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Abstract.
We study the obstacle problem for fully nonlinear second-order
uniformly elliptic operators. We can show the existence of a con-
tinuous viscosity solution in the general setting,and we can show
C1,1-regularity of the viscosity solution when the operator is con-
vex or concave. C1,α-regularity of the free boundary is established
when the operator is convex in any dimension or concave in two
dimensions.

When F is a linear operator,many authors studied the existence and

the regularity of the weak solution, and the regularity of the free bound-

ary. Hans Lewy and Guido Stampacchia considered the least super-

harmonic function in their paper[LG]. L. Caffarelli, and Kinderleher

showed the gradient of the solution has the same modulus of continu-

ity as the gradient of the obstacle. The penalized problem was widely

pursued by many authors. Hans Brezis and David Kinderleher proved

the C1,1-regularity of the solution in [Br].

In [Ca2], L. Caffarelli used the C1,1-regularity and the homogeneity

of the operator to get the regularity of the free boundary by blowing

up the solution. Much understanding of the viscosity solution of the

nonlinear elliptic operator was improved in [Ish],[Ev],[Kry], and [Ca3].
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Our principle results are the existence of the viscosity solution, the

C1,1-regularity of the solution, and the C1,α-regularity of the free bound-

ary.

In the first section, we consider the least super-solution of (0.1),and

the corresponding penalized problem. The least super solution will

give us the viscosity solution by Perron’s method [Ish]. We show the

continuity of the solution by the Harnack inequality.

In the second section the C1,1-regularity of the solution is proved by

extending the argument in [Ca1]. By means of the Harnack inequality,

the question can be interpreted in terms of the boundary behavior

of the solution, and by the comparison theorem, the solution is also

controllable around the boundary.

In the third section, we show the C1-regularity of the free bound-

ary by the compactness method which was developed in [Ca2]. Our

approach consists in blowing up our solution, characterizing the limit-

ing “cone” solution and deducing the regularity of the original solution.

The critical estimate in this approach is the lower bound for the second

derivative of the solution by the Harnark type estimate. It is proved

for the convex operator in any dimension, but for the concave opera-

tor, it is proved only in two dimensions by the relation between two

eigenvalues of the solution.

In the fourth section, C1,α-regularity of the free boundary is estab-

lished when the operator is homogeneous of degree one. First, we found

a cone of direction where the solution is monotone. Then the potential

theory in [Fa] implies the C1,α-regularity of the all level surface of the

solution including the free boundary.
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In the last section, we show the C1,α-regularity of the free boundary

of the general case by the renormalization and approximation argu-

ment.

I wish to express my thanks to Luis Caffarelli for his suggestion of

this problem and advice.

1. the existence and the continuity theory

At this section, we are going to study the existence of the lower

semicontinuous viscosity solution and the continuity of the solution.

Theorem 1.1.

There exists a lowersemicontinuous viscosity supersolution u which sat-

isfies (0.1).

Proof It is proved by Perron’s method in H. Ishii [Ish]

Theorem 1.2 (a generalization of Evans theorem).

If u is continuous in supp(F (D2u)), then u is continuous in Ω

Proof The only possible problem is on the free boundary. Assume

u is discontinuous at some point xo in supp((F (D2u)). There exists

a sequence xk in the complement of supp((F (D2u)) converging to xo

s.t. u(xk) converges to µ(possibly ∞) with µ > lim infx→xo u + K =

u(xo) +K

Without loss of generality, we can assume lim infx→xo u = u(xo) = 0.

So for any δ > 0, there is a small neighborhood of xo, with u(x) ≥ −δ.
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Now choose rk as large as possible such that Brk(xk) is in the comple-

ment of supp(F (D2u)).

So for x in our neighborhood, u(x) + δ ≥ 0 and u(xk) + δ ≥ µ > 0 for

large k.

Now choose k large enough to guarantee that Brk(xk) is contained

in our neighborhood. By the Harnack inequality,u(x) + δ ≥ Cµ in

Brk/2(xk).

C is universal,in particular, independent of rk.

Choose small δ > 0 s.t. u(x) ≥ Cµ− δ ≥ C
2
µ in Brk/2(xk).

Let yk ∈ supp(F (D2u)) ∩ ∂Brk(xk).

Now by the weak Harnark inequality,

u(yk) + δ ≥ C(
1

B2rk(yk)

∫
B2rk

(yk)
(u+ δ)p)

1
p

≥ C(
1

Brk/2(yk)

∫
Brk/2(yk)

(u+ δ)p)
1
p

≥ Cµ+ δ

(for small C). So u(yk) ≥ Cµ > 0 ,independent of K, and since the yk

converge to xo, we have a contradiction!

Q.E.D.

Theorem 1.3.

u is continuous on Ω.

Proof We know u is continuous in the interior of Ω from the previous

theorem. Now we are going to study the continuity on the boundary.

If ∂Ω is smooth, it will satisfy the exterior sphere condition at each

point on the boundary.

So we can find a barrier on the boundary [GT]

The comparison principle says that the solution is trapped between

upper and lower barriers which are continuous and coincide with the
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boundary data at the given point on the boundary. As x approaches

to the given point, the solution assumes the boundary data. Therefore

u is continuous on Ω.

Q.E.D.

Now we are going to give another proof of the existence of the contin-

uous viscosity solution by using the standard penalized problem.By the

uniqueness argument, it turns out to be the least supper solution given

in the theorem above. We can improve the regularity slightly better

which is not necessary in the next arguments, but we will include it

here because of the technical interest.

Theorem 1.4 (the existence).

There is a u in W 2,p
loc (Ω) ∩ C(Ω) for all 1 ≤ p <∞ s.t.

−F (D2u) ≥ 0

u ≥ φ

(−F (D2u))(u− φ) = 0

in Ω

u = 0 on ∂Ω

(1.1)

Proof There is a continuous family of functions βε(t) ∈ C∞ when

ε < 1 s.t.

β′ε(t) ≥ 0
βε(t) → −∞ if t < 0, ε→ 0
βε(t) → 0 if t > 0, ε→ 0
βε(t) ≤ 0
βε(0) ≥ −C
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where C is a constant independent of ε. Let’s consider the penalized

problem

−F (D2u) + βε(u− φ) = 0 in Ω

u = 0 on ∂Ω
(1.2)

For the technical reason, let’s truncate the graph of βε at the level ±N .

βε,N =


N if βε,N ≥ N

βε,N if −N ≤ βε,N ≤ N
−N if βε,N ≥ N

Consider the problem:

−F (D2u) + βε,N(u− φ) = 0 in Ω

u = 0 on ∂Ω
(1.3)

For each v ∈ Lploc(Ω) ∩ Co(Ω) By [Ca2], there is u ∈ W 2,p
loc (Ω) ∩ Co(Ω)

satisfying

−F (D2u) + βε,N(v − φ) = 0 in Ω

u = 0 on ∂Ω

From |βε,N(v − φ)| ≤ N , we cab deduce

||u||W 2,p
loc

(Ω) ≤ R

where R is independent of v, and u is ρ∗-modulus continuous for some

ρ∗ independent of v by the theorem (4.14) in [Ca3]

On the other hand, W 2,p
loc (Ω) is compact subset of Lploc, and ρ∗ contin-

uous functions make a compact subset of Co(Ω). So v → u = Tv is a

compact operator.

By the Schauder fixed point theorem, there is u s.t.

∃u = Tu

So there is uε,N ∈ W 2,p
loc (Ω) ∩ Co(Ω) s.t. uε,N is a solution of (1.3)

We estimate w = βε,N(uε,N − φ) at first, w ≤ C by the definition of

βε(t)

There is a xo ∈ Ω where w assumes its minimum on Ω since w is



OBSTACLE PROBLEM FOR NONLINEAR 2nd-ORDER ELLIPTIC OPERATOR 7

continuous on Ω

Without loss of generality we assume

w(xo) ≤ 0, w(xo) < βε(0)

and xo is not in ∂Ω since uε,N(xo)− φ(xo) > 0 for xo ∈ ∂Ω

The monotonicity of βε implies w(xo) ≥ βε(0) It’s a contradiction.

