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Abstract
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Let M(r,d) be (the compactification of) the moduli space of holomorphic vector bundles
of rank r and degree d, which can be constructed as a geometric invariant theory (GIT)
quotient of a smooth quasi-projective variety. Because GIT quotients are symplectic re-
ductions, we can apply the techniques of symplectic geometry. The most powerful tools in
computing the cohomology ring of a symplectic reduction are the equivariant Morse theory
and the nonabelian localization principle. We review these and generalize to K-groups and
Chow groups.

Many important GIT quotients are singular and hence intersection cohomology is an
interesting invariant. Kirwan invented a way to desingularize such quotients and used this
procedure to define a map from the equivariant cohomology of the set of semistable points
to the intersection cohomology of the quotient. We construct a splitting (i.e. right inverse)
of this map and hence the intersection cohomology groups are embedded in the equivariant
cohomology groups explicitly. Several applications are discussed.

The cohomology ring of M(2,1) is by now well-understood. We prove the structure
theorem and the Mumford conjecture in one stroke by improving a technique of Zagier. We
also prove the strong Mumford conjecture which was open before this thesis.

For the singular moduli space M(2,0), we first determine the equivariant cohomology
ring. Then we apply the splitting theorem to describe the intersection cohomology of
M (2,0). This enables us to compute the intersection Betti numbers, the intersection pairing
and the mapping class group action.

A brief summary on higher rank case is included to complete this work.
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Chapter 1

Introduction

1.1 Cohomology of quotients

Algebraic geometry has been enriched by various fields of mathematics from commutative
algebra to Riemannian geometry to complex analysis. The most recent and important
influx came from symplectic geometry and mathematical physics. During the past two
decades, many difficult problems were successfully attacked with ideas from symplectic
geometry. The key link has been the moment map or angular momentum. A linear action
of a reductive group on a projective space with Fubini-Study Kahler form is Hamiltonian,
i.e. it carries a moment map. Therefore, any linear action on a smooth projective variety
carries a moment map which has many interesting properties.

Perhaps one of the most interesting problems in algebraic geometry is the study of
cohomology of moduli spaces.! For many moduli problems, the moduli spaces are naturally
constructed by geometric invariant theory which often provides natural compactifications.
Often the parameter space (Hilbert scheme) is constructed in a natural way and the moduli
space is obtained as the quotient of such parameter space.? Geometric invariant theory is
a recipe for forming the quotient of a variety by a reductive group action.

An orbit by a reductive group action can behave badly because of the noncompact

“imaginary direction”. So, one has to delete some points whose orbits cannot be controlled.

!Every cohomology group in this thesis has rational or complex coeffcient.
2Following fairly standard linguistic convention, we call the solution to a moduli problem the parameter
space if the problem is not “intrinsic”. We call it the moduli space otherwise.
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Even after deleting these bad points, we need to identify some orbits to get a Hausdorff
quotient since some orbits get arbitrarily close to one another. The purpose of geometric
invariant theory is precisely to deal with these problems.

Given a Hamiltonian action, the reduced space is defined as the quotient of the zero
set of the moment map. This is called the symplectic reduction which may be singular if
the action on the zero set is not free. In case the action is free, the symplectic reduction
is again a symplectic manifold and many examples of symplectic manifolds are constructed
in this way.? One fundamental result joining symplectic geometry with geometric invariant

theory is the principle:
GIT quotients are symplectic reductions.

For symplectic reductions, there are by now many ways to compute the cohomology
rings. Among them the most powerful tools have been the equivariant Morse theory and
the nonabelian localization theorems. In [24], F. Kirwan developed the Morse theory for the
norm square of the moment map for a flow-closed Hamiltonian space. The main result is
that the Morse stratification is equivariantly perfect and the strata are described precisely.
Since the bottom strata retracts onto the zero set of the moment map, the Kirwan-Morse
theory provides a way to compute the equivariant cohomology of the zero set in terms of
the Gysin maps of the other strata. If the group action on the zero set is (locally) free,
the equivariant cohomology is canonically isomorphic to the ordinary cohomology of the
symplectic reduction. This technique turns out to be very powerful for the computation
of Betti numbers and sometimes cup product structures as well [31, 50]. Brion [8] used
this idea to prove the abelian localization theorem for equivariant Chow groups, defined by
Edidin and Graham [10]. In Chapter 3 of this thesis, we will apply the Kirwan-Morse theory
to study the equivariant K-groups and equivariant Chow groups and show the perfectness
of the Morse stratification and the abelian localization theorem for each theory.

In principle, the Kirwan-Morse theory determines the cup product structure completely

3To show that a manifold is symplectic one may wish to demonstrate that it is a reduction of a symplectic
manifold.
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and thus the intersection pairings can be computed, if the quotient is smooth and compact.
However, it is extremely difficult to work out this “exercise” in practice. Nonabelian lo-
calization is perhaps the strongest tool for this purpose. Notice that by Poincaré duality
the cup product structure is uniquely determined by the intersection pairing in case of a
smooth compact quotient. The nonabelian localization principle enables us to compute the
intersection pairings from some local contributions on the fixed point components by the

maximal torus. These local contributions often can be computed by induction.

Witten described his version of nonabelian localization [52] which expresses the inter-
section pairing in terms of certain integral together with some terms of exponential decay
corresponding to the critical sets of the norm square of the moment map. Jeffrey and Kirwan
[19] used Witten’s integral to prove their nonabelian localization theorem by using abelian
localization in place of the physics arguments and hence the contributions are from the
torus fixed point components. Still they had to rely on heavy analysis which was replaced
by topological arguments of S. Martin [34, 35] and Guillemin-Kalkman [17]. In Chapter 4
below, we will use a theorem due to Martin and the Kirwan-Morse theory for equivariant
Chow groups to prove a theorem of Ellingsrud-Stromme [12] concerning the Chow ring of

a smooth GIT quotient.

In this way, the Kirwan-Morse theory and the nonabelian localization often give us a
satisfactory description of the cohomology ring of a symplectic reduction if 0 is a regular
value of the moment map. However, if 0 is not regular then the quotient can have serious
singularities and the above tools do not apply for this case. Fortunately, Kirwan in [25]
invented a systematic way to desingularize GIT quotients partially* and this process was
generalized to symplectic reductions by Meinrenken-Sjamaar [36] by using the technique
of symplectic cutting and the local normal form theorem. The idea is to blow up the
set of points in the zero set of the moment map with maximal dimensional infinitesimal
stabilizers. The upshot here is that the reduction of this blow-up is strictly “less singular”.

So, by keeping blowing up in this fashion, we get an orbifold reduction, which is called the

*We cannot resolve orbifold singularities by this process.
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partial desingularization.®

For a singular pseudomanifold, intersection cohomology is an interesting invariant. By
using the partial desingularization, Kirwan defined a map, called the Kirwan map from the
equivariant cohomology of the set of semistable points to the intersection cohomology® of
the GIT quotient. This was generalized to the symplectic case by J. Woolf in [53].

One main result of this thesis is on the construction of an embedding of the intersection
cohomology into the equivariant cohomology. Namely, a subspace V of the equivariant
cohomology of the set of semistable points was defined by truncating along each stratum in
an appropriate degree where the stratification is by infinitesimal orbit types. This is shown
to be a splitting of the Kirwan map. We prove this theorem, under an assumption, named
weakly balanced action, which is satisfied by many interesting spaces.”

This theorem, called the splitting theorem, turns out to be very useful. First, it simplifies
the intersection Betti number computation. It gives the correct Poincaré series without
going through the partial desingularization process. Second, it enables us to compute the
intersection pairing in terms of the cup product structure of the equivariant cohomology.
Or, we can apply nonabelian localization after perturbing the moment map slightly and
then compute the intersection pairings using the splitting theorem. Third, we can assign a

Hodge structure on the intersection cohomology explicitly.

1.2 Cohomology of moduli spaces of vector bundles

Ever since the construction of the moduli spaces M (r, d) of rank r holomorphic vector bun-
dles of degree d over a Riemann surface as geometric invariant theory quotients X//G of
nonsingular quasi-projective varieties, their cohomology groups have been studied inten-
sively by many authors.

For the simplest nontrivial case where the rank r is 2 and the degree d is odd, the Betti

numbers and a set of generators for the cup product structure were given by Newstead in

5We assume that there is at least one regular point in the zero set of the moment map.
SEvery intersection cohomology in this thesis has middle perversity.
"This theorem is valid also for symplectic reductions. See [22].
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1970s. A major breakthrough was the “magisterial” work of Atiyah and Bott [3], where
they generalized Newstead’s results to the case where the degree is coprime to the rank.
If r is coprime to d, then the space of stable holomorphic structures C® coincides with
that of semistable holomorphic structures C*® on a fixed Hermitian vector bundle and the
moduli space is smooth. Moreover, the equivariant cohomology Hg(C“) is isomorphic to
the ordinary cohomology H*(M (r,d)) which is in turn isomorphic to ITH*(M/(r,d)) where
G =G/U(1) and G is the U(2)-gauge group. They showed that the Morse stratification for
the Yang-Mills functional is equivariantly perfect and hence, the equivariant cohomology
Hé(Css) can be computed in terms of the equivariant cohomology of the unstable strata
and the classifying space of the gauge group. This Morse theoretic argument in principle
determines the cohomology rings as in [31], where Kirwan proved the Mumford conjecture

and the Newstead conjecture for r =2, d = 1.

If the moduli space is nonsingular, then the cup product structure is completely deter-
mined by the intersection pairing by Poincaré duality. In early 1990s, Thaddeus [48] used
the twisted SU(2)-Verlinde formula and Riemann-Roch to compute the intersection pairing
for the case where r = 2, d = 1, which was also computed by Donaldson [9] in a different
way. Shortly later, several authors, Baranovsky [5], King-Newstead [23], Siebert-Tian [45],
and Zagier [54], proved the structure theorem for the cohomology ring, which gives us a fi-
nite number of relations which generate all the others. In this thesis, we prove this structure
theorem and the Mumford conjecture in a purely combinatorial way by improving Zagier’s
method. Perhaps, the only remaining open problem in this case was the strong Mumford
conjecture which is settled in Chapter 7. This says the Mumford relations from the first
vanishing Chern class only, generate the relation ideal. So all the others are redundant.

The formula for the intersection pairing for the above case where r = 2, d = 1 was
generalized by Witten to the case where r is coprime to d. His formulas were proved
mathematically by Jeffrey and Kirwan [20] by applying nonabelian localization principle to

the extended moduli space [21].

When r is not coprime to d, the moduli space M (r,d) is singular and little has been
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known for this case. For years, it has been on the focus of interest whether Witten’s formulas
can be generalized to the singular moduli spaces. Unfortunately, all the above arguments
fail when the quotient is singular. On the other hand, for many purposes, the singular
moduli spaces are more important. For example, Casson’s invariant and its generalizations
are defined as the “intersection numbers” of Lagrangian subvarieties on the singular moduli

spaces.

Atiyah-Bott’s equivariant Morse theory provides a way to compute the Betti numbers

of the equivariant cohomology Hg(C“) but the natural map

H*(M(r,d)) — HZ(C*)

is neither injective nor surjective even for M (2,0). Also, the natural map from the ordinary

cohomology to the intersection cohomology is neither injective nor surjective.

For the rank 2 case, Kirwan in [27] used the partial desingularization process to compute
the Betti numbers of the intersection cohomology of M (2,0) and Cappell-Lee-Miller in [43]
computed the Betti numbers of the ordinary cohomology based on the gauge theoretic model
of Atiyah-Bott. However, these methods do not provide a strong insight on the cup product

or intersection pairing.

In this thesis, our focus is laid on the intersection cohomology. We first prove (analogues
of) the structure theorem and the Mumford conjecture for the equivariant cohomology ring
for the rank 2 case. These determine the cup product structure completely and moreover
we get a Grobner basis for the relation ideal. Next, we apply the splitting theorem to
compute the intersection cohomology of M (2,0). We get a closed expression for the Poincaré
polynomial of TH*(M(2,0)) which is equivalent to Kirwan’s [27]. Also we can describe the
mapping class group action as well as the Hodge structure. Moreover, the intersection
pairings can be computed, directly for low genus case in Chapter 8 and by nonabelian
localization in general in Chapter 9. Our method works well for the higher rank case which

will be investigated in [32].
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1.3 Contents of this thesis

In Part 1, we study the cohomology of symplectic and GIT quotients.

Chapter 2 contains a summary of basic results on symplectic reduction: We recall
the results of Sjamaar-Lerman [47] which give us a nice local description near an orbit
and show that the quotients are stratified symplectic spaces. We also recall the partial
desingularization process from [36, 25] and the “GIT quotients are symplectic reductions”
principle from [24].

Chapter 3 consists of the Kirwan-Morse theory: We first summarize facts about several
equivariant theories and then recall Kirwan’s results on equivariant cohomology from [24].
Then we apply the Morse theory to equivariant K-groups and prove that the stratification
is perfect for equivariant K-theory and that an analogue of the abelian localization theorem
is valid. Next, we apply it to equivariant Chow rings and show similar results. Namely, the
Morse stratification is perfect for equivariant Chow rings and the analogues of the abelian
localization and related facts are established. Though straightforward, our applications
for equivariant K-groups and Chow groups seem new (except for the abelian localization
theorem for equivariant Chow groups [8]).

Chapter 4 is for nonabelian localization principle: Martin’s trick and his theorems com-
paring T-quotients and K-quotients are reviewed. Also, the wall crossing formulas for torus
quotients are recalled and we use them to establish the Jeffrey-Kirwan localization theo-
rem. Finally, from Martin’s theorem and the Kirwan-Morse theory, we provide a new proof
of a theorem of Ellingsrud and Stromme [12], which describes the Chow rings of smooth
quotients of projective spaces.

Chaper 5 is devoted to the splitting theorem: We recall the Kirwan map and then
define the weakly balanced action and the splitting. After proving the theorem we discuss

applications. The results in this chapter are new.

In part 2, we study the cohomology of moduli spaces of vector bundles.

Chapter 6 contains a survey of basics on the moduli spaces of vector bundles over a
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Riemann surface: Coarse and fine moduli spaces are defined. Various facts and constructions
of these moduli spaces are discussed.

Chapter 7 deals with the cohomology ring of M (2,1): We prove the structure theorem
and the Mumford conjecture. Furthermore, we prove the strong Mumford conjecture. The
proof of the structure theorem is based on Zagier’s technique but it is clarified and improved.
The strong Mumford conjecture was an open problem [49, 23] but it is proved here.

Chapter 8 is for M(2,0): After establishing necessary geometric facts, we use the combi-
natorial method of Chapter 7 to prove the structure theorem of the equivariant cohomology.
Then using the splitting theorem, we compute the intersection cohomology of the moduli
space. The results in this chapter are original.

Chapter 9 is for higher rank case: We recall Jeffrey and Kirwan’s proof of Witten’s
formulas. Then we briefly show how their results together with the splitting theorem can
be used to compute the intersection pairing of the intersection cohomology of the singular

moduli spaces. This is new and will be part of [32].
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Chapter 2

Symplectic reductions and GIT
quotients

We review some basic materials on symplectic reductions and GIT quotients. Everything

in this chapter was borrowed from [47, 24, 36, 37, 25].

2.1 Symplectic reduction

Hamiltonian group action

Let (M, w) be a symplectic manifold. As w is nondegenerate, it defines an isomorphism
TM — TM* by X — —ixw. Suppose a compact Lie group K acts smoothly on M,
preserving the nondegenerate closed 2-form w. For each & € ¢ = Lie(K), let &y denote
the vector field generated by the infinitesimal action of £. Then the corresponding 1-form

—1¢,,w is closed since dig,, w = L¢,,w — 1¢,,dw = 0. Hence, we get the following diagram

t— {closed 1-forms on M}

[a

-
{functions on M}

A moment map is a lifting ¢ — {functions on M} in the above diagram. To be precise, a

moment map u: M — € is a K-equivariant smooth map such that

< dpm(§),a >= wn(§, am)

16
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forallm e M, £ € T,,M, a € . We say the action is Hamiltonian if there is a moment
map for the action. If K is semisimple, or if K is a torus and H'(X) = 0, then a moment
map always exists.!

