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Abstract. We prove (obvious analogues of) the Mumford conjecture and the struc-
ture theorem for the equivariant cohomology ring

H∗
G(Css) = H∗

SU(2)(Hom(π1(X), U(2)))

of the moduli space of rank 2 semistable vector bundles of even degree over a Riemann
surface X. Our theorem completely determines the ring structure of the equivariant
cohomology.

1. Introduction

Let Md be the moduli space of rank 2 semistable holomorphic vector bundles of
degree d over a Riemann surface X of genus g. Thanks to many authors including
those named below, we now have a clear understanding of the cohomology ring of
the moduli space when the degree d is odd. In this case, it is a smooth projective
varitiety and there is a universal bundle U → Md ×X.

Fix a holomorphic line bundle L over X of odd degree d and let ML be the
moduli space of rank 2 semistable bundles with determinant L over X. Then we
get a cohomologically trivial fibration

ML −−−−→ Mdy
Jac

over the Jacobian of degree d by taking determinant [T2]. Hence,

H∗(Md) = H∗(ML)⊗H∗(Jac).

The Künneth components of the first Chern class of the universal bundle generate
the cohomology ring H∗(Jac) and those of the second Chern class generate H∗(ML)
[AB][N]. If we put d = 4g − 3, the push-forward f!U is a vector bundle of rank
2g − 1 by Riemann-Roch where f : Md × X → Md is the projection onto the
first component. Therefore cr(f!U) = 0 for r ≥ 2g. Mumford conjectured that the
relations from the vanishing of the Chern classes form a complete set of relations and
it was proved by Kirwan [K2]. Moreover, Baranovsky, King & Newstead, Siebert &
Tian, and Zagier found a (minimal) finite set of relations that generate the whole
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relation ideal [Ba][KN][ST][Z]. Their results actually enable us to compute the cup
product and can be summarized in the “structure theorem”.

As the moduli space is a smooth projective variety, the ring structure is uniquely
determined by the intersection pairing by Poincare duality. Formulas for the inter-
section pairing were deduced by Donaldson and Thaddeus [D][T1]. Witten gener-
alized the formulas to arbitrary rank case when the degree is coprime to the rank.
Recently, Jeffrey & Kirwan, and Liu proved his formulas [JK][Liu].

Contrary to the spectacular achievements for the odd degree case, little has
been known for the even degree case. In this case, the moduli space is a singular
projective variety that can be viewed as a quotient space. Therefore, we can think
of at least three cohomology groups: equivariant, intersection, and ordinary. The
Betti numbers have been known thanks to the works of Atiyah & Bott, Kirwan, and
Cappell & Lee & Miller, respectively [AB][K1][CLM]. In this paper, we compute
the ring structure of the equivariant cohomology. Namely, we prove analogues of
the Mumford conjecture and the structure theorem.

Our method is parallel to the odd degree case. In section 2, we recall various facts
about the moduli space of rank 2 vector bundles of even degree over a fixed Riemann
surface X of genus g. From the perspective of [AB], it is the symplectic quotient
Css//G = Aflat/G of the space Css of semistable holomorphic structures on a fixed
rank 2 complex Hermitian vector bundle E of even degree, by the U(2)- gauge
group G. As constants act trivially and the quotient is singular, we think of the
homotopy quotient of Css by the group G = G/U(1). The equivariant cohomology
H∗
G(Css) is the cohomology of this homotopy quotient

Css
G = Css ×G EG.

There is a universal bundle U for this homotopy quotient and the Künneth com-
ponents of the first and second Chern classes of the universal bundle generate the
equivariant cohomology by the arguments of Atiyah and Bott [AB].

Fix a line bundle L of even degree and consider the moduli space Css
L //G of rank

2 semistable bundles with determinant L. It turns out that

H∗
G(Css) = H∗

G(Css
L )⊗H∗(Jac)

where Jac is the Jacobian.
Let the degree be 4g − 2 and f : Css

G × X → Css
G be the projection onto the

first component. As the universal bundle is holomorphic in the X direction, we can
consider the push-forward f!U of the universal bundle, which is a bundle of rank
2g by Riemann-Roch. Therefore, the Chern classes cr(f!U) vanish for r > 2g.