So xo is on Ω, and uε,N − φ has the minimum at xo since βε,N is mono-

tone.

We can think (uε,N − φ)(xo) < 0 and

−F (D2uε,N −D2φ) ≤ 0 at xo

since D2(uε,N − φ) ≥ 0 at the minimum point xo.

At xo, by the uniform ellipticity,

βε,N(u− φ)(xo) = F (D2uε,N) = F (D2uε,N −D2φ+D2φ)
≥ F (D2uε,N −D2φ) + λ||D2φ+|| − Λ||D2φ−||
≥ λ||D2φ+|| − Λ||D2φ−|| ≥ −C

for some constant C. Therefore |βε,N(u− φ)| ≤ C where C is indepen-

dent of ε and N

|F (D2uε,N)| ≤ C

By the standard estimate in the uniform elliptic equation,

||uε,N ||W 2,p
loc

(Ω)∩C(Ω) ≤ C(1.4)

If N is large, uε,N is the solution of the penalized problem(1.2).

So we can drop N in uε,N

On the other hand |βε,N(uε − φ)| < C gives

|(uε,N − φ)(x)− (uε,N − φ)(y)| ≤ ρ∗(|x− y|)(1.5)

where ρ∗ is independent of ε,N .

By (1.4)(1.5),there are ε = εm → 0 s.t.

uε,m → u weakly in W 2,p
loc (Ω)
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uε,m → u uniformly in Ω

|βε(uε − φ)| < C gives u ≥ φ, and

βε(uεm − φ)→ 0 on u > φ

limεm→0βεm(uεm − φ) ≤ 0

By the standard argument in the viscosity solution,

−F (D2u) ≥ 0 a.e. in Ω

F (D2u) = 0 a.e. on {u > φ}

Q.E.D.

Theorem 1.5 (The uniqueness).

u in theorem (1.4) is the least super-solution of the problem(0.1)

Proof Let v be the least super-solution of (0.1).

By the definition of v, v ≤ u. Let Assume D = {x|u > v} 6= φ

F (D2u) = 0 ≥ F (D2v∗) on D in the viscosity sense. On ∂D, u = v.

So v ≥ u in D. It is a contradiction. Q.E.D.

2. C1,1-regularity

We are going to show the solution has uniform C1,1 estimate across

the free boundary.

Lemma 2.1.

u is the viscosity solution of the (0.1)

u(xo) = φ(xo), Lxo(x) = φ(xo) +Dφ(xo)(x− xo)
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supBr(xo) |φ(x)−  Lxo(x)| ≤ λ

Then

sup
Br/2(xo)

|u(x)−  Lxo(x)| ≤ Cλ

for some universal constant C

Proof In Br(xo),

Lxo(x)− λ ≤ φ(x) ≤ u(x)

We need to show u(x) ≤ Lxo(x) + Cλ in Br/2(xo).

In Br(xo),let

v(x) = u(x)− Lxo(x)− λ

Λ(u) = {u = φ}, N(u) = {u > φ},Γ(u) = ∂Λ(u) ∩ ∂N(u).

Then

v(x) ≥ 0, v(x) ≤ 2λ in Br(xo) ∩ Λ(u)

,and

F (D2v(x)) ≤ 0

Let w be a viscosity solution s.t. F (D2w(x)) = 0 and w = v on ∂Br.

Then w ≤ v.

On ∂Br, v = w implies v < w + 2λ.

On Λ(u), v < 2λ implies v < w + 2λ.

Therefore v ≤ w + 2λ in Br(xo) ∩ N(u) which means v ≤ w + 2λ in

Br(xo), and 0 ≤ w(xo) ≤ v(xo) ≤ 2λ.

By the Harnack inequality, on Br/2(xo), w ≤ Cλ,.

Therefore u(x)− Lxo(x) ≤ Cλ for some C > 0

Q.E.D.

Theorem 2.2.

If u is the viscosity solution of (0.1), u is C1,1
loc (Ω) ∩ C(Ω)
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Proof Since Γ(u) is compact in Ω, there is a δ > 0 s.t. d(∂Ω,Γ(u)) ≥

2δ > 0

For any yo ∈ Γ(u), Bδ(yo) ⊂ Ω.

For any x ∈ Bδ(yo) ∩ N(u), there is xo which is the closest point of x

to Γ(u).

Since φ ∈ C2,

|φ(x)− Lxo(x)| ≤ |D2φ||x− xo|2

By the lemma(2.1),

|u(x)− Lxo(x)| ≤ C|x− xo|2 if |x− xo| <
ρ

2

When r < R < ρ
2
,

sup
Br

|D(u(x)− Lxo(x))| ≤ C

R
sup
BR

|u(x)− Lxo(x)|

≤ C

R
R2 ≤ CR

where Lxo(x) = φ(xo) +Dφ(xo)(x− xo). Since xo is on Λ(u), Lxo(x) =

Dφ(xo) = Du(xo). Therefore when r < ρ
2
,

|Du(x)−Du(xo)| ≤ Cd(x, xo)(2.1)

Now we are going to combine the estimate on the free boundary (2.1)

and the following interior estimate. Since F (D2u) = 0 in N(u),

Fij(D
2u)Dijuk = 0 for any 1 ≤ k ≤ n

aij(x) = Fij(D
2u) is the measurable coefficient.

aij(x)Dijuk = 0 in N(u)

For any two points x, x′ ∈ B ρ
2
(yo), we want to show |uk(x)− uk(x′)| ≤

C|x− x′|. Let’s take xo, x
′
o ∈ Γ(u) s.t.

d(x,Γ(u)) = d(x, xo), d(x′,Γ(u)) = d(x′, x′o)
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If d(x, x′) ≤ 1
2

max(d(x, xo), d(x′, x′o)),

then the interior estimate of the uniform elliptic equation says

|uk(x)− uk(x′)| ≤ C|x− x′|

If d(x, x′) ≥ 1
2

max(d(x, xo), d(x′, x′o)),

then

d(xo, x
′
o) ≤ d(x, xo) + d(x, x′) + d(x′, x′o)

≤ Cd(x, x′)

|uk(x)− uk(x′)| = |uk(x)− uk(xo)|+ |uk(xo)− uk(x′o)|

+ |uk(x′o)− uk(x′)|

≤ Cd(x, xo) + |φk(xo)− φk(x′o)|+ Cd(x′, x′o)

≤ Cd(x, x′)

Q.E.D.

3. the regularity of the free boundary

We would like to reduce the regularity problem of the free boundary

to a standard form for using the compactness method. We need the

following lemma to F (D2φ) > 0 in a neighborhood which will imply

the nondegeneracy of the solution.

Lemma 3.1.

Λ(u) = {x|u(x) = φ(x)} ⊂ {x|F (D2φ) < 0}

Proof V1 = {x|F (D2φ) > 0}

Let x ∈ ∂V1. By our assumption (F (D2φ) and DF (D2φ) do not vanish

simultaneously),the cone

Cε = {z| < z − x,D(F (D2φ)) > ε|z − x|} ∩ {z||z − x| < δε}
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satisfies Cε ⊂ V1.

0 ≥ F (D2u)− F (D2φ) = aij(x)Dij(u− φ)

where aij(x) =
∫ 1

0 F (θD2u(x)− (1− θ)D2φ(x))dθ, and u−φ > 0 in Cε.

If ε is very small, we can find positive subsolution of the type r1,αf(θ)

like Lemma(3.10). We will discuss how to find the subsolution later in

Lemma(3.10). On the other hand, the solution u is C1,1 across the free

boundary. Therefore x is not in Λ(u).

Q.E.D.