The standard unitary group U(n + 1)-action on P" (together with the Fubini-Study

symplectic form) is Hamiltonian since

< (2),0 > T aT
n\T),a = — QX5
HEmED, 2mi[T)2

is a moment map where T is a point in C**! \ 0 representing x. In geometric invariant
theory, the typical situation is the case where M C P" is a quasi-projective variety on
which a reductive group G acts via a homomorphism G — GL(n + 1). Let K be a maximal
compact subgroup. After conjugation if necessary, we may assume that K acts unitarily.

Then if M is smooth, we always have a moment map

g s Me— P —E5 (0 4 1) —— .

Symplectic reduction
Let M be a Hamiltonian K-space with moment map p : M — ¥*. The symplectic

reduction is defined as the quotient
MJK = p~'(0)/K

of the zero set of the moment map by K. If 0 is a regular value of 4 and K acts freely on
1~ 1(0), then the reduced space is again a symplectic manifold. But if 0 is not a regular value,
then the reduced space is a complicated singular space. In the subsequent subsections, we
will recall the results in [47] which show that the reduced space is a stratified space each of

whose pieces is symplectic in a compatible fashion.

Local normal form

'In general, for every compact connected Lie group K, if we denote S = [K, K], H =the identity
component of the center of K, D = SN H, then D is a finite group, S semisimple and the map H x § — K
is a finite central extension such that H/D x S/D = K/D. Hence, a moment map for the K-action exists if
there is a moment map for the H-action.
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Let p be a point in the zero set Z = p~'(0) of the moment map p: M — €*. Let H be
the stabilizer of p and V' denote the symplectic complement of T),(K - p) in T, M, which we
call the symplectic slice.

Consider the (coisotropic) vector bundle
Y =K %z ((¢/6) x V) —» K/H =K - p.

First, we observe that Y is the symplectic reduction of T*K x V by the H action (right

action for T*K and left action for V') with moment map
O T"KxVE2Kxt"'xV —=bp*

given by ®(g,&,v) = @y (v) — |y where @y : V' — h* is the moment map for the linear
action of H on V. So, Y is a symplectic manifold containing K/H as the zero section and

V' is also the symplectic slice in Y of the orbit K/H = K - p.

Theorem 2.1 (Constant rank embedding theorem) Let B be a K-manifold with a closed

K -invariant 2-form 1 of constant rank. Then there is a one-to-one correspondence between
1. symplectic K-vector bundles over B and

2. K-equivariant embeddings © of B into higher dimensional symplectic manifold (A, o)

such that 1*o = 7.

Therefore, there is a neighborhood Uy of the zero section of Y which is symplectomorphic
to a neighborhood U in M of the orbit K - p. So, Y serves as a local model for M.
The left K-action of T* K commutes with the (right) H-action. Thus the moment map

for the left action

U T*Kx V2K xtxV ¢

with U(g,&,v) = Ad*(g), reduces to the moment map p : Y — € given by u(g,&,v) =
Ad*(g)(& + Py (v)). Hence, we get the following.
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Theorem 2.2 Let H be the stabilizer of p € p='(0) and V be the symplectic slice of the orbit
K -p. Then a neighborhood of the orbit is equivariantly symplectomorphic to a neighborhood

of the zero section of

Y =K xp ((/h)" xV)

with the moment map

19,8, 0) = Ad*(g)(€ + Py (v)).

Decomposition by orbit types
Let (M,w) be a Hamiltonian K-space with moment map u : M — €*. For a subgroup

H of K, let (H) denote the conjugacy class of H and define
My = {z € M|Stabz = H}
Mgy = {z € M|Stabz = gHg™" for some g € K}.
Then M is the disjoint union of the locally closed submanifolds Mg which satisfy
My N M) # 0 <= M) C M) <> H D gLg .
This decomposition descends to the symplectic reduction
MJK = p~'(0)/K = Uiy (u™"(0) N M) /K.

To see that each piece ~1(0)N M)/ K is a smooth manifold, we use the local normal form
Y = K xy ((¢/h)* x V) near a point p € My Nu~1(0). It is easy to check that Y(m) Np=1(0)
is K/H x Vi where Vj is the subspace of V fixed by H. Thus the piece

(Yemy N H(0))/K = Vi

is symplectic and smooth.

Reduction in stages
To describe the normal to each stratum, we need the technique of reduction in stages.

Let K1, K2 be two groups acting on (M,w) with moment maps p1 : M — €, po : M — €.
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We assume that the actions commute so that we get an action of K; x Ky with moment
map i = f11 X p.

Let X; = pu7'(0)/K;. The action of Ky on M descends to X; and this preserves the
decomposition discussed before by the K; orbit types. The moment map p : M — € also
descends to a map ph : X; — €5 which restricts to a moment map on each stratum. We

define the reduced space of X7 to be
X2 = (13) " (0)/ Ka.
By construction, X5 is homeomorphic to
X = (1 x p2)"0,0)/K; x Ky = MK x Ky.
We can assign a Poisson structure on reduced spaces by declaring
C®(MJK) = C®(M)X /1%

where T is the ideal of smooth functions vanishing on 1~ !(0) and similarly assign a Poisson
structure on Xi5. It turns out that these match up and thus X2 = X as a Poisson space.

Hence, we can reverse the order of reduction, i.e. X10 = X = Xo;.

Local structure of the decomposition

We describe the normal cone of each stratum. Recall that p € p~1(0) N My has a
neighborhood symplectomorphic to a neighborhood of the zero section of Y = K x g ((€/h)* x
V') which is the reduction of T* K x V' by the H-action. The reduction of Y is homeomorphic
to the reduction of T*K x V by the K x H action. We first reduce by the K-action to get

V and then reduce by the H action to get finally
V/H = &' (0)/H.

Therefore, near the point z € M /K corresponding to p, M/ K is homeomorphic to V//H.
Write V' = Vg xW where V7 is the linear subspace fixed by H. Then VJH = W JH xVy.

Vi is tangent to the stratum M*I(O)HM(H)/K while the cone W/ H is the normal cone of the
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stratum at z. Hence, the decomposition by orbit types is in fact a stratification. All pieces
are symplectic manifolds as they are reductions My /N where N is the normalizer of H
in K and the Poisson structure of M /K defined above is compatible with the symplectic

structure of each stratum. So, we get the following.

Theorem 2.3 X = M//K is a stratified symplectic space, i.e. X is a stratified space with

the above smooth structure C*°(X) such that
1. each stratum is a symplectic manifold
2. C*°(X) is a Poisson algebra

3. the embedding of each stratum is Poisson.

Moreover, the normal cones above form a fiber bundle over the stratum Xz = = (0) N

M py/ K with typical fiber W//H.

Theorem 2.4 There exists a principal L = Ny (H)/H-bundle QQ over X g where U is the
unitary group of W for a compatible Hermitian structure such that a neighborhood of Mg

in M is symplectically diffeomorphic to a neighborhood of the zero section of the bundle
Q xr (K xg ((8/h)* xW)) —» Xg.

Hence, a neighborhood of Xy in X is diffeomorphic to a neighborhood of the vertex section
of
Q X1, W//H — XH

as a stratified symplectic space.
2.2 Partial desingularization
Symplectic cutting

Suppose S' acts on a Hamiltonian K-space M in a Hamiltonian fashion with moment

map 1 : M — R and that the action commutes with the K-action. Consider the diagonal
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action of S' on M x C where the moment map is ¢(z, z) = () — 1|2|?> —e. The symplectic

cut is defined in [33] as the symplectic reduction

Ms.=M x CJ/S*.

Proposition 2.5 [33] The canonical embeddings
11 M, 1= ¢_1(e)/S1 = M>e, 15e: Mse:={x € Mlp(x) > e} — M>,

are symplectic embeddings. If € is a regqular value of 1, M> is a symplectic orbifold. The
lifted K -action g-(z,z) = (g9x,2) on M x C induces a Hamiltonian K -action on M, whose
moment map is the map p>. induced by the S'-invariant map (z, ) — p(z). In particular,
the original S* action on M induces a Hamiltonian S' action on M. The image of its

moment map P> is (M) N R>.

Symplectic blow-up

Let S be a closed K-invariant symplectic submanifold of a Hamiltonian K-space M.
Then we can blow up M along S.

Let N denote the normal bundle of S in M. This is a symplectic vector bundle and
by choosing a compatible K-invariant complex structure j, N becomes a complex vector
bundle with a Hermitian metric 7. Consider the natural S'-action on this complex vector
bundle which commutes with with the K-action on N. Hence, we can perform symplectic

cut on N for sufficiently small e > 0 to get N>.. Recall
N¢ = N> <= Ns.

We call N, the exceptional divisor. Now, by the (equivariant) constant rank embedding the-
orem, S has a K-invariant neighborhood in M which is K-equivariantly symplectomorphic
to a neighborhood U of the zero section of N. By taking e small enough, we may assume
that U contains 2e-neighborhood of S. So, we can paste Us. with the complement of the

e-neighborhood of S to obtain the symplectic blow-up BI(M, S, j,€).
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Partial desingularization

Suppose 0 is not a regular value of proper moment map p : M — . Then as we have
seen, the symplectic reduction M J/K is not an orbifold but a complicated stratified singular
space. Kirwan invented a process to resolve the singularities of GIT quotients to obtain an

orbiforld [25] and this was generalized to symplectic case by Meinrenken and Sjamaar [47].

Choose a maximal dimensional subalgebra h of £ among the infinitesimal stabilizers of
points in Z = p~1(0) and let H = exph. Consider the fixed point set Zy by H in Z and
Zgy = KZp = K X yu Zp. By refining the arguments in the previous section, Meinrenken

and Sjamaar proved in [36] the following.

Theorem 2.6 There exists a principal orbibundle Q with structure group L = Ny (H)/H

over Xg = Z(H)/K such that a K-invariant open neighborhood Uy of Z(g) in

vy = Q 1 (K xu ((£/h)" x W)
is isomorphic, as a Hamiltonian K -space, to a neighborhood of Zgy in M.

Let Sigy = Q %1 (K xg ((¢/h)* x 0)) C v(gry). Then Uy N S(py is a locally closed
K-invariant symplectic submanifold and we can choose a sufficiently small K-invariant
neighborhood U of Z in M such that S = U N Sg) is closed in U. So, we can blow up U

along S to get

U' = BIU, S, j,e)

for some complex structure j and small € > 0.

What we achieved here by this blow-up is that the reduced space U’ K is strictly less

singular.

Lemma 2.7 [25, 36] Let H be a connected Lie group acting on a vector space W unitarily.
Let w # 0 be a point in py; (0) and [w] denote the ray through w in PW. Then w and [w]

have the same infinitesimal stabilizer.



24 CHAPTER 2. SYMPLECTIC REDUCTIONS AND GIT QUOTIENTS

Proof Let exp(n)w = e'<%">w for some infinitesimal character o of stabgw and n €

stabgw. Then since w € puy, (0),
0 =< pw(w),n >=w(n w,w) =< o, > |wf

and thus ¢ = 0. The statement follows. [

By the lemma, conjugates of h cannot appear as an infinitesimal stabilizer of any point
in U' and therefore the number of conjugacy classes of infinitesimal stabilizers in the zero
level set has strictly decreased. We can successively blow up in the above fashion till we
obtain a Hamiltonian K-space U whose zero level set Z of the moment map has only finite

stabilizers. Therefore, the reduced space
X=UJK

has at worst orbifold singularities and we call it the partial desingularization.

The construction of X involved several choices. However, the final result is independent
of the choices up to deformation equivalence, which means roughly that any two such U, and
U, are diffeomorphic and that the symplectic forms and moment maps can be deformed
smoothly from one to the other, fixing the zero level. In particular, the quotient X is

essentially canonical. See [36] for details of this discussion.

2.3 Geometric invariant theory quotients

Geometric and categorical quotients
We wish to construct quotients of algebraic varieties by algebraic group actions. First

we make precise what we mean by quotients.

Definition 2.8 [37] Given an action 0 : G x X — X of G on X, a G-invariant morphism

p: X =Y, (ie
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is commutative) is called a categorical quotient if given any G-invariant 1 : X — Z, there

is a unique 1Y — Z such that ¢ = o ¢.

Definition 2.9 [37] Given an action o of G on X, ¢ : X — Y is called a geometric

quotient if
1. poo =c¢opry
2. ¢ is surjective and the image of V: G X X = X X X is X xy X
8. U CY is open if and only if $~1(U) is open in X (universally submersive)
4. Oy = ¢*O§, the G-invariant part.

Intuitively, each geometric fiber of ¢ is the orbit of a geometric point of X and thus we can
think of Y as the orbit space.
Given a reductive group action on an affine variety (over C) there always exists a

categorical quotient.

Proposition 2.10 [37] Let X be an affine scheme over C and G be a complezx reductive
group acting on X. Then a categorical quotient exists ¢ : X — Y such that Y is affine and

¢ is universally submersive.

In fact, if X = SpecA for a commutative algebra A, Y = SpecA where A® is the G-

invariant part of A.

Semistability and categorical quotients

In general, given a reductive group action on a quasiprojective variety we wish to con-
struct a quotient by patching up the above local quotients. But these local quotients do
not necessarily patch together to produce a variety. For example, there is the “jump phe-

nomenon” that makes it impossible. The cure to this problem is to get rid of bad points.

Definition 2.11 [37] Let X C P™ be a quasiprojective variety on which a reductive group

G acts via a homomorphism G — GL(n + 1). A point x € X is semistable if there is a
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nonconstant homogeneous polynomial f such that the complement Xy of the zero set of f
in X is affine and contains x. A point x is stable if moreover the G-action on X is closed
and the stabilizer is a finite group. If a point is not semistable it is called unstable. If a

point is semistable but not stable, then we call it strictly semistable.

Let X*° denote the set of semistable points and X* denote the set of stable points.
We remove unstable points from a variety with a linearized reductive group action and

then it is possible to patch the affine quotients to get a categorical quotient.

Theorem 2.12 [37] There exists a categorical quotient ¢ : X** —'Y of X** by G such that
1. ¢ is affine and universally submersive
2. Y 1is quasiprojective
3. the restriction of ¢ to X*® whose image is open and dense is a geometric quotient.

We denote the quotient by X/G. It should be noted that X /G is not the orbit space of
X% unless X*° = X%, In fact, two points in X** are identified if their orbit closures meet.
Clearly, this is necessary to make the quotient Hausdorff.

It is not always easy to determine (semi)stability directly from the definition. When X
is projective the following criterion is especially useful. Let A be a l-parameter subgroup
C* — G. This action can be diagonalized, i.e. we can choose coordinates (zg : z1: - : xy)

of P™ such that A acts with weight r; on the i-th component. For each x € X, define
q(z, A) = max{—r;|z; # 0}.

Theorem 2.13 [37] Suppose X is projective. Then x € X is semistable if and only if

q(z,\) > 0 for every 1-parameter subgroup \. x is stable if and only if q(x, ) > 0 for each
A

GIT quotients are symplectic reductions



2.3. GEOMETRIC INVARIANT THEORY QUOTIENTS 27

We wish to identify the GIT quotient of a smooth projective variety by a reductive
group with the symplectic reduction by the maximal compact subgroup. For details, see
Chapter 8 of [24].

Let X C P" be a smooth projective variety with a linear action of a reductive group
G which is the complexification of K. As remarked in the first section, we may assume
that the K-action is unitary and thus Hamiltonian with moment map p induced from the
canonical moment map of the projective space. Let X™" denote the set of points in X
whose gradient flows for f = —|u|? have limit points in z~1(0).

Kirwan shows X* = X" This can be achieved in three steps. First, observe from the
above criterion for semistability that x € X is semistable for G if and only if it is semistable

for any 1-parameter subgroup. Hence,
X% =nX;3°

where X3° is the set of semistable points for a l-parameter subgroup A. Second, when
G = C*, it is easy to describe the moment map explicitly and check that X% = X™n,
Third, one shows

Xmin — m/\Xj\nin

to deduce X*¥ = X™"_ (This requires a bit of Morse theory that we will review in the next
chapter.) In particular, X* retracts onto u~1(0).

Consider the diagram

pH(0) —— xmin — xss —;X//G

-
e
e
e

pH0)/K
The symplectic reduction p~1(0)/K is compact and the map to X /G is injective. Therefore,
the induced map on p~!(0)/K is a homeomorphism since X /G is Hausdorff. In summary,

we get the identification as desired.