In section 3, we first deduce an expression for the Chern polynomial of f!U and
then read off the “Mumford relations” to (1)show that the relations coming in this
fashion generate all the others (the Mumford conjecture), and (2)find a finite set
of relations among them, which generate all the relations (the structure theorem).

The moduli space of rank 2 vector bundles with determinant L is homeomorphic1

to the quotient
R := Hom(π1(X), SU(2))/SU(2)

1It is in fact diffeomorphic as a stratified symplectic space. (See [SL].)
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where SU(2) acts by conjugation. Moreover, we have the following isomorphism:

H∗
G(Css

L ) ∼= H∗
SU(2)(R

#
SU(2))

where R#
SU(2) = Hom(π1(X), SU(2)). As a corollary of the structure theorem,

we show that the kernel of the restriction map H∗
SU(2)(R

#
SU(2)) → H∗

SU(2)(R
#
red) is

generated by a single class ξ where R#
red is the subset of reducible homomorphisms.

The class is, up to constant multiple, the V class in [CLM].
Our method can be applied equally well to the odd degree case and provides a

simple proof of the Mumford conjecture and the structure theorem [Ki1]. In fact,
a stronger version of the Mumford conjecture was proved in [Ki1]. Namely, the
Mumford relations from the first vanishing Chern class only, generate the whole
relation ideal. However, they are NOT independent over Q[α, β].

As a further application of the structure theorem for the equivariant cohomology,
in [Ki3], we deduce various structures of the intersection cohomology of the singular
moduli space, including the intersection pairing, from the equivariant cohomology
by using a splitting, constructed in [Ki2], of the Kirwan map from the equivariant
cohomology to the intersection cohomology.

Every cohomology group in this paper has rational coefficient.

Acknowledgement. I am very grateful to my advisor, Professor Ronnie Lee, for
encouragement and valuable advices. I would like to thank the referee for careful
reading and comments.

2. The equivariant cohomology of the moduli space

In this section, we recall various facts about the equivariant cohomology of the
moduli space of rank 2 semistable vector bundles over a Riemann surface X of
genus g.

Let C be the space of holomorphic structures on a fixed rank 2 complex Hermit-
ian vector bundle E of even degree, 4g−2. It is an affine space of Cauchy-Riemann
operators based on Ω0,1(End E) and therefore contractible. If we denote by Css the
subspace of semistable holomorphic structures, then the moduli space of semistable
bundles can be identified with the symplectic quotient Css//G where G is the gauge
group of the principal U(2)-bundle associated to E. (See [AB].) Obviously, con-
stants commute with Cauchy-Riemann operators and thus act trivially on Css. We
put Gc = Gc/C∗. Then Gc acts freely on the open dense subset Cs of stable holo-
morphic structures, but not on Css. So, we consider the homotopy quotient

Css
G = Css ×G EG.

In this paper, the equivariant cohomology means the cohomology of the homotopy
quotient.

Even though there does not exist any (holomorphic) universal bundle for the
moduli space Css//Gc (See [Ra], Thm 2), we do have a (topological) universal
bundle for the homotopy quotient as follows (See [AB], p579): Let W be the obvious
universal vector bundle over Css ×X. By taking quotient of the pullback of PW ,
over Css×EG ×X, by G, we get a projective bundle PU over Css

G ×X. This bundle
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lifts to a vector bundle U because the obstruction for the lifting vanishes by the
existence of a vector bundle W ′ over

Css
G ×X ⊂ CG ×X = BG ×X = Map4g−2(X,BU(2))×X

which is the pullback of the universal bundle over BU(2) via the evaluation map

ev : Map4g−2(X, BU(2))×X → BU(2).

The universal bundle U is continuous in the Css
G direction and holomorphic in the

X direction.
The moduli space of vector bundles can be also thought of as the moduli space of

flat connections as follows [AB]: Let A be the space of connections on the principal
U(2)-bundle associated to E. It is an affine space based on the space of u(2)-valued
1-forms. By taking the (0, 1)-part of a connection, we get a map A → C. The Morse
stratification on A with respect to the norm square of curvature is equivalent to
the Shatz stratification of C and the map induces an identification

Aflat/G = Css//Gc

where Aflat is the subspace of flat connections. Moreover, if we let G0 = {g : X →
U(2)|g(p) = id} with p ∈ X, then G0 acts freely on Aflat and

Aflat/G0 = Hom(π1(X), U(2)) =: R#
U(2).