Since Λ is compact,there is ν > 0 s.t. Λ ⊂ {x|F (D2φ) < −ν}.

Then for all xo ∈ ∂Λ, there is a small ε > 0 s.t.

Bε(xo) ⊂ {x|F (D2φ) < −ν}

By rescaling the solution, we can think,

v = u− φ ≥ 0 in B1. F (D2v +D2φ) = 0 in N(u) = {u(x) > 0}

|D2v|L∞(B1) ≤M ,v ∈ C1,1(B1),0 ∈ Γ(u) = ∂Λ(u) ∩ ∂N(u).

We would like to study the simple case at first, and to extend the ar-

gument in general case by modifying it a little bit.

The simplified case is the following.

X = (x1, · · · , xn) ∈ Rn

Br(x) = {y ∈ Rn| ‖ x− y ‖< r}

u is the nonnegative function on some domain D ⊂ Rn

Λ(u) = {x ∈ D|u(x) = 0}

N(u) = {x ∈ D|u(x) > 0}

Γ(u) = ∂Λ(u) ∩ ∂N(u)
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• F (u) is the uniformly elliptic operator and F ∈ C2 i.e.

λ ‖ N ‖≤ F (M +N)− F (M) ≤ Λ ‖ N ‖

where N ≥ 0 and M,N : n x n symmetric matrix

• u ∈ Pr(0 < r ≤ ∞)

⇔

(1) u ∈ C1,1(Br), supBr |Diju| ≤M

(2) u ≥ 0 and 0 ∈ Γ(u)

(3) F (D2u) = 1 in N(u)

Remark We are going to use the case

3′) F (D2u− I) = 0 in N(u)

instead of 3). There is no difference in the argument by the lemmas in

Section 4. We would like to think 3) for the technical simplicity

We are going to use the notion of thinness of Λ(u) in Br by the quantity

δr(Λ) =
m.d.(Λ ∩Br)

r

where m.d.(Λ∩Br) is the infimum of the distance between two pairs of

parallel hyperplans such that Λ∩Br is contained in the strip determined

by them.

For example, if Λ is a ellipsoid, m.d.(Λ) is the twice of the length of

the shortest axis.

Our theorem says that if we have more than a critical amount σ(r)

of zero set Λ(u) in the notion of δr(Λ), the free boundary in a neighbor-

hood of zero is C1. In addition, the critical amount σ(r) goes to zero

with r. We can state the same theorem 1 in [Ca2] for the nonlinear

elliptic case.



14 KI-AHM LEE

Theorem 3.2.

Let u be in P1.

Then there exists a positive, non decreasing function σ(r), with σ(0+) =

0 s.t.

If for some r ∈ (0, 1), δr(λ(u)) > σ(r)

Then the free boundary Γ(u), in a neighborhood Br̃(0), is the graph of

a C1.

In addition, we can get the C1,α-regularity of the free boundary when

the operator is homogeneous of degree one.

Theorem 3.3.

When F is homogeneous of degree one, the same assumption with The-

orem (3.2) implies that the level surface of u,i.e. {u = ε} are uniformly

C1,α graphs and so is the free boundary Γ(u).

3.1. Convexity and Non Degeneracy.

Lemma 3.4.

If u ∈ P1, x ∈ N(u), then

sup
y∈Bρ(x)

[u(y)− u(x)] ≥ ρ2

2nΛ

Proof Let x ∈ N(u)

g(y) = u(y)− u(x)− |x− y|
2

2nΛ

on N(u) ∩Bρ(x)

F (D2g) = F (D2u− I
Λ

) ≥ F (D2u)− Λ I
nΛ
≥ 0

So by the maximum principle, the maximum is at ∂(N(u)∩Bρ(x)) and
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g(x) = 0

On the other hand, g < 0 on ∂Ω, so

sup
∂Bρ(x)

g ≥ 0

sup
y∈∂Bρ(x)

[u(y)− u(x)− |x− y|
2

2nΛ
] ≥ 0

sup
y∈Bρ(x)

[u(y)− u(x)] ≥ sup
y∈∂Bρ(x)

[u(y)− u(x)] ≥ ρ2

2nΛ

Q.E.D.

Corollary 3.5.

If u(m) ∈ Pr and u(m) → uo uniformly in the compact subsets,then

uo ∈ Pr and N(uo) ⊃ limN(u(m))

Proof We would like to use the contradiction argument.

We assume N(uo) doesn’t contain limN(u(m))

Then there is a yo in limN(u(m)) \N(uo)

We can find a small ε neighborhood of yo s.t. Bε(y
o)∩N(uo) is empty.

Let’s choose {ym} s.t. ym ∈ N(u(m)) and ym → yo

By the lemma(3.2),

sup
y∈Bε/2(ym)

u(m)(y) ≥ sup
y∈Bε/2(ym)

[u(m)(y)− u(m)(ym)] ≥ 1

2n

ε2

2
=

ε2

8n

For a large m,

sup
y∈Bε(yo)

u(m)(y) ≥ sup
y∈Bε/2(yo)

u(m)(y) ≥ ε2

8n
> 0

But u(m) → 0 uniformly on Bε(y
o) . It is a contradiction. Q.E.D.

Lemma 3.6.

If u is a nonnegative C1,1(Bρ(xo))) function with a norm ||u||C1,1 ≤M

and for some point Yo ∈ ∂B(xo), u(Yo) = 0 and Du(Yo) = 0
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,then for given δ, 0 < δ < 1
2
, and a pure second derivative uii,

there is Γ ⊂ Bδmρ(x1) and x1 s.t. d(x1, ∂B(xo)) ≥
√
δρ and a large

m > 0 s.t.

|Γ| ≥ Cδm|Bρ|

min
Γ
uii ≥ −CMδ1/2

for some universal constant C.

Proof y1 = (1− δ)yo + δxo.

For any y1 + z ∈ Bδ′(y1) s.t. δ′ = δρ
4

, |y1 + z − yo| ≤ 2δρ, |Du(y1 + z)| ≤M(2δρ), |u(y1 + z)| ≤ M
2

(2δρ)2.

Let’s choose a interval Iz from y1 + z along ±ith-direction which means

Iz = [y1 + z, y2 + z] = z + I

s.t. |Iz| = 1
2
δ1/2ρ and I = [y1, y2].

0 ≤ u(y2 + z) = u(y1 + z)± ui(y1 + z)|I|+
∫
I

∫
I
uii

0 ≤
∫
Bδ′

u(y2+z)dz =
∫
Bδ′

u(y1+z)dz±
∫
Bδ′

ui(y1+z)dz|I|+
∫
I

∫
I

∫
Bδ′

uiidz

≤ {M
2

(2δρ)2 ±M(2δρ)|I|}|Bδ′|+
∫
I

∫
I

∫
Bδ′

uiidz

Let’s choose the length of Iz as 1
2
δ1/2ρ

1

|Bδ′|

∫
I

∫
I

∫
Bδ′

uiidz ≥ −CMρ2δ3/2

max
y∈I

1

|Bδ′ |

∫
Bδ′

uiidz ≥ −CMδ1/2

∃ỹ ∈ I s.t.
1

|Bδ′|

∫
Bδ′

uii(ỹ + z)dz ≥ −CMδ1/2

Let Γ̃ = {uii(ỹ + z) ≥ −η} where η = 2CMδ1/2

1

|Bδ′ |

∫
Bδ′∩Γ̃

uii +
1

|Bδ′ |

∫
Bδ′∩Γ̃c

uii ≥ −CMδ1/2

1

|Bδ′ |

∫
Bδ′∩Γ̃

uii ≥ −CMδ1/2 − 1

|Bδ′|

∫
Bδ′∩Γ̃c

uii

uii ≤M on Bδ′ ∩ Γ̃
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uii ≤ −η on Bδ′ ∩ Γ̃c

M
|Bδ′ ∩ Γ̃|
|Bδ′|

≥ 1

|Bδ′|

∫
Bδ′∩Γ̃

uii

≥ −CMδ1/2 + η
|Bδ′| − |Bδ′ ∩ Γ̃|

|Bδ′|

≥ −CMδ1/2 + η − η |Bδ′ ∩ Γ̃|
|Bδ′|

(M + η)
|Bδ′ ∩ Γ̃|
|Bδ′|

≥ η − CMδ1/2

Since η = 2CMδ1/2

|Bδ′ ∩ Γ̃|
|Bδ′|

≥ CMδ1/2

M + η
≥ CMδ1/2

2M
≥ Cδ1/2

|Bδ′ ∩ Γ̃| ≥ Cδ1/2|Bδ′ | ≥ Cδn+ 1
2ρn

since δ′ = δρ
4

. Let Γ = Bδ′ ∩ Γ̃. Then uii ≥ −CMδ1/2 on Γ and

|Γ| ≥ Cδn+ 1
2ρn Q.E.D.

