
Asian Journal Of Computer Science And Information Technology 2: 3 (2012) 36 –43.

Contents lists available at www.innovativejournal.in

Asian Journal of Computer Science and Information Technology

Journal homepage:http://www.innovativejournal.in/index.php/ajcsit

A SECURITY OF WIRELESS SENSOR NETWORKS – ANALYSIS ON EFFICIENT
BROADCAST AUTHENTICATION.

N. Vikram Narayanadas*1, N.Sainath2

1JayaPrakash Narayana College of Engg. Mahabubnagar, A.P., India.
2Sree Vishweshawarya college of Engg, Bareilly, Uttar Pradesh, India

This is a plagiarized version of the following work.

Taekyoung Kwon, Jin Hong
Secure and efficient broadcast authentication in wireless sensor
networks
IEEE Trans Computers 59(8) pp.1120-1133 (2010)
https://doi.org/10.1109/TC.2009.171

The first page of the above source is being appended to the end of this document
so that the reader can make his/her own judgment.

The material included below (CC BY 3.0) was obtained from

http://innovativejournal.in/index.php/ajcsit/article/view/264

http://www.innovativejournal.in/
http://www.innovativejournal.in/index.php/ajcsit
mailto:vikram.shadan@gmail.com

Asian Journal Of Computer Science And Information Technology 2: 3 (2012) 36 –43.

Contents lists available at www.innovativejournal.in

Asian Journal of Computer Science and Information Technology

Journal homepage:http://www.innovativejournal.in/index.php/ajcsit

36

A SECURITY OF WIRELESS SENSOR NETWORKS – ANALYSIS ON EFFICIENT
BROADCAST AUTHENTICATION.

N. Vikram Narayanadas*1, N.Sainath2

1JayaPrakash Narayana College of Engg. Mahabubnagar, A.P., India.
2Sree Vishweshawarya college of Engg, Bareilly, Uttar Pradesh, India

ARTICLE INFO ABSTRACT

Corresponding Author:
N. Vikram Narayanadas
JayaPrakash Narayana College of
Engg. Mahabubnagar, A.P., India.
vikram.shadan@gmail.com

KeyWords: Wireless sensor
Networks, Authorization,
Security, Trade-off, Broadcast.

A Broadcast Authentication is enabling with base station to send commands
and requests to low-powered sensor nodes in an authentic manner, is one of
the core challenges for securing wireless sensor networks. The multi-level
variant of μTESLA based on delayed exposure of one-way chains are well
known valuable broadcast authentication schemes, but concerns still remain
for their practical application. To use these schemes on resource-limited
sensor nodes, a 64-bit key chain is desirable for efficiency. Our work show, by
both theoretical analysis and rigorous experiments on real sensor nodes, that
if μTESLA is implemented in a raw form with 64-bit key chains, some of the
future keys can be discovered through time memory data tradeoff techniques.
This paper presents an extendable broadcast authentication scheme called X-
TESLA, as a new member of the TESLA family, to remedy the fact that previous
schemes do not consider problems arising from sleep modes, network failures,
idle sessions, as well as the time memory data tradeoff risk, and to reduce
their high cost of countering DoS attacks. In X-TESLA, two levels of chains that
have distinct intervals and cross-authenticate each other are used. This allows
the short key chains to continue indefinitely and makes new interesting
strategies and management methods possible, significantly reducing
unnecessary computation and buffer occupation, and leads to efficient
solutions to the raised problems.

©2011, AJCSIT, All Right Reserved.

INTRODUCTION
Todays Technology advancement in large scale

distributed networking and small sensor devices has led to
the development of wireless sensor networks with
numerous applications. Sensor nodes are usually
constrained their computation, communication, storage,
and energy resources for economical reasons, but need
security functions since they are deployed in unattended or
even hostile environments. The high risk of physical attacks
and the limited capabilities of sensor nodes make it difficult
to apply traditional security techniques to wireless sensor
networks, posing new challenges. Authenticated broadcast,
enabling a base station to send authentic messages to
multiple sensor nodes, is one of the core challenges, while
even the broadcast by nodes is an important topic in
wireless sensor networks. For the purpose, digital
signatures (public-key) are not very useful in a resource
limited environment, while native use of HMAC (secret-
key) does not work either, as node capture can lead to a
key compromise. μTESLA and its multi-level variants ,
based on TESLA], use a one-way chain practically under a
loose time synchronization assumption. The sender
attaches a MAC (Message Authentication Code) to each
packet, computed using a key from the chain in reverse
order. The keys are exposed after a certain time delay. The

receiver buffers the received packet until the
corresponding key is disclosed and verifies the MAC, after
authenticity of the key itself has been verified by following
through the chain.

Few Motivation points & Problems Mentioned
μTESLA and its variants are designed to be

practical, but significant concerns still remain.
1 64-bit key chain: A short 64-bit key chain is desirable for
efficiency in resource-limited sensor nodes, but care must
be taken, even with short time intervals. As we show, if the
chain is generated in a straightforward manner, TMD(Time
Memory Data) tradeoff techniques can be applicable,
leading to discovery of future keys.
2 Sleep mode or network failure: If sensor nodes go into a
sleep mode or key disclosure messages are lost frequently,
μTESLA may force heavy key computation to be done at
once on sensor nodes for chain verification, during which
incoming packets get dropped. If CDMs (Commitment
Distribution Messages) are missing, multi-level μTESLA
makes nodes wait and buffer for the long interval of upper
levels, during which incoming packets are dropped due to
the buffer limit.

pl
ag
ia
ri
sm

http://www.innovativejournal.in/
http://www.innovativejournal.in/index.php/ajcsit
mailto:vikram.shadan@gmail.com