Therefore, Css
G = Aflat ×G EG = R#

U(2) ×PU(2) EPU(2) and thus

H∗
G(Css) = H∗

G(Aflat) ∼= H∗
PU(2)(R

#
U(2)) = H∗

SU(2)(R
#
U(2))

With the above identification, we can construct

EndU → (R#
U(2) ×PU(2) EPU(2))×X

as follows: Let X̃ be the universal cover of X. Consider

(R#
U(2) × End(C2))×π1(X) X̃ → R#

U(2) ×X

where g ∈ π1(X) maps (φ, v) ∈ R#
U(2) × End(C2) to (φ,Ad φ(g) v). It is a vector

bundle of rank 4 which induces EndU over (R#
U(2)×PU(2) EPU(2))×X by pulling

back and taking quotient.
Now, we consider the special structure: Fix a line bundle L of degree 4g − 2

over X. Let Css
L denote the subspace of semistable holomorphic structures with

determinant L. Then we have the following fibration by taking determinant

Css
L −−−−→ Css

y
Jac4g−2
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By the same arguments as for Css, the homotopy quotient (Css
L )G = Css

L ×GEG is ho-
motopically equivalent to R#

SU(2)×PU(2)EPU(2) where R#
SU(2) = Hom(π1(X), SU(2)).

Therefore,
H∗
G(Css

L ) = H∗
PU(2)(R

#
SU(2)) = H∗

SU(2)(R
#
SU(2)).

As U(2) = SU(2)×Z/2 U(1),

R#
U(2) = R#

SU(2) ×(Z/2)2g Jac

and
R#

U(2) ×PU(2) EPU(2) = (R#
SU(2) ×PU(2) EPU(2))×(Z/2)2g Jac.

According to [AB], H∗
G(Css) is generated by the classes α, β, ψi, di defined by

the Künneth decomposition of the Chern classes as follows:

c1(U) = (4g − 2)⊗ [X] +
2g∑

i=1

di ⊗ ei + x⊗ 1

c2(End(U)) = 2α⊗ [X] + 4
2g∑

i=1

ψi ⊗ ei − β ⊗ 1

where {ei} is a symplectic basis of H1(X) so that eiei+g = [X]. Similarly, H∗
G(Css

L )
is generated by the (restricted) classes α, β, ψi.

Because Z/2 is the center of SU(2), (Z/2)2g action preserves

EndU → (R#
SU(2) ×PU(2) EPU(2))×X.

Hence, it acts trivially on α, β, ψi and it also acts trivially on the cohomology of
the Jacobian. Therefore, we get

H∗
G(Css) = H∗

G(Css
L )⊗H∗(Jac).

To understand the ring structure of the cohomology, we have only to understand
the relations for H∗

G(Css
L ). Let

f : Css
G ×X → Css

G

be the projection onto the first component. Then f!U is a vector bundle of rank 2g
by Riemann-Roch and semistability. Therefore, cr(f!U) are relations for r ≥ 2g+1.
By choosing a basis of H∗(Jac), we get 22g sequences of relations in H∗

G(Css
L ) via

the above decomposition. Those relations are called the Mumford relations.
In the next section, we will prove that the Mumford relations generate the whole

space of relations in Q[α, β] ⊗ Λ∗(ψi). (Mumford’s conjecture.) Moreover, we will
find a finite number of classes that generate all the other relations and prove the
“structure theorem”.



6 YOUNG-HOON KIEM

3. The structure theorem

We first compute the Chern polynomial for f!U and then read off the Mumford
relations in order to prove the structure theorem. The Mumford conjecture is a
consequence of our theorem.

Recall that

c1(U) = (4g − 2)⊗ [X] +
2g∑

i=1

di ⊗ ei + x⊗ 1

c2(End(U)) = 2α⊗ [X] + 4
2g∑

i=1

ψi ⊗ ei − β ⊗ 1.

As observed by Zagier ([Z], p557), for our purpose, we may assume that x = 0. Let
γ = −2

∑g
i=1 ψiψi+g and ξ = αβ + 2γ. Then α, β, γ generate the invariant part

[H∗
G(Css

L )]inv of H∗
G(Css

L ) with respect to the Sp(2g) action on ψi’s and so do α, β,
ξ.