Now we are going to get lower estimates for the second derivative of

the solution. At first we consider the convex operator F where Diiu(x)

is a subsolution of the linearized equation.

Lemma 3.7.

F is convex, for any directional derivative

Diiu(x) ≥ −C| log |x||−ε for small |x|

Proof We will use the Harnack inequality inductively by shrinking

the radius of the ball centered at 0. Let

Diiu(x) ≥ −Mk on B( 1
2

)k

Let’s choose any xo s.t. |xo| ≤ (1
2
)k+1.

We can find the biggest ball Bρ(xo) ⊂ N(u),contacting the free bound-

ary at one point yo. Since yo ∈ ∂Bρ(u) ∩ Λ(u), u(yo) = 0, Du(yo) = 0.
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By the Lemma(3.6), for given δ > 0 s.t. 0 < δ < 1
2
,

There are Γ, x1,and m corresponding to Lemma(3.6). So

min
Γ
uii ≥ −CMδ

1
2

If we use the lemma(5.1) in the Appendix,

uii(xo) ≥ −Mk + γδN(Mk − Cδ
1
2 )

Let’s choose Cδ
1
2 = εMk for some ε > 0.

Then

uii(xo) ≥ −Mk + CM Ñ for some Ñ

−Mk+1 ≥ −Mk + CM Ñ
k

A standard argument shows that

Mk ∼ k−ε ∼ | log |x||−ε

Q.E.D.

The second case is the concave F which is depending on eigenval-

ues of u in R2. The largest eigenvalue behaves like a supersolution,

and two eigenvalues are balanced though the uniform elliptic opera-

tor F . Thanks to this balance, the smallest eigenvalue behaves like a

subsolution.

Lemma 3.8.

If F is concave in R2

F is depending only on eigenvalues,

then Dllu(x) ≥ −C| log |x||−ε for small |x|.

ProofF (λ1, λ2) = 1 where λ1 ≤ λ2 and F (0, α) = 1.

Let λ1 ≥ −Mk on B( 1
2

)k .
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λ2 − α ≤ Nk for some Nk s.t. F (−Mk, α +Nk) = 1 and Nk > 0

By the similar argument, there are Γ, x1,m s.t. minΓ(λ1(x)) ≥ −Cmδ
1
2

So maxΓ(λ2(x)− α) ≤ C̃Mdδ
1
2 for some directional derivative l.

On the other hand, Dllu(x)’s are sub-solutions of Lw = 0 where Lw =

Fij(D
2u)Dijw

By the lemma(5.1) in the appendix,

(Nk − (Dllu(xo)− α)) ≥ λδN(Nk − C̃Mδ
1
2 )

Let’s choose Cδ
1
2 = εMk for small ε > 0

Then

Dllu(xo)− α ≤ Nk − CN Ñ
k

λ2(x)|Bk+1
1
2

− α ≤ Nk − CN Ñ
k

By the uniform ellipticity of F ,

−Mk+1 ≥ −Mk + C̃M Ñ
k

So Mk ∼ k−ε ∼ C| log |x||−ε

Therefore

Dllu(x) ≥ λ1(x) ≥ −C| log |x||−ε

for small |x|

Q.E.D.

Lemma 3.9.

If u(m)
εm = 1

εm
u(m)(εmx) converges to uo as εn converges to 0

Proof

Dllu
(m)
εm (x) = Dllu

(m)(εmX) ≥ −C| log |εmx||−ε
≥ −C| log |εmR||−ε

if |x| ≤ R

So u(m)
εm (x) + C

2
| log |εmR||−ε|x|2 is convex.

If εm goes to 0, it converges uniformly to uo(x) in |x| ≤ R. Therefore
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uo(x) is convex.

Q.E.D.

3.2. the regularity of convex solution. Let’s define P ∗ = {u ∈ P1|u

is convex }.

Lemma 3.10.

If u ∈ P ∗1 and δ1(Λ(u)) ≥ ε > 0

1

ε2m
u(εmx)→ uo(x)

,then Λ(uo(x)) = {x| < x, en >≤ 0} for some coordinate system.

Proof Λ(uo(x)) is a convex cone which is generated by Λ(u)

If Λ(uo(x)) is not a half plane, for some polar coordinate,

Λ(uo(x)) ⊂ {x|x = (ρ cos θ, ρ sin θ, x3, · · · , xn), θo ≤ |θ| ≤ π}

where θo >
π
2

We choose θ1 where π
2
< θ1 < θ0, and α so that αθ1 = π.

Let w = Dluo. Then w = 0 on ∂Λ(uo(x)),and w is a Lipschitz function

in virtue of C1,1-regularity.

F (D2uo) = 1

Fij(D
2uo)Dij(uo)l = 0

Let aij(x) = Fij(D
2uo) be a bounded measurable elliptic coefficients.

We use a barrier function to estimate the w from below.

v = rα(e−β sinαθ − e−β)

Then, in the polar coordinate

Lv = aijDijv = arrDrrv +
arθ
r
Drθv +

aθθ
r2
Dθθv + brDrv
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Drrv = α(α− 1)(e−βsinαθ − e−β)

1

r
Drθv = αrα−2(−βα cosαθ)e−β sin θ

1

r2
Dθθv = rα−2((βα cosαθ)2 + βα2 sinαθ)e−β sin θ

1

r
Drv = αrα−2(e−β sinαθ − e−β)

For large β, the term 1
r2
Dθθv will dominate and it is positive.

On the other hand, aθθ ≥ λ > 0 where λ is a elliptic coefficient. If

we choose large β, Lv ≥ 0. Therefore v is a sub-solution and zero on

∂Λ(uo).

By the comparison theorem,0 < v < w in {x||θ| < θ1}.

On the other hand, w is C0,1. It means that w will decay to 0 faster

than any rα where 0 < α < 1. It contradicts against the decay rate of

v, when r goes to 0.

Therefore ∂Λ(uo) is flat.

Q.E.D.

Lemma 3.11.

For any ε > 0, δ > 0, there exists a λ = λ(ε, δ) such that if u ∈ P ∗1 (M)

and δ1(Λ(u)) > ε, then in an appropriate system of coordinates

Λ(u) ⊃ Bλ ∩ {x : α(x,−en) <
φ

2
− δ}

N(u) ⊃ Bλ ∩ {x : α(x, en) <
φ

2
− δ}

Proof Look Lemma4.4 in [Fr]

Q.E.D.

We are going to write Lemma(4.5) in Chapter 2 of [Fr] for the com-

pleteness of the proof.

Lemma 3.12.
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If u ∈ P ∗1 and δ 1
4
(Λ(u)) ≥ ε > 0,

then there is an appropriate system of coordinates, µ > 0, a C1-function

s.t.