A Security of Wireless Sensor Networks – Analysis on Efficient Broadcast Authentication

37

3. Idle sessions: Even for idle sessions with no broadcasts,
μTESLA forces chain computation for sensor nodes. Key
disclosure messages should be broadcast constantly or
heavy computation needs to be done later. Multi-level
μTESLA needs CDMs to be broadcast for higher levels, with
the number of CDMs increasing with the number of levels.
4 Extended lifetime: With node malfunctions and
premature power exhaustion, there are needs for node
additions [1] or rechargeable sensor nodes [15]. Thus, the
lifetime of a network may extend beyond that of each node.
As noted in ,lifetime extension was not clearly considered
in μTESLA. Multi-level μTESLA should also fix the lifetime.
5 DOS attacks: To resist DOS attacks, multi-level μTESLA
requires many CDMs to be distributed for longer intervals.
Its DOS tolerant version needs sufficiently large buffers on
sensor nodes for random selection of received CDMs. The
DOS resistant version requires CDMs to be received stably
along with a larger packet and additional hash function.
The remainder of this article is organized as follows. In
Section 2, we review related work on broadcast
authentication for wireless sensor networks, and discuss
their problems and shortcomings. In Section 3, we show
how TMD-tradeoff can be applied to μTESLA with a
detailed attack algorithm and also a concrete
implementation result. In Section 4, we introduce an
extendable broadcast authentication scheme called X-
TESLA. Security and performance of X-TESLA are analyzed
in Section 5. We conclude this paper in Section 6.
SECTION II

2 Survey over the security of Cryptosystems.
Implementation of public-key cryptosystems is becoming
possible, but still expensive. Energy efficient sensor nodes
are also great concerns [5]. More practically in this section,
we briefly review μTESLA and its multi-level variant for
moderate sensor nodes ,.All these schemes are constructed
without using public-key cryptography.
1 μTESLA: We give a short description of μTESLA, referring
readers to for more detail. μTESLA is a broadcast
authentication mechanism for distributed sensor networks,
which was adapted from TESLA . In short, a delayed
exposure of one-way chain is used for authentication. For
this, it is required that the base station and sensor nodes be
loosely time synchronized with a known maximum
synchronization discrepancy bound. Unlike TESLA, which
authenticates the initial packet with a digital signature,
μTESLA uses only symmetric key techniques. The sender
first fixes a public one-way function F and chooses a
random value Kn. The one-way chain Ki = F(Ki+1) is
iteratively calculated for all n > i ≥ 0 and the last element K0
is pre-installed in each receiver, the sensor node, as an
initial commitment. μTESLA also provides a method for
bootstrapping a new receiver through unicasting. Time is
divided into short intervals. During the i-th interval Ii, the
messages broadcast are sent with a MAC keyed with Ki.
After a suitable delay, the key Ki itself is broadcast. Given a
key Ki, calculating K for j > i is expected to be infeasible, but
anybody can calculate Kj for j < i, so it is easy to check the
validity of any newly received Ki with the commitment K0,
or any other Kj satisfying j < i.
2 μTESLA Multi-Level: One drawback of the single chain
used in μTESLA is that there is a practical limit to its length,
leading to a usage time limit. Also, the bootstrapping of a
new receiver in μTESLA utilizes unicasting and hence is not
scalable. Multi-level μTESLA solves this problem by using
multiple chains in multiple levels. Several levels of chains

are used with each (except for the top) level consisting of
multiple chains. The lowest level is a normal chain used for
message broadcasts and usually lasts for a relatively short
period. Upper levels exist to authenticate their very next
lower level chains. When the lowest level chain draws to an
end, the second level chain is used to authenticate the
commitment for the next lowest level chain to be used. The
second level broadcasts the CDM, with clear expression of i
in the MAC only,
CDMi = i_Ki+2,0_ ⊥ _MACKi (i_Ki+2,0_ ⊥)_Ki−1,
Note that it means a null value which is ignored in a basic
version but will be replaced by a hash value in a DOS
resistant version. The new commitment Ki+2,0 for the
lowest level is authenticated with the key2 Ki. Note that
Ki+2,0, the lowest level commitment corresponding to the
(i + 2)-th second level interval, can only be verified by the
sensor nodes after receiving CDMj with j > i. To
authenticate a new 2nd level chain commitment, the 3rd
level is used, and so on. The top level is a single chain that
has to last as long as the sensor network lifetime. So
even though the use of multiple levels allows shortening of
each chain, the total lifetime still has to be predefined. Since
CDMs are distributed within a longer time interval, DoS
attacks must be considered. Multi-level μTESLA provides
two variants for this. One is the DoS tolerant version with a
random selection method, requiring large node buffers to
store multiple CDMs for each level. The other is the DoS
resistant version, and uses a hashing technique adapted
from TESLA’s immediate authentication
method.
3. Trade-Off Memory Data of Attack on μTESLA: We
shall show that if μTESLA is used with parameters that are
currently widely considered to be appropriate, say 64-bit
keys, TMD-tradeoff techniques can disclose future keys,
only relying on realistic resources. Since a simple fix is
possible we do not insist on the insecurity of μTESLA, but
this shows that a simpleminded implementation can be
broken not only theoretically but also in a real-world sense.
a. Target System: To keep our discussion simple, we shall
fix various parameters, but no small tweaking of these
parameters will make the system immune to our attack.We
assume a multi-level μTESLA with 64-bit key chains
created by a one-way function F. Adjusting our attack
tosingle-level μTESLA will be straightforward. Our target
system will disclose a key every 200ms with a delay of two
time intervals at the lowest level and start a new chain
every 1 hour.
b. Attack Objective: Readers with experience in the
tradeoff technique will see that applying it to the one-way
function F is useless, as the current key is not retrieved..So
we take the non-trivial approach of having our attacker
recover the key to be released in the 16th future 200ms
interval (3.2 seconds later), from the key most recently
disclosed. If such an undisclosed key is discovered within
200ms of obtaining the current disclosed key, from it, an
attacker can generate the keys which will allow sending of
authenticated messages for the duration of approximately
14 intervals (2.8 seconds).Loss of control for even a short
amount of time can be devastating to the sensor network
security, as the attacker may force nodes to replace all their
current level keys with commitments of his choice. Once
this has been done, commands from the real base station
will no longer be authenticated and the attacker gains full
control over the sensor network.

