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A Broadcast Authentication is enabling with base station to send commands 
and requests to low-powered sensor nodes in an authentic manner, is one of 
the core challenges for securing wireless sensor networks. The multi-level 
variant of μTESLA based on delayed exposure of one-way chains are well 
known valuable broadcast authentication schemes, but concerns still remain 
for their practical application. To use these schemes on resource-limited 
sensor nodes, a 64-bit key chain is desirable for efficiency. Our work show, by 
both theoretical analysis and rigorous experiments on real sensor nodes, that 
if μTESLA is implemented in a raw form with 64-bit key chains, some of the 
future keys can be discovered through time memory data tradeoff techniques.  
This paper presents an extendable broadcast authentication scheme called X-
TESLA, as a new member of the TESLA family, to remedy the fact that previous 
schemes do not consider problems arising from sleep modes, network failures, 
idle sessions, as well as the time memory data tradeoff risk, and to reduce 
their high cost of countering DoS attacks. In X-TESLA, two levels of chains that 
have distinct intervals and cross-authenticate each other are used. This allows 
the short key chains to continue indefinitely and makes new interesting 
strategies and management methods possible, significantly reducing 
unnecessary computation and buffer occupation, and leads to efficient 
solutions to the raised problems. 

©2011, AJCSIT, All Right Reserved. 

INTRODUCTION 
Todays Technology advancement in large scale 

distributed networking and small sensor devices has led to 
the development of wireless sensor networks with 
numerous applications. Sensor nodes are usually 
constrained their computation, communication, storage, 
and energy resources for economical reasons, but need 
security functions since they are deployed in unattended or 
even hostile environments. The high risk of physical attacks 
and the limited capabilities of sensor nodes make it difficult 
to apply traditional security techniques to wireless sensor 
networks, posing new challenges. Authenticated broadcast, 
enabling a base station to send authentic messages to 
multiple sensor nodes, is one of the core challenges, while 
even the broadcast by nodes is an important topic in 
wireless sensor networks. For the purpose, digital 
signatures (public-key) are not very useful in a resource 
limited environment, while native use of HMAC (secret-
key) does not work either, as node capture can lead to a 
key compromise. μTESLA and its multi-level variants , 
based on TESLA], use a one-way chain practically  under a 
loose time synchronization assumption. The sender 
attaches a MAC (Message Authentication Code) to each 
packet, computed using a key from the chain in reverse 
order. The keys are exposed after a certain time delay. The 

receiver buffers the received packet until the 
corresponding key is disclosed and verifies the MAC, after 
authenticity of the key itself has been verified by following 
through the chain. 

Few Motivation points & Problems Mentioned  
μTESLA and its variants are designed to be 

practical, but significant concerns still remain.  
1 64-bit key chain: A short 64-bit key chain is desirable for 
efficiency in resource-limited sensor nodes, but care must 
be taken, even with short time intervals. As we show, if the 
chain is generated in a straightforward manner, TMD(Time 
Memory Data) tradeoff techniques can be applicable, 
leading to discovery of future keys. 
2 Sleep mode or network failure: If sensor nodes go into a 
sleep mode or key disclosure messages are lost frequently, 
μTESLA may force heavy key computation to be done at 
once on sensor nodes for chain verification, during which 
incoming packets get dropped. If CDMs (Commitment 
Distribution Messages) are missing, multi-level μTESLA 
makes nodes wait and buffer for the long interval of upper 
levels, during which incoming packets are dropped due to 
the buffer limit. 
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3. Idle sessions: Even for idle sessions with no broadcasts,
μTESLA forces chain computation for sensor nodes. Key
disclosure messages should be broadcast constantly or
heavy computation needs to be done later. Multi-level
μTESLA needs CDMs to be broadcast for higher levels, with
the number of CDMs increasing with the number of levels.
4 Extended lifetime: With node malfunctions and
premature power exhaustion, there are needs for node
additions [1] or rechargeable sensor nodes [15]. Thus, the
lifetime of a network may extend beyond that of each node.
As noted in ,lifetime extension was not clearly considered
in μTESLA. Multi-level μTESLA should also fix the lifetime.
5 DOS attacks: To resist DOS attacks, multi-level μTESLA 
requires many CDMs to be distributed for longer intervals.
Its DOS tolerant version needs sufficiently large buffers on
sensor nodes for random selection of received CDMs. The
DOS resistant version requires CDMs to be received stably
along with a larger packet and additional hash function.
The remainder of this article is organized as follows. In
Section 2, we review related work on broadcast
authentication for wireless sensor networks, and discuss
their problems and shortcomings. In Section 3, we show
how TMD-tradeoff can be applied to μTESLA with a
detailed attack algorithm and also a concrete 
implementation result. In Section 4, we introduce an
extendable broadcast authentication scheme called X-
TESLA. Security and performance of X-TESLA are analyzed
in Section 5. We conclude this paper in Section 6.
SECTION II