Λ(u) ∩Bµ = {x|xn ≤ g(x′)}

where x′ = (x1, · · · , xn−1)

Proof Since Λ(u) ∩B1/2(0) ⊃ Λ(u) ∩B 1
4
(y) if |y| < 1

4
,

mindiam(Λ(u) ∩B 1
2
(u)) ≥ mindiam(Λ(u) ∩B 1

4
)

=
1

4
δ1/4(Λ(u)) ≥ ε

4

So we can use the previous lemma w.r.t. any point y ∈ Γ, |y| < 1
4
.

By the previous lemma y = 0 ∈ Γ,for any δ = 1
m

,there is a system of

coordinate(emi )(i = 1, · · · , n) s.t.

Λ(u) ⊃ Bλ ∩ {x|α(x,−en) <
π

2
− δ}

N(u) ⊃ Bλ ∩ {x|α(x,−en) <
π

2
− δ}

(3.1)

holds with en = emn .

Λ(u) is convex. So

{xo + temn } ∩ Λ(u) ={xo + temn |t < to}

{xo + temn } ∩N(u) ={xo + temn |t > to}
(3.2)

If x =
∑
i xie

m
i , then xo+toemn can be represented by xn = gm(x′) where

x′ = (x2, · · · , xn), and Λ(u) = {xn ≤ gm(x′)}. Since (3.2) hold for (emi )

in Bλm (Λm depends on δ = 1
m

and ε;λm → 0), it follows that for a

suitable choice of the emi , 1 ≤ i ≤ m− 1,and for a subsequence,

emi → eoi

(eoi ) = Tm(emi ), where Tm is an orthogonal matrix
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Thus Tm → I where I is an identity matrix.

From(3.1),

|gm(x′)− gm(0)|
|x′|

≤ C

m
|x′| ≤ λm

Therefore xn = go(x) is a representation of Λ(u) and go is differentiable

at 0 with zero gradient.

We can do the same argument about y ∈ Λ(u) with |y| small enough.

Thus there is a system of coordinates (em,yi ),and Λ(u) can be a limiting

on (eo,yi ) as (m→∞),and Γ(u) can be represented in a ρo-neighborhood

of y where ρo is independent of y.

xn ≤ gm,y(x′) or xn ≤ go,y(x′)

where x =
∑
x− iem,yi or x =

∑
xiE

0,y
i ,respectively.

Therefore

|go,y(x′)− go(0)|
|x′|

≤ βm if |x′| < λm, βm → 0(3.3)

The system of coordinates em,yi is related to e0,y
i by

em,yi = Tm,y(eo,yi )

where Tm,y converges uniformly to I with respect to y.

eo,yi = T o,y(eoi )

and

T o,y → I if y → 0(3.4)

by the uniform size of the cones.

We can rewrite (3.3) in terms of the system of coordinates (eoi ).

go(y + h)− g0(y) = hc(y) + ho(1)

where 0(1)→ 0 as |h| → 0,uniformly w.r.t. y, and |c(y)| ≤ C.

Therefore go ∈ C1. Q.E.D.
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3.3. Improvement of Convexity for Γ of large minimum diam-

eter.

Lemma 3.13.

Given ε, δ, there exits ρo(ε, δ) s.t.

If u ∈ P1, and δρ(Λ) ≥ ε for ρ ≤ ρo,

then in an appropriate system of coordinates,

Λ(u) ⊃ Bρλ
2
∩ {x| − xn ≥ 2ργδ}

N(u) ⊃ Bρλ
2
∩ {x|xn ≥ 2ρλδ}

Proof Otherwise, there exists um ∈ P1, and ρm , where ρm → 0,

contradicting the lemma(3.10).

u(m)
ρm → uo ∈ P ∗

δρo(Γ(uo)) ≥ lim δρo(Λ(u(m)
ρm )) ≥ ε

We obtain a contradiction to Lemma(3.11). Q.E.D.

Remark

Γ(u) ⊃ Bρλ
2
∩ {x| − xn ≥ 2ργδ}

δρλ
2
(Γ(u)) ≥

ρλ
2
− 2ρλδ
ρλ
2

= 1− 4δ ≥ 1

2
≥ ε

for

ε, δ <
1

8

Corollary 3.14.

Given ε, δ < 1
8
,

there is an appropriate system of coordinates with n−vector e(k)
n

Λ(u) ⊃ Bρ(λ
2

)k ∩ {x| − x
(k)
n ≥ ρ(

λ

2
)k4δ}

N(u) ⊃ Bρ(λ
2

)k ∩ {x|x
(k)
n ≥ ρ(

λ

2
)k4δ}
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Lemma 3.15.

Given ε, δ < 1
8
,

then, there is a µ < 1 s.t.

Diiu|N(u)∩B
ρ(λ2 )k

≥ −Mµk−1

Proof We would like to consider two cases. The fist one is when the

operator F is convex,and the second,when F is concave in R2.

Case 1) If F is convex ,the any second derivative Diiu is a supper

solution of a linear operator L = aij(x)Dij where aij(x) = Fij(D
2u).

There is

φ(x) s.t.


φ(x) = 0 when xn = −1

2
− δ where δ > 0

φ(x) = −1 on ∂B1 ∩ {xn > −1
2
}

−1 < φ < 0 on ∂B1 ∩ {−1
2
− δ < xn < −1

2

Let

h s.t.

Lh = 0 on B1 ∩ {xn < −1
2
− δ}

h = φ on ∂B1 ∩ {xn < −1
2
− δ}

Therefore

−µ = inf
B 1

2

h > −1

By the induction,

Diiu|N(u)∩B
ρ(λ2 )k

≥ −Mµk−1

Case 2)F (λ1, λ2) = 1 and F is concave.

Claim: If λ1 ≥ −M in N(u) ∩Bρ(λ
2

)

,then λ1 ≥ −Mµ in N(u) ∩Bρ(λ
2

)2

If this claim is true, we can use it inductively to get

λ1 ≥ −Mµk−1 in N(u) ∩Bρ(λ
2

)K

Now we are going to prove the claim. By the lemma(3.10)

Λ(u) ⊃ Bρλ
2
∩ {x| − xn ≥ 2ρλδ}
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N(u) ⊃ Bρλ
2
∩ {x|xn ≥ 2ρλδ}

Let F (0, α) = 1.

λ1 ≥ −M if and only if λ2−α ≤ N for some N > 0, since F is elliptic.

There is

φ(x)


= 0 when xn = −1

2
− δ(δ > 0)

= N on ∂B1 ∩ {xn > −1
2
}

0 < φ < N on ∂B1 ∩ {−1
2
− δ < xn < −1

2
}

Let Lw = Fij(D
2u)Dijw = aij(x)Dijw where aij(x) = Fij(D

2u). Then

there is

w s.t.

Lw = 0 on B1 ∩ {xn < −1
2
− δ}

w = φ on ∂B1 ∩ {xn < −1
2
− δ}

For all direction l, Dllu − α is a subsolution of L , which is less than

N on ∂B1 ∩ ∂N(u) since λ2 − α ≤ N ,and less than 0 on B1 ∩ ∂N(u).

Thus Dllu− α ≤ w in B1 ∩N(u). By Harnack inequality,

sup
B1/2∩N(u)

w ≤ γN

implies

sup
B1/2∩N(u)

(Dllu− α) ≤ γN

for all l.

sup
B1/2∩N(u)

(λ2 − α) ≤ λN

inf
B1/2∩N(u)

λ1 ≥ −µM

Therefore the claim is true. By the remark after the claim, the lemma

is true. Q.E.D.

3.4. Regularity of the Free Boundary.

Lemma 3.16.

If u ∈ C1,1, u(0) = 0, Diiu > −τ, then for 0 < t < 1,

u(tx) ≤ |x|2τ + u(x)
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Proof Let max0≤t≤1 u(tx) = u(t0x).

If to < 1, then 0 = u(0) = u(tox) +
∫ ∫

Diiu ≥ u(tox)− τ |x|2

So u(tx) ≤ u(tox) ≤ τ |x|2

If to = 1, then u(tx) ≤ u(x) for 0 ≤ t ≤ 1.