Theorem 2.14 X//G is homeomorphic to i~ *(0)/K.
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Partial desingularization of a GIT quotient

We will use the following definitions.
Definition 2.15 [25]

e Let R(X) be a set of representatives of the conjugacy classes of identity components
of all reductive subgroups of G which appear as stabilizers of points x € X*° such that
Gz is closed in X%° and that RN K is a mazimal compact subgroup of R where K 1is

a fixed mazimal compact subgroup for G.
o Let Z}} denote the set of those x € X°° fized by R € R(X).
o Let r(X) = maz{dim R|R € R(X)}.

Suppose the set of stable points X* is nonempty. Let 7 : Y — X*% be the blowup of X**
along Ugimr=r(x)GZf - The action of G lifts to a linear action on Y via 7*O(k) ® O(—E)
for large k.

Kirwan in [25] proved that R(Y) = {R € R(X)|dimR < r(X) — 1} and hence r(Y) <
r(X). Moreover, Y/G is the blow-up of X/G along UdimR:,(X)ZR//NR. We may keep
blowing up till we reach a variety ¥ such that r(Y) = 0. Y /G has at worst finite quotient
singularites and we call it again the partial desingularization.

This is homeomorphic to the symplectic partial desingularization described in the pre-

vious section.



Chapter 3

Equivariant Morse Theory

Equivariant Morse theory is one of the most powerful tools in computing cohomology of
symplectic quotients. In this chapter we review the Kirwan-Morse theory for equivariant
cohomology from [24]. Then we apply it for equivariant K-groups and equivariant Chow

groups. Though straightforward, this application for the latter two seems to be new.

3.1 Equivariant theories

In this section, we recall various facts about equivariant cohomology, equivariant K-groups,

and equivariant Chow groups with complex or rational coefficients.

Definition and basic lemmas
Let G be any topological group. Then there is a contractible G-space EG on which G
acts freely. Let BG = FG/G denote the classifying space for G. If G acts on a space M,

we consider the following Borel diagram

EG<—EGXM—M

| ]

BG +— EG xg M — M/G.

The G-equivariant cohomology of M is defined to be the cohomology of the homotopy
quotient EG xg M, i.e.

H5(M) = H*(EG x¢ M).

29



30 CHAPTER 3. EQUIVARIANT MORSE THEORY

If M is just a point, we often denote Hf,(pt) = H*(BG) by H¢.. This is a polynomial ring
for any compact connected Lie group G.

On the one extreme, if the G action is trivial, then EG xg¢ M = BG x M and thus
H{ (M) = Hf, ® H*(M). On the other extreme, if the G action on M is free, then the
fibers of the map FG xg M — M/G are contractible and hence H*(M/G) = H(M). In
general, the equivariant cohomology may be computed by the Leray spectral sequence for
the map EG xg M — M /G whose fiber over a point in M /G is the classifying space of the
stabilizer of a point in the corresponding orbit on M. For example, if the stabilizers are all
finite groups then the natural map H*(M/G) — H{ (M) is an isomorphism since we are
using complex or rational coefficients.

We collect here some useful lemmas. The first is about “quotient in stages”.

Lemma 3.1 Let H be a closed normal subgroup of G and M be a G-space on which H acts
freely. Then the quotient group S = G/H acts on N = M/H and

Hg(M) = Hg(N).

Proof Consider the fibration EG xg M = (EG X ES) xg M — ES xqg M = ES xg N
whose fibers are contractible. [

Next we consider extending a group action to a larger group.

Lemma 3.2 Let H be a subgroup of G and N be an H-space. Define a G-space M =
G xg N. Then
Hg(M) = Hy(N).

Proof EG XgM:EG Xa (G XHN) =~ EG XHygEH XHN. O
Let K be a compact connected Lie group acting on M and T be a maximal torus of K.

Then it turns out that the fibration
K/T - EK x¢r M — EK xxg M

is cohomologically trivial. Hence, we get
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Lemma 3.3 H}(M) = H}(M) ® H*(K/T) and Hj(M) = [H3(M))", the invariant part

with respect to the action of the Weyl group W.
If the group is not connected, the following lemma is useful.

Lemma 3.4 Let Ky denote the identity component of K. Then the equivariant cohomology
Hj (M) is just the invariant part [H}‘(O(M)]”OK of Hy (M).

Proof Notice that EK = EK( and thus EK x g M = EKy X g, M /7K. Hence the lemma

follows since we are using complex or rational coefficients. [

De Rham model for equivariant cohomology

This treatment is borrowed from [4].

Let € denote the Lie algebra of a compact connected Lie group K. Then we define
the Weil algebra as the tensor product of the exterior algebra and the symmetric algebra
W () = AE* ® SE*. Let {6°} be a basis of £ in AE* and {u;} denote the corresponding basis
of £* in Se*. We set the degree of 6" to be 1 while that of u; to be 2. Elements in £* can be
thought of as left invariant 1-forms on K and the exterior differential defines the structure

constants c§. w by do’ + % > cg-kOj 0% = 0. We define the differential D on the Weil algebra by
DO = do’ — uj, Du; = Z c§kUj9k.

The Jacobi identity implies D? = 0 in W (). Moreover, it turns out that the cohomology
is trivial, i.e. Hj (W (£)) = C. For example, if K is a torus, all the structure constants are
zero and the Weil complex is just the Koszul complex which is a resolution of C. Hence,
the Weil algebra serves as the de Rham model for the contractible space F K.

If P - M is a principal K-bundle, then the de Rham complex Q*(M) for M is a
subcomplex of Q*(P) of basic elements. A differential form ¢ on P is called basic if it is K-
invariant and the interior product 2x ¢ vanishes for any vertical vector field X. In the Weil
algebra, for the dual basis {e;} of ¢, 1, 97 = (52 , te; 4 = 0 and the Lie derivative is defined by
L, =1, D + D1,;. Hence, the basic subcomplex of the Weil algebra is the K-invariant part

of the symmetric algebra [S€*]X with the trivial differential. This serves as the de Rham
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model for the classifying space BK. Indeed, for a compact connected Lie group K, one can
apply the Chern-Weil theory after approximating FK — BK by geometric fibrations to
establish an isomorphism

Hi «— [SEK.

More generally, if M is a manifold on which K acts smoothly, then the basic subcomplex
of O*(M) ® W (£) is the K-invariant part Q% (M) := [Q*(M) ® S€*]X. The differential is
given by

(Dn)(X) = d(n(X)) —2x(n(X))

for X € £ and n € Q- (M). Again, the Chern-Weil theory tells us the following.

Proposition 3.5 Hj (M) = H*(Q}(M)).

Equivariant K-groups

We recall some facts from [44] on equivariant K-groups.

When M is a compact G-space, the equivariant K-group K¢g(M) with rational coeffi-
cients is the Q-vector space associated to the semigroup of G-equivariant complex vector
bundles over M. Equivariant K-groups satisfy many properties of the equivariant cohomol-

ogy. We record some of them whose proofs are elementary.
1. Kg(pt) = R(G), the representation ring.
2. Kg(M) is an algebra over K¢ := Kg(pt).
3. Kq(G/H) = R(H).
4. K(G x M) = Ky (M).
5. K(M/G) =2 Kg(M) if G acts freely on M.
6. Kg/g(M/H) = Kg(M) if a normal subgroup H acts freely.

7. Kg(M) 2 R(G) @ K(M) if M is a trivial G-space.
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Moreover, if M is locally compact and A is a closed subset, then we get a long exact

sequence
= KGI(M,A) — K 9(M) — KS(A) — KT (M, A) — - -
where K;%(M) = K(M x R?). We also have the isomorphism
KGI(M\ A) = KZ9(M, A)
as well as the Bott periodicity
K'(M) =K' ().

If E - M is a G-vector bundle with the zero section ¢ : M — E then there is the Thom

isomorphism ¢, : Kg(M) — Kg(E) such that we have the self-intersection formula

¢*$:(8) = ¢ - ea(E)

where eg(E) is the Euler class Y (—1)! A" E.
For a compact connected Lie group G with a maximal torus T" and a locally compact

G-space M, we have Kg(M) = [K7(M)]", the Weyl group invariant part.

Equivariant characteristic classes

Let £ — M be a G-equivariant complex vector bundle so that EG xg EF — EG xg¢ M
is a vector bundle. We define the equivariant Chern classes CZG(E) to be the Chern classes
of the latter vector bundle over the homotopy quotient.

In [3], Atiyah and Bott proved that the Morse stratification of the space of connections

on a principal bundle over a Riemann surface given by the norm square of curvature is

equivariantly perfect. One key observation for their proof was the following.

Proposition 3.6 Let E be a complex vector bundle over a connected space M on which a
compact group K acts as a group of bundle automorphisms of E. If there is a subtorus Ty
in K acting trivially on M such that the representation of Ty on the fiber of E at any point

of M has no nonzero fixed point, then the equivariant Euler class is not a zero divisor.
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Equivariant Chow groups

If the Lie group G is reductive algebraic, the universal principal bundle EG — BG can
be approximated by smooth algebraic varieties. In this section, we review the equivariant
Chow groups obtained from such approximations.

Let G be a reductive algebraic group. For each ¢ > 0, there exists a representation
V of G, an open subset U of V such that V' \ U has codimension > i and such that a
principal bundle quotient U — U/G exists. This quotient is our approximation for the
universal quotient. For example, if G is a torus T' = (C*)9, then we can take V = (CI+1)9,
U = (C*1\ 0)9 for ¢ > 1i on which the torus acts with weight 1 on each component. The
quotient U/G in this case is (P?)9. If G = GL,, then we can take V' to be the space of n x p
matrices and U to be the subspace of matrices of maximal rank. The codimension of U is
p —n + 1 and the quotient U/G is the Grassmannian Gr(n,p). In general, we can embed
G into GL, and use the above to construct a quotient. (See [10], [29] for details.)

Now, let M be an n-dimensional smooth quasi-projective variety on which a g-dimensional
algebraic group G acts (linearly). Then we can approximate the homotopy quotient M¢ :=
EG xg M by U xg M. The advantage of this approach is that U is smooth and algebraic.

The equivariant Chow groups, with complex or rational coefficients, are defined as

AF (M) = Ajyg(U x6 M).

Bogomolov’s double fibration argument shows that they are independent of the choice of
the representation as long as the codimension of U in V is big enough. Since M is smooth,
the equivariant operational Chow group AL (M) is isomorphic to AY (M) and hence the
Chow groups are equipped with the intersection product AL (M) x AJG(M ) — Ag’j (M).

Moreover, if M’ C M is invariant open, then we have an exact sequence
AG(M\ M') — AZ(M) — AT (M) — 0.

If the G-action on M is locally free and locally proper and the geometric quotient
M — M/G exists, then we still have the isomorphism A% (M) = A,(M/G). (See [10].) On

the other extreme, if the action is trivial, we get AY (M) & A,(M)® A%, where A%, = A% (pt).
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Characteristic classes can be similarly defined. If £ — M is an equivariant vector

bundle, then U xg F — U Xg M is a vector bundle and the equivariant Chern classes

ciG are the Chern classes of the latter vector bundle. By using the Chern classes, the self-
intersection formula can be written as follows: if 2+ : M’ — M is a regular embedding of
a smooth invariant subvariety of codimension d into a smooth variety M, then %1, (a) =
¢S (wp (M) Na for a € AY(M') where vp7(M') denotes the normal bundle.

We conclude this section with the following lemma.

Lemma 3.7 Let H be a connected normal subgroup of a connected compact Lie group K.
Set S = K/H. Let M be a K-space on which H acts trivially. Then there is an isomorphism

of equivariant cohomology

Hj;(M) 2 H{(M) ® Hj;.
Proof Consider the fibration
BH — (EK x ES) xxk M — ES xg M.

The spectral sequence for this fibration degenerates by Deligne’s criterion because BH can

be approximated by nonsigular projective varieties. [

3.2 Equivariant cohomology

In this section, we review how the Morse theory can be applied to compute the cohomology

of symplectic reductions, from [24].

Morse stratification

Let M be a compact symplectic manifold acted on by a compact Lie group with a
moment map p : M — £*. Fix an invariant norm on £ by which we identify £ with £* and
a K-invariant Riemannian metric on M. Let f = |u|?> : M — R denote the norm square of
the moment map.

Consider the maximal torus 7" of K. Its action on M has a moment map, namely the
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composite

N

The image of pr is the convex hull of the finite set pur(M7T), the image of the fixed point
set MT, by the convexity theorem due to Atiyah [2] and Gullemin-Sternberg [18]. Let B
denote the set of the elements 3 in the Weyl chamber t; which are closest from the origin
to the convex hulls of some subsets of ur(M7), together with 0. Then M has a smooth

stratification {S3} indexed by B, by the following result of Kirwan [24].

Theorem 3.8 There exists a smooth stratification {Sg|B € B} of M such that x € Sg if
and only if the path of steepest descent for f has a limit point in the critical set Cg =
K(Zg N p='(B)) where Zg is the fized point set with respect to the action of Tz = expRj3

such that < u(Zg), 3 >= |B|*>. Moreover, Sz retracts onto Cyz which is diffeomorphic to

K Xsgabg (Zg N p=t(B)).

For simplicity, we assume that each Zj is connected. The general case no more difficult

except for more careful indexing. Let Ug = Ug' <3Sy and consider the Gysin sequence
Hi72) (S5) = Hy (Ug) — Hig(Ug \ Sg) — -+
— Hy ™(S3) = Hi (Ug) = Hi (Us \ Sp) —

where 2d(f3) is the real codimension of Sz in M. An argument due to Atiyah and Bott [3]

shows that this sequence breaks into short exact sequences.

*—2d

Theorem 3.9 [2/] 0 — Hy *"P(S3) - Hi (Ug) — HE (Us \ Sg) — 0 is ezact.

Proof Notice that since Sg retracts onto Cs = K Xgtabg (Z5 N~ (B)),
Hic(Sp) = Hiyapp(Zs N1 () € Hy(Zg N~ '(B))
since 7' is a maximal torus of Stabf. Set T'= Tz x T1. Then
Hy(Zs np~'(8) = Hi, (Zg nu™ " (B)) ® Hi,

because T acts trivially on Zg. The Euler class of the restriction of the normal bundle of

Sg to Zg N p~L(B) is not a zero divisor since the action of Tj on any fiber has no nonzero
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fixed point. Therefore, the composite
*—2d * *
Hi O (S5) » Hie(Us) — Hic(Sp)

of the Gysin map with the restriction map is injective. So, we are done. [J

Obviously, the minimal critical set for f is x~!(0) and Sy retracts onto p~'(0).

Corollary 8.10 The restriction k : Hi (M) — H}(n=1(0)) is surjective and

* x—2d(8
Hi (M) = @HStabﬁ (Zg N~ l(ﬁ))
B#0

If 0 is a regular value of the moment map u,

H* (171 (0)/K) = Hie(n=(0) = Hy (M) ®p20 Hpn” (Z5 0 = (B)).

Remark 3.11 H{,, 5(Z3 N 1~ 1(B)) can be computed in a similar manner since the action

of Stab on the smooth compact Hamiltonian space Zz has a moment map p — 3 : Zg —

(stabg)*.

A stratification for torus case

Let M be a compact symplectic manifold acted on by a compact torus 7' with a moment
map p: M — t*. Let o € t be a generic element such that expRa = 7. Then the function
fa =< p,a > is a Bott-Morse function and hence we get a smooth Morse stratification
M = U,S, by locally closed smooth submanifolds S, that retract onto the fixed point

components F,. Let U, = U, <,S, and consider the Gysin sequence

*—2d
-— Hp,

D(8,) > Hy(U,) » Hy (U, \ S,) =
Theorem 3.12 The Gysin sequence breaks into short exact sequences

0 — H 2" (s) — Hi(U,) - Hp(U, \ Sy) — 0.