Let

λj = (2g − 1− (−1)j ξ

2β
√

β
)⊗ [X] +

2g∑

i=1

(
di

2
− (−1)j ψi√

β
)⊗ ei + (−1)j

√
β

2
⊗ 1.

Then one can check that λ1 + λ2 = c1(U) and λ1 λ2 = c2(U). Hence,

ch(U) = eλ1 + eλ2

=
∑

j=1,2

(1 + (2g − 1− (−1)j ξ

2β
√

β
)⊗ [X])

(1 +
2g∑

i=1

(
di

2
− (−1)j ψi√

β
)⊗ ei +

1
2
(

2g∑

i=1

(
di

2
− (−1)j ψi√

β
)⊗ ei)2)exp((−1)j

√
β

2
)

=
∑

j=1,2

(1 +
2g∑

i=1

(
di

2
− (−1)j ψi√

β
)⊗ ei

+ (2g − 1− (−1)j ξ

2β
√

β
−

g∑

i=1

(
di

2
− (−1)j ψi√

β
)(

di+g

2
− (−1)j ψi+g√

β
))⊗ [X])exp((−1)j

√
β

2
)

and by Grothendieck-Riemann-Roch

ch(f!(U)) = f∗(ch(U)(1− (g − 1)[X])

=
∑

j=1,2

(g − (−1)j ξ

2β
√

β
−

g∑

i=1

(
di

2
− (−1)j ψi√

β
)(

di+g

2
− (−1)j ψi+g√

β
))exp((−1)j

√
β

2
)

=
∑

j=1,2

∑

n≥0

(g − (−1)j ξ
2β
√

β
)((−1)j

√
β/2)n

n!

− (n + 1)
(
∑g

i=1(
di

2 − (−1)j ψi√
β
)(di+g

2 − (−1)j ψi+g√
β

))((−1)j
√

β/2)n

(n + 1)!
.
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We now use a trick of Zagier in [Z]. Noticing

log
∏

(1 + uk) =
∑

n≥1

(−1)n−1
∑

un
k

n

∑
euk =

∑

n≥0

∑
un

k

n!
,

we deduce that

log c(f!U) =
∑

j=1,2

(g − (−1)j ξ

2β
√

β
)log(1 + (−1)j

√
β

2
)−

∑g
i=1(

di

2 − (−1)j ψi√
β
)(di+g

2 − (−1)j ψi+g√
β

)

1 + (−1)j
√

β
2

.

Therefore,

c(f!U)−2t =
∑

r≥0

cr(f!U)(−2t)r

= (1− βt2)g(
1 + t

√
β

1− t
√

β
)

ξ

2β
√

β exp(
At + 2Bt2 − 2γt/β

1− βt2
)

= Φ(t) G(t)

where

G(t) = (1− βt2)gexp(
At + 2Bt2 − 2γt3

1− βt2
),

Φ(t) =
∞∑

n=0

cntn = exp(αt + ξ
∑

k≥1

βk−1t2k+1

2k + 1
) = e−

2γt
β (

1 +
√

βt

1−√βt
)

ξ

2β
√

β ,

A =
g∑

i=1

didi+g, B =
g∑

i=1

−diψi+g + di+gψi.

From Riemann-Roch, f!U is a vector bundle of rank 2g and therefore Φ(t)G(t) is
a polynomial of degree≤ 2g.

To read off relations in the generators, we need to generalize a lemma of Zagier
([Z], p559). Let ∧∗H3 = ⊕g

l=0 ⊕g−l
k=0 γkPriml be the Lefshetz decomposition of

the exterior algebra of H3
G(Css

L ) = Q{ψ1, · · · , ψ2g}. Now, let σl =
∑
|I|=l aIψI ∈

Priml(ψi) be a primitive element and put σ̃l =
∑
|I|=l aIdI ∈ Priml(di). Then we

have the following

Lemma 1.
Ag−l−pBl+2p

(g − l − p)!(l + 2p)!
σ̃l/[

g∏

i=1

didi+g] =
(γ

2 )p

p!
σl

AiBj

i!j!
σ̃l/[

g∏

i=1

didi+g] = 0 otherwise,
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where ·/[
∏g

i=1 didi+g] means the coefficient of [
∏g

i=1 didi+g].