So u(t, x) ≤ u(x) + τ |x|2 for 0 ≤ t ≤ 1. Q.E.D.

Corollary 3.17.

If xo ∈ N(u) ∩ [Bρ(λ
2

)k\Bρ(λ
2

)k+1 ]

then there is yo s.t.

|xo − yo| ≤ θk =
√
Mnµ(k−2)/2ρ(

λ

2
)k−2

{syo} ⊂ N(u)

if |syo| < ρ(λ
2
)k−1, and s > 1.

Proof By the lemma (3.2)

sup
∂Bθk(x)

u ≥ θ2
k

2n

There is y ∈ ∂Bθk(x) s.t. u(y) ≥ θ2k
2n

By the lemma (3.14) and Diiu|N(u)∩B
ρ(λ2 )k−1

≥ −Mµk−2,

if |sy| < ρ(λ
2
)k−1,where t = 1

s
, tx = y,then

1

2nλ
(Mnµk−2ρ2(

λ

2
)2(k−2)) ≤ u(y) ≤ (ρ(

λ

2
)k−1)2Mµk−2 + u(sy)

= Mρ2(
λ

2
)2(k−1)µk−2 + u(sy)

0 <
1

2
Mρ2(

λ

2
)2(k−1)µk−2 ≤ u(sy)

Therefore sy ∈ N(u)

Q.E.D.

Remark At the previous lemma (3.15),the angle between x and y,

α(x, y) ≤ C
µ
k−2
2

λ
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Lemma 3.18.

There is ko(ε, δ) > 0 s.t. for suitable constant C,in an appropriate

system of coordinates

(1) Λ(u) ⊃ Bρ(λ
2

)ko ∩ {x|α(x,−en) ≤ π
2
− Cδ}

(2) N(u) ⊃ Bρ(λ
2

)ko ∩ {x|α(x,+en) ≤ π
2
− Cδ}

Proof About (1), if (1) is not true, there is

x ∈ (Bρ(λ
2

)l\Bρ(λ
2

)l+1) ∩N(u)

for some large l ≥ ko.

By the lemma (3.15)

there is y s.t. |x− y| ≤ θl =
√
Mnµ(l−2)/2ρ( l

2
)l−2

sy ∈ N(u) s.t. |sy| ≤ ρ(
λ

2
)l−1

There is s1 > 1, s.t. |s1y| < ρ(λ
2
)l−1

Let x1 = s1y ∈ Bρ(λ
2

)l−1\Bρ(λ
2

)l

Then

α(x, x1) ≤ C
µ
l−2
2

λ

x1 ∈ Bρ(λ
2

)l−1\Bρ(λ
2

)l

By the induction,

α(xk, xk+1) ≤ C
µ
l−2−k

2

λ

xk+1 ∈ Bρ(λ
2

)l−(k+1)\Bρ(λ
2

)l−k
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For some k̃, xk̃ ∈ ∂Bρ(λ
2

)ko

α(x, xk̃) =
k̃∑
i=1

α(xi−1, xi)

≤
k̃∑
i=1

C
µ
l−1−i

2

λ

= C
µ
l−2
2

λ

( 1
µ
)
k̃
2 )− 1

1

µ
1
2
− 1

= C
µ
l−2
2 ( 1

µ
)
k̃−1
2

λ(1− µ 1
2 )

= C
µ
l−1
2
−
k̃− 1

2
2 − µ l

2

λ(−µ 1
2 + 1)

≤ C
µ
l−2−k̃

2

λ(1− µ)
=

C

λ(1− µ)
µko−2 ≤ δ

4

for large ko

C > 5 in (1)

α(x,−en) <
π

2
− 5δ

α(xk̃,−en) <
π

2
− 4δ

xk̃ ∈ ∂Bρ(λ
2

)ko and xk̃ ∈ N(u). It is a contradiction against the

lemma(3.16)

About (2)

We assume (2) is not true for any positive constant C and integer

ko > 0, then for any large constant C∗,there is

xo ∈ Γ(u) ∩B( 1
2

)ρ(λ
2

)ko ∩ {x|α(x, en) ≤ π

2
− C∗δ}

By the previous argument,Γ(u) contains a cone with vertex xo opening

π
2
− Cδ.Then the axis of the cone must be away from −en by Coδ by

Corollary(3.14).
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If C∗ is large,0 is an interior point of the cone. It is a contradiction.

Q.E.D.

Proof of Theorem(3.2) We can use the same argument which is

used in the convex case.

To find σ(r), we are going to choose r corresponding to σ.

If δr > σ, then for any point a neighborhood taken as a new center we

will have

δs >
σ
2

for some s < r = ρ(σ
2
, 1

8
) from Lemma(3.13). Then for each r,

there is a σ(r) through the relation r = 1
2
ρ(σ

2
, 1

8
). Q.E.D.

4. C1,α-regularity of the free boundary

Now we would like to show the C1,α regularity of the free boundary

in any dimension for the convex operator , and in two dimensions for

the concave operator.

Lemma 4.1.

If u is convex , in P1, and δ(Λ(u) ∩B − 1) ≥ δo > 0,

then there are a small ro(δo), and εo s.t. for some system of coordinates

if ε < εo, then

[Den + εDej ]u(x) ≥ εd(x,Γ(u))

Proof

By the scalling, it is enough to prove the lemma for d(x, ∂Ω) = 1.

The nondegeneracy, Lemma(3.4) says supB1(xo) u ≥
1

2nΛ
.

So we can find a point y s.t. u(y) ≥ 1
2nλ

.

Let’s join y and a point on the free boundary in B1 by a line segment.
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Since u is convex, the line segment and the normal direction to the free

boundary at xo have an angle which is smaller than εo.

In addition, the length of this line is of order 1.

Since u is bigger than 1
2nλ

at one end of the line segment and 0 at the

other end of it,

we can say Den+εeτu ≥ co > 0 at a point y1 on the line segment for an

uniform constant co.

C1,1-estimate implies that y1 is far from the free boundary uniformly.

On the other hand, Den+εeτu is a solution of the linearized equation.

By the Harnack inequality on the chains of balls connecting y1 and x,

Den+εeτu ≥ c1 > 0 for a uniform constant c1.

Q.E.D

Remark

Let’s define uk = 1
ε2ko
u(εkx).

By C1,1-estimate of uk and Lemma(4.1), uk converges to a convex func-

tion uniformly in C1.

From the Lemma(4.1), we can say that ,for a given λ > 0, there is a k

s.t. Den+εeτuk ≥ [d(x, ∂Ω)− Cλ]

where uk = 1
ε2ko
u(εkx).

Now we are going to show the gradient of the solution is increasing

in a cone of direction even though it is not convex

Lemma 4.2.

If u is in P1 and δ(Λ(u) ∩B − 1) ≥ δo > 0,

then there are a small ro(δo), and εo
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s.t. for some system of coordinates

if ε < εo, then

[Den + εDej ]u(x) ≥ εd(x,Γ(u))

We know by using the argument in Lemma(4.1) that the result of

this Lemma is true as soon as we get [Den + εDej ]u(x) is nonnegative

From the remark above, we know Den+εeτuk is nonnegative at the point

outside of γ-neighborhood of the free boundary.

Now we are going to show Den+εeτuk ≥ 0

in the region Bro/2 ∩Nγ(Γ(uk)).

Let’s use contradiction argument.

Suppose that for xo ∈ Nγ(Γ(uk)) s.t.

Den+εeτuk(xo) < 0

Consider the auxiliary function

h(x) = uk(x)− 1

2nΛ
|x− xo|2 −Den+ετuk(x)

in Bρ(xo) ∩N(uk).

Since the operator F is homogeneous of degree one, Den+εeτuk is a

solution of the linearized equation.

Lh = Fij(D
2u)Dijh = 0 in a domain, and h(xo) > 0.

Then h > 0 on ∂(Bρ(xo) ∩N(uk)), since h ≤ 0 on ∂N(uk).