2 Survey over the security of Cryptosystems. 
Implementation of public-key cryptosystems is becoming 
possible, but still expensive. Energy efficient sensor nodes 
are also great concerns [5]. More practically in this section, 
we briefly review μTESLA and its multi-level variant for 
moderate sensor nodes ,.All these schemes are constructed 
without using public-key cryptography. 
1 μTESLA: We give a short description of μTESLA, referring 
readers to for more detail. μTESLA is a broadcast 
authentication mechanism for distributed sensor networks, 
which was adapted from TESLA . In short, a delayed 
exposure of one-way chain is used for authentication. For 
this, it is required that the base station and sensor nodes be 
loosely time synchronized with a known maximum 
synchronization discrepancy bound. Unlike TESLA, which 
authenticates the initial packet with a digital signature, 
μTESLA uses only symmetric key techniques. The sender 
first fixes a public one-way function F and chooses a 
random value Kn. The one-way chain Ki = F(Ki+1) is 
iteratively calculated for all n > i ≥ 0 and the last element K0 
is pre-installed in each receiver, the sensor node, as an 
initial commitment. μTESLA also provides a method for 
bootstrapping a new receiver through unicasting. Time is 
divided into short intervals. During the i-th interval Ii, the 
messages broadcast are sent with a MAC keyed with Ki. 
After a suitable delay, the key Ki itself is broadcast. Given a 
key Ki, calculating K for j > i is expected to be infeasible, but 
anybody can calculate Kj for j < i, so it is easy to check the 
validity of any newly received Ki with the commitment K0, 
or any other Kj satisfying j < i. 
2 μTESLA Multi-Level: One drawback of the single chain 
used in μTESLA is that there is a practical limit to its length, 
leading to a usage time limit. Also, the bootstrapping of a 
new receiver in μTESLA utilizes unicasting and hence is not 
scalable. Multi-level μTESLA  solves this problem by using 
multiple chains in multiple levels. Several levels of chains 

are used with each (except for the top) level consisting of 
multiple chains. The lowest level is a normal chain used for 
message broadcasts and usually lasts for a relatively short 
period. Upper levels exist to authenticate their very next 
lower level chains. When the lowest level chain draws to an 
end, the second level chain is used to authenticate the 
commitment for the next lowest level chain to be used. The 
second level broadcasts the CDM, with clear expression of i 
in the MAC only, 
CDMi = i_Ki+2,0_ ⊥ _MACKi (i_Ki+2,0_ ⊥)_Ki−1, 
Note that it means a null value which is ignored in a basic 
version but will be replaced by a hash value in a DOS 
resistant version. The new commitment Ki+2,0 for the 
lowest level is authenticated with the key2 Ki. Note that 
Ki+2,0, the lowest level commitment corresponding to the 
(i + 2)-th second level interval, can only be verified by the 
sensor nodes after receiving CDMj with j > i. To 
authenticate a new 2nd level chain commitment, the 3rd 
level is used, and so on. The top level is a single chain that 
has to last as long as the sensor network lifetime. So 
even though the use of multiple levels allows shortening of 
each chain, the total lifetime still has to be predefined. Since 
CDMs are distributed within a longer time interval, DoS 
attacks must be considered. Multi-level μTESLA provides 
two variants for this. One is the DoS tolerant version with a 
random selection method, requiring large node buffers to 
store multiple CDMs for each level. The other is the DoS 
resistant version, and uses a hashing technique adapted 
from TESLA’s immediate authentication 
method.  
3. Trade-Off Memory Data of Attack on μTESLA: We
shall show that if μTESLA is used with parameters that are
currently widely considered to be appropriate, say 64-bit 
keys, TMD-tradeoff techniques can disclose future keys,
only relying on realistic resources. Since a simple fix is
possible we do not insist on the insecurity of μTESLA, but
this shows that a simpleminded implementation can be
broken not only theoretically but also in a real-world sense.
a. Target System: To keep our discussion simple, we shall
fix various parameters, but no small tweaking of these
parameters will make the system immune to our attack.We
assume a multi-level μTESLA with 64-bit key chains
created by a one-way function F. Adjusting our attack
tosingle-level μTESLA will be straightforward. Our target
system will disclose a key every 200ms with a delay of two 
time intervals at the lowest level and start a new chain 
every 1 hour.
b. Attack Objective: Readers with experience in the
tradeoff technique will see that applying it to the one-way 
function F is useless, as the current key is not retrieved..So
we take the non-trivial approach of having our attacker
recover the key to be released in the 16th future 200ms
interval (3.2 seconds later), from the key most recently
disclosed. If such an undisclosed key is discovered within
200ms of obtaining the current disclosed key, from it, an
attacker can generate the keys which will allow sending of
authenticated messages for the duration of approximately
14 intervals (2.8 seconds).Loss of control for even a short
amount of time can be devastating to the sensor network
security, as the attacker may force nodes to replace all their
current level keys with commitments of his choice. Once
this has been done, commands from the real base station
will no longer be authenticated and the attacker gains full
control over the sensor network.