Proof As in the previous subsection, one can show that the composite H;_Qd(V)(SV) —
H}(Uy) — H}(S,) is injective by observing the Euler class of the restriction of the normal

bundle of S, to F, is not a zero-divisor.  [I
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Hence,

Hi(M) = @, H; "0 () = @, H'(F,) © Hj
and thus the Poincaré series PT (M) = Y #' dim H%(M) satiesfies
P (M) =Yt P(F,)P(BT) > P(M)P(BT)

by the Morse inequality. Therefore, the spectral sequence for the fibration M — ET <M —

BT degenerates at Fo terms. More generally, we have the following.

Proposition 3.13 Let M be a compact symplectic manifold acted on by a compact con-
nected Lie group K such that a moment map pu : M — € exists. Then the spectral se-
quence for the fibration M — EK Xxg M — BK degenerates at Fo terms, and hence

Proof For a connected compact Lie group K with a maximal torus 7', we have the fibration
K/T — ET xp M — EK xg M by taking ET = EK. As is well-known, the spectral
sequence for this fibration degenerates at Eo terms since the map H}.(M) — H*(K/T) has a
right inverse. Therefore, PT(M) = PX(M)P(K/T). Similarly, P(BT) = P(BK)P(K/T).
Hence, PX(M) = P(M)P(BK) and the spectral sequence degenerates. [

Hence, together with the result of the previous subsection, we get a formula for the
Betti numbers of symplectic reductions when 0 is a regular value of the moment map.
However, the isomorphism in the above proposition is in general not a ring homomorphism.

To understand the ring structure, we need the following localization results.

Abelian localization and cup product structure

Recall that for a compact connected Lie group K with a maximal torus 7" we have
Hi (M) = [H:(M)]" as aring for any K-space M. Hence, we may compute the equivariant
cohomology ring Hj (M), once we know H7 (M), by considering the Weyl group invariant
part. So, we focus on the abelian case.

Let M be a compact Hamiltonian T-space. Consider the restriction map +* : H}.(M) —

H:(MT) to the fixed point set M1 = U, F,.
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Theorem 3.14 [31, 1/, 51] The map +* : Hx(M) — H3(M7) is injective and the image is
the same as the image of the restriction Hi(Ur, M™) — HA(MT) where Ty runs through

all subtori of codimension 1.

Proof We use induction on vy (with respect to the ordering by the values of f,). Let
Uy = Uy <ySy be open where S/ is the stratum that retracts onto F.r. First, we want to
show that the restriction H}(U,) — H3(U, N M) is injective. For minimal v, it is trivial.

Assume that it is true for U, \ S,. Consider the diagram

0— H;_Qdm (F,) —— Hp(Uy) ——— Hp(Uy \ Sy) —— 0
| | |
0 ——— H}(Fy) —— Sy <y Hi(Fy) — &y <y Hp (Fy) —— 0.
The first and last verticals are injective and hence the middle is also injective.

Now we consider the image of the restriction. Obviously, the image of H}.(M) is con-
tained in the image of H}.(M;) where My = Uy, M T" and we show the converse by induction.

Again, the base case is trivial and suppose the images of H7.(U,\S,) and H}(U,\S,NM;)
are same in @, H}(F, ). Let n be an element in Hy,(U, N M;) that becomes zero when
restricted to H3 (U, \ Sy N M;).! We claim that the image of 1 in H}(F,) is a multiple of
the Euler class of the restriction IV, of the normal to S,. This will finish the proof since
every such element is from H7.(U,).

The T' action on a fiber of the normal to S, at a point in F, splits into one dimensional
representations with weights a; and each of these gives us a stabilizer subgroup Tj of
codimension 1. Consider the fixed point set M7 by T;. The tangent directions at F, to
this set give us a subbundle N; of the normal to S, and hence the normal decomposes into
a direct sum of the subbundles N;. By the assumption on 7, the restriction of  on Nj is a

multiple of the top Chern class of N;, which has the form
fj ® 1 4 (terms with lower degree polynomials)

where f; is a homogeneous polynomial. These are coprime for any two distinct IN;’s.

Tt is easy to see by diagram chase that we have to only to consider these elements.



40 CHAPTER 3. EQUIVARIANT MORSE THEORY

Now we deduce from the following lemma that 7 is divisible by the product of the top
Chern classes of all N;’s, which equals to the Euler class of the normal bundle. So, we are

done. O

Lemma 3.15 Let A be a finite dimensional Q-algebra with unity 1 such that there is a
decomposition A = QL ® A and A is nilpotent. Let S be a polynomial ring over Q and set
B=S®pA=®;S"®A where S is the degree i part of S. Let f,g,h be elements in B

such that the top degree part with respect to the grading of S are of the form
fo®l, go®1, hy®1

for nontrivial homogeneous polynomials fo,go, ho. Suppose g and h divide f in B and go

and hg are coprime. Then gh divides f in B.

Proof By the assumption on nilpotency, g/go has an inverse in By, = Sy, ®qg A, the

localized B by the multiplicative system {gg'|m € Z} and h/hg has an inverse in By,. Let

k= gofho (gio)*l(h—ho)*1 in Bg,pn,- Now it suffices to show that £ lies in fact in B.
Since g divides f, f = gg for some g € B. Since f = g(hk) in By, § = hk € B C Byyp,
and thus k = §(4£) ™' /= € Bp,. Similarly, k € By,. But By, N By, = B because go and hg

are coprime. So we are done. [

An immediate consequence of the theorem is the following integration formula.

Corollary 3.16 For each { € H}.(M), ¢ = Z,y ZFA{*% and hence
vy

where v, : Fyy < X is the embedding and e’ (vx (F,)) is the equivariant Euler class of the

normal bundle to F,.

Proof By the above theorem, >_ Up, Is injective. Since

i, 0 € = € (vx (B &
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we deduce that £ = 27 ZFA{*%. The integration now follows by applying 7, on both
sides where 7 : M — pt is the constant map. [

Since * is a ring homomorphism, the above theorem completely determines the cup
product structure of H3(M). Now, the equivariant cohomology ring H%(u1(0)) can be
determined by the surjective ring homomorphism H%(M) — H%(p~1(0)) in terms of the
Gysin maps as seen before, at least in principle. For example, Kirwan proved the Mumford

conjecture and the Newstead conjecture by using this idea in [31].

The following theorem gives a nice description of the kernel.

Theorem 3.17 [50] Suppose 0 is a regular value of the moment map p. Then the kernel
of the surjective map k : H3:(M) — Hx(n=(0)) = H* (1 1(0)/T) is given by

K =Y {a€ Hy(M)| a|yrqy, =0}
get

where Me = {z € M| < p(z),& >< 0}.

Proof Consider the Morse stratification {S3} by the norm square of the moment map for
the torus action. Recall that §’s are the closest points from the origin to the convex hulls
of some points in u(M7T) and that Sg retracts onto Zz Ny~ 1(B). More precisely, in this
torus case, the stratum Sg is an open subset of the Morse stratum Y3 with the critical set
Zg with respect to the function fg =< p, 5 >.

Let Ug be the union of the strata for fz less than or equal to Y3 and consider the image
via the Gysin map H;Qd(ﬁ)(Yg) — H7(Ug). Let Ig denote any lifting of the image in
H7.(M). Then the kernel of x is } 5 I5.

Clearly, the subspace Ig becomes zero when restricted to Mz = {z € M| < p(z),8 ><

0} which is a subset of Ug \ Y. Conversely, if |y, = 0, then 7 lies in

Z{Iﬁ,w’ is parallel to 3 and < 3,3 >> 0}

and hence in the kernel of k. Therefore, the kernel of « is Y5 .o{a € Hp(M)|a|m, = 0}.



42 CHAPTER 3. EQUIVARIANT MORSE THEORY

From the proof of the previous theorem, Hj(Mp) injects into Hj(MzNMT). Hence, the
theorem now follows from the observation that for any £ there is a 8 such that My = Mg,

which is an easy exercise. [

3.3 Equivariant K-groups

In this section, we apply the Morse theory to compute the rational K-groups of symplectic

reductions.

Perfectness of the Morse stratification

Let G be a compact connected Lie group acting on a compact symplectic manifold
M in a Hamiltonian fashion. From [24], we know that M has the Morse stratification
M = UpSg as described before. Give a linear ordering on the index set compatible with
the partial ordering by length. Let Dg be a small invariant neighborhood of Sz and set

Us = M\Ug~gDg. So, we get a compact filtration {Usz}. Consider the long exact sequence
= K5 (Up,Ug \ Dg) = K"(Us) = Kg"(Us \ Dg) — -
We have the isomorphism
Kg'(SpNUs) = K" (Dg NUp) = K" (U, Us \ Dy).

The composition of this isomorphism with the natural map K;%(Us,Us \ Dg) — K;*(Up)
in the above long exact sequence and the restriction map K. (Ug) — K;*(SsNUp) is equal

to the composite
K (SsnUs) = Kg¥(Ds NUp) = K(Ss N Up)

where the first is the Thom homomorphism. By the self-intersection formula, this composite
is given by multiplying the Euler class of the normal bundle.
Now observe that as before K;%(SgNUs) = K1) 5(Z5 Nu~HB) C K./ (Zgnp 1 (B)®

R(Tp) where the maximal torus splits as T = T3 x T.? Since the action of Tj on a fiber

285 N U retracts onto K(Zg N pu~'(B)) by the gradient flow.
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of the normal bundle has no nonzero fixed points, the restriction of the Euler class is not
a zero divisor.® Therefore, the Gysin map K;%(Sg N Us) — K;?(Up) is injective and thus

the long exact sequence breaks into short exact sequences. So, we proved the following.
Theorem 3.18 0 — Kg(Sg N Ug) — Kg(Ug) — Kg(Ug \ Dﬁ) — 0 is exact.
Corollary 3.19 The restriction Kg(M) — Kg(p=1(0)) is surjective and

Kg(M) =Kg(u *(0) @ @Ksmbﬂ(zﬂ N~ (B)).
BF#0

In particular, if G acts freely on 2~ '(0) then we get

K(u™'(0)/G) = Kg(u™'(0)) =2 Kg(M)/ ®pz0 Ksiabs(Zs N ™" (B)).

Hence, we can compute the K-groups of the symplectic reduction inductively.

Torus action and abelian localization

Let M be a compact Hamiltonian T-space. Consider the stratification M = U,S, for
the torus case in the previous section, given by the Morse function f, =< p,« > for some
generic o € t. Let D, be a small invariant neighborhood of S, and let U, = M \ Uy, Do

As above, it is easy to adapt the proof of the previous section to show the following.

Proposition 3.20 The long exact sequence for the equivariant K -groups of the pair (U, U, \

D.,) breaks into short exact sequences
0— Kr(S,nU,) = Kr(Uy) = Kr(U,\ D,) =0
and hence Kp(M) = @,K(F,) ® R(T).

Let 2+ : MT — M denote the embedding of the T fixed point set. Then the following can

be proved by an easy modification of the proof in the previous section.*

3Though K-groups do not have a natural grading, R(T3) does. The part of the Euler class with highest
degree on the R(Tj3) direction is (nonzero polynomial)®1 and thus it cannot be a zero divisor.
“Notice that K (F,) = Q1 & K (F,) and K (F) is nilpotent. So, the lemma in the previous section applies.
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Theorem 3.21 The map +* : Kp(M) — Kp(M?T) is injective and the image is the same
as the image of the restriction Kr(Up, M™t) — Kp(M™T) where Ty runs through all subtori

of codimension 1.
This version of abelian localization theorem was proved in [42] in a different way.

3.4 Equivariant Chow groups

In this section, we apply the Kirwan-Morse theory to compute the rational Chow groups of

GIT quotients.

Algebraic stratification

Let M be a smooth projective variety in P acted on by a complex connected reductive
group G via a homomorphism G — GL(n + 1). After conjugation if necessary we may
assume that there is a maximal compact subgroup K of G such that the homomorphism
restricts to K — U(n 4 1). Then the Morse stratification in §2 is a smooth stratification

([24])
M = UgeBS/g

by locally closed smooth subvarieties where B is the finite subset, containing 0, of the Weyl
chamber t; corresponding to a choice of a Borel subgroup B of G. The minimal stratum
Sp is the set of semistable points M*%.

Let

Zg={(wo:x1: - :2,) € Mlz; =0if aj - B # |8*}
V= {(vo:w1::2n) € Mlz; =0if ;-8 < |B]* , x; # 0 for some j such that a;-6 = |8|*}

where «;’s are the weights of the action of the maximal torus for the action G — GL(n +
1) and z;’s are the coordinates of the eigenvectors. Then Zg is a union of fixed point
components by the action of T = expRA3 whose values by the function fs =< p,B > are
|3|?, while Y3 is the Morse stratum by fsz that retracts onto Zz. In fact, the retraction

pg : Y3 — Zpg is an algebraic vector bundle.
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The stabilizer Stab acts on Zg and consider the set of semistable points ng. Let

Y3t = pgl(Z 55) It was also proved in [24] that
Sg=GY5" =G xp, Yj§°

for the reductive subgroup P3 = B - Stabg.
The set B has a natural partial ordering by the norm and we give a total ordering
compatible with the partial ordering. Let Ug = Ug<3Sp. Then we have the following

exact sequence of equivariant Chow groups
AP (85) & AL (U5) — AL(U5\ S5) — 0
G (S5) a(Us) aWUs \ Sp) .

As in the previous section we can show the following theorem by using the argument of

Atiyah and Bott [3].
Theorem 3.22 0 — A}, "V (Sg) — A%(Us) = AL (U \ Sp) — 0 is exact.

Proof The idea is basically the same as in the previous section. So we just sketch the
proof.
Notice that A (Sg) = A};ﬂ (Y3®). Moreover, since Stabf3 is the Levi part of the parabolic

group Ppg, the fibration
Pg/Stab,B — BEG, X Py Y;s — BEG, X Stabg Y;s

is an algebraic vector bundle. Hence, A};ﬂ (Y§%) = A§pp(Y3®) which in turn must be
isomorphic to Agtabﬂ(ng) C A;‘F(Zés) possibly after shifting the degree because pg is a
vector bundle. Since T acts trivally on Zg, A7.(Z5°) & Ay, (Z5°) ® A*TB' Here, A*TB is the
polynomial ring on Lie(Tjg) = tg.

Now, consider the composition
AP (85) 5 AL(U5) — AL(S
G ( ,3) G( ,3) G( [3)

of the Gysin map and the restriction map. Since the Tz action on the fiber of the restriction

of the normal bundle of Sz to Z Es has no nonzero fixed point, it is clear that the Euler class
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of the normal bundle is not a zero divisor. Hence the composite is injective and the result

follows. [

Corollary 3.23 The restriction Ay, (M) — Ay (M*?) is surjective and Af,(M) = Ay, (M*°)@

x—d(08
Dps0 A (Z5).

In particular, if the G-action on M?*? is free, then it is easy to see from the definition
that A*(M//G) = AL (M*®). Hence we can compute the Chow ring of the GIT quotient
by the surjective ring homomorphism A}, (M) — A7, (M**) whose kernel, isomorphic to
@ﬁ;éo A;;a‘é(g)(Zés), is given by the Gysin maps. If we have only M* = M?, then by a
deep result due to Edidin and Graham [10] A,(M//G) = A%(M**) and hence we can still

compute the Chow groups of the GIT quotient by the above Morse theory.

Abelian localization for Chow groups

In this subsection, we determine the Chow ring A7, (M) by abelian localization.

Edidin and Graham [10, 11] proved that for a maximal (complex) torus T of G, we
have A} (M) =2 [AL(M )] the Weyl group invariant part. Hence, in principle, we need to
consider only the abelian group action.

For a linear algebraic torus action on a smooth projective variety M, there is a strati-
fication M = U, Y;, by locally closed smooth subvarieties, called Bialynicki-Birula decom-
position of M: Let « be a generic element in the Lie algebra of the torus 7' so that the
closed subtorus generated by « is the whole T. Consider the function f, given by pairing
the moment map i and a. The Bialynicki-Birula decomposition is the same as the Morse
stratification of the function f,,.

The critical set is the fixed point set M’ = U, F, where the indices r’s have a linear
ordering, by the values of f,. Each stratum S, retracts onto F, and the retraction is in fact
a vector bundle.

Now, the arguments in the previous subsection proves that for each r,

0 - A57(S,) = Ap(Uy) = AU\ S)) = 0
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is exact where U, = U,<,; S and d(r) is the complex codimension of S,. The arguments
used in the proof of the localization theorem for equivariant cohomology in §2 prove also

the following [11, 8].

