication
that at least one segment has been lost. The TCP sender will
assume enough time has lapsed for all segments to be
properly re-ordered by the fact that the receiver had
enough time to send three duplicate ACKs. When three or
more duplicate ACKs are received, the sender does not
even wait for a retransmission timer to expire before
retransmitting the segment (as indicated by the position of
the duplicate ACK in the byte stream). This process is called
the Fast Retransmit algorithm and was first defined in [8].
Immediately following Fast
Retransmit is the Fast Recovery algorithm.
2.4 Fast Recovery

Fast Retransmit algorithm is used when duplicate
ACKs are being received, the TCP sender has implicit
knowledge that there is data still flowing to the receiver.
Why? The reason is because duplicate ACKs can only be
generated when a segment is received. This is a strong
indication that serious network congestion may not exist
and that the lost segment was a rare event. So instead of
reducing the flow of data abruptly by going all the way into
Slow Start, the sender only enters Congestion Avoidance
mode. Rather than start at a window of one segment as in
Slow Start mode, the sender resumes transmission with a
larger window, incrementing as if in Congestion Avoidance
mode. This allows for higher throughput under the
condition of only moderate congestion [10].
2.5 Selective Acknowledgements
Whenever a TCP segment has been sent and the sender’s
retransmission timer expires, the sender is forced to
retransmit the segment, which the sender assumes has
been lost. However, it is possible that between the time
when the segment was initially sent and the time when the
retransmission window expired, other segments in the
window may have been sent after the lost segment. It is
also possible that these later segments arrived at the
receiver and are simply queued awaiting the missing
segment so they can be properly reordered. The receiver
has no way of informing the sender that it has received
other segments because of the requirement to
acknowledgement only the contiguous bytes it has
received. This case demonstrates a potential inefficiency in
the way TCP handles the occasional loss of segments.

pl
ag
ia
ri
sm

This sentence appears in Ref-[7]

This figure appears in Ref-[7].

This is Section-4.1 from https://condor.depaul.edu/jkristof/technotes/congestion.pdf

Oludele et. al/Increasing TCP’s Initial Congestion Window as a Manifest Constant to Scale

155

Ideally, the sender should only retransmit the lost
segment(s) while the receiver continues to queue the later
segments. This behaviour was identified as a potential
improvement in TCP’s congestion control algorithms as
early as 1988 [11]. It was only until recently that a
mechanism to retransmit just the lost segments in these
situations was put into standard TCP implementations [12],
[13].

Selective Acknowledgement (or SACK) is this
technique implemented as a TCP option that can help
reduce unnecessary retransmissions on the part of the
sender. If the TCP connection has negotiated the use of
SACK (through the use of the TCP header option fields), the
receiver can offer feedback to the sender in the form of the
selective acknowledgement option. The receiver reports to
the sender, which blocks of data have arrived using the
format show in figure 2 below.
bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31

 Kind = 5 length
Left Edge of 1st Block
Right Edge of 1st Block

Left Edge of nth Block
Right Edge of nth Block

Figure 2 SACK Option

This list of blocks in the SACK option tells the
sender which contiguous byte stream blocks it has
received. At maximum, four SACK blocks can be sent in one
TCP segment because of the maximum size of the options
field in a TCP head is 40 bytes and each block report
consists of 8 bytes plus the option header field of 4 bytes
(for a total of 36 bytes). Note that the SACK information is
advisory information only. The sender cannot rely upon the
receiver to maintain the out-of-order data. Obviously the
performance gain is to be had when the receiver does
queue and re-order data that has been reported with the
SACK option so that the sender limits its retransmissions.
3.0 ANALYTICAL EVALUATION ON THE TCP SLOW-
START ALGORITHM