SECTION III

pl
ag
ia
ri
sm

A Security of Wireless Sensor Networks – Analysis on Efficient Broadcast Authentication

38

1 Attack Overview: The attacker will work over a 40-day
period. Throughout this period, on each of the 200ms
intervals, he will repeatedly try to see if he can recover the
key that is to be disclosed 16 steps later from the current
disclosed key. The choice of 16 was taken to give the
attacker enough time for commitment replacement and
may be adjusted to meet the attacker’s needs. Let us write
H = F16 to denote 16-iterated applications of the one-way
function F used in constructing the (bottom-level) chain.
Notice that if y is the current 64-bit disclosed key and x is
the key to be disclosed 16 steps later, then y = H(x). So, the
attacker wishes to find x,given y = H(x). As H is not
injective, not all such x will be the correct future key, but
we shall ignore this for now.
Consider the set of all keys disclosed during the 40-day
period. These would consist of multiple shorter chains,
each lasting one hour. After removing 15 starting3 keys
from each of these shorter chains, we name the resulting
set that contains

We shall give an algorithm which processes each of the
keys from ˆD , over a 40-day period, and finds a pre-image
under H for some of these. The 15 keys were removed as
there are no 16-step future keys for these one-way chain
beginnings. The algorithm is expected to find the correct
future key with 64.3% probability, and can process each
key within 200ms of receiving it, when run on a PC.Our
choice of 40 days, which is equivalent to the choice of D ∼
224, and the choice of parameters m = 227 and t = 213, to
appear below, may seem arbitrary. At this stage, we can
only state that any choice with their product mtD
approximately equal to the key space size 264, will work.
Our specific choices were made so that the storage size m,
pre-computation effort mt, and target count D are all within
available resources. While their true meaning can only be
understood after the algorithm and its analysis are
understood, one may keep in mind that the success of the
attack basically relies on the birthday paradox to produce a
collision between the pre-processed mt keys and the D
online keys.

2 Attack Implementation.
We run both simulation and real world test of attacks.
1 Function Choice- Following the most commonly cited
example in the related literature, our one-way function F
was created from RC5. We need to be more explicit, as RC5
is a parameterized family of block ciphers, among which
the most commonly used version utilizes 32-bit words, 12
rounds, and 128-bit keys. The 32-bit word implies 64-bit
blocks and is suitable for us, but as the chain needs the key
size to be of 64 bits, we took the 32-bit word, 12 round, 64-
bit key version. The one-way function maps a 64-bit key to
the 64-bit cipher text which is an encryption of the all-zero
plaintext under the given key. The swapping of two 32-bit
words constituting a 64-bit value was used as permutation
P.
2 Hellman Table Creation- Instead of starting each
Hellman chain with a random 64-bit value, we used the
numbers 0 through 227 − 1 as these initial points. As these
can be written down in a 32-bit space, the total Hellman
table size became 1.5GB instead of the 2GB, referred to in
our discussion. This allows for the Hellman table to be
loaded onto a PC’s 2GB memory with ample room left for
the OS. In fact, we use a Cygwin Unix emulation

environment on a PC in which only 1.5GB memory is
allowed, and the 1.5GB table must fit into that memory
without a large loss .
3 Online Phase Simulation- Random chains corresponding
to 40 days were generated, with each hour starting a new
chain from a new random starting point, for a total of 960 =
24 · 40 independent chains. We simulated the online phase
on our Opteron system, with the target chains distributed
over the 8 cores. It took 40 hours to complete, meaning
13.3 days on a single core. As our requirement of 200ms
per key processing allows this to be done over a 40-day
period, this is three times faster than what we would need
.Using the same Hellman table, we did ten simulations with
ten independently generated target data sets. Many correct
16-step future keys were obtained and we observed 80%
probability of success. Details are given in
4 Sensor Network Application- To check the online phase
in real time and to demonstrate the effectiveness of this
attack, we took one of the many 1-hour chains that resulted
in a correct 16-step future key and performed a test using
real sensor nodes. We first construct our μTESLA base
station by placing the chosen 1-hour chain on a PC with
dual AMD Opteron 244 (1.8GHz) processors and 4GB of
memory. A
Tmote Sky (Telos rev.B) is connected to the PC through a
USB port, and is forwarded μTESLA messages through a
Serial Forwarder (SF) using UART, which is then sent over
a IEEE 802.15.4 radio channel. μTESLA is implemented in C
with 200ms time intervals. A Berkeley Mica-Z sensor node
in which the chain commitment is installed, can verify the
μTESLA messages containing data and keys. We have the
sensor node blink its yellow LED for verified data messages
and its green LED for key disclosure messages. The
Hellman table is placed on another PC to act as the attacker.
Two Tmote Skys are connected to the attack PC through
USB ports, so as to listen to the base station and send out
forged messages. An attack program implemented in C
communicates with the Listener and the Sender through
UARTs, and sends out forged commands making the sensor
node blink its red LED. Through our attack experiment, we
were able to visually check the red LED flashing. This is the
result of the attacker’s forged messages, created using 14
valid keys, each corresponding to one interval.
4 Tradeoff Attack Analysis
This section will give a brief idea on analysis of attack
algorithm is somewhat technical and may be skipped by
anyone that can believe that our attack succeeds with a
reasonable probability and that it can be applied to most
modifications of our explicit attack target.
1 Attack Success Probability- Let us see what probability
of success we can expect from our attack. We start with a
small lemma, whose proof is elementary. Consider a set N
of size N. Randomly choose and fix D distinct elements from
N and name the set D. Next, randomly choose H elements
from N, one at a time, with replacements, and call the
collection H. The family H may contain overlapping
elements. Lemma 1: Assuming D<<< N and DH ¬ N, the
probability of D and H containing at least one element in
common can be approximated by