Theorem 3.24 The restriction * : A%(M) — A%(M7T) is injective. The image of 1* is the
intersection of the images of gy, for all subtori Ty of codimension 1, where jr, : MT - M

is the embedding into the Ty fized point set.



Chapter 4

Nonabelian localization and
intersection pairings

4.1 Reduction to abelian case

Let K be a compact connected Lie group, acting on a compact connected symplectic mani-
fold with a moment map p : M — £*. We assume that the action of K on pu~1(0) is free and
so is the action of the maximal torus 7" on ,u;l(O) where pur : M — £ — t* is the moment
map for the T-action. The purpose of this section is to recall S. Martin’s trick that relates

the pairings on MK := p~'(0)/K with those on M )T = pu;'(0)/T.

Key observation

For each weight o of T', we have a 1-dimensional representation C,) and a line bundle
Lo = p7'(0) X7 Cray = pg' (0)/T = M/ T

Let A, A4 and A_ denote the sets of roots, positive roots, and negative roots, respectively.
Let Fy+ = @oeny La-

The main idea is captured in the following diagram:
P (0) /T i (0) /T == M T

k

MJK — y1(0)/K

48
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Proposition 4.1 [34] The vector bundle E_ has a section s which is transverse to the zero
section and such that the zero set of s is the submanifold p=1(0)/T. Hence the normal
bundle to p=1(0)/T in M)JT is E_|,-10)/r- Moreover, the vector bundle vert(r) tangent

to the fibers of ™ is By and the orientations match up.

Proof The restriction of the moment map

e 1 (0) = (80" = @acaCa

is T-equivariant and thus it defines a section s whose zero set is precisely p~1(0)/T. The
remainder of the proof is a rather straightforward check and we omit the details. See [34].

0

Integration formula
Let e, e denote the equivariant Euler classes of E1, F = E, ®FE_ respectively. Then the

above theorem tells us that e_ is the Poincaré dual to ~1(0)/7T and thus for @ € H*(M)/T)

/ ita = / aUe_.
p=t(0)/T M)T

On the other hand, the Euler class of vert(n) is the restriction i*e; and thus for o €

H*(M[K)

/ e Ui*ey = / a U (i*es)
p=1(0)/T M|K

while 7, (i*ey) is the Euler characteristic |W| of a fiber K/T'. Hence, we get the integration

formula (Theorem B of [34]).

Theorem 4.2 For n*a = i*a,

1
a=— alUe.
/M//K W Jaryr

Cohomology rings
Martin relates the cohomology rings of the K-quotient and the T-quotient. Indeed, we
consider the restriction map ¢ : H*(MJT)" — H*(u~'(0)/T)"V = H*(M//K) which is
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surjective from the commutative diagram

Hi (M)W —» Hi (1 (0)Y —— H* (M) T)"

Hje(M) —» Hj(p™1(0)) —— H* (M K).
Let x7 be the composite Hx(M) — Hi(uz'(0)) = H*(M/T) of the restriction and the
isomorphism. Similarly, let & : Hj (M) — Hj (u=1(0)) = H*(M/K) be the composite of

restriction and isomorphism. The integration formula enables us to identify the kernel of

the surjection. (Theorem A of [34].)

Theorem 4.3 The kernel is the annihilator ann(e) of e. Therefore,
H*(M)K) = H*(M)T)V Jann(e).

Proof By Poincaré duality, ¢(k7(a)) = 0 iff fM//K k(a)Uk(b) = 0 for all b of complementary
degree since ¢(kr(a)) = k(a). But 7*k(a) = i*kr(a) and hence the integral is same as
fM//T kr(a) UeU kr(b). Therefore, kr(a) Ue =0, i.e. kr(a) € ann(e). O

In fact, Theorems 4.2, 4.3 above imply each other.

Now suppose 0 is not a regular value of the T-moment map pr. Then we can use
the same trick by perturbing the quotient slightly. Namely, choose a regular value € close
enough to 0. A small neighborhood of p=1(0)/T in M//T is diffeomorphic to an open
subset of u;'(e)/T and the above arguments are easily modified to prove the theorems

after replacing M /T by pup'(e)/T =: MJ/T(e).
4.2 Intersection pairings on torus quotients

In this section, we review the wall crossing formulas for torus quotients due to Gullemin-
Kalkman and Martin.

By the results of the previous section, we can focus on torus quotients. Let T be a
compact torus. We choose a metric so that we can identify t with t*. Let M be a compact

Hamiltonian T-space with a moment map p : M — t*. Let X(p) denote the quotient
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1

p~Y(p)/T for p € t. If p is regular then the Kirwan map x : Hix(M) — Hi(u"'(p))
H*(X(p)) is surjective.

According to the convexity theorems due to Atiyah [2] and Guillemin-Sternberg [18], the
image of the moment map is the convex hull of the image of the fixed point set pu(M7). This
convex polyhedron is subdivided into chambers by the walls which are the images of the
fixed point sets of the 1-dimensional subgroups. Let p be a general point in the polyhedron
(not on any walls). For a € H} (M) we wish to understand the variation of the integral
fX(p) k(a) as p varies in t.

First notice that inside a given connected open chamber C' of the polyhedron, the in-
tegral is constant. To see this, consider the locally free T-action on U = p~!(C) which is

homeomorphic to p~!(p) x C for p € C. The Kirwan map can be factored as follows:
Hyp(M) — Hp(U) = H*(U/T) = H*(X(p)).

Any class of degree dimg X (p) is mapped to a constant multiple of the fundamental class
in H*(X(p)). This comes from a class in H*(U/T) which is independent of p.

Next, we consider wall crossing. Consider two points p, ¢ near a general point r of a
wall, the image of some components of the fixed point set M of a 1-dimensional subtorus
H in T, lying on the opposite sides of the wall. Choose a path [ from p to ¢ meeting the
wall transversely only at r. In this case, by Proposition 1.5 of [35], i is transverse to [ and
the stabilizer subgroup of any x € p~!(l) is either a finite group or a finite extension of H.

And the submanifold M# is transverse to u~'(I). Let
W = pu= (1) \ Ne(M™) 0 = (D)

where N, is the small neighborhood of the submanifold M*. The wall crossing cobordism

is defined as the quotient W /T whose boundary is by Theorem A of [35]
OW/T) =—-X(p)UX(q)UF,

where P, is the weighted projective bundle S(N(MH™))| nu—1(r)/T over X (r), the quotient

of the sphere bundle in the normal bundle to M restricted to MH N p=1(r).
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Now we apply the Stokes theorem on W/T to the image of a class a € H%imx(p) (M) via
H} (M) — Hp(W) = H*(W/T). Then we get

0= —/X(p) k(@) +/X(q) k(@) +/X(r) k(@)

where 7 : P, — X (r) is the bundle projection. Therefore, we get the wall crossing formula.

(Theorem B [35].)

Theorem 4.4 There is a map A : H}.(M) — H;/H(MH) such that for a € H.(M)

/X(,,) Ko - /X(q) wla) = /X(r) r(A(a)).

If we split the torus 7= H x Ti, the map A turns out to be the residue operator [17]

1*a

(V)

A(a) = res;—g
e

where ¢ is the basis in h and i : M — M the embedding and ey(N) is the T-equivariant
Euler class of the normal bundle N to the components of M. This amounts to taking
integral along the fiber which is a weighted projective space.

The theorem is true even when the wall is the boundary of the polyhedron. Hence, by
choosing a path from 0 to a point outside the polyhedron, transverse to the walls, we can
compute the integral by adding up the contributions from the walls crossed. For example,

if T = S is the circle group, then we get the following theorem of Kalkman and Wu.

Theorem 4.5 Let n € Hg, (M) and Fy be the set of fized point components whose values
by the moment map are positive. Suppose 0 is a regular value of the moment map. Then
15.n(t
/ k(n) = —ngres;—o( Z / L())
MjSt per, I F er(t)

where ng is the order of the stabilizer of a generic point in u~'(0) and e is the Euler class

of the normal bundle to F in M.

In general, since the T'/H-space M is Hamiltonian, the contributions from the walls

can be computed inductively. It is easy to see that eventually, the integral reduces to some
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integrals over the fixed point set MT. Guillemin-Kalkman [17] explains this sum of the
integrals over the fixed point components in terms of “dendrite” while Martin uses some

abelian group to keep track of the contributions from each fixed point component [35].
4.3 Jeffrey-Kirwan localization theorem

The results of the above sections can be combined to “prove” the Jeffrey-Kirwan localization
theorem [19].
As usual, we assume that M is a compact Hamiltonian K-space with a moment map

p:M — € and MK = u~(0)/K is smooth. Recall that the Kirwan map
k:Hi(M)— H (MJK)

is the surjection induced from the restriction to ©=1(0). Let & be the product of all roots

of K.

Theorem 4.6 Givenn € Hj.(M),

ZF’r]
K(n ——Res
/M//K () = rpReste 2

reF’F

Here Res is the device to filter the contributions from fixed point components F. For

example, when K = SU(2), the theorem reads as follows.

Corollary 4.7 Letn € H;‘U(2)(M)' Then

(n) = 2nares, (12 1 (t)
/M//SU(2) () = Znores,—of Z eF(t))

FeF,

where res is the ordinary residue.
Proof We deduce it from the results of the previous sections. First by Martin’s trick,

1 1 i
[ own= [ wmmue=3 [ e
MJK W\ Jayr 2 Jmyr

Here ¢ = (—2t)(2t) = —4t? and by the wall crossing formula we get

277
nUe —2ngres t2 /F
[, rrn08) = —nreso® 3

FeFry
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So, we proved the formula. [

In fact, Jeffrey and Kirwan proved the localization theorem by studying Witten’s integral

€ _ efe<t,t>/2 )
74(¢) / ) /Mcm

The intersection pairing is shown to be obtained by taking the limit ¢ — 0. On the other
hand, one can apply the abelian localization theorem on the right hand side to get local
contributions. The details of the proof involve quite an amount of analysis and we skip the
definition of the Residue operator in the theorem ([19]). We can dispense with this Res
operator by using the “dendrite” of Guillemin-Sternberg or some abelian group of Martin

[17, 35] as mentioned.

4.4 Chow rings of smooth quotients

In this section, we try to understand the Chow ring of a nonabelian geometric quotient.
We provide a new proof of a theorem of Ellingsrud and Stromme [12] about Chow rings of
geometric quotients.

Let M be a smooth projective variety acted on linearly by a connected reductive group
G. Let Tc denote its maximal torus. Let M#*(T), M*(T) denote the set of stable and
semistable points respectively, with respect to the T¢ action.

One may wish to apply Martin’s trick to prove analogues of his theorems for Chow
rings. The obstacle is that the trick cannot be applied in the algebraic context since the
submanifold 1 ~1(0)/T in Martin’s diagram is not a holomorphic subvariety. To see it, just

use the local normal form theorem to deduce that locally the diagram looks like

K/T x We—5%T*(K/T) x W
W

where W is a Hermitian vector space. K /T is a real Lagrangian submanifold of T*(K/T) =

G/T¢, but not a holomorphic subvariety.
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However, we can still define a surjective map
Al (MD)W = AG (M)

by composing the always surjective restriction map A7, (M sS(THW — A (M s)W with
the isomorphism A*TC(MSS)W = A7 (M*®). Notice here that M** is an open subvariety of
M?#5(T) by Mumford’s criterion since every l-parameter subgroup of T¢ is a l-parameter
subgroup for G as well. In case the T¢ action on M*°(T') and the G action on M** are free,
we get a surjection A*(M)/Tc)V — A*(M)|G).

We focus on a particular case considered by Ellingsrud and Stromme in [12]. Let M =P"

be the whole projective space on which G acts linearly. Then the natural maps
AL(M) =2 A" (M) ® S[t*] - H (M) @ S[t'] =2 Hp-(M)

and similarly A% (M) — HE(M) are isomorphisms. Using the notations of the previ-
ous chapter on the Morse stratification, the sets Zg are projective subspaces of smaller
dimensions and thus we may inductively assume that A7.(Z3(T)) = Hp(Z3(T)) and
Adanp(Z5°) = HG,,,5(Z5°) where Z5°(T) means the semistable part with respect to the

Tc action. Now, the Morse theory of the previous chapter tells us that
Ap(M*(T)) = Hp(M*>(T)) Ag(M**) = Hg(M*?).

Suppose furthermore that the T action on M*5(T) is free and so is the G action on M*%,

so that we get

AN (M [Te) = H*(M|Tc) A" (M)G) = H*(M//G).

In this situation, Martin’s theorem on the cohomology rings is equivalent to the following

theorem.

Theorem 4.8 The kernel of the surjective restriction A*(M Tc)V — A*(M)|G) is the an-
nihilator of e where e is the image of the product of all roots of G via [A%]W — A%(M*$(T))V =

A*(M ) Tc)V .
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This appears as a corollary in [12] which is equivalent to the main theorem of the paper.

We suspect that the above theorem may be proved directly by comparing the Gysin
maps (for Chow rings) of the Morse stratifications by the Tt action and by the G action.
This may lead us to a generalization of the theorem to a fairly general situation. Notice that
Ellingsrud and Stromme used Poincaré duality in an essential way but we cannot expect it
in general since homological equivalence is different from rational equivalence. So, it seems
improbable to use their arguments to generalize the theorem. However the Morse theory in
the previous chapter is valid in a very general situation and this might be used to extend

the result.



Chapter 5

Intersection cohomology of
singular quotients

In this chapter, we show that for a weakly balanced quotient the intersection cohomology

TH*(X//G) embeds into the equivariant cohomology H (X *%).!

5.1 The Kirwan map

Let X C P™ be a connected nonsingular quasi-projective variety acted on linearly by a
connected reductive group G via a homomorphism G — GL(n+1). We may assume that the
maximal compact subgroup K of G acts unitarily possibly after conjugation. Furthermore,
after resolving singularities if necessary, we may assume that X has a nonsingular closure
in P". Let p: P" — u(n + 1)* — k* be the moment map for the action of K. Throughout

this chapter, we will assume the following as in [24].

Definition 5.1 We say X is flow-closed if every path of steepest descent under f = |u|? is

contained in some compact subset of X*%.

For example the assumption is automatically satisfied when X is projective or when X is a
complex vector space with a linear action (See Example 2.3 of [46]).

Under this assumption, most of the statements in §§3, 4, 5 of [24] are still valid. Let
X% denote X N (P")*%. Then it retracts onto x4 ~(0) N X by the gradient low of —f and the

Kiihler quotient X /G is homeomorphic to the symplectic quotient X Ny~ 1(0)/K, which is

!See [7, 30] for basic facts about intersection cohomology. For the decomposition theorem, see [6, 15].

o7
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homeomorphic to the GIT quotient when X is projective. Moreover, the stabilizer groups

of points in X*° whose orbits are closed are all reductive. Recall the following definitions.

Definition 5.2 [25]

o Let R(X) be a set of representatives of the conjugacy classes of identity components
of all reductive subgroups of G which appear as stabilizers of points x € X% such that
Gz is closed in X*° and that RN K is a mazimal compact subgroup of R where K is

a fixed mazimal compact subgroup for G.
o Let Z}} denote the set of those x € X°° fized by R € R(X).
o Let r(X) = maxr{dimc R| R € R(X)}.

The definition of the Kirwan map is by induction on 7(X). Let 7 : ¥ — X*° be the
blow-up of X** along Ugim. r=r(x)GZ}% in the partial desingularization process. It is easy to
check from the local normal form theorem that Y is again flow-closed. Since r(Y) < r(X)
from [25], suppose that we have a surjection wy : H;(Y*®) — IH*(Y//G) and hence a
surjection H.(Y) — IH*(Y//G) by composing it with the restriction map.

From [16] we have
Hg(Y) = Hg(X™) © Hg(E)/Hg(N) (5.1)

The projection Y — X** induces an embedding H(X**) — H/(Y). On the other hand,
by the decomposition theorem of Beilinson, Bernstein, Deligne and Gabber [6], there is a

decomposition
IH (Y)G) 2 IH*(X)G)® IH*(E)G)/IH*(N JG) (5.2)

which comes from a decomposition on the sheaf complex level. Hence we get a surjection
p: IH*(Y))G) — IH*(X//G). The decomposition can be made canonical by considering

the Lefschetz decomposition and the primitive part.
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By composing the above maps, we get the Kirwan map for X as follows:

H(Y) e Hy(X*) (5.3

J

IH*(Y)QG) —>IH*(‘)/(//G)

Our goal in the next section is to define a useful splitting of the map.