SECTION III 
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1 Attack Overview: The attacker will work over a 40-day 
period. Throughout this period, on each of the 200ms 
intervals, he will repeatedly try to see if he can recover the 
key that is to be disclosed 16 steps later from the current 
disclosed key. The choice of 16 was taken to give the 
attacker enough time for commitment replacement and 
may be adjusted to meet the attacker’s needs. Let us write 
H = F16 to denote 16-iterated applications of the one-way 
function F used in constructing the (bottom-level) chain. 
Notice that if y is the current 64-bit disclosed key and x is 
the key to be disclosed 16 steps later, then y = H(x). So, the 
attacker wishes to find x,given y = H(x). As H is not 
injective, not all such x will be the correct future key, but 
we shall ignore this for now. 
Consider the set of all keys disclosed during the 40-day 
period. These would consist of multiple shorter chains, 
each lasting one hour. After removing 15 starting3 keys 
from each of these shorter chains, we name the resulting 
set that contains  

We shall give an algorithm which processes each of the 
keys from ˆD , over a 40-day period, and finds a pre-image 
under H for some of these. The 15 keys were removed as 
there are no 16-step future keys for these one-way chain 
beginnings. The algorithm is expected to find the correct 
future key with 64.3% probability, and can process each 
key within 200ms of receiving it, when run on a PC.Our 
choice of 40 days, which is equivalent to the choice of D ∼ 
224, and the choice of parameters m = 227 and t = 213, to 
appear below, may seem arbitrary. At this stage, we can 
only state that any choice with their product mtD 
approximately equal to the key space size 264, will work. 
Our specific choices were made so that the storage size m, 
pre-computation effort mt, and target count D are all within 
available resources. While their true meaning can only be 
understood after the algorithm and its analysis are 
understood, one may keep in mind that the success of the 
attack basically relies on the birthday paradox to produce a 
collision between the pre-processed mt keys and the D 
online keys. 

2 Attack Implementation. 
We run both simulation and real world test of attacks. 
1 Function Choice- Following the most commonly cited 
example in the related literature, our one-way function F 
was created from RC5. We need to be more explicit, as RC5 
is a parameterized family of block ciphers, among which 
the most commonly used version utilizes 32-bit words, 12 
rounds, and 128-bit keys. The 32-bit word implies 64-bit 
blocks and is suitable for us, but as the chain needs the key 
size to be of 64 bits, we took the 32-bit word, 12 round, 64-
bit key version. The one-way function maps a 64-bit key to 
the 64-bit cipher text which is an encryption of the all-zero 
plaintext under the given key. The swapping of two 32-bit 
words constituting a 64-bit value was used as permutation 
P. 
2 Hellman Table Creation- Instead of starting each 
Hellman chain with a random 64-bit value, we used the 
numbers 0 through 227 − 1 as these initial points. As these 
can be written down in a 32-bit space, the total Hellman 
table size became 1.5GB instead of the 2GB, referred to in 
our discussion. This allows for the Hellman table to be 
loaded onto a PC’s 2GB memory with ample room left for 
the OS. In fact, we use a Cygwin Unix emulation 

environment on a PC in which only 1.5GB memory is 
allowed, and the 1.5GB table must fit into that memory 
without a large loss . 
3 Online Phase Simulation- Random chains corresponding 
to 40 days were generated, with each hour starting a new 
chain from a new random starting point, for a total of 960 = 
24 · 40 independent chains. We simulated the online phase 
on our Opteron system, with the target chains distributed 
over the 8 cores. It took 40 hours to complete, meaning 
13.3 days on a single core. As our requirement of 200ms 
per key processing allows this to be done over a 40-day 
period, this is three times faster than what we would need 
.Using the same Hellman table, we did ten simulations with 
ten independently generated target data sets. Many correct 
16-step future keys were obtained and we observed 80%
probability of success. Details are given in
4 Sensor Network Application- To check the online phase
in real time and to demonstrate the effectiveness of this
attack, we took one of the many 1-hour chains that resulted
in a correct 16-step future key and performed a test using
real sensor nodes. We first construct our μTESLA base 
station by placing the chosen 1-hour chain on a PC with
dual AMD Opteron 244 (1.8GHz) processors and 4GB of
memory. A
Tmote Sky (Telos rev.B) is connected to the PC through a
USB port, and is forwarded μTESLA messages through a
Serial Forwarder (SF) using UART, which is then sent over
a IEEE 802.15.4 radio channel. μTESLA is implemented in C
with 200ms time intervals. A Berkeley Mica-Z sensor node
in which the chain commitment is installed, can verify the
μTESLA messages containing data and keys. We have the
sensor node blink its yellow LED for verified data messages
and its green LED for key disclosure messages. The
Hellman table is placed on another PC to act as the attacker.
Two Tmote Skys are connected to the attack PC through
USB ports, so as to listen to the base station and send out
forged messages. An attack program implemented in C
communicates with the Listener and the Sender through
UARTs, and sends out forged commands making the sensor
node blink its red LED. Through our attack experiment, we
were able to visually check the red LED flashing. This is the
result of the attacker’s forged messages, created using 14
valid keys, each corresponding to one interval.
4 Tradeoff Attack Analysis
This section will give a brief idea on analysis of attack 
algorithm is somewhat technical and may be skipped by
anyone that can believe that our attack succeeds with a
reasonable probability and that it can be applied to most
modifications of our explicit attack target.
1 Attack Success Probability- Let us see what probability
of success we can expect from our attack. We start with a
small lemma, whose proof is elementary. Consider a set N
of size N. Randomly choose and fix D distinct elements from
N and name the set D. Next, randomly choose H elements
from N, one at a time, with replacements, and call the
collection H. The family H may contain overlapping
elements. Lemma 1: Assuming D<<< N and DH ¬ N, the
probability of D and H containing at least one element in
common can be approximated by