Let us apply Lemma 1 to our attack setting. The base space
N will be the set of all possible 64-bit keys, so that N = 264.

pl
ag
ia
ri
sm

A Security of Wireless Sensor Networks – Analysis on Efficient Broadcast Authentication

39

Next, consider the set of all online keys disclosed during the
40-day period. These would consist of multiple shorter
chains, each lasting one hour. We remove 15 ending keys6
from each of these shorter chains and take the resulting set
as ˇD .7 The number of elements D in ˇD is given by
equation (1), as before. These D elements may be assumed
to be distinct, for, if otherwise, the key chain would repeat
itself and the authentication system would fall under a
more trivial attack. Take ˇH to be the family of keys
appearing as input points to mapping ˜H applied during
creation of T . This excludes the ending points of each
Hellman chain, and refers to H = t·m = 240, possibly
overlapping, elements.8 Now, a careful review of Algorithm
2 will reveal that should there be any element common to
ˇD and ˇH , it will be returned by Algorithm 2. This common
element x €ˆˇD maps to the disclosed key H(x) €ˆD and
implies success of attack. The success probability of our
attack can be calculated as p ^ 1 − exp(−1.029) ^ 0.643, by
substituting various numbers into Lemma 1.

2 Parameter Tweaks-
In this subsection, consider the application of our tradeoff
attack to other sensor network configurations.
a Shorter Disclosure Interval: Suppose the sensor network
uses key disclosure interval shorter than the 200ms we
have considered. This would result in a larger online target
set being available to the attacker for the same (40- day)
period of attack. This allows the success probability of
attack to be maintained with a shorter Hellman chain.
Hence the attacker can cope with the shorter time interval
allotted to processing of each key. There may still seem to
be one problem, as the attacker recovers the 16-
Interval future key and this is closer in real time than
before. But a faster disclosure interval would usually mean
a faster radio network, and hence the attacker would be
satisfied with the shorter time available for trying out of
the recovered key. Another approach the attacker may take
is to attempt to recover keys further steps into the future.
This would require longer precomputation time for the
same length Hellman chains and a more powerful system
during the online phase. By a more powerful system, we
mean that one could either use a faster processor, or let
multiple processors take turns processing the target data,
each for a time span longer than the disclosure interval.
b Longer Disclosure Interval: If the opposite approach of
using longer disclosure interval is used, the attacker has
less online target data available than before. But this gives
him more time to process each target data, so longer
Hellman chains can be used. This will result in the pre-
processing time increasing, but an increase by a small
factor is well within current computational power. The
attacker can also take the approach of trying to recover
keys smaller steps into the future. Then the longer Hellman
chains will not take longer to create.
c. summary: The tradeoff attack technique has been known
for a long time, and this raises the question as to why
delayed exposure of 64-bit one-way key chains had widely
been accepted as a plausible authentication method. Note
that for a straightforward application of the original
Hellman method or the more widely known
rainbow table method , a pre-computation phase consisting
of about 264 calculations of the one-way function is
required. While no one can say for sure that this is
currently impossible, it does seem to be out of reach for
most organizations. Coupled with the resource constrained
environment, these 64-bit one-way chain methods seem

acceptable at first sight. But the Hellman method and
rainbow table method deal with only a single target data.
Our approach of trying multiple times over an extended
period and being content with succeeding just once seems
to have been overlooked.
The multiple target version of tradeoff attack technique we
have used in this paper, applicable to any one-way function,
is not new and has been developed in But until it was
made explicit by the recent work , many took this to be
applicable to only stream ciphers in a particular way. The
main contribution of this paper concerning the weakness of
current μTESLA is of pointing out that multiple target
version of pre-computation attack is naturally applicable to
the one-way chains. In doing this, the idea
of looking into a 16-step composition of what would
usually have been taken as the one-way function of interest
was crucial. As long as succeeding even once within an
extended time period is a realistic threat, there seems to be
no way of using 64-bit one-way chains without salting
them, that is, even on low-security applications.