Proof. The second statement is quite obvious.
Considering the Sp2g action, we may assume that σl = ψg−l+1 · · ·ψg since Priml

is an irreducible module. Now, Zagier’s original lemma says

(−∑g−l
i=1 ψiψi+g)p

p!
=

(
∑g−l

i=1 didi+g)g−l−p(
∑g−l

i=1−diψi+g + di+gψi)2p

(g − l − p)!(2p)!
/[

g−l∏

i=1

didi+g].

Thus,

(γ
2 )p

p!
σl =

(−∑g−l
i=1 ψiψi+g)p

p!
σl

=
(
∑g−l

i=1 didi+g)g−l−p(
∑g−l

i=1−diψi+g + di+gψi)2p

(g − l − p)!(2p)!
σl/[

g−l∏

i=1

didi+g]

=
(
∑g

i=1 didi+g)g−l−p(
∑g

i=1−diψi+g + di+gψi)2p+l

(g − l − p)!(2p + l)!
σ̃l/[

g∏

i=1

didi+g]

as one can check directly. So we are done.

For σ̃l ∈ Priml(di),

G(t)σ̃l/[
g∏

i=1

didi+g]

=
∑
r,s

(1− βt2)g Artr

r!(1− βt2)r

2sBst2s

s!(1− βt2)s
exp(

−2γt3

1− βt2
)σ̃l/[

g∏

i=1

didi+g]

= exp(
−2γt3

1− βt2
)
∑

p

(1− βt2)−p2l+2ptg+l+3p Ag−l−p

(g − l − p)!
Bl+2p

(l + 2p)!
σ̃l/[

g∏

i=1

didi+g]

= exp(
−2γt3

1− βt2
)
∑

p

(1− βt2)−p2l+2ptg+l+3p (γ
2 )p

p!
σl

= 2ltg+lexp(
−2γt3

1− βt2
)
∑

p

(2γt3)p

p!(1− βt2)p
σl

= 2ltg+lσl.

As a consequence,

2ltg+lΦ(t)σl = c(f !(U))−2tσ̃l/[
g∏

i=1

didi+g]

and thus Φ(t)σl is a polynomial of degree ≤ g − l.

Proposition 1. ⊕g
l=0Priml ⊗ Ig−l is a subspace of the relation ideal, where In is

the ideal of Q[α, β, ξ] generated by {ci|i ≥ n + 1}.
Recall that cn was defined to be the n-th coefficient of Φ(t) =

∑∞
n=0 cntn =

exp(αt + ξ
∑

k≥1
βk−1t2k+1

2k+1 ). One can readily check that the sequence {cn} is de-
termined by the following recursion formula;

ncn = αcn−1 + (n− 2)βcn−2 + 2γcn−3
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where c0 = 1, c1 = α, c2 = α2

2 , c3 = α3+2ξ
3! , etc. Therefore, In is in fact generated

by just three elements cn+1, cn+2, cn+3.
Now, put cn,k =

∑k
i=0

1
i!

(
n−1−i

k−i

)
(2γ)iβk−icn−k−i, for 0 ≤ k < n. Then by

modifying Theorem 4 in [Z], we get the following

Lemma 2.

(−1)kcn,k =
∞∑

i=0

(−1)i(
(

n− k + i

i

)
+

(
n− k + i− 1

i− 1

)
)ck−icn+i.

In particular, cn,k belongs to the ideal generated by cn, cn+1, cn+2.

Proof. One can check, as in [Z], that both sides satisfy kcn,k = (n− 1)βcn−1,k−1 +
2γcn−2,k−1.

Lemma 3. cn ≡ αn/n! modulo the ideal generated by ξ.

Proof. It follows immediately from an induction with the recursion formula.

It is also easy to check the following variation of a lemma in [KN].

Lemma 4. The leading term of cn,k is, up to constant, ξkαn−2k for 0 ≤ k ≤ [n
2 ],

and ξn−kβ2k−n for [n
2 ] < k < n, with respect to the reverse lexicographical order

where α > ξ > β. If we put cn, n
2

= 12γcn, n−3
2
− n−1

2 α2cn, n−1
2

, for odd n, then its

leading term is up to constant ξ
n+1

2 .

Proof. Obvious from the definition of cn,k and Lemma 3.

From the above lemmas, we deduce that Q[α, β, ξ]/Ig is a quotient of the vector
space spanned by

{αiβjξk | (1) i + 2k ≤ g, (2) if k ≥ 1 then j + 2k ≤ g}.