Let us apply Lemma 1 to our attack setting. The base space 
N will be the set of all possible 64-bit keys, so that N = 264. 
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Next, consider the set of all online keys disclosed during the 
40-day period. These would consist of multiple shorter 
chains, each lasting one hour. We remove 15 ending keys6 
from each of these shorter chains and take the resulting set 
as ˇD .7 The number of elements D in ˇD is given by 
equation (1), as before. These D elements may be assumed 
to be distinct, for, if otherwise, the key chain would repeat 
itself and the authentication system would fall under a 
more trivial attack. Take ˇH to be the family of keys 
appearing as input points to mapping ˜H applied during 
creation of T . This excludes the ending points of each 
Hellman chain, and refers to H = t·m = 240, possibly 
overlapping, elements.8 Now, a careful review of Algorithm 
2 will reveal that should there be any element common to 
ˇD and ˇH , it will be returned by Algorithm 2. This common 
element x €ˆˇD maps to the disclosed key H(x) €ˆD and 
implies success of attack. The success probability of our 
attack can be calculated as p ^ 1 − exp(−1.029) ^ 0.643, by 
substituting various numbers into Lemma 1. 

2 Parameter Tweaks-  
In this subsection, consider the application of our tradeoff 
attack to other sensor network configurations. 
a Shorter Disclosure Interval: Suppose the sensor network 
uses key disclosure interval shorter than the 200ms we 
have considered. This would result in a larger online target 
set being available to the attacker for the same (40- day) 
period of attack. This allows the success probability of 
attack to be maintained with a shorter Hellman chain. 
Hence the attacker can cope with the shorter time interval 
allotted to processing of each key. There may still seem to 
be one problem, as the attacker recovers the 16- 
Interval future key and this is closer in real time than 
before. But a faster disclosure interval would usually mean 
a faster radio network, and hence the attacker would be 
satisfied with the shorter time available for trying out of 
the recovered key. Another approach the attacker may take 
is to attempt to recover keys further steps into the future. 
This would require longer precomputation time for the 
same length Hellman chains and a more powerful system 
during the online phase. By a more powerful system, we 
mean that one could either use a faster processor, or let 
multiple processors take turns processing the target data, 
each for a time span longer than the disclosure interval. 
b Longer Disclosure Interval: If the opposite approach of 
using longer disclosure interval is used, the attacker has 
less online target data available than before. But this gives 
him more time to process each target data, so longer 
Hellman chains can be used. This will result in the pre-
processing time increasing, but an increase by a small 
factor is well within current computational power. The 
attacker can also take the approach of trying to recover 
keys smaller steps into the future. Then the longer Hellman 
chains will not take longer to create. 
c. summary: The tradeoff attack technique has been known 
for a long time, and this raises the question as to why 
delayed exposure of 64-bit one-way key chains had widely 
been accepted as a plausible authentication method. Note 
that for a straightforward application of the original 
Hellman method or the more widely known 
rainbow table method , a pre-computation phase consisting 
of about 264 calculations of the one-way function is 
required. While no one can say for sure that this is 
currently impossible, it does seem to be out of reach for 
most organizations. Coupled with the resource constrained 
environment, these 64-bit one-way chain methods seem 

acceptable at first sight. But the Hellman method and 
rainbow table method deal with only a single target data. 
Our approach of trying multiple times over an extended 
period and being content with succeeding just once seems 
to have been overlooked. 
The multiple target version of tradeoff attack technique we 
have used in this paper, applicable to any one-way function, 
is not new and has been developed in   But until it was 
made explicit by the recent work , many took this to be 
applicable to only stream ciphers in a particular way. The 
main contribution of this paper concerning the weakness of 
current μTESLA is of pointing out that multiple target 
version of pre-computation attack is naturally applicable to 
the one-way chains. In doing this, the idea 
of looking into a 16-step composition of what would 
usually have been taken as the one-way function of interest 
was crucial. As long as succeeding even once within an 
extended time period is a realistic threat, there seems to be 
no way of using 64-bit one-way chains without salting 
them, that is, even on low-security applications. 