SECTION IV
4.1. Broadcast Protocol for Secure X-TESLA: The basic
idea starts from the extendable management of short key
chains. In essence, we make two levels of chains having
distinct time intervals cross-authenticate each other to
provide permanently extendable chains. Our protocol X-
TESLA, read either as TESLA or cross TESLA, stands for
extendable TESLA. As with other TESLA variants, X-TESLA
provides broadcast authentication, under the assumption
that the base station and sensor nodes are loosely time
synchronized with a known maximum synchronization
discrepancy.
Key chains

Key chains
 Fig: The crossing of illustrates the followings.
(a) The lower level chain naturally authenticates the next
upper level chain, as they are connected in a single chain by
construction.
(b) Multiple distinct keys in the upper level chain
authenticate the initial commitment of the next lower level
chain repeatedly. The repeated authentication will help in
resolving problems from DoS attacks, sleeping nodes, and
idle sessions.
4.2 Basic Framework of X-TESLA
4.2.1 X-TESLA chains: Two functions F0(· , ·) and F1(· , ·),
mapping K×S to K will be used. Here, K denotes the key
space, and S is the salt space. For each fixed s ∈ S, we expect
the operator Fi(· , s) on K to be one-way, even when s is
known. In practice, we design the two functions with 64-bit
blockciphers taking 64-bit keys and salt as plaintext in
Section 4.4. The two functions may even be instantiated
with the same blockcipher. Let us divide time into intervals
with indices u, v_ and u, v,w_ used for the upper and lower

pl
ag
ia
ri
sm

A Security of Wireless Sensor Networks – Analysis on Efficient Broadcast Authentication

40

levels, respectively. Let u index both level chains having the
same durations for u > 0, vdo intervals of each upper level
chain for 0 < v ≤ n, and w divide those intervals minutely for
a corresponding lower level chain for 0 < w ≤ m. Intervals
themselves will be denoted as Iu,v and Iw u,v. We let Ju,v
and Kw u,v denote the corresponding upper and lower level
keys. When v = 0 or w = 0, an indexed key is a commitment.
One of distinctive features of X-TESLA is the use of salt
values denoted by Su,v and Swu,v, whose choice we defer to
Section 4.4. These will remove TMD-tradeoff concerns by
making pre-computation infeasible. After fixing each salt
value, we define the upper level chain for each positive
integer u > 0, by starting from a random
seed key Ju,n € K and recursively setting
4.2.2 Communication Packets: For the framework of Tiny
OS, we design communication packets to fit within its 29-
byte default payload size. It is trivial to allow larger packets
if necessary. As depicted, we define four types of packets
that use the first byte of data payload for type distinction
and the following four bytes for an index. Type 1 is an
authenticated data packet of which 16 bytes are used for
data transmission and the remaining 8 bytes are used for
MAC generated by a lower level key. Type 2 is another form
of authenticated data packet of which only 8 bytes are used
for data transmission with an 8-byte MAC ,while the
remaining 8 bytes are used for key disclosure of a previous
lower level interval. Type 3 is designed to handle sleeping
nodes and idle sessions. It is the same with Type 2 except
that the 8-byte data is a future lower level key masked with
a future upper level key Data payload in packets of X-
TESLA.The masked key is authenticated soon but
unmasked much later. Of course, Type 2 and Type 3 can
trivially be merged up to a single type of slightly larger
packet. Type 4 packets hold a future lower level
commitment at the data portion with a MAC calculated
from an upper level key. Notice that the same lower level
commitment is sent throughout a whole upper level chain.
The AUX header field and the structure of CCM encryption
mode of ZigBee packets may be of some use in making
more efficient variants of the packet types.
4.3 X-TESLA Details
4.3.1 Initialization: We assume a base station broadcasts
authenticated messages to sensor nodes. A method to
choose salt values is fixed at system design phase. The base
station generates the first upper level chain by choosing
seed key J1,n € K at random and also generates the first
lower level chain together with the second upper level
chain by choosing another seed key J2,n € K randomly. The
values J1,0 = F1(J1,1, S1,1) and K0 1,1 are stored in each
sensor node as initial upper and lower level commitments,
respectively. Depending on the way salt is chosen, some
extra information may also need to be stored. It would be
advisable to keep these values secret until just before
deployment. Generation of the second lower level chain
together with the third upper level key chain should soon
follow, so as to be ready for commitment distribution.
When the initialized nodes are deployed, they are to be
loosely time synchronized with the base station, as
assumed in μTESLA.
4.3.2 Broadcast Authentication: During an Iw u,v, the base
station uses Kw u,v as the MAC key for Types 1, 2, and 3
packets being sent out, and reveals Kwu,v after a wait of
time δ from the end of Iwu,v,in Type 2 or 3 packets. We
shall abuse interval indices, setting Iu,n+1 = u+1,1, Im+1 u,v
= I1 u,v+1, Iu,0 = Iu−1,n,and I0 u,v = Im u,v−1. The following