Recall that deg α = 2, deg β = 4, deg ξ = 6. We can compute the Poincare series
for this graded vector space.

Lemma 5.

Pt(Q{αiβjξk | (1) i+2k ≤ g, (2) if k ≥ 1 then j+2k ≤ g}) =
1−t6g+6

1−t6 − t2g+2 1−t2g+2

1−t2

(1− t2)(1− t4)
.

Proof. Combinatorial exercise.

As a consequence,

Pt(Q[α, β, ξ]/Ig) ≤
1−t6g+6

1−t6 − t2g+2 1−t2g+2

1−t2

(1− t2)(1− t4)
.

Therefore, we have
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Lemma 6.

Pt(⊕g
l=0Priml ⊗Q[α, β, ξ]/Ig−l) ≤ (1 + t3)2g − t2g+2(1 + t)2g

(1− t2)(1− t4)
.

Proof. Combinatorial exercise.

As ⊕g
l=0Priml ⊗ Ig−l is a subspace of the relation ideal, there is a surjection

⊕g
l=0Priml ⊗ Q[α, β, ξ]/Ig−l → H∗

G(Css
L ). From Atiyah-Bott’s equivariant Morse

theoretic argument, it is well-known that

Pt(H∗
G(Css

L )) =
(1 + t3)2g − t2g+2(1 + t)2g

(1− t2)(1− t4)
.

Therefore, together with the previous lemma, we deduce that ⊕g
l=0Priml⊗ Ig−l is,

in fact, equal to the whole relation ideal. Since all the relations were derived from
the Chern class of the pushforward bundle, we conclude that the obvious analogue
of the Mumford conjecture is true. In summary, we have the following “structure
theorm”.

Theorem 1.

H∗
G(Css

L ) = H∗
SU(2)(R

#
SU(2)) ∼= ⊕g

l=0Priml ⊗Q[α, β, ξ]/Ig−l.

Let R#
red be the set of homomorphisms of π1(X) into SU(2) whose images are

abelian. Then the inclusion R#
red ↪→ R# := R#

SU(2) induces a homomorphism

H∗
SU(2)(R

#) → H∗
SU(2)(R

#
red). Here, according to [CLM], H∗

SU(2)(R
#
red) is the Z/2-

invariant part of the (skew-)commutative algebra freely generated by qi (1 ≤ i ≤ 2g)
and r, of degree 1 and 2 respectively. Moreover, α restricts to −2w, β to 4r2, ψi to
−2rqi and γ to 4r2w respectively, where w = −2

∑g
i=1 qiqi+g. We can now compute

the kernel of the homomorphism.

Corollary 1. The kernel of the homomorphism H∗
SU(2)(R

#) → H∗
SU(2)(R

#
red) is

generated by the single element ξ = αβ + 2γ.

Proof. Trivially, ξ is in the kernel. We have

H∗
SU(2)(R

#
red) = [⊕g

l=0Priml{q1, · · · , q2g} ⊗Q[r, w]/wg−l+1]Z/2.

Because the homomorphism respects the symplectic action, we have only to consider
the invariant part. From Lemma 3, one can easily deduce that

(Q[α, β, ξ]/Ig−l)/(ξ) = Q[α, β]/αg−l+1,

the right hand side of which obviously injects into [Q[r, w]/wg−l+1]Z/2. This com-
pletes the proof.

Note that ξ is actually the V class in [CLM] up to constant multiple.
Let R = R#/SU(2), which is diffeomorphic to the moduli space ML. Then

the natural map R# ×SU(2) ESU(2) → R induces a homomorphism H∗(R) →
H∗

SU(2)(R
#).
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Corollary 2. The image in H6g−6
SU(2)(R

#) of a top degree class in H6g−6(R) is a

constant multiple of αg−2βg−2ξ where R = R#/SU(2) and Rred = R#
red/SU(2).

Proof. As the image of a top degree class by the composition map H6g−6(R) →
H6g−6(Rred) = 0 → H6g−6

SU(2)(R
#
red) is zero, the image of the class by the composition

map H6g−6(R) → H6g−6
SU(2)(R

#) → H6g−6
SU(2)(R

#
red) is also zero. Thus, the image in

H6g−6
SU(2)(R

#) is in the kernel of the restriction map considered in Corollary 1. And
from Theorem 1, Corollary 1, and our choice of the basis described between Lemma
4 and 5, we deduce that the kernel has only one generator in dimension 6g − 6,
namely αg−2βg−2ξ.