SECTION IV 
4.1. Broadcast Protocol for Secure X-TESLA:  The basic 
idea starts from the extendable management of short key 
chains. In essence, we make two levels of chains having 
distinct time intervals cross-authenticate each other to 
provide permanently extendable chains. Our protocol X-
TESLA, read either as TESLA or cross TESLA, stands for 
extendable TESLA. As with other TESLA variants, X-TESLA 
provides broadcast authentication, under the assumption 
that the base station and sensor nodes are loosely time 
synchronized with a known maximum synchronization 
discrepancy.  
Key chains 

 
Key chains 
          Fig: The crossing of illustrates the followings. 
(a) The lower level chain naturally authenticates the next 
upper level chain, as they are connected in a single chain by 
construction. 
(b) Multiple distinct keys in the upper level chain 
authenticate the initial commitment of the next lower level 
chain repeatedly. The repeated authentication will help in 
resolving problems from DoS attacks, sleeping nodes, and 
idle sessions. 
4.2 Basic Framework of X-TESLA 
4.2.1 X-TESLA chains: Two functions F0( · , · ) and F1( · , · ), 
mapping K×S to K will be used. Here, K denotes the key 
space, and S is the salt space. For each fixed s ∈ S, we expect 
the operator Fi( · , s) on K to be one-way, even when s is 
known. In practice, we design the two functions with 64-bit 
blockciphers taking 64-bit keys and salt as plaintext in 
Section 4.4. The two functions may even be instantiated 
with the same blockcipher. Let us divide time into intervals 
with indices u, v_ and u, v,w_ used for the upper and lower 
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levels, respectively. Let u index both level chains having the 
same durations for u > 0, vdo intervals of each upper level 
chain for 0 < v ≤ n, and w divide those intervals minutely for 
a corresponding lower level chain for 0 < w ≤ m. Intervals 
themselves will be denoted as Iu,v and Iw u,v. We let Ju,v 
and Kw u,v denote the corresponding upper and lower level 
keys. When v = 0 or w = 0, an indexed key is a commitment. 
One of distinctive features of X-TESLA is the use of salt 
values denoted by Su,v and Swu,v, whose choice we defer to 
Section 4.4. These will remove TMD-tradeoff concerns by 
making pre-computation infeasible. After fixing each salt 
value, we define the upper level chain for each positive 
integer u > 0, by starting from a random 
seed key Ju,n € K and recursively setting  
4.2.2 Communication Packets: For the framework of Tiny 
OS, we design communication packets to fit within its 29-
byte default payload size. It is trivial to allow larger packets 
if necessary. As depicted, we define four types of packets 
that use the first byte of data payload for type distinction 
and the following four bytes for an index. Type 1 is an 
authenticated data packet of which 16 bytes are used for 
data transmission and the remaining 8 bytes are used for 
MAC generated by a lower level key. Type 2 is another form 
of authenticated data packet of which only 8 bytes are used 
for data transmission with an 8-byte MAC ,while the 
remaining 8 bytes are used for key disclosure of a previous 
lower level interval. Type 3 is designed to handle sleeping 
nodes and idle sessions. It is the same with Type 2 except 
that the 8-byte data is a future lower level key masked with 
a future upper level key Data payload in packets of X-
TESLA.The masked key is authenticated soon but 
unmasked much later. Of course, Type 2 and Type 3 can 
trivially be merged up to a single type of slightly larger 
packet. Type 4 packets hold a future lower level 
commitment at the data portion with a MAC calculated 
from an upper level key. Notice that the same lower level 
commitment is sent throughout a whole upper level chain. 
The AUX header field and the structure of CCM encryption 
mode of ZigBee packets may be of some use in making 
more efficient variants of the packet types. 
4.3 X-TESLA Details 
4.3.1 Initialization: We assume a base station broadcasts 
authenticated messages to sensor nodes. A method to 
choose salt values is fixed at system design phase. The base 
station generates the first upper level chain by choosing 
seed key J1,n € K at random and also generates the first 
lower level chain together with the second upper level 
chain by choosing another seed key J2,n € K randomly. The 
values J1,0 = F1(J1,1, S1,1) and K0 1,1 are stored in each 
sensor node as initial upper and lower level commitments, 
respectively. Depending on the way salt is chosen, some 
extra information may also need to be stored. It would be 
advisable to keep these values secret until just before 
deployment. Generation of the second lower level chain 
together with the third upper level key chain should soon 
follow, so as to be ready for commitment distribution. 
When the initialized nodes are deployed, they are to be 
loosely time synchronized with the base station, as 
assumed in μTESLA. 
4.3.2 Broadcast Authentication: During an Iw u,v, the base 
station uses Kw u,v as the MAC key for Types 1, 2, and 3 
packets being sent out, and reveals Kwu,v after a wait of 
time δ from the end of Iwu,v,in Type 2 or 3 packets. We 
shall abuse interval indices, setting Iu,n+1 = u+1,1, Im+1 u,v 
= I1 u,v+1, Iu,0 = Iu−1,n,and I0 u,v = Im u,v−1. The following 