is a Type 2 packet for use with “δ = one time interval.” Here,
| denotes concatenation and ∗ signifies the index and data
portion.
T2Pw u,v =(u, v,w)!!data!!MAC!!Kw u,v (∗)!!Kw−2
This corresponds to what is usually stated as key disclosure
delay of two time intervals.If the key disclosure message is
lost, the sensor node buffers all messages it receives until a
key disclosure message is successfully received, and
computes.
4.3.3 Commitment Hopping: With TESLA variants, there are
at least two situations in which verification of a newly
disclosed key places heavy computational load on a sensor
node, resulting in many message drops, for the duration of
this computation. First, if a sensor node falls into sleep
mode or turns off its radio power to save energy, it may not
be able to listen to the key disclosure messages during that
period. Second, if there are long idle periods with no
broadcast, it would be wasteful to disclose keys on
schedule and a base station might minimize the key
disclosures for those periods. As a result, there could be a
large gap between the current commitment and the key to
be verified. Type 3 packets can resolve this problem, by
providing commitment hopping. Let Iu_,v_ be an interval
appearing after Iu,v. The distance9 between the two
intervals depends on the application needs. We set T3
Pwu,v = u, v,w!!Kmu_,v_⊕ Ju_,v!!MACKwu,v(∗)!!
Kw−2u,v .u,v .
4.3.4 Cross Authentication: With X-TESLA, keys of the
upper level chain can be authenticated by the previous
lower level chain since they are connected in a single chain
by construction and since the latest commitment key of the
previous lower level is available to sensor nodes. Type 3
packets further help in making this available. After any
verification, the
Commitment for the upper level can be updated. For
authentication of a new lower level chain, the upper level
chain is used. The following is a Type 4 packet. It
distributes the commitment of the next lower level chain
while disclosing a previous upper level key.T4
Pu,v = (u, v)!!K0u+1,1!!MACJu,v (∗)!!Ju,v−1The next lower
level commitment K0u +1,1 is distributed at random
instances within Iu,v, authenticated with Ju,v. In fact, many
(different) Type 4 packets are constructed and broadcast to
deliver the same next lower level commitment K0u+1,1
during Iu. Therefore, a sensor node would have numerous
chances to receive a correct K0u+1,1 during Iu, and resist
DoS attacks without the use buffers of multi-level μTESLA.
A node buffers a single or slightly .The offset should be
reasonably set. Multiple offsets may be used
by assigning different message types to handle distinct
offsets.
4.3.5 Flexible Constructions: We now place more
flexibility, in addition to the choice of chain lengths, into the
X-TESLA construction. This will resolve even the most
extreme situation that could occur with Type 4 packets.
Starting from the basic flow we extend the upper level
chain over a number of lower level chains for better
survivability against high communication faults and long
idle sessions depicted in. Even a short extension of the
upper level chain with only small bits allows many lower
level chains to be attached, and these may be generated on
the fly. The extension increases stability of chain
verification in both levels. The change also provides longer
periods in which to distribute the next chain commitments
for both levels through Type 3 and Type 4 packet

pl
ag
ia
ri
sm

A Security of Wireless Sensor Networks – Analysis on Efficient Broadcast Authentication

41

variants.The reverse flow allows reduction of Type 4
packets for environments in which authenticated messages
are broadcast very frequently. Since an upper level chain
serves as commitments for the next lower level chain, Type
4 packets distribute Ju+1,0 :=10. Within each Iu,v, a random
selection process (which might come naturally from the
environment) can also be employed. But the dependance
on Type 4 packets is smaller, because the upper level keys
can be recovered stably from Type 3 packets if the
authenticated broadcasts of the lower level
are very frequent. The hybrid flow offers extreme
durability. For every u ≡ 1 (mod 3), a lower chain of Iu+3 is
generated from a random seed with upper chains of Iu+2,
Iu+1, and Iu, together with lower chains of Iu+1 and Iu−1
descending from this.
4.3.6 Sleep Mode Management: Energy efficiency is
mandatory for sensor networks since tiny nodes are
operated on batteries. Various types of sleep modes11 that
stop CPUs or radio functions are commonly used but care
must be taken, as nodes that have been inactive for a long
time may need to do much computation for key verification
or lose commitment. Let Tu denote the starting time of
interval Iu, and set Φ = Tu+1−Tu to the length of one upper
level chain. sensor node shall not be allowed to go into a
long term sleep or, at the least, not be allowed to stop radio
functions for a long term period unless it has obtained the
next lower level commitment, while short term sleeps are
always allowed. More specifically, we fix some threshold
value θ that takes the clock discrepancy of nodes into
account, and for a node that has verified a Type 4 packet at
time T, we allow it to set the maximum sleep length timer()
to the duration of up to Φ only if T < Tu + θ (as in node A of
Fig. 4), and to the duration of up to Tu+1 + θ − T if
otherwise . These values are meant to be the maximum
sleeping length, and a sensor node may repeat going to
sleep and waking up freely (or stopping and awaking radio
components) within the given duration. The value θ should
be fixed so that the security parameter ε = P[Φ] − P[Φ − θ]
is kept appropriately small, where P[Φ] and P[Φ − θ]
denote the probabilities for a node to receive and verify a
Type 4 packet within respective time lengths. Note that Φ
is quite long, amounting to 3.6 hours if, for example, 216-
key chains of 200ms intervals are used for the lower level.
When a sensor node finally awakes, it should be allowed to
go back to sleep for a long period only if it receives and
verifies the next lower level commitment. If a node fails to
verify any Type 4 packet in some Iu, it should be made to
try harder in the next interval Iu+1, for example, by
sleeping less, but often Type 3 packets could already have
provided the lower level commitment of Iu+1. The sleep
mode management system explained here should make the
extendable property of X-TESLA work stably .Still, the
upper level length in X-TESLA needs to be Chosen carefully,
so that unexpected length of communication failure does
not completely disrupt the system. Though this makes
parameter selection challenging, the lengthening of the
upper level is relatively cheap, and the use of flexible
construction of Fig. 3 is also possible.
4.4 Implementation of X-TESLA
4.4.1Practical Construction: We use 28-key chains for the
upper level and 216-key chains for the lower level with
200ms intervals but various other combinations are also
possible. The broadcast module is implemented by
connecting Tmote Sky to a PC, and the receiving module is
ported into Mica-Z, with 17KB of program memory of