Remark 5.3 The Kirwan maps behave functorially with respect to restrictions to G-
invariant open subsets if flow-closed, once the decompositions of intersection homology

groups are chosen compatibly.

5.2 Weakly balanced action and a splitting of the Kirwan
map

Let X be a connected nonsingular quasi-projective variety on which a connected complex
reductive group G acts linearly. Then there is a quotient ¢ : X** — X//G of the open dense
stratum of the Morse stratification for the norm square of the moment map. Assume that
the set of stable points X* = X N (P")® with respect to this action is nonempty. Then we
have the Kirwan map sx : H5(X?®®) — IH*(X//G) as explained above. In this section, we

first define weakly balanced action and then construct a splitting of xkx for such an action.

Definition 5.4 Suppose a nontrivial connected reductive group R acts on a vector space
CF linearly. Let B be the set of the closest points from the origin to the convez hulls of some
weights of the action. For each B € B, denote by n(B) the number of weights o such that
a- B < (B-B. The action is said to be linearly balanced if 2n(3) > k for every 3 € B. The
action is said to be weakly linearly balanced if 2n(3) — 2dim¢ R/B - Stab 8 > k — dimc R

for every 6 € B where B is a Borel subgroup of R.

Definition 5.5 Let G be a connected reductive group acting linearly on a connected non-
singular quasi-projective variety X. The G-action is said to be balanced (resp. weakly

balanced) if for each R € R(X) the linear action of R on the normal space N at a generic
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x € Zp to GZ} is linearly balanced (resp. weakly linearly balanced) and so is the action of

each ROANI®'9™" [gR'g™" on the linear subspace Z 3 g1 NNy, for R' € R(X), gR'g™! C R.

Remark 5.6 Because 2dim¢ B > dimc R, a balanced action is weakly balanced.

Example 5.7 Let G = C* act on P" via a representation C* — GL(n+1). Let ny, ng, n—
denote the number of positive, zero, and negative weights, respectively. Then the action is

(weakly) balanced if and only if n, =n_. O

For any connected reductive subgroup R of G, let Z§’ be the set of points in X*% fixed

by R. Consider the “blow-up” map
G xyr Zp — GZy (5.4)
and the corresponding map on the cohomology ([27][Lemma 1.21])
HA(GZR) > HE(G xyn Z§) = Hyn(Z5) = [Hyp o Z5) © HE" (5.5)

where N is the normalizer of R in G and N{ is the identity component of N®. For any
¢ € Hi(X*) let (|Gx , p 75 denote the image of ¢ by the composition of the above map and

the restriction map HE(X?®*) — HA(GZ}’). Now, we can define our splitting.

Definition 5.8 Let X be a nonsingular quasi-projective variety acted on linearly by G. Let
; R
Vy ={¢ € HG(X**)| Clax nzy € [@i<nRH]*V§/R(Z§s) ® HE]™N" for each R € R} (5.6)

where R = R(X) is as in the previous section and ngp = dimc N, — dim¢ R, N, is the

normal space to GZE at any x € Z3.

The definition of Vx is independent of the choices of R’s in the conjugacy classes and

the tensor product expressions in (5.5): The former is easy to check by translating by g if

1

R is replaced by gRg . The latter can be immediately seen by considering the gradation
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of the degenerating spectral sequence for the cohomology of the fibration

BR—— (ENJ x ENJ/R) % yu 73 (5.7)

J

ENJJR g 2

In view of (5.5), Vx can be thought of as a subset of H},(X**), “truncated locally”.

Theorem 5.9 Suppose the action of G is weakly balanced and flow-closed. Then the re-
striction of the Kirwan map kx : Vx — [H*(X/)/G) is an isomorphism. Moreover, the
splitting is compatible with the blow-ups of the inductive procedure for the definition of the

map.
We call this the splitting theorem.

Remark 5.10 Note that H5(X?®*) = Hy(X*®) and H(GZ}) = Hj; (K Z}}) because GZ};
retracts onto K Z&Np~1(0) and so does K Z§. Furthermore, the map (5.5) in the definition

of Vx is equivalent to

* SS * SS * SS ~ * SS k7T H
Hy(KZR) — Hg (K xyn ZF) = Hyn (ZF) = | Ngf/H(ZR) ® Hj|™N (5.8)

where H is the real form of R and N is the real form of N®. Hence, we get an equivalent

definition as follows:

Vx = {C € Hi(X*)| Cliox g 25 € [@icanHyp y (25) © Hi]™N" for each R € R}.
(5.9)

The splitting theorem is valid even if X is not a variety but just a compactifiable flow-closed

symplectic manifold, with necessary modifications. See [22].

Remark 5.11 The choice of our splitting Vx is functorial with respect to restrictions to
G-invariant open subsets: For every G-invariant open subset U of X®° the restriction
H{(X?%) — HE(U) induces Vx — Viy. Moreover, Vy is preserved by any G-equivariant

isomorphism of X.
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Remark 5.12 The splitting Vx can be characterized by requiring functorial behaviours

with respect to
1. restrictions to invariant open subsets and
2. blow-ups in the partial desingularization process.

Notice that for any R, after blow-ups, GZ§ = G x yr Z3 and H5(GZ3) = [H*(Zr |NF) ®
HE™N". Because TH*(N'[/G) = [H*(Zr/N) @ TH*(Ny/R)™N" and TH'(N,JR) = 0
for ¢ > np, the definition makes sense by noting that GZIS{S =G Xyr 2;9%5 — GZ3 factors

through G x yr Z§.

5.3 Proof of the splitting theorem
This section is devoted to a proof of the theorem. Recall that
r =r(X) =maz{dimc R|R € R(X)}. (5.10)

When r = 0, we have nothing to prove since Vx = H{(X?®*) =2 IH*(X/G). We use an
induction on r. Suppose the theorem is true for all W with (W) <r—1. Let r >0 and Y
be the blowup of X*¢ along Ugime r=rGZ};- Then R(Y) = {R € R(X) | dimc R < r—1} and
thus 7(Y) < r — 1.2 Obviously, the G-action on Y* is also weakly balanced as the actions
of the reductive subgroups on the normal spaces remain the same. Hence, by the induction
hypothesis, the restriction of the Kirwan map sy : Vy — IH*(Y//G) is an isomorphism.

Similarly, if we let E be the exceptional divisor of Y, then r(E) < r(Y) < r —1
and the G action is weakly balanced. Thus, by the induction hypothesis, the composition
kg : Vg — HS(E*) — TH*(E//G) is an isomorphism.

For simplicity, we assume from now on that there’s only one R such that dim¢ R = r
and F is a projective bundle over GZ}’. (The general case is no more difficult except for

repetition. See [25], Cor.8.3.) We fix this R once and for all till the end of this section.

%See [25]. To be precise, one should compactify X and then apply Kirwan’s results.
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According to [25] and [28], GZF = G xyr ZF and

HE(B) = [H(Zr N§") ® Hp (PN (5.11)
HE(B%) = [H* (ZrN§") @ Hi (PN (5.12)
IH*(E)G) = [H*(Zr/NE) @ TH* (PN, JR)]™N" (5.13)
TH*(N||G) = [H*(Zp INE) @ TH* (N, R)]N" (5.14)

where N is the normal bundle of GZ§7, = € Z§;.

Lemma 5.13 The restriction to Vx of H5(X®®) — HE(Y) = HE(Y®®) factors through

Vx — Vy and s injective.
Proof Let ¢ be a nonzero element in Vx. Then

* 3 R
Clat o 755 € Bicng My gy (238) © Hip ]V for cach B € R(X).

Its image in H (Y *?) satisfies

* 7 ] NE
C|G><NR,ZA}S{S, € [@i<nR/HNé{’/R/(ZSS’) ® H;%,]WO (5 15)

for each R' € R(Y) = {R' € R(X)|dim¢c R < r(X)}

where Z 7 is the proper transform of Z3; in Y*. It follows from the commutative diagram

Y e GI35 —— G Xy 255

|l

X5 —GZj +—— G Xyr L.
Therefore, ¢ is mapped to an element in Vy.

Because each unstable stratum in Y retracts onto its intersection with E ([25, 27]), we

have an isomorphism coming from restriction:

ker (HE(Y) — HE (V™)) = ker(H5(E) — H5(E™))
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Therefore, if (|czy; = 0 i.e. (|g = 0, then (|yss # 0. So, we consider the case when
Clazg # 0.

By the definition of Vx, (|gzs is in [@icny H* (ZrNEF) ® H;'{]WONR and HY(E) =
[H* (ZR/N(F)@HE(IPN;E)]”ONR. From [27, 24], the real codimension of each unstable stratum
Sg of PN/, with respect to the R action is 2n(8) —2dim¢ R/B-Stab 3 > dim¢ Ny —dim¢ R =
ngr where n(f) is the number of weights a such that - 3 < |8|? and B is a Borel subgroup
of R because the G action is weakly balanced. Therefore, (|gss # 0 and thus (|yss # 0.
|

As mentioned above, the normal bundle A has an induced action of G and clearly it is

weakly balanced.

Lemma 5.14 The linear action of R on N is weakly balanced and the theorem is true for

N, with respect to the action of R.

Proof For this proof only, let Zp denote the points in N (not X) fixed by R'. Let R’ be

a connected reductive subgroup of R. By Lemma 5.19 below,

GZHE NNy = A Z5 NN, = Ui<j<R g M Na
<G,

where A = {g € G|lg ' R'g C R}. Let y be a point in A, such that the identity component
of Staby is R'. By the above equalities, the normal space to GZ3; at y in X*® is the normal
space Ny to RZ5; NN, in Ny because GZ3 C GZj;. Therefore, the R-action on N is

weakly balanced as the G-action on N is so. Moreover,
dimc(RZ% N N;) + dime N, = dimc N,

As N;//R is a cone, ITH'(N,J/R) = 0 for i > ng. If i < ng, then TH*(N,JR) =
TH (N //R — x) = TH' (N — ¢, () R) where ¢, : Ny — Ny //R is the quotient map and

the following diagram commutes:

Hp(No) ———— Hp(Ne — 65" (2)) (5.16)

| |

TH (N, |R) — TH (N, — ¢, (z) | R)
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As ¢7'(r) is union of the complex cones over the unstable strata of PA, and the real
codimension of each unstable stratum is greater than np as seen in the proof of the previous
lemma, the real codimension of ¢ !(x) is greater than ng. Hence, the top horizontal map
is an isomorphism and the vertical maps are the Kirwan maps.

Now, because r(N; — ¢, '(z)) < r — 1, the Kirwan map restricts to an isomorphism
Bnr—ps (@) | VNemgz (o) = TH (N — ¢7(z)JR). From the above commutative diagram,

we get an isomorphism ky;, : Vi, = TH*(N;/R) because Vy. is V! for i < ng

No—o7 ! (@)
and 0 otherwise. Here, V? means the degree i part of V. To see the last claim, we note
once again that for i < ng, H4(Nz) — H4Y(Ny — ¢, 1(z)) is an isomorphism and the
same is true for Hﬁszéq,/R,(fo, NN;) ® HE — H;'EQN(?,/R,(Z}S{? NN, — ¢;1(z)) ® HE, if
k>ngr,j<nrg—k<ng—ng, because the real codimension of ¢ (z) N Z35 NNy in
Z3%5 NNy is greater than ng — ng. For by the weakly balanced assumption, it is greater
than dime(Z35 N N,) — dime(R N N®/R') > dimc(RZ35 N N,) — dime R + dime R’ =
dim¢ Ny — dime N, — dimg R + dimg R = ng — ngr.

If we let A, be the blow-up of NV, at z, then N > N, — ¢;'(x) and we have a

commutative diagram by restriction

N

J |

TH'(PNy | R) —— IH'(Ny — ¢ (=) | R) = TH'(N; | R)

Vex. =V Vs ) = VA (5.17)

for i < npr where the vertical maps are the Kirwan maps and the horizontal maps are
the restrictions to the complement of ¢;'(z). Moreover, by Lemma 5.13, Hp(N;) <
H%(N,) — Hi(NE®) induces an embedding Vi, — Vi, » which is a splitting of the top row
of the above diagram. So, the choice of V), is compatible with the (first) blowup of the
partial desingularization process. [

As one can expect from (5.11), (5.12), (5.13), (5.14), we have

Vi = [H*(Zr INE) ® Verr|oN" (5.18)

Vi = [H*(Zr NG ® Vi, ]™N". (5.19)
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We postpone the proof of the above statements till we finish the proof of the splitting
theorem.
By (5.17), (5.18) and (5.19), we get the following commutative diagram of exact se-

quences:

00— Vi/Vy > Vi » Vi y0 (5.20)

| J J

0—— [H*(E)G)/IH*(N))G) —— IH*(E)G) —— IH*(N JG) —— 0

As the last two vertical maps are isomorphisms, the first vertical is also an isomorphism
kp/n 2 Ve[V — TH*(E|/G)/TH*(N J/G). Notice that as the maps in the diagram (5.17)
were defined by restriction, the bottom surjection above is the projection from the decom-
position (5.2) as it comes from a decomposition on the sheaf complex level.

By Lemma 5.13, we have a splitting Vyy — Vg of the top right surjection in the above
diagram. We identify TH*(N J/G) with the image of Vs in ITH*(E /G). Then we can reverse

the arrows of the above diagram:

0 Vi /Vi < Vi 4 Vi < 0 (5.21)

| l l

0+——IH*(E))G)/IH*(N))G)+—IH*(E||G) +— IH*(NJG) +—0

Lemma 5.15 The restriction of the Kirwan map kx : Vx — IH*(X)/G) is injective.

Proof We first claim that Vx as a subset of Vy is mapped into Vs when restricted
to E%%. Tt follows from the description of Vx, Vs in terms of K-equivariant cohomology in
Remark 5.10: By identifying the normal bundle N with a K-invariant tubular neighborhood
of GZ§, the embedding N' — X** induces Hj(X*°) — H;,(N) and thus it is easy to check

that Vx is mapped into Viy C Hj(N), from the following diagram.

Vi —— Hi (X5%) —— HL(Y) —— HL (V) (5.22)

N SR S

Vy —— Hj(N) —— Hj.(E) —— Hj (E®*).
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Therefore, the composition Vx < V3 — Vg — Vg /V)r is zero. On the other hand, we

have the following commutative diagram by restriction and (5.21):

VY ” VE > VE'/V/\[ (5.23)

J l |

IH*(Y)G) —— IH*(E/G) —— IH*(E|/G)/TH*(N | G)

We claim that the composition of the bottom arrows is surjective. As the map IH*(E)G) —

ITH*(NJ/G) is from the restriction (5.17), it fits in the following commutative diagram:

[H*(Y)G,E|G) —— IH*(XG,NJG)

0 —— TH*(Y)G)/TH*(X))G) —— [H*(Y)G) —— > TH*(X/G) ———— 0

|

0 —— TH*(E)G)/TH* (N |G) —— [H*(E)|G) —— TH*(N |G) ———— 0

TH*\(Y))G, E|G) — TH*"(X|G, N |/G)
(5.24)
The second row is from the decomposition (5.2). As the top and bottom horizontal maps
are isomorphisms by excision, by a diagram chase the left vertical arrow is an isomorphism.
So, IH*(E)/G)/IH* (N J/G) lies in the image of TH*(Y)G) — IH*(E//G). Therefore,
IH*(Y)G) - IH*(E|G) — IH*(E)/G)/IH*(N J/G) is surjective.