TCP uses two main window-based mechanism; the
receive window and the congestion window. The former is
the receive-side limit. The later is the number of segments
that will be sent before waiting for an acknowledgement. In
a perfect world (no packet loss, orderly arrival of segments,
compliant devices, etc) increasing the initial congestion
window lowers the initial latency – less round trips are
required to transfer the same amount of data. The
inefficiency in the way TCP handles the occasional loss of
segments. Ideally, the sender should only transmit the loss
segment(s) while the receiver continues to queue the later
segments. This was not the case, which gave rise the SACK
option.
The congestion window is best expressed in multiples of
the MSS (Maximum Segment Size). RFC 3390 defines the
allowed initial_cwnd as:

min (4 * MSS, max(2 * MSS, 4380 bytes))
A related parameter is the ssthresh (slow-start threshold).
RFC 5681 states that congestion avoidance is used if cwnd >
ssthresh or cwnd >= ssthresh, otherwise slow-start is in
effect. The default congestion avoidance algorithm in Linus
2.6.19+, CUBIC, sets the initial ssthresh to 0, so initial
congestion avoidance is used, unless an ssthresh metric
higher than congestion window is cached from the
previous connection. During congestion avoidance,
congestion window is incremented, but CUBIC does not
follow the recommended formula cwnd += min (N, SMSS) or

cwnd += SMSS * SMSS/cwnd, where N is the number of
ACKed bytes and SMSS is the Sender Side MSS. Instead, the
window is set according the cubic function of time since the
last congestion. It does not rely on the ACKed byte count,
allowing the window to grow at the same rate for low and
high-latency flows [21].
TCP is a complex protocol, its specifications spread over
tens of RFCs. Every modification affects the behaviour of
several other mechanisms. Increasing the congestion
window increases the burstiness of traffic.
4.0 BENEFITS OF ALLOWING TCP TO START WITH
HIGHER INIT_CWND

In light of these trends, allowing TCP to start with a
higher init_cwnd offers the following Benefits:
4.1 Reduce latency. Latency of a transfer completing
in slow start without losses [14], As link speeds scale up,
TCP’s latency is dominated by the number of round-trip-
times (RTT) in the slow-start phase. Increasing init_cwnd
enables transfer to finish in fewer RTTs.
4.2 Keep up with growth in Web page sizes. The
Internet average Web page size is 384KB [15] including
HTTP headers and compressed resources. An average sized
page requires multiple RTTs to download when using a
single TCP connection with a small init_cwnd. To improve
page load times, Web browsers routinely open multiple
concurrent TCP connections to the same server. Web sites
also spread content over multiple domains so browsers can
open even more connections [16]. A study on the maximum
number of parallel connections that browsers open to load
a page [17] showed Firefox 2.0 opened 24 connections and
Internet Explorer 8 (IE8) opened 180 connections while
still not reaching its limit. These techniques not only
circumvent TCP’s congestion control mechanisms [18], but
are also inefficient as each new flow independently probes
for end-to-end bandwidth and incurs the slow start
overhead. Increasing init_cwnd will not only mitigate the
need for multiple connections, but also allow newer
protocols such as SPDY [19] to operate efficiently when
downloading multiple Web objects over a single TCP
connection.
4.3 Allow short transfers to compete fairly with
bulk data traffic. Internet traffic measurements indicate
that most bytes in the network are in bulk data transfers
(such as video), while the majority of connections are
short-lived and transfer small amounts of data. Statistically,
on start-up, a short-lived connection is already competing
with connections that have a congestion window greater
than three segments. Because short-lived connections, such
as Web transfers, don’t last long enough to achieve their
fair-share rate, a higher init_cwnd gives them a better
chance to compete with bulk data traffic. [20]
4.4 Allow faster recovery from losses. An initial
window larger than three segments increases the
likelihood that losses can be recovered through Fast
Retransmit rather than the longer initial retransmission
timeout. Furthermore, in the presence of congestion, the
widespread deployment of Selective Acknowledgments
(SACK) enables a TCP sender to recover multiple packet
losses within a round-trip time.

The proposal to increase TCP’s init_cwnd to at
least fifteen segments (approximately 25KB) was born out
of the need to satisfy some properties, which includes:

(i) Minimize average Web page download.
(ii) Minimize impact on tail latency due to

increased packet loss.

pl
ag
ia
ri
sm

This is a badly copied version of Fig-3 from https://condor.depaul.edu/jkristof/technotes/congestion.pdf

The work this was copied from proposes "ten segments" here.