which 9KB are occupied by system. We set 28-byte12
payloads. we utilize the 64-bit key version of RC5 for
generating chains. The salt values, used as plaintext, should
be known to the verifying node as well, and can be defined
in various ways. Taking a practical approach, we use Su,v =
u, v_ and Sw u,v = u, v,w_ in the implementation, where the
indices are zero-extended to fill the 64-bit block size, with
the exception of the most significant bit, which is used to
differentiate F0 from F1.We caution that this is not a
complete solution against TMD-tradeoff attacks. If the
indices are short, so that index repetition is common, an
attacker may decide to focus on (multiple) target points
corresponding to one fixed index. Even if index is long
enough not to repeat itself within the lifetime of the
network, a tradeoff attack on a single target would still be
possible. This is not an immediate threat with average-
powered attackers, but probably not so for long with 64-bit
chains. Rather we propose a more robust solution to
combine old (disclosed) key with the index to produce salt..
Thus, a sort of randomness, unpredictable until near the
time of use, could be employed, so as to prevent pre-
computation.
4.4.2 Running X-TESLA: To start with, we need a 28-key
chain for the upper level and a (216 + 28)-key chain for the
lower level with its source, which is the next upper level.
For commitments soon to be distributed, one additional
future chain must be prepared. As a result, the base station
maintains three upper level and two lower level chains at
run time. It takes only 797ms to compute these chains on a
PC with dual AMD Opteron 244 (1.8GHz) CPU and only
1MB to store them. In our test implementation, for
simplicity, we preset the starting time and had the base
station send out a synchronization command. This is
acceptable, as the initial deployment phase is usually
assumed to be secure in the literature. More sophisticated
synchronization methods can be found .The number of
unauthenticated packets buffered by a sensor node
depends on the period and reliability of key disclosure
messages. Concerning the key disclosure interval, note that
a 36-byte TinyOS packet, consisting of 5-byte header, 29-
byte data payload, and 2-byte CRC tailer, takes 28.8ms to
send on a 10kbps radio network, with round-trip taking
less than 60ms. Similarly, a 39-byte ZigBee packet in which
29 bytes are data payload,takes 5.1ms on average to send
on a 60kbps13 radio network, with round-trip taking less
than 15ms. So any key disclosure interval larger than 50ms
is possible. In case the shorter 50ms intervals are used, it
might be preferable to use slightly longer chains, to
preserve the duration covered by a single lower level chain.
 SECTION V
5.1. Security Issues: As was stated in Section 4.2.1, X-
TESLA protects against TMD-tradeoff attacks through the
explicit use of salt, so that even the 64-bit key chains can be
practically secure .The extendable management of short
chains leads to security advantages as well as efficiency
advantages. In (multi-level) μTESLA, the lifetime of the
sensor network is pre-determined and a chain (or at least
one chain) that spans throughout this very long period is
used. This means that the seed key (and far future keys)
should be protected very securely, for were it to be
compromised without the base station being aware, it
could. Be troublesome for a very long period. So, depending
on the adversary model, X-TESLA, which uses shortlived
chains, will have security advantages. In any case, using

pl
ag
ia
ri
sm

A Security of Wireless Sensor Networks – Analysis on Efficient Broadcast Authentication

42

long chains is less than ideal, as function iteration
continually reduces the entropy of key space.
5.2. DoS Attack Resistance: Communication faults and
DoS attacks may result in packet loss or forged packets. To
overcome these problems, a base station could repeat a
packet for a reasonable number of times. For example, if a
packet loss rate is 30%, the probability of receiving can be
increased to 99.2% by repeating the packet just four times.
Since the time interval of lower level chains is tiny and the
verification key is disclosed shortly, forged messages can
be deterred by an affordable buffering in the lower level.
Compared to the other types, Type 4 packets could be less
resistant to DoS attacks because they have to be buffered
until verification for the duration of the longer upper
interval. By jamming a whole interval15 Iu,v, a DoS attacker
can drop all Type 4 packets from that interval, but
fortunately the impact diminishes rapidly as the attacker
loses domination, especially when considered over all of Iu.
Let pl be the packet loss rate of sensor nodes due to
communication faults and sleep modes and set ¯pl = 1 − pl.
Suppose that the base station randomly chooses r of the m
intervals within each Iu,v to broadcast Type 4 packets and
that the attacker dominates k intervals within each Iu,v.
Since the time interval of upper chains is relatively long,
the attacker could try to overflow sensor node buffers with
forged Type 4 packets after listening to the correct key
Ju,v−1 disclosed in that interval. However, it is sufficient
with X-TESLA that each node buffers only a single (or
slightly more) Type 4 packet received in each interval Iu,v
for verifying K0u +1,1 within Iu. Among the four
constructions of X-TESLA , the basic method delivers the
next lower level chain commitment through Type 4
packets, but repeats it within Iu, so that a node can receive
a valid one with very high probability. The other three
constructions allow even better probability. Consequently,
X-TESLA resists DoS attacks of forged packets intrinsically,
whereas multilevel μTESLA necessitates a large buffer and
much precomputation with storage for its CDM packets. We
could observe at least such a big difference between them.
5.3 Efficiency Comparison: While multi-level μTESLA and
X-TESLA provide comparable resistance against DoS
attacks, in this section, we show that the required
resources are different.
5.3.1 Computation and Storage for Base Stations: With X-
TESLA, only a small number of short chains need to be
stored in the base station, with the rest computed on the
fly, and the chains are extendable indefinitely. In μTESLA
and DoS resistant multi-level μTESLA, full chains covering
all of the expected lifetime (and their CDMs in multi-level
μTESLA) have to be pre-computed and stored. By storing
the pre-computed chain only in part, storage can be
reduced, but at the cost of online recomputation.
5.3.2 Storage for Sensor Nodes: To verify a message, a
sensor node has to buffer the index, data, and MAC fields
until the delayed exposure of the corresponding key. This is
a shared property of all μTESLA variants. X-TESLA shares
another property with multi-level μTESLA in that new
commitments for future chains need to be buffered and
verified, but XTESLA requires less storage in the nodes
than multilevel μTESLA for three reasons. First, only two
levels are used in X-TESLA, while more levels (or longer
chains) are necessary in multi-level μTESLA. Second, X-
TESLA verifies an upper level commitment, which is
masked for later use, almost immediately after reception,
following the shorter lower level schedule, but with multi-