is a Type 2 packet for use with “δ = one time interval.” Here, 
| denotes concatenation and ∗  signifies the index and data 
portion.  
T2Pw u,v =(u, v,w)!!data!!MAC!!Kw u,v (∗ )!!Kw−2 
This corresponds to what is usually stated as key disclosure 
delay of two time intervals.If the key disclosure message is 
lost, the sensor node buffers all messages it receives until a 
key disclosure message is successfully received, and 
computes. 
4.3.3 Commitment Hopping: With TESLA variants, there are 
at least two situations in which verification of a newly 
disclosed key places heavy computational load on a sensor 
node, resulting in many message drops, for the duration of 
this computation. First, if a sensor node falls into sleep 
mode or turns off its radio power to save energy, it may not 
be able to listen to the key disclosure messages during that 
period. Second, if there are long idle periods with no 
broadcast, it would be wasteful to disclose keys on 
schedule and a base station might minimize the key 
disclosures for those periods. As a result, there could be a 
large gap between the current commitment and the key to 
be verified. Type 3 packets can resolve this problem, by 
providing commitment hopping. Let Iu_,v_ be an interval 
appearing after Iu,v. The distance9 between the two 
intervals depends on the application needs. We set T3 
Pwu,v = u, v,w!!Kmu_,v_⊕ Ju_,v!!MACKwu,v(∗ )!! 
Kw−2u,v .u,v . 
4.3.4 Cross Authentication: With X-TESLA, keys of the 
upper level chain can be authenticated by the previous 
lower level chain since they are connected in a single chain 
by construction and since the latest commitment key of the 
previous lower level is available to sensor nodes. Type 3 
packets further help in making this available. After any 
verification, the 
Commitment for the upper level can be updated. For 
authentication of a new lower level chain, the upper level 
chain is used. The following is a Type 4 packet. It 
distributes the commitment of the next lower level chain 
while disclosing a previous upper level key.T4 
Pu,v = (u, v)!!K0u+1,1!!MACJu,v (∗ )!!Ju,v−1The next lower 
level commitment K0u +1,1 is distributed at random 
instances within Iu,v, authenticated with Ju,v. In fact, many 
(different) Type 4 packets are constructed and broadcast to 
deliver the same next lower level commitment K0u+1,1 
during Iu. Therefore, a sensor node would have numerous 
chances to receive a correct K0u+1,1 during Iu, and resist 
DoS attacks without the use buffers of multi-level μTESLA. 
A node buffers a single or slightly .The offset should be 
reasonably set. Multiple offsets may be used 
by assigning different message types to handle distinct 
offsets. 
4.3.5 Flexible Constructions: We now place more 
flexibility, in addition to the choice of chain lengths, into the 
X-TESLA construction. This will resolve even the most 
extreme situation that could occur with Type 4 packets. 
Starting from the basic flow we extend the upper level 
chain over a number of lower level chains for better 
survivability against high communication faults and long 
idle sessions depicted in. Even a short extension of the 
upper level chain with only small bits allows many lower 
level chains to be attached, and these may be generated on 
the fly. The extension increases stability of chain 
verification in both levels. The change also provides longer 
periods in which to distribute the next chain commitments 
for both levels through Type 3 and Type 4 packet 
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variants.The reverse flow allows reduction of Type 4 
packets for environments in which authenticated messages 
are broadcast very frequently. Since an upper level chain 
serves as commitments for the next lower level chain, Type 
4 packets distribute Ju+1,0 :=10. Within each Iu,v, a random 
selection process (which might come naturally from the 
environment) can also be employed. But the dependance 
on Type 4 packets is smaller, because the upper level keys 
can be recovered stably from Type 3 packets if the 
authenticated broadcasts of the lower level 
are very frequent. The hybrid flow offers extreme 
durability. For every u ≡ 1 (mod 3), a lower chain of Iu+3 is 
generated from a random seed with upper chains of Iu+2, 
Iu+1, and Iu, together with lower chains of Iu+1 and Iu−1 
descending from this.  
4.3.6 Sleep Mode Management: Energy efficiency is 
mandatory for sensor networks since tiny nodes are 
operated on batteries. Various types of sleep modes11 that 
stop CPUs or radio functions are commonly used but care 
must be taken, as nodes that have been inactive for a long 
time may need to do much computation for key verification 
or lose commitment. Let Tu denote the starting time of 
interval Iu, and set Φ = Tu+1−Tu to the length of one upper 
level chain.  sensor node shall not be allowed to go into a 
long term sleep or, at the least, not be allowed to stop radio 
functions for a long term period unless it has obtained the 
next lower level commitment, while short term sleeps are 
always allowed. More specifically, we fix some threshold 
value θ that takes the clock discrepancy of nodes into 
account, and for a node that has verified a Type 4 packet at 
time T, we allow it to set the maximum sleep length timer() 
to the duration of up to Φ only if T < Tu + θ (as in node A of 
Fig. 4), and to the duration of up to Tu+1 + θ − T if 
otherwise . These values are meant to be the maximum 
sleeping length, and a sensor node may repeat going to 
sleep and waking up freely (or stopping and awaking radio 
components) within the given duration. The value θ should 
be fixed so that the security parameter ε = P[Φ] − P[Φ − θ] 
is kept appropriately small, where P[Φ] and P[Φ − θ] 
denote the probabilities for a node to receive and verify a 
Type 4 packet within respective time lengths. Note that Φ 
is quite long, amounting to 3.6 hours if, for example, 216-
key chains of 200ms intervals are used for the lower level. 
When a sensor node finally awakes, it should be allowed to 
go back to sleep for a long period only if it receives and 
verifies the next lower level commitment. If a node fails to 
verify any Type 4 packet in some Iu, it should be made to 
try harder in the next interval Iu+1, for example, by 
sleeping less, but often Type 3 packets could already have 
provided the lower level commitment of Iu+1. The sleep 
mode management system explained here should make the 
extendable property of X-TESLA work stably .Still, the 
upper level length in X-TESLA needs to be Chosen carefully, 
so that unexpected length of communication failure does 
not completely disrupt the system. Though this makes 
parameter selection challenging, the lengthening of the 
upper level is relatively cheap, and the use of flexible 
construction of Fig. 3 is also possible. 
4.4 Implementation of X-TESLA 
4.4.1Practical Construction: We use 28-key chains for the 
upper level and 216-key chains for the lower level with 
200ms intervals but various other combinations are also 
possible. The broadcast module is implemented by 
connecting Tmote Sky to a PC, and the receiving module is 
ported into Mica-Z, with 17KB of program memory of 