This is a copy of the Introduction section fromNandita Dukkipati, Tiziana Refice, Yuchung Cheng, Jerry Chu, Tom Herbert, Amit Agarwal, Arvind Jain, Natalia SutinAn argument for increasing TCP’s initial congestion windowACM SIGCOMM Computer Communication Review 40(3), July 2010https://doi.org/10.1145/1823844.1823848

Oludele et. al/Increasing TCP’s Initial Congestion Window as a Manifest Constant to Scale

156

(iii) Maintain fairness with competing flows.
The increase in TCP’s initial congestion window to

fifteen segments improves the average TCP latency
compared to using three segments and yet it is sufficiently
robust for use in the internet.
There are numerous studies in literature on speeding up
short transfers over new TCP connections. These
techniques range from faster start-up mechanisms using
cached congestion windows such as TCP Fast Start and
Congestion Manager to more complex schemes requiring
router support such as Quick Start. These solutions are
neither widely deployed, nor standardized, and do not have
practical reference implementations.
5.0. CLIENT RECEIVE WINDOWS

Since TCP can only send the minimum of the
congestion window and the client’s advertised receive
window, the receive window (rwnd) may limit the
potential performance improvement of increasing init
cwnd. To this end, clients need to advertise at least a 25KB
receive window on a connection to fully benefit. Overall,
many client connections have a large enough receive
window to fully benefit from using init cwnd=15 segments.
5.1 Negative impact
Having enumerated the overall benefits of using a higher
initial congestion window; I want to mention the costs,
specifically cases where latency increases. Increase in
latency primarily arises from packet losses caused by
overflowing bottleneck buffers, either at end-systems or at
intermediate routers and switches. Losses prolong TCP
flows by adding extra RTTs required to recover lost
packets, and occasionally even resulting in retransmission
timeouts. Internet measurements and studies show that a
critical bottleneck in the Internet lies in the last mile at the
user’s access link. Thus, if there is a cost associated with
init cwnd=15, it is likely that we will observe increased
congestion and packet losses.
CONCLUSIONS

Increasing TCP’s initial congestion window is a
small change with a significant positive impact on Web
transfer latency. While the numerous studies in literature
to speed up short transfers may be viable solutions in the
future, none are deployed or standardized today. In
contrast, a far simpler solution of increasing TCP’s initial
congestion window to a value commensurate with current
network speeds and Web page sizes is practical, easily
deployable, and immediately useful in improving Web
transfer latency. In the longer term, a larger initial
congestion window will also mitigate the need for
applications to use multiple concurrent connections to
increase download speed. The paper recommends that the
IETF to standardize TCP’s initial congestion window to at
least fifteen segments. Interested reserachers should focus
on eliminating the initial congestion window as a manifest
constant to scale to even large network speeds and Web
page sizes.
REFERENCES
[1] Allman, M., Paxson, V., & Stevens, W. (1999). TCP

congestion control. RFC 2581.
[2] Semke, J., Mahdavi, J., & Mathis, M. (1998). Automatic

tcp buffer tuning. Computer Communications Review,
ACM SIGCOMM, volume 28, Number 4.

[3] Allman, M., Floyd, S,. & Partridge, C. (2002). Increasing
tcp’s initial window. RFC 3390.

[4] Akamai (2009). The State of the Internet.
http://www.akamai.com/stateoftheinternet.

[5] AJAX (2010). Connectivity enhancements in internet
explorer 8.
http://msdn.microsoft.com/enus/library/cc304129(
VS.85).

[6] Kristoff, J. (2000). The Transmission control protocol.
[7] Jacobson, V. (1998). Congestion avoidance and

control. Computer Communications Review, volume
18 number 4, pp. 314-329.

[8] Jacobson, V. (1990). Modified tcp congestion control
avoidance algorithm. End-2-end-interest mailing list.

[9] Michael J. Karels,. & Van Jacobson Van. (1998).
Congestion avoidance and control. University of
California at Berkeley.

[10] Stevens, W. (1997). TCP Slow start, congestion
avoidance, fast retransmit, and fast recovery
algorithms. RFC 2001.

[11] Jacobson, V., & Braden, R. (1998). TCP Extensions for
long-delay paths. RFC 1072.

[12] Belshe, M. (2010). A client-side argument for changing
tcp slow start.

http://sites.google.com/a/chromium.org/dev/spdy/.
[13] Mathis, M., Mahdavi, J., Floyd, S., & Romanow, A.