level μTESLA, verification of an level-_ commitment must
wait through level-(_+1)’s longer interval, and this situation
worsens as we go up the levels. Third, verification of lower
level commitment in X-TESLA follows the upper level
interval schedule, but without large buffering. With X-TE
SLA, a sensor node stores one most recently authenticated
key as the current commitment for each level, along with
the next lower level commitment, and possibly the masked
key from a recent Type 3 packet, adding up to a total of four
keys (taking 32 bytes) at runtime. In comparison, an M-
level μTESLA node stores 3M−2 keys (taking more bytes),
along with the buffered CDMs for each level except the
highest level. Let us now look at the node storage required
to handle Type 4 or CDM packets reliably, by comparing an
X-TESLA of 28/216-key upper/lower chains with a 2-level
μTESLA of 212/216-key chains and a 4-level of
24/28/28/28-key chains within the 228-key lifetime. Let r
and f denote the number of real and forged Type 4/CDM
packets appearing in a single Iu,v or lowest level 28-key
interval.
5.3.3 Computation and Communication for Sensor Nodes: In
sensor networks, power consumption of sensor nodes is
one of the most significant issues since sensor nodes are
usually operated on batteries. With μTESLA variants,
sensor nodes may consume energy while computing chains
(for verification), computing MAC, and receiving broadcast
packets. We analyze computation and communication costs
of sensor nodes from this perspective. Let a random
process X(t) have an exponential distribution and let E[X]
be the expected value that is the average distance between
two packet arrivals, with regard to a message rate. We take
a slot to be the time interval for which a single lowest level
key is valid.

CONCLUSION
Through the application of TMD-tradeoff

techniques we observed that care should be taken with the
shortkey chain based broadcast authentication schemes.
We have proposed X-TESLA, an efficient scheme which may
continue indefinitely and securely, that addresses this and
many other issues of the previous schemes. With the
advent of more powerful sensor node commodities such as
iMote2 [14], the future of public-key technique application
to broadcast authentication looks bright, but X-TESLA can
efficiently be combined with public-key techniques also.
For example, we could modify X-TESLA to use digital
signatures on Type 4 packets, keeping everything else the
same.

REFERENCES
[1]I.F.Akyildiz, W. Su, Y. Sankarasubramaniam, and E.
Cayirci, “A Survey on Sensor Networks,” IEEE Comm.
Magazine, Vol. 40, No.8, pp. 102–114, Aug. 2002.
[2] G. Avoine, P. Junod, and P. Oechslin, “Time-Memory
Trade-offs:False Alarm Detection Using Checkpoints,”
Indocrypt 2005, LNCS
3797, pp. 183–196, Springer-Verlag, 2005.
[3] A. Durresi, V. Paruchuri, S. Iyengar, and R. Kannan,
“Optimized Broadcast Protocol for Sensor Networks,” IEEE
Trans. Computers,vol. 54, no. 8, pp. 1013–1024, Aug. 2005.
 [4] S. Ganeriwal, S. Capkun, C. Han, and M. Srivastava,
“Secure Time Synchronization Service for Sensor
Networks,” Proc. ACM Workshop on Wireless Security
(WiSe), pp. 97–106, 2005.

pl
ag
ia
ri
sm

A Security of Wireless Sensor Networks – Analysis on Efficient Broadcast Authentication

43

 [5] Y. Hu, M. Jakobson, and A. Perrig, “Efficient
Constructions for One-way Hash Chains,” Proc. ACNS 05,
LNCS 3531, pp. 423–441,Springer-Verlag,2005
[6] Intel IMote2 Overview,
http://www.intel.com/research/
downloads/imote_overview.pdf, 2005. Commercialized by
Crossbow, INC. http://www.xbow.com/.
 [7] M. Karaata and M. Gouda, “A Stabilizing
Deactivation/Reactivation Protocol,” IEEE Trans.
Computers, vol.56, no. 7, pp. 881–888, Jul. 2007.
[8] Q. Li and D. Rus, “Global Clock Synchronization in
Sensor
Networks,” IEEE Trans. Computers, vol. 55, no. 2, pp. 214–
226, Feb. 2006.

[9] D. Liu, P. Ning, “Efficient Distribution of Key Chain
Commitments for Broadcast Authentication in Distributed
Sensor Networks,”
Proc. ISOC Network and Distributed System Security
Symposium (NDSS), pp. 263–276, Feb. 2003.
[10] D. Liu and P. Ning, “Multi-Level μTESLA: Broadcast
Authentication for Distributed Sensor Networks,” ACM
Trans. Embedded Computing Systems, Vol. 3, No. 4, pp.
800–836, Nov. 2004.
[11] M. Luk, A. Perrig, and B. Willock, “Seven Cardinal
Properties of Sensor Network Broadcast Authentication,”
Proc. ACM Workshop on Security of Ad Hoc and Sensor
Networks (SASN), October 2006.

N.Sainath B.Tech from JayaPrakash Narayana College of Engineering M.Tech SE from Srinidhi
Institute of Technology. Currently he is working as Associate Professor at Sree Vishweshawarya
college of Engg. His areas of interest include Data mining, Network Security.

N. Vikram Narayanadas M.Tech from Shadan Engineering College B.Tech from Sree Datta College
of Engg. Currently he is working as Associate Professor at JayaPrakash Narayana College of Engg.
His areas of interest include Information Security, Databases.

pl
ag
ia
ri
sm