Therefore h(x) > 0 for some x along ∂Bρ.

At x, we get

uk(x)−Den+εeτuk ≥ Cρ2

On the other hand,

uk(x)−Den+εeτuk ≤ C1d
2(x, ∂Ω)− C2d(x, ∂Ω) + C3γ

That is

ρ2 ≤ C1d
2 − C2d+ C3γ
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,and d ≤ ρ+ γ = d(x, x0) + d(xo, ∂N(uk))

Hence

ρ2 ≤ C1(ρ+ γ)2 − C2(ρ+ γ) + C3γ

This is a contradiction for small enough ρ ≤ ro
2

, and much smaller γ

Q.E.D.

Proof of Theorem(3.3) We are going to use the potential the-

ory in [Fa]. At this point we have a smooth solution in N(u) by the

interior estimate of the solution and the C1 regularity of the free bound-

ary,Theorem(3.2). For any direction l,

Lul = Fij(D
2u)Dijul = 0 in N(u)

Let aij(x) = Fij(D
2u). Then aij(x) is smooth in N(u).

From Lemma(4.2), Den+εoeτu and Denu are positive. Theorem (1.2.2)

in [Fa] implies the Cα regularity of

uν + εuτ
uν

,where ν is the normal direction,and τ is the tangential direction.

In addition, the Hölder norms are uniform and defined all the way to

the free boundary .

We can send ε to 0. Therefore so is uτ
uν

.

On the other hand,

uτ
uν

= Dτfε(x1, · · · , xn−1)

along any level surface {xn = fε} = {u = ε}.

Let’s send ε to 0.

Then the free boundary will be C1,α.

Q.E.D.
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5. the general case

We would like to consider the general C2,α obstacle.

Due to the remark in the beginning of the Section 3, we can consider

the following standard case without the loss of the generality. X =

(x1, · · · , xn) ∈ Rn

Br(x) = {y ∈ Rn| ‖ x− y ‖< r}

u is the nonnegative function on some domainD ⊂ Rn

Γ(u) = {x ∈ D|u(x) = 0}

N(u) = {x ∈ D|u(x) > 0}

Λ(u) = ∂Γ(u) ∩ ∂N(u)

• F (u) is the uniformly elliptic operator and F ∈ C2 i.e.

λ ‖ N ‖≤ F (M +N)− F (M) ≤ Λ ‖ N ‖

where N ≥ 0 and M,N : n x n symmetric matrix

• u ∈ Pr(0 < r ≤ ∞)

⇔

(1) u ∈ C1,1(Br), supBr |Diju| ≤M

(2) u ≥ 0 and u ∈ Γ(u)

(3) F (D2u+D2φ) = 0 in N(u) where f(x) ≥ ν > 0

F (D2φ) ≤ −ν < 0 and ||φ||
C2, 12

<∞

Many of the arguments are similar with the special case, Section 3,

except for the C1,α-regularity of the free boundary. We would like to

point out only different part in the similar case.

Theorem 5.1.

Let u be in P1.

Then there exists a positive, non decreasing function σ(r), with σ(0+) =

0 s.t.
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If for some r ∈ (0, 1), δr(λ(u)) > σ(r)

Then the free boundary Γ(u), in a neighborhood Br̃(0), is the graph of

a C1.

Theorem 5.2.

When F is homogeneous of degree one, the same condition with Theo-

rem(5.1) implies that for some r∗ > 0,

the free boundary Γ(u), in a neighborhood Br∗(0), is the graph of a C1,α.

Lemma 5.3.

If u ∈ P1, x ∈ N(u),then

sup
y∈Bρ(x)

[u(y)− u(x)] ≥ ρ2

2nΛ

Proof Let F̃ (D2u, x) = F (D2u+D2φ)− F (D2φ) = f(x) ≥ ν > 0

F̃ is uniformly elliptic with the elliptic constant λ,Λ > 0

Then we can use the same argument in the proof of lemma(3.2). Q.E.D.

Lemma 5.4.

F is convex, for any directional derivative

Dllu(x) ≥ −C| log |x||−ε for small |x|

Proof We will use the Harnack inequality inductively by shrinking

the radius of the ball centered at 0. Let

Dllu(x) ≥ −Mk on B( 1
2

)k

Let’s choose any xo s.t. |xo| ≤ (1
2
)k+1.

We can find the biggest ball Bρ(xo) ⊂ N(u), contacting the free bound-

ary at one point yo. Since yo ∈ ∂Bρ(u) ∩ Λ(u), u(yo) = 0, Du(yo) = o.



36 KI-AHM LEE

By the lemma(3.6), for given δ > 0 s.t. 0 < δ < 1
2
, there are Γ, x1,and

m corresponding to the lemma(3.6). So

min
Γ
uii ≥ −CMδ

1
2

Since F (D2u+D2φ) = 0 and F is convex,

L(ull + φll) ≤ 0

where Lw = aij(x)Dijw and aij(x) = Fij(D
2u+D2φ)

If we use the lemma(5.1) in the Appendix,

uii(xo) + φll(xo) ≥ δn min
Γ

(ull + φll) + (1− γδN) min
Bρ(xo)

(ull + φll)

ull(xo) ≥ min
Bρ(xo)

φll − φll(xo)−Mk + αδN(Mk − Cδ1/2)

≥ −Mk + αδN(Mk − Cδ1/2)− ||φll||Cαρα

Let’s choose Cδ
1
2 = εMk for some ε > 0.

Then

uii(xo) ≥ −Mk + CM Ñ for some Ñ

−Mk+1 ≥ −Mk + CM Ñ
k − C2−βk

Therefore

Mk ∼ k−ε ∼ | log |x||−ε

Q.E.D.

Lemma 5.5.

If F is concave in R2

F is depending only on eigenvalues,

then Dllu(x) ≥ −C| log |x||−ε for small |x|.
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Proof D2φ is continuous at 0.Let λ1(D2φ(0)) = β

There is α s.t. F (β, α) = 0

F (λ1, λ2) = 0 where λ1 ≤ λ2

and λ1 = λ1(D2u+D2φ), λ2 = λ2(D2u+D2φ)

Let λ1 − β ≥ −Mk on B( 1
2

)k .

λ2 − α ≤ Nk for some Nk s.t. F (β −Mk, α +Nk) = 0 and Nk > 0

By the similar argument with Lemma(3.6) by using the geodesics on

the graph of u, there are Γ, x1,m s.t.

min
Γ

(λ1(D2u)) ≥ −Cmδ
1
2

min
Γ

(λ1(D2u+D2φ)) ≥ −Cmδ
1
2 + min

Γ
λ1(D2u)

min
Γ

(λ1 − β) ≥ −CMδ
1
2 + min

Γ
λ1(D2φ)− β ≥ −CMδ

1
2 − C(

1

2
)
k
2

since D2φ is Hölder continuous.

Therefore

max
Γ

(λ2(x)− α) ≤ C̃Mδ
1
2 + C̃(

1

2
)
k
2

max
Γ

(Dllu(x)− α) ≤ C̃Mδ
1
2 + C̃(

1

2
)
k
2

for all directional derivative l. Dllu(x)’s are sub-solutions of Lw = 0

where Lw = Fij(D
2u)Dijw

By the lemma(6.1) in the appendix,

(Nk − (Dllu(xo)− α)) ≥ λδN(Nk − C̃Mδ
1
2 − C̃(

1

2
)
k
2 )

We choose Cδ
1
2 = εMk for small ε > 0

Then

Dllu(xo)− α ≤ Nk − CN Ñ
k + C̃(

1

2
)
k
2
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λ2(x)|Bk+1
1
2

− α ≤ Nk − CN Ñ
k C̃(

1

2
)
k
2

By the uniform ellipticity of F ,

−Mk+1 ≥ −Mk + C̃M Ñ
k − C2−

k
2

So Mk ∼ k−ε ∼ C| log |x||−ε

Therefore

Dllu(x) ≥ λ1(x) ≥ −C| log |x||−ε

for small |x|

Q.E.D.