(1996). TCP selective acknowledgement options. RFC
2018.

[14] Cardwell, N., Savage, S., & Anderson, T. (2000).
Modeling tcp latency: In proceedings of IEEE infocom.

[15] Ramachandran, S., & Jain, A. (2010). Web page stats,
size and number of resources.
http://code.google.com/speed/articles/ web-
metrics.html.

[16] Nandita, D., Tiziana, R., Jerry, C., Natalia, S. (2010). An
argument for increasing TCP’s initial congestion
window.

[17] Souders, S. (2008). Roundup on parallel connections.
http://www.stevesouders.com/blog/2008/03/20/roundu

pon- parallel-connections/.
[18] Floyd, S., & Fall, K. (1999). Promoting the use of end-

to-end congestion control in the internet. In
IEEE/acm, transactions on networking.

[19] SPDY (2009): An experimental protocol for a faster
web. http://dev.chromium.org/spdy.

[20] Iyengar, J., Caro, A., & Amer, P. (2003). Dealing with
short tcp flows: A survey of mice in elephant shoes. In
Tech Report, CIS Dept, University of Delaware.

[21] http://netsrv.csc.ncsu.edu/export/cubic_a_
nw_tcp_2008.

pl
ag
ia
ri
sm

http://msdn.microsoft.com/enus/library/cc304129(VS.85),2010
http://msdn.microsoft.com/enus/library/cc304129(VS.85),2010
http://sites.google.com/a/chromium.org/dev/spdy/
http://code.google.com/speed/articles/
http://www.stevesouders.com/blog/2008/03/20/roundupon-%20parallel-connections/
http://www.stevesouders.com/blog/2008/03/20/roundupon-%20parallel-connections/
probably 1988

This was "ten" in the original.

15KB in the original

This is the starting part of Section-4.2 from Nandita Dukkipati, Tiziana Refice, Yuchung Cheng, Jerry Chu, Tom Herbert, Amit Agarwal, Arvind Jain, Natalia SutinAn argument for increasing TCP’s initial congestion windowACM SIGCOMM Computer Communication Review 40(3), July 2010https://doi.org/10.1145/1823844.1823848

This is from Sec-3 of Nandita Dukkipati, Tiziana Refice, Yuchung Cheng, Jerry Chu, Tom Herbert, Amit Agarwal, Arvind Jain, Natalia SutinAn argument for increasing TCP’s initial congestion windowACM SIGCOMM Computer Communication Review 40(3), July 2010https://doi.org/10.1145/1823844.1823848

This is Sec-5 from Nandita Dukkipati, Tiziana Refice, Yuchung Cheng, Jerry Chu, Tom Herbert, Amit Agarwal, Arvind Jain, Natalia SutinAn argument for increasing TCP’s initial congestion windowACM SIGCOMM Computer Communication Review 40(3), July 2010https://doi.org/10.1145/1823844.1823848

Oludele et. al/Increasing TCP’s Initial Congestion Window as a Manifest Constant to Scale

157

Enem Theophilus Aniemeka
I was born on 23 Sep 1964 in Eke, Udi Local Government Area of Enugu State. I had my primary education at Colliery Primary
School Iva-Valley Enugu, Secondary education at College of Immaculate Conception (C.I.C) Enugu, I joined the Nigerian Air Force in
1985 and was posted to Benin, However, from 1989 to 1995, I studied Diploma in Data Processing and BS.c(HONS) Computer
Science from University of Benin. I bagged my Master degree in Information Technology from National Open University of Nigeria in
2010. I play squash game. I am happily married to Chinyere Enem, and we are blessed with two kids (Onyedikachukwu and
Chinekwu).

Awodele, Oludele holds a Ph.D. in Computer Science from the University of Agriculture, Abeokuta, Nigeria. He has several years
experience of teaching computer science courses at the university level. He is currently a lecturer in the department of Computer
Science, Babcock University, Nigeria. He is a full member of the Nigeria Computer Society (NCS) and the Computer Professional
Registration Council of Nigeria. His areas of interest are Artificial Intelligence, Cloud Computing and Computer Architecture. He has
published works in several journals of international repute.

pl
ag
ia
ri
sm