Moreover, the diagram (5.24) gives an embedding IH*(EJG)/ITH*(N JJG) — IH*(YG)
and the kernel of the composite of the bottom arrows of (5.23) in this proof is complementary
to the embedding. Therefore, the kernel is mapped isomorphically onto ITH*(X /G) by the
projection p : IH*(Y)/G) — IH*(X//G) from the decomposition (5.2). Hence, IH*(X/G)
can be identified with the kernel of the composition of the maps in the bottom row of (5.23).
Therefore, the restriction of ky to Vx factors through kx : Vx — IH*(X//G). Because ky

is injective, kx is also injective. [J

Lemma 5.16 The Kirwan map kx : Vx — IH*(X/G) is surjective.
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Proof In view of (5.23), it suffices to show that Vy is the full kernel of the composition
Vv — Vg — VE/Vj, which is already surjective by the proof of the previous lemma.

Suppose ¢ € Vy C H}(Y**) such that (|gss € Vjy. We first claim that there is { €
H,(X*%) such that & is pulled back to ( viaY** — Y — X%, Let ¢’ € H(N) be the element
corresponding to (|gss. As H{(Y) — H[(Y®®) is surjective, we can choose an element
¢' € H(Y) that restricts to (. Then &'|gss = (|gss and hence &' — ({'|p = ("|g for some
(" € ker(HL(Y) — HE(Y®%)) since ker(HE(Y) — HE(Y?®)) = ker(HS(E) — HEL(E®)).
Let (; =¢'+¢" € HL(Y). Then (ilyss = ¢ and (i|g = ¢ € HE(N) C HS(E). Thus ¢ is
the pullback of a class { € H/.(X*%) via Y — X* and the claim is proved.

Now, consider the N[fz,/R’ action on Z3; and its proper transform Zf{? which is the
intersection of Y'*5 with the blow-up Zp of Z  along GZFNZE,. As each unstable stratum

retracts onto its intersection with F,

(285)) = ker(H' s, (Zp N E) — H

7 58
Né{’/R’ Né{,/R’(ZRI ﬂE ))

ker(H;]é{, . (Zp) — H;‘VOR, e

Hence, a nonzero class 7 € H]’;]

»y R,(ZR’) such that 7], -, = 0 does not vanish when

restricted to Z e

Suppose §|G><NR’Z;SI ¢ ®i<nR'H;7§’/R/(Z}SES’) ® Hi ,. As
ElKx i zssnN € ®i<nR/H]):]({i’/H/(ZIS’{S’ NN)® Hp

by assumption, we can deduce from the previous paragraph that

C|G><NR/Z§S, ¢ @i<anH;§'/RI(Z}S§) ® Hp.
This is a contradiction. Therefore, £ € Vx and the proof is complete. [

Proof [The splitting theorem] The statement now follows from Lemmas 5.15, 5.16.
Though we used an embedding ITH*(XG) — IH*(Y//G) different from Kirwan’s choice,
we use the same projection p : IH*(Y)/G) — IH*(X//G). Therefore, Vx gives a splitting
of the Kirwan map:

Vyx ————— W

J

IH* (}//G) « ITHYY/)G)
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O
Moreover, we have the following commutative diagram of exact sequences with respect

to the identification of TH*(X//G) in the proof of Lemma 5.15:

0 s Vx s Vy » Ve /Vy ———— 0 (5.25)

J J |

0—— IH*(X)G) —— IH*(Y))G) —— IH*(E)G)/IH*(N JG) —— 0

The vertical maps are all isomorphisms, induced from the Kirwan maps.

Now we complete the proof by showing (5.18) and (5.19). We recall some facts from
[25].

Lemma 5.17 Let S’ C S be compact subgroups of a compact Lie group K. Let Ng(S")

denote the normalizer of S' in K. Then there exist ky,--- ,ky, € K such that
{k e K|k 'Sk C S} = Ur<icm Nk (S")kiS.

Proof This is essentially Lemma 8.10 in [25]. O
In particular, we take S’ = K N R’ and S = K N R where R’ C R are in R and K is a

fixed maximal compact subgroup of G.

Lemma 5.18 Let R' C R be reductive subgroups of G in R. Then for any x € Z35, there
ism € M :=NEn (r‘llgigmei_lR,ki) such that nx € p~1(0) N Zg, where p is the moment

map associated to the induced action of K.

Proof One can systematically replace N® N N® in Lemma 8.9 of [25] by M. O
Let A= {g € G|g 'R'g C R} for R C R. Then N¥ acts on the left and N* acts on

the right.
Lemma 5.19 There exist g1, -+ ,9; € G so that

A = UijNi g;R.
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Proof Let g € A and z € Z}’. Then gz € ngizg—l' By Lemma 5.18, there exists ny € M

-1

such that niz € p='(0) and ny € N9%9 N N such that nogz € p~'(0). By [25](2.4),
nzgnl_1 € K. Therefore, every double (NR', M)-coset meets AN K. Hence, by Lemma 5.17,
A=NE(TNK)M = UN® Ng (S )k;SM = UN® k; M S

= UN® ks ME; 'S € UNT ;S € UNT ;R 520
and thus there are only finitely many double (N R,,R)—cosets in A. Since N /N(fz’ is finite,
the double (N(f?",R)—cosets in A are also finitely many. [

Now, we can prove the isomorphisms (5.18) and (5.19). First, observe that GZi*NZ}; =
AZ3 and that GZ35 NN, = A71Z5 N N,. Also, recall that Hy(N) & [H*(Zg/NF) ®
H(Ng)|™oN . For (5.19), the conditions for the left hand side are given by the following
maps:

HE(N) = HAGZE AN = HE(G X g Zg N)

= [Hyw e (Zi5 ON) o Ho N ¢ H* N (Zi ON) ® Hy,

= Hyw ) (AZR) © Hiy C O H (NF g,78) ® Hy,

=i H 3 g (N 2y pg) © Hy

CeH™ RSN e L H*(B(Ng* Ng;jRg;*/R')) ® Hj, (5.27)
NEAN, " NR Ng; Ry;

SOH o (ZE)OHU(BNG YN R/g Ry) 0 HY o
NENN,’ ! /RmNOJ K

~ OHyn p(25) © H (BN " R/g; ' Rg;)) ® Hyopy,.

= o B (ZpINE) © H (BN " NR/g;'R'g;)) © H o R

For the second to the last equality, we consider the following injection:

1 I

(NEANS P9 (RO NS Ty S NRJR.

This is of finite index because of Lemma 5.19 and the fact that N(f{ C A. 3 Hence, since
“IR'g;

NE/R is connected, the injection is in fact an isomorphism and N = (NFn N % )R.

The above computation essentially shows that the spectral sequence for EN0 X NE (ZjHn

N) = Z R//NOR degenerates while the cohomology of the fiber is naturally isomorphic to
zZ5,  NNG).

71R’g] ( g}lR’gJ

®;H*
RNNY;

_—1R/ )
3Note also that we may assume g € N& whenever Ng’ % gr RN NE is nonempty.
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One the other hand, the conditions for the right hand side of (5.19) can be given by the

following maps:

[H* (ZrING) © Hy NN — [0 H" (Zr|ING) © HR(RZ% 1, 0NN

C @jH*(ZR//N(F) ® H;-B(RZ;.ilR’g' me)
— @ H*(Zr[/Ny") ® Hp(R X RN R ;;11?’9]‘ NAz)

~ * R * ss *
~gH (ZR//NO ) & HNgj—lR,gJ_ ﬁR/g_lR’g4( g]-_lR’gj ﬂ/\/’m) & ng—lR,gj
0 j 3

—1
* * j R J — *
>~ oH*(ZpNF) ® H (B(Ny’ ~” N R/g7'R'g;) ® Hyi g,

(5.28)

Notice that we used the fact that Z5°

il NN, is contractible.
g] IR/g]_ x

The fact that (5.27) and (5.28) are compatible follows from the following diagram

8
X e ey nglR’gj WNe — G xyw Z5 ON

URZ My WNe Gz NN

GZ3
where the top horizontal map is given by (r, gj_ly) — (rgj_l, Y).
As observed in the proof of Lemma 5.14, np are same in both truncations since the

normal spaces are same. Therefore, the conditions for the left hand side and the right hand

side are equivalent and we get the isomorphism (5.19). A similar computation proves (5.18).

5.4 Intersection Betti numbers
As the first application of the splitting theorem, we compute intersetion Betti numbers. Let

PE(W) =Yt dim H;(W)
i>0

IP(W) =)t dim IH' (W)
i>0

be the Poincaré series.
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Weakly balanced C*-action on projective space

Consider C*-action on P" via a representation C* — GL(n + 1). Let ny, ng, n_ be
the number of positive, zero, negative weights. Suppose the action is weakly balanced, i.e.
n4 = n_. In this case, we can easily compute the intersection Betti nubmers by the splitting
theorem.

From the equivariant Morse theory [24],

1+t2++t2n t2n0+2n++___+t2n t2n0+2n, ++t2n
1—#2 - 1—#2 - 1—#2
1_’_t2+___+t2n0+2n,—2_t2n0+2n+ __t2n
1—¢2

PE ((B)) =

(5.29)

In this case, R ={C*} and Zr =P ! np=n, +n_—1=2n_— 1.
As Hi (P*) — HE((PM)%) — HE (P 1) is surjective, we have only to subtract out
the Poincaré series of ®;>2, H*(P" ') ® H., which is precisely

L O R R R
1—12 '

Therefore,

1 t2 . t2n_72 _ t2n0+2n+ _ t2n0+2n++2 . tZTL
IP(F ) = T 1—¢2

which is a palindromic polynomial of degree 2n — 2.

Ordered 2n-tuples of points of P!

Let us consider G = SL(2) action on the set X = (P!)?" of ordered 2n-tuples of points
in P! as Mobius transformations. Then the semistable 2n-tuples are those containing no
point of P! strictly more than n times and the stable points are those containing no point

at least n times. Let R be the maximal torus of G. Then
R(X) ={R}
Z}S’{S = {qI|I C {172737"' ,2’/L},|I| :’I’L}

where qr € X, the j-th component of which is co if j € I, 0 otherwise. Therefore, the action

is balanced.
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The normalizer N = N% satisfies N/R = Z/2 and Ny = R. Hence,
an(Z8) = [@1=nHE]" .

The Z/2 action interchanges oo and 0, i.e. gr and gje, and therefore, from now on, we only
think of those I’s that contain 1 so that we can forget the Z /2 action.
HY(X) = HEA((PY)?") has generators 1,8z, &2, of degree 2 and p? of degree 4,

subject to the relations 532- = p? for 1 < j < 2n. The I-th component of the restriction map
HG(X) = Hyr(ZF) = ©1HE

maps p® to p? and &; to p if j € I, —p otherwise. From [24, 28],

o 1—|—t2 2n 2 t2(r71)
R e

1—¢ 1—¢2
n<r<2n
Proposition 5.20
1 /2n\ t>n—2
IP(X)G) = PE(X*%) — = S
e = e e - 3 ()1

Proof By the splitting theorem, we have only to count the dimension of
Im{H;(X*) = ®rHR} N {®1 ®i>ny Hp}

where ng is in this case 2n — 3. By the lemma below, which is essentially combinatorial, the

image contains &7 ®;>2,3 Hf{ and thus the intersection is &7 ®;>9, 3 H f%, whose Poincaré

1/2n\ t2"—2
2\ n )1 —¢2°

series is precisely

So we are done. [
Lemma 5.21 The restriction map Hék(Xss) — GBIHIQ{’“ s surjective for k> mn — 1.

Proof It is equivalent to show that H2F(X) — @, HZ is surjective. Let £ =& + -+ &op

and consider, for each I = (1,i9,-+ ,iy),

nr=(&—&,)" (€= &)k
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Then since &|,, = —p for all J, nrl,, = (—=2p)* if J = I and 0 otherwise, where k =
ko + .-+ + kp, k; > 1. Therefore, the images of those 1y span GBIHIQ{If for any £ > n — 1 and
thus the restriction is surjective. [J

The lemma is also a consequence of a pleasant combinatorial problem about the non-
degeneracy of a matrix of +1,—1, whose sign is determined by the parity of incidence of

I’s.
5.5 Intersection Pairing

In this section we determine the intersection pairing of the intersection cohomology of GIT
quotients under the assumptions of §2. For that purpose, in this section we assume that X
is projective so that the quotient X//G is compact.

We first characterize the top dimensional class of TH*(X/G). Let X% = X% — X5 4

and m be the real dimension of X//G. Consider the following commutative diagram

H™(X)G,X*%)G) —— H™(XJG) —— H™(X*** || G)

| | J

Hg’b(XsS’XSSS) Hgl(XSS) Hgl(XSSS)

l

ITH™(X ) G)

Obviously, HI (X5, X55%) = H™(X |G, X*% ||G) = H™(X/G) = C.
Proposition 5.22 The map HM(X?*, X*%*) — H(X**) factors through V{ and
HE (X, X)) 2V 2 TH™(X)G).
Proof By definition,
Vx D ker(HEH(X®®) — HE(X®%)) = im(HE(X®, X*%%) — HEH(X®?))

Let £ # 0 be a nonzero class in H™(X//G). Then £ is mapped to a nonzero class £’ in

TH™(X|G) by H™X[G) — HZ(X**) — IH*(X/G). As &|xsssjg = 0 by dimension, ¢

sss=strictly semistable
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is the image of a class n in H™(X /G, X% JG) = HF(X**, X*%%). The image & of  in
HZ(X*%) is the image of &€ by H™(X/G) — H@(X*®) and thus must be mapped to &’ by
the Kirwan map. Therefore, the composition H(X**, X**) — V{ = TH™(X//G) is an

isomorphism because they are 1 dimensional. [

Theorem 5.23 The intersection pairing in IH* (X )/G) is given by the cup product structure

via the isomorphism of the splitting theorem.

Proof We prove it again by induction on 7 = r(X). Let Y be the same as in section
3. Assume that it is true for Y* i.e. for any two intersection classes of complementary
dimension, the cup product of the corresponding elements in the equivariant cohomology
lies in V3 and the coefficient of its image with respect to the top degree fundamental class

of the intersection cohomology is the number given by the intersection pairing.

First, we observe that the product of two elements in Vx of complementary dimensions
lies in V{'. We observe that the cup product should be mapped to a constant multiple of
the top degree class in V-, by the induction hypothesis. And the top degree class in Vx is
mapped to the top degree class in V3. Therefore, the product minus some constant multiple
of the top degree class in Vx, (we denote this difference by z) should lie in the kernel of the

ring homomorphism Hf(X*%) — HE(Y*?).

We also observe that the restriction of the product to the blow-up center is zero because
it lies in [H*(Zg N&) ® HL)™N" where j < 2ng and thus k > 2 dime(Zg /N§). Similarly,
the top degree class in Vx also restricts to zero. Therefore, z restricts to zero. However,
the intersection of the kernel of H(X?®%) — H(Y*®) with the kernel of the restriction to
the blow-up center is {0} since each unstable stratum retracts onto its intersection with the
exceptional divisor. Hence, z = 0 and thus the product is a constant multiple of the top

degree class in V.
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From §3, we have

0 > Vx > Vy

l |

0—— IH*(X)G) —— IH*(Y)G)
As the top row is just a restriction of a ring homomorphism H,(X**) — H(Y*?), it suffices
to show that the bottom inclusion preserves the intersection pairing.

Now, we show that the bottom embedding comes from a decomposition on the sheaf
complex level. For simplicity, we assume moN® = 1. Let p : NJG — ZpN%, q: EJG —
Zp|NE® m:Y)G — X)|G, ¢: X*° — X)/G, i : Zr/N® — X /G be the obvious maps. By
the local models,® ¢.IC (E//G) = Qx 1 IC*(PN,//R) and p.IC (N JG) = Qx, IC*(N;//R).
Choose a surjective quasi-isomorphism of chain complexes IC*(PN, J/R) — IH* (PN, //R).
Then it induces Q xz, IC* (PN /R) — Q x1, IH*(PNy/R) i.e.

IC (E)|G) — 1C (Zr/N®; IH* (PN, //R)).
Fixing an embedding TH*(Ny/ R) < TH*(PN,/R) as in §3 gives an embedding
IC (Zg N, IH* (N, JR)) — IC (Zp JN%; TH* (PN, J/R)).
Let Zx be the kernel of the composite
mnIC (Y)G) = i.q.IC (E)G) — i, IC (Zg /N ITH* (PN, J/R)/TH* (N, J/R))

where the first map is by restriction and the second is the projection by the embedding.