Proof of Theorem(5.1) By means of Lemma (5.3)(5.4)(5.5), the sim-

ilar argument with Theorem(3.2) implies Theorem (5.1). Q.E.D.

Lemma 5.6.

Let w1, w2 be two solutions of the same problem in B1, with

(1) F (D2wi +D2φi) = 0 in N(wi) = {wi > 0}.

(2) w1 = w2 on ∂B1

(3) |D2φ1 −D2φ2|L∞ < ε

Then |w1 − w2| < Cε.

Proof Let’s compare w1 + ε(1− |x|2) + φ2 with w2 + φ2. On ∂B1,

w1 + ε(1− |x|2) + φ2 ≥ w2 + φ2
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The ellipticity and

D2φ1 −D2φ2 + 2nεI > 0

implies

F (D2w1 − 2nε+D2φ2) ≤ F (D2w1 +D2φ1) = F (D2w2 +D2φ2) = 0

By the comparison principle,

w1 + ε(1− |x|2) + φ2 ≥ w2 + φ2

Therefore

w1 + ε(1− |x|2) ≥ w2

Q.E.D.

Consider the two sets

S+(ν, 0) = {x| < x, ν >≤ A|x|1+ε}

S−(ν, 0) = {x| < x, ν >≤ −A|x|1+ε}

Lemma 5.7.

Suppose that we are given a set Ω such that 0 ∈ ∂Ω, and for any

xo ∈ ∂Ω ∩B1/2,

there exists a ν(xo) such that

B1 ∩ S−(ν, xo) ⊂ Ω ∩B1 ⊂ S+(ν, xo) ∩B1

Then, in a ball Br(0), ∂Ω is a C1,α-graph in the direction of ν(0).
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Proof The angle between ν(xo) and ν(x1) can be estimated as

|ν(xo)− ν(x1)| ≤ C|xo − x1|α

by the fact that ∂Ω is at the same time in S+\S−(ν(xo)) and in

S+\S−(ν(x1))

Q.E.D.

Now we would like to state an inductive argument to show C1,α-

regularity of the free boundary.

Let T±(ε, ν) = {x| < x, ν >≤ ±ε}

Proof of Theorem(5.2) We would like to show the inductive ex-

pression of Lemma(4.7) without losing the generality. We claim that

for some λ < 1,Γ(u)∩B2−k is in a λk2−k-strip i.e. T−(ν, λk2−k)∩B2−k ⊂

Γ(u) ∩B2−k ⊂ T+(ν, λk2−k) ∩B2−k .

We might approximate u in Brk by a solution w of the free boundary

problem s.t.

F (D2w − I) = 0 Brk ∩N(w)

w = u on ∂Brk

rk = 2−(1−θ)k

Without the loss of generality, we can assume that D2φ(0) = −I by

the assumption on φ.

The Hölder continuity of D2φ says

|D2φ+ I|Brk ≤ εor
α
k = εo2

−(1−θ)kα
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We normalize Brk to B1. Then B2−k will be normalized to B2−θk .

On the normalized picture, by Lemma(4.6),

uk =
1

r2
k

u(rkx)

wk =
1

r2
k

w(rkx)

|uk − wk| ≤ εo2
−(1−θ)kα

By Theorem(3.18), the free boundary of wk is C1,α.

The quadratic growth, and Lemma(5.3),says Γ(uk) is in C2
−(1−θ)kα

2 -

neighborhood of Γ(wk).

Since Γ(wk) is C1,α, Γ(wk) ∩B2−θk is contained in a 2(−θk)(1+α)-strip.

If θ is small, (1−θ)kα
2

> θk(1 + α). So Γ(uk) is contained in a strip of

width 2(2−θk(1+α)).

If we renormalize it back, Γ(u)∩B2−k is in a strip of width (2−θα)k2−k.

Let’s choose λ = 2−θα. Q.E.D.

6. Appendix

{aij} is the uniformly elliptic coefficient, i.e.

λ|ξ|2 ≤ aijξiξj ≤ Λ|ξ|2

Lemma 6.1.

w is a smooth function satisfying −aijwij ≥ 0 in B(R). for some 0 <

R < R0,Let Γ be a closed subset of B(R) s.t. Γ ⊂ BδmR(x), dist(Γ, ∂B(R)) ≥

δR, |Γ| ≥ Cδm|B(R)| for some large m > 0, ,for some C > 0 ,and for
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some x satisfying d(x, ∂Bρ) ≥
√
δR

Then there exists a constant γ = γ(n, λ,Λ) > 0,and N > 1 s.t.

min
B(R/2)

w ≥ γδN min
Γ
w + (1− γδN) min

B(R)
w

ProofLet u = w −minB(R) w ≥ 0 The the weak Harnack inequality

says that if B2r(y) ⊂ Ω,then

(
1

|Br|

∫
Br
up)

1
p ≤ C inf

Br
u(6.1)

where p and C are positive constants depending n, λ,Λ, and R.

We can get the universal constants by the rescaling. We would use the

covering argument.

Γ ⊂ BδmR s.t. d(x, ∂Bρ) ≥
√
δR

There is {Bk}lk=1 s.t. the center of Bk+1 is on Bk, Bl −BδmR(x1), and

the radius of Bk is R(1
2
)k.

If we use (6.1),we can get two facts.

(1)

(
1

|Bk|

∫
Bk

up)
1
p ≤ C inf

Bk
u

(2)

inf
Bk+1

u ≤ inf
Bk∩Bk+1

u ≤ (
1

|Bk ∩Bk+1|
inf

Bk∩Bk+1

up)
1
p ≤ C(

1

|Bk|

∫
Bk

up)
1
p

If we use (1)(2), infBk u ≥ C infBk+1
u for some universal constant C.So

infBR
2

u ≥ C l infBl u

≥ C l+1δ
m
p infΓ u
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And

(1− δ)R = R(1−
l∑

i=1

(
1

2
)i)

1− δ =
1− (1

2
)l

1− 1
2

Therefore δ = (1
2
)l−1. Finally,we could have

inf
BR

2

u ≥ δN inf
Γ
u

for some γ,N which is universal.

Q.E.D.
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[Ca3] L.A. Caffarelli and Xavier Cabré Fully Nonlinear Elliptic Equations A.M.S.
Colloquium Publications Vol. 43

[Ev] L.C. Evans Classical Solutions of Fully Nonlinear,Convex,Second-
Order Elliptic Equations Communications on Pure and Applied
Mathematics,Vol,XXV,333-363(1982)

[Fa] E. Fabes, N. Garofalo, S. Marin-Malave and S. Salsa, Fatou Theorems for
Some Nonlinear Elliptic Equations Revista Mathemática Iberoamerica Vol. 4,
No2, 227-251, 1988

[Fr] Avner Friedman Variational Principles and Free-Boundary Problems Robert
E. Krieger Publishing Company, 1988

[Ish] H. Ishii, On Uniqueness and Existence of Viscosity Solutions of Fully non-
linear Second-Order Elliptic PDE’s Communications on Pure and Applied
Mathematics,Vol,XLII,15-45(1989)

[Kry] N.V.Krylov and M.V.Safonov A Certain Property of solutions of parabolic
Equations with measurable coefficients Izvestia Akad.Nauk. SSSR 40(1980)161-
175

[GT] D. Gilbarg and N.S. Trudinger Elliptic Partial Differential Equations of Sec-

ond Order,2nd edition Springer-Verlag,1983



44 KI-AHM LEE

[LG] H. Lewy and G. Stampacchia On the smoothness of superhrmonics which solve
a minimum problem J. Analyse Math.23(1970),224-236

Courant Institute of Mathematical Science,251,mercer st.,New York,
NY10012

E-mail address: kiahm@cims.nyu.edu