which 9KB are occupied by system. We set 28-byte12 
payloads. we utilize the 64-bit key version of RC5 for 
generating chains. The salt values, used as plaintext, should 
be known to the verifying node as well, and can be defined 
in various ways. Taking a practical approach, we use Su,v = 
u, v_ and Sw u,v = u, v,w_ in the implementation, where the 
indices are zero-extended to fill the 64-bit block size, with 
the exception of the most significant bit, which is used to 
differentiate F0 from F1.We caution that this is not a 
complete solution against TMD-tradeoff attacks. If the 
indices are short, so that index repetition is common, an 
attacker may decide to focus on (multiple) target points 
corresponding to one fixed index. Even if index is long 
enough not to repeat itself within the lifetime of the 
network, a tradeoff attack on a single target would still be 
possible. This is not an immediate threat with average-
powered attackers, but probably not so for long with 64-bit 
chains. Rather we propose a more robust solution to 
combine old (disclosed) key with the index to produce salt.. 
Thus, a sort of randomness, unpredictable until near the 
time of use, could be employed, so as to prevent pre-
computation. 
4.4.2 Running X-TESLA: To start with, we need a 28-key 
chain for the upper level and a (216 + 28)-key chain for the 
lower level with its source, which is the next upper level. 
For commitments soon to be distributed, one additional 
future chain must be prepared. As a result, the base station 
maintains three upper level and two lower level chains at 
run time. It takes only 797ms to compute these chains on a 
PC with dual AMD Opteron 244 (1.8GHz) CPU and only 
1MB to store them. In our test implementation, for 
simplicity, we preset the starting time and had the base 
station send out a synchronization command. This is 
acceptable, as the initial deployment phase is usually 
assumed to be secure in the literature. More sophisticated 
synchronization methods can be found .The number of 
unauthenticated packets buffered by a sensor node 
depends on the period and reliability of key disclosure 
messages. Concerning the key disclosure interval, note that 
a 36-byte TinyOS packet, consisting of 5-byte header, 29-
byte data payload, and 2-byte CRC tailer, takes 28.8ms to 
send on a 10kbps radio network, with round-trip taking 
less than 60ms. Similarly, a 39-byte ZigBee packet in which 
29 bytes are data payload,takes 5.1ms on average to send 
on a 60kbps13 radio network, with round-trip taking less 
than 15ms. So any key disclosure interval larger than 50ms 
is possible. In case the shorter 50ms intervals are used, it 
might be preferable to use slightly longer chains, to 
preserve the duration covered by a single lower level chain. 
 SECTION V 
5.1. Security Issues: As was stated in Section 4.2.1, X-
TESLA protects against TMD-tradeoff attacks through the 
explicit use of salt, so that even the 64-bit key chains can be 
practically secure .The extendable management of short 
chains leads to security advantages as well as efficiency 
advantages. In (multi-level) μTESLA, the lifetime of the 
sensor network is pre-determined and a chain (or at least 
one chain) that spans throughout this very long period is 
used. This means that the seed key (and far future keys) 
should be protected very securely, for were it to be 
compromised without the base station being aware, it 
could. Be troublesome for a very long period. So, depending 
on the adversary model, X-TESLA, which uses shortlived 
chains, will have security advantages. In any case, using 

pl
ag
ia
ri
sm



A Security of Wireless Sensor Networks – Analysis on Efficient Broadcast Authentication 