Then we get a decomposition
©IC (Y)G) = Ix @ i, IC (Zg//N®; IH* (PN, JR)/IH*(N,/R)).
The second factor is from the decomposition theorem [6], which tells us
©nIC (Y)G) =1C(X)G) @ i,IC (Zp /NE, TH* (PN, JR)/TH* (N //R)).

Hence, Ty = IC'(X//G) in the derived category. By construction, taking hypercohomology

of gives the decomposition of intersection cohomology.
See Chapter 2 §1.
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In this setting, the intersection pairing is given by the Poincaré duality isomorphism.
The duality isomorphism for Y /G induces an isomorphism for Zx which coincides with the
Poincaré duality isomorphism on the smooth part. By uniqueness of such isomorphism [7],
89, we deduce that the inclusion preserves the pairing.

In case when o N # 1, one can deduce the same by replacing the sheaf 7 — IH* (PN} /R)
(vesp. TH*(Ny//R)) by T — [®. )=zl H* (BN JR)]™N" (vesp. [®cq)—zlH*(NyJR)]™N")
where T = ¢(z), ¥ = ¢(y) and € : Zr/NE — Zg/JNT. O

The fact that our embedding ITH*(X J/G) — IH*(Y//G) preserves the intersection pair-
ing can be also proved as follows: It is shown that the decomposition of intersection coho-
mology is orthogonal. Any two classes «, § of complementary dimensions in IH*(X/G)
is mapped to a + (a, B+ (b for a,b € ITH*(E//G), where ( is the first Chern class of the
normal to the exceptional divisor. By orthogonality, it suffices to show that < (a,(b >=0,
or equivalently, < (a,b >gjg= 0. By induction, we can assume that the conclusion is
true for E /G, i.e. the pairing in ITH*(F//G) is given by the cup product structure in
Ve C H}(E*®). As the classes come from TH*(X//G) = Vx, the equivariant classes corre-
sponding to Ca, (b are in ®;cn, H*(Zr/NT) @ HL(PN*) and thus their product divided
by ¢ lies in @jconp—2H*(Zr/N®) ® HL(PNE®), which must be zero by dimension counting.

So, we are done.

Example 5.24 Consider the C* action on P7 by a representation with weights +1,0, —1

of multiplicity 3,2, 3 respectively. Hence, n,. =n_ =3, ng = 2. Then

HE (P7) = CIE, pl/ <E(E—p)*(E+p)° >

where ¢ is a generator in H?(P7) and p is a generator in HZ. .

The equivariant Euler classes for the two unstable strata are £2(¢ — p)3, €2(¢ + p)?

respectively. Therefore,

HE(P1)*) = CE, p]/ < (€= p)°, E2(E+p)° >
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A Grobner basis for the relation ideal is
(€ 436, p+ 365,80, €7
where £ > p. Hence as a vector space,
HE((PT)*) = C{€'p7]i = 0,1, j > 0} @ C{E"p7|2i + 5 < 9,i > 2,5 > 0}
By definition, as np = 5, we remove C{¢p/|i = 0,1, j > 3} to get
V = @o<i<eV*
VP=C, VZ=Cip&}, VI=C{p" €%,
Ve =Clep®,€%,6%), VP =C{?p”,E, 6"},
VIO =C{e?p’, %), V2 =C{e?p')

First, consider the pairing V2 @ V10 — V12 As p(&2p%) = €2p*, p(&3p?) = &3p3 = 0,

E(E20%) = €3p3 =0, £(E3p%) = ¢4p? = —%52,04, the pairing matrix is up to constant

)

The determinant is —% # 0 and the signature is 0.
Next, consider the pairing V* ® V8 — V2. One can similarly use the Grébner basis to
compute the pairing as above. The pairing matrix is up to constant
1 0 -
0 —
1
-1 0

1
3
0
1

W=

The determinant is —% # 0 and the signature is 1.
Similarly, the intersection pairing matrix for V¢ ® V¢ — V2 is up to constant

1

1 0 —3

0 - 0
0 1

W=

1
3
The determinant is —2% # 0 and the signature is 1.

In this way, one can compute the intersection pairing for any ng,n_ =ny,. O
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5.6 Hodge Structure

It is a classical theorem of Hodge that every compact Kahler manifold admits a Hodge
structure. Deligne introduced the concept of mixed Hodge structure and proved that there
is a functorial mixed Hodge structure on every separated algebraic scheme, which coincides
with the classical Hodge structure when the scheme is a compact Kahler manifold. It is
also a theorem of Deligne that for any linear algebraic group G, H¢, has a Hodge structure
so that every class is of type (n,n) for some n.

Let X be a nonsingular projective variety acted on linearly by a reductive algebraic
group G such that X* is nonempty. Then by Deligne’s criterion for degeneration of spectral
sequences,

As X is a compact Kéahler manifold, it has a Hodge structure and thus H(X) has a Hodge
structure by Deligne’s theorem. Now, as explained in [24], it induces a Hodge structure on
H{(X#%) as follows. The norm square of the moment map with respect to the symplectic

action of a maximal compact subgroup in G gives us a Morse stratification
X = X* U [Us Ss]

and it is equivariantly perfect, i.e. the following is exact

*—2d

0 — HS M0 (S5) = HE(Uy<sS,) = HE(Uy<sSy — S5) = 0

where d(0) is the complex codimension of the stratum. As the maps in the above exact

sequence are morphisms of mixed Hodge structures, inductively we get a Hodge structure
of HE(X*).
Proposition 5.25 Vx carries a Hodge structure induced from that of H}.(X**) and hence

so does IH*(X/G) via the Kirwan map.

Proof Just notice that the maps that we used in defining Vx are all morphisms of mixed
Hodge structures by Deligne’s theorem as they are from geometric maps. So, Vx has an

induced mixed Hodge structure which must be pure because that for H(X*?) is pure. 0O
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Example 5.26 Consider the G = SL(2) action on X = (P!)?" as in §4. As H*(P!) has a
Hodge structure such that h?? = 0 for p # ¢, so does Hf(X*?). Therefore, the intersection

cohomology has a Hodge structure such that hP? =0 for p # q. O
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Chapter 6

Moduli spaces of vector bundles

We review various facts about moduli spaces of holomorphic vector bundles over a (smooth
closed) Riemann surface. Everything in this chapter is standard and borrowed from [40,

37, 3, 49, 27].

6.1 The concept of moduli

Many of the fundamental problems in mathematics are to classify a collection, say A, of
objects with respect to some equivalence relation ~. This would be achieved if one can find
a nice space that is in one to one correspondence with the set of the equivalence classes of
the collection. In algebraic geometry, we wish this space furthermore to be an object in
algebraic geometry as Newstead put in [40]: “Almost always there exist ‘continuous families’
of objects of A, and we would like to give A/~ some algebro-geometric structure to reflect
this fact. This is the object of the theory of moduli”.

Let A be a collection of objects in algebraic geometry with an equivalence relation ~.
A family of objects in A parametrized by a variety S is a morphism ¢ : X — S such that,
for any inclusion ¢ : {s} < S of a point into S, the pull-back (or the fibred product) X is
an object in A. Suppose there is a notion of equivalence of families parametrized by any
given variety S, which reduces to the given equivalence relation on A when restricted to a
point. Let F(S) denote the set of equivalence classes of families parametrized by S. Then

S — F(S) is a contravariant functor by pull-back.

83
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Definition 6.1 A fine moduli space is a pair of a variety M and a natural transformation
o : F — Mor(—, M), which represents the functor F. Equivalently, M is a fine moduli space
if there is a family U parametrized by M such that every family X — S is the pull-back of

U by a morphism S — M. We call U a universal family.

But in many practical moduli problems, there do not exist fine moduli spaces. So we

need a weaker concept of moduli.

Definition 6.2 A coarse modulispace is a pair of a variety M and a natural transformation

o : F — Mor(—, M) such that
1. ®(pt) is bijective

2. for any N and any natural transformation ¥ : F — Mor(—, N), there exists a unique
natural transformation

Q: Mor(—, M) — Mor(—, N)

such that the diagram
F Mor(—, M)

v
0

<~

Mor(—, N)

commutes.

By the usual abstract nonsense, two coarse moduli spaces of a given moduli problem

are isomorphic.

6.2 Jump phenomenon and stability

The moduli problem we are interested in is the moduli space of holomorphic vector bundles,
of rank r and degree d, over a Riemann surface ¥ of genus g > 2. A family of vector
bundles! parametrized by S is a vector bundle over S x 3 and the equivalence relation is

the isomorphism of vector bundles over S x 3.

!Unless stated otherwise, vector bundles in this chapter mean holomorphic vector bundles.
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Jump phenomenon

The problem here is that there is no Hausdorff moduli space of all holomorphic vector
bundles due to the jump phenomenon that we are going to explain.

Let L — ¥ be a line bundle of positive degree. Then by Riemann-Roch, H' (X, L™1) # 0.
Choose any 1-dimensional subspace S of H'(X, L~!). Then the dual space S* C H'(S, O).

Consider the identity
I€S*®SCcHYS,0)9H (X, L") c H'(S x ©,pr; L")

where prs is the projection onto the second component. I defines an extension, a continuous
family

0->0—=&—prsL—0

over S x X. For t € S, the restriction to {t} x ¥ is
00O —E, —-L—0

the extension of L by O, prescribed by t € H' (X, L~!). If t,#' are nonzero elements in
S, By =2 Ey while Ey = O @ L is not isomorphic to F; for any £ # 0. So, a “jump” in
isomorphism classes can take place even in a continuous family. This makes it impossible

to construct any Hausdorff moduli space of all vector bundles.

Stability of bundles

In order to construct the moduli space as a Hausdorff variety, Mumford suggested to
get rid of “bad” objects from the collection. Let u(F') = deg(F')/rank(F’) for any vector
bundle F over Y. We call it the slope of the bundle.

Definition 6.3 A vector bundle E over 3 is stable (semistable) if for every nonzero proper

subbundle F' < F,

w(F) < u(B)  (u(F) < u(B)).

The following two lemmas are important for the construction of the moduli spaces of vector

bundles.
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Lemma 6.4 [40]
1. Ewvery line bundle is stable.
2. If F is (semi)stable, then F ® L is (semi)stable for any line bundle L.

3. If E and F are stable with the same slope, then H°(X,Hom(E,F)) is either C if

E = F or 0 otherwise.
Proof The first statement is obvious and the second follows from the fact that
deg(F ® L) = deg(F) + rank(FE)deg(L).

For the last statement, observe that if h : E — F' is a nonzero homomorphism, the kernel

and cokernel should be trivial due to stability. [

Lemma 6.5 [/0] Let E be a semistable vector bundle over ¥ of rank r and degree d.
1. Ifd > r(2g — 2), then H'(Z,E) = 0.
2. If d > r(2g — 1), then E is generated by its sections.

Proof The first statement follows from the Serre duality. For the second, given x € 3,

consider the short exact sequence
0—>mzEl - FE—&, —0

where m,, is the sheaf of ideals of  and &£, is the skyscraper sheaf at . We need to show
that HY(E) — H°(E,) = E, is a surjection, or equivalently that H'(m,E) = 0 from the
long exact sequence of sheaf cohomology.

Notice that the sheaf m, is the sheaf of the line bundle L, of the divisor —z, whose
degree is —1. Thus deg(E® L;) = d—1r > r(2¢g —2) and by the first statement H'(m,E) =

HY (E®L,) =0 0O

Filtrations of vector bundles
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Let E — 3 be any vector bundle over a Riemann surface. Choose a maximal subbundle
E; whose slope is the largest among the slopes of the subbundles of E. Choose a maximal
subbundle Eé of E/E; whose slope is the largest and let E2 denote the inverse image of Eé
by the projection £ — E/E;. We can repeat this process till we get a filtration, called the

Harder-Narasimhan filtration
OcCE,CEyC---CE.

By construction, all F; = E;/E;_; are semistable and p(F;) > p(Fiy1).

Now suppose F' is a semistable vector bundle. Choose a minimal nonzero subbundle F}
of F' whose slope is same as pu(F). It is easy to check that F//F} is also semistable. Choose
a minimal nonzero subbundle Fj of F/F; whose slope is same as p(F) and let F» denote
the inverse image of F, by the projection F — F/F;. Continue this process till we get a

filtration, called a Seshadri filtration
O=FCFCF,C---CF.
By construction, F;/F;_; is stable with slope u(F). Let
gr(F) = ®F;/F_1.

It turns out that gr(F') is independent of the filtration. We say two semistable bundles

E, F are s-equivalent if

gr(E) = gr(F).
6.3 First construction of the moduli spaces

We construct the moduli space of holomorphic vector bundles of rank r and degree d over a

(smooth closed) Riemann surface ¥ of genus g > 2, as a geometric invariant theory quotient.

Theorem 6.6 For fized r,d, there exists a connected coarse moduli space M?*(r,d) of stable
bundles of rank r and degree d over ¥.. Moreover, M*(r,d) has a natural compactification
to a projective variety M(r,d) which parametrizes all s-equivalence classes of semistable

bundles.
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Proof [Sketch of the proof] [40] By tensoring with a line bundle, we may assume that
d > r(2¢g — 1). Each semistable vector bundle £ of rank r and degree d over ¥ is generated
by its global sections, i.e. there is a surjective bundle homomorphism O%? — FE where
p =d—r(g—1). Hence, we get a morphism ¥ — Gr(r,p) of ¥ into the Grassmannian.
Let A(r,d) denote the smooth quasi-projective variety of all holomorphic maps h such that
the pull-back E(h) of the universal quotient bundle has degree d and the map on sections
C? — H°(E(h)) induced from the quotient bundle map CP? x ¥ — E(h) is an isomorphism.
It turns out that the natural GL(p) action on A(r,d) can be linearized in such a way that
the (semi)stability of h € A(r,d) in Chapter 2 coincides with that of E(h) defined above.
Furthermore, two maps h, h’ € A(r,d) induce isomorphic bundles E(h) = E(h') if and only
if h and B’ lie in the same GL(p) orbit. Therefore, the moduli space of stable bundles is

identified with

M (r,d) = A(r,d)° /GL(p).

Moreover, h,h' € A(r,d)*® represent the same point of the geometric invariant theory

quotient A(r,d)//GL(p) if and only if gr(E(h)) = gr(E(h')). Hence,
M (r,d) = A(r,d)JGL(p)

is the projective variety parametrizing the s-equivalence classes of semistable bundles, which
compactifies M*(r,d). O

The complex dimension of M (r,d) is r2(g — 1) + 1. When 7 is coprime to d, clearly
semistability coincides with stability and the moduli space M (r,d) is smooth.

Given a vector bundle £ — ¥ of rank r, we can associate its determinant line bundle
det(F) = A"E. Tt depends only on the s-equivalence class of the vector bundle and we have

a morphism

det : M(r,d) — Jacq

onto the Jacobian of degree d over Y. It is a fiber bundle whose fiber over L is the moduli

space N (r,d) of bundles of fixed determinant L.
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Since we constructed the moduli space M (r, d), the natural question is whether it is fine

or not.

Theorem 6.7 If the rank r is coprime to the degree d, then there is a universal bundle

U— M(r,d) x X, i.e. it is a fine moduli space.

Proof This bundle is in fact the descent of the pull-back W of the universal quotient

bundle over the Grassmannian via the evaluation map
ev: A(r,d)° x ¥ — Gr(r,p).

To show that there is a descent of this bundle, by Kempf’s descent lemma, we have to check
that the stabilizer C* in GL(p) of each point acts trivially on the fiber of W.

Let pri : A(r,d)®* x ¥ — A(r,d)® denote the projection. Consider the line bundles
det((pr1)«W) and det(W | s(r,ays xpt) over A(r,d)*. The stabilizer C* acts on a fiber of these
by weights p and r respectively. As p =d —r(g — 1) and r are coprime by assumption, we
can combine them to get a line bundle L where C* acts with weight —1. If we replace W
by W ® (pr1)*L, then C* acts trivially on the fibers and thus it descends to the quotient.
O

On the other hand, if r and d are not coprime, then there is no universal bundle even if

we restrict to any Zariski open subset of the moduli space by a theorem due to Ramanan

[41].
6.4 Second construction of the moduli spaces

We review the gauge theoretic construction due to Atiyah and Bott [3].

Fix a Hermitian vector bundle & — 3 of rank r, degree