Remark 1. Our method applies equally well to the odd degree case as worked out in
[Ki1]. It has been conjectured in [KN][T2] from the shape of the Harder-Narasimhan
formula that the Mumford relations from the first vanishing Chern class only, freely
generate the space of relations as a Q[α, β]-module. This was sometimes called the
strong Mumford conjecture. Surprisingly, our computation disproves the conjecture
and proves a weaker version. Namely, they do generate the whole space of relations
as an ideal in Q[α, β]⊗∧∗(ψi). Moreover, in the course of the proof, we (re-)proved
the structure theorem and the Mumford conjecture in one stroke. See [Ki1] for
details.

Remark 2. Φ(t) can be realized as the generating function for the Chern classes of
a vector bundle Q over (Css

L )G as in [ST]. Since the complex structure of X does not
matter for our purpose, we may assume that X is a hyperelliptic smooth projective
curve, i.e. there is an involution i : X → X such that the quotient X/i = P1.
In particular, X has 2g + 2 Weierstrass points, W = {w1, w2, · · · , w2g+2}, or the
branch points of the quotient map X → X/i.

We recall a fact about semistable vector bundles. Let E be a rank 2 complex
vector bundle over T × X and det(E) = p∗1M ⊗ p∗2L for a line bundle M over
any variety T , where pi is the projection onto the i-th factor, i = 1, 2. Suppose
Et = E|t×X is semistable for all t ∈ T . In this case we have the following exact
sequence, [DR]

0 → (p1)∗(E ⊗ î∗E) →
∑

1≤i≤2g+1

E ⊗ E|T×wi → R1(p1)∗(E ⊗ î∗E ⊗ p∗2L
−1
W ) → 0

where LW is the line bundle whose divisor is W.
Let S(E) = (p1)∗(E ⊗ î∗E)\ be the i-antiinvariant subbundle of (p1)∗(E ⊗ î∗E).

Then S(E) is a bundle of rank g + 1 by Lemma 2.2 of [DR]. Therefore,

S(E) ↪→
∑

1≤i≤2g+1

Λ2E|T×wi = p∗1M ⊗ (
∑

1≤i≤2g+1

Lwi)T

and thus we have, over T,

S(E)⊗ p∗1M
−1 ↪→ (

∑

1≤i≤2g+1

Lwi)T .

Therefore, we get a map φE : T → Gr(g + 1, 2g + 1).



12 YOUNG-HOON KIEM

Now, we apply the above discussion to the universal bundle U → (Css
L )G × X.

From the previous paragraph, we get a map φ = φU : (Css
L )G → Gr(g + 1, 2g + 1).

The natural quotient bundle Q over the Grassmannian has rank g.
Now, one can modify the computation of Siebert and Tian to obtain

ch((p1)∗(U ⊗ î∗U)\) = g + 1− α− ξ

∞∑

k=1

βk−1

(2k + 1)!
.

Therefore,

ch(φ∗Q) = 2g + 1− ch(φ∗S) = g + α + ξ

∞∑

k=1

βk−1

(2k + 1)!

and thus ch0 = g, ch1 = α, ch2k = 0, and ch2k+1 = ξβk−1

(2k+1)! , for k ≥ 1, where
chi = chi(φ∗Q).

From a well-known identity involving Chern classes and Chern characters, we
conclude that

ncn = ch1cn−1 + ch3cn−3 + ch5cn−5 + · · ·

= αcn−1 +
ξ

3!
cn−3 +

ξβ

5!
cn−5 +

ξβ2

7!
cn−7 + · · · .

From this, one can easily deduce the following recursion formula

ncn = αcn−1 + (n− 2)βcn−2 + 2γcn−3

where c0 = 1, c1 = α, c2 = α2

2 , c3 = α3+2ξ
3! , etc. The generating function for this

sequence is, as one can check easily,

Φ(t) =
∞∑

n=0

cntn = exp(αt + ξ
∑

k≥0

βk−1t2k+1

2k + 1
) = e−

2γt
β (

1 +
√

βt

1−√βt
)

ξ

2β
√

β .
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