42 

long chains is less than ideal, as function iteration 
continually reduces the entropy of key space. 
5.2. DoS Attack Resistance: Communication faults and 
DoS attacks may result in packet loss or forged packets. To 
overcome these problems, a base station could repeat a 
packet for a reasonable number of times. For example, if a 
packet loss rate is 30%, the probability of receiving can be 
increased to 99.2% by repeating the packet just four times. 
Since the time interval of lower level chains is tiny and the 
verification key is disclosed shortly, forged messages can 
be deterred by an affordable buffering in the lower level. 
Compared to the other types, Type 4 packets could be less 
resistant to DoS attacks because they have to be buffered 
until verification for the duration of the longer upper 
interval. By jamming a whole interval15 Iu,v, a DoS attacker 
can drop all Type 4 packets from that interval, but 
fortunately the impact diminishes rapidly as the attacker 
loses domination, especially when considered over all of Iu. 
Let pl be the packet loss rate of sensor nodes due to 
communication faults and sleep modes and set ¯pl = 1 − pl. 
Suppose that the base station randomly chooses r of the m 
intervals within each Iu,v to broadcast Type 4 packets and 
that the attacker dominates k intervals within each Iu,v. 
Since the time interval of upper chains is relatively long, 
the attacker could try to overflow sensor node buffers with 
forged Type 4 packets after listening to the correct key 
Ju,v−1 disclosed in that interval. However, it is sufficient 
with X-TESLA that each node buffers only a single (or 
slightly more) Type 4 packet received in each interval Iu,v 
for verifying K0u +1,1 within Iu. Among the four 
constructions of X-TESLA , the basic method delivers the 
next lower level chain commitment through Type 4 
packets, but repeats it within Iu, so that a node can receive 
a valid one with very high probability. The other three 
constructions allow even better probability. Consequently, 
X-TESLA resists DoS attacks of forged packets intrinsically, 
whereas multilevel μTESLA necessitates a large buffer and 
much precomputation with storage for its CDM packets. We 
could observe at least such a big difference between them. 
5.3 Efficiency Comparison: While multi-level μTESLA and 
X-TESLA provide comparable resistance against DoS 
attacks, in this section, we show that the required 
resources are different. 
5.3.1 Computation and Storage for Base Stations: With X-
TESLA, only a small number of short chains need to be 
stored in the base station, with the rest computed on the 
fly, and the chains are extendable indefinitely. In μTESLA 
and DoS resistant multi-level μTESLA, full chains covering 
all of the expected lifetime (and their CDMs in multi-level 
μTESLA) have to be pre-computed and stored. By storing 
the pre-computed chain only in part, storage can be 
reduced, but at the cost of online recomputation.  
5.3.2 Storage for Sensor Nodes: To verify a message, a 
sensor node has to buffer the index, data, and MAC fields 
until the delayed exposure of the corresponding key. This is 
a shared property of all μTESLA variants. X-TESLA shares 
another property with multi-level μTESLA in that new 
commitments for future chains need to be buffered and 
verified, but XTESLA requires less storage in the nodes 
than multilevel μTESLA for three reasons. First, only two 
levels are used in X-TESLA, while more levels (or longer 
chains) are necessary in multi-level μTESLA. Second, X-
TESLA verifies an upper level commitment, which is 
masked for later use, almost immediately after reception, 
following the shorter lower level schedule, but with multi-

level μTESLA, verification of an level-_ commitment must 
wait through level-(_+1)’s longer interval, and this situation 
worsens as we go up the levels. Third, verification of lower 
level commitment in X-TESLA follows the upper level 
interval schedule, but without large buffering. With X-TE 
SLA, a sensor node stores one most recently authenticated 
key as the current commitment for each level, along with 
the next lower level commitment, and possibly the masked 
key from a recent Type 3 packet, adding up to a total of four 
keys (taking 32 bytes) at runtime. In comparison, an M-
level μTESLA node stores 3M−2 keys (taking more bytes), 
along with the buffered CDMs for each level except the 
highest level. Let us now look at the node storage required 
to handle Type 4 or CDM packets reliably, by comparing an 
X-TESLA of 28/216-key upper/lower chains with a 2-level 
μTESLA of 212/216-key chains and a 4-level of 
24/28/28/28-key chains within the 228-key lifetime. Let r 
and f denote the number of real and forged Type 4/CDM 
packets appearing in a single Iu,v or lowest level 28-key 
interval. 
5.3.3 Computation and Communication for Sensor Nodes: In 
sensor networks, power consumption of sensor nodes is 
one of the most significant issues since sensor nodes are 
usually operated on batteries. With μTESLA variants, 
sensor nodes may consume energy while computing chains 
(for verification), computing MAC, and receiving broadcast 
packets. We analyze computation and communication costs 
of sensor nodes from this perspective. Let a random 
process X(t) have an exponential distribution and let E[X] 
be the expected value that is the average distance between 
two packet arrivals, with regard to a message rate. We take 
a slot to be the time interval for which a single lowest level 
key is valid.  

CONCLUSION 
Through the application of TMD-tradeoff 

techniques we observed that care should be taken with the 
shortkey chain based broadcast authentication schemes. 
We have proposed X-TESLA, an efficient scheme which may 
continue indefinitely and securely, that addresses this and 
many other issues of the previous schemes. With the 
advent of more powerful sensor node commodities such as 
iMote2 [14], the future of public-key technique application 
to broadcast authentication looks bright, but X-TESLA can 
efficiently be combined with public-key techniques also. 
For example, we could modify X-TESLA to use digital 
signatures on Type 4 packets, keeping everything else the 
same. 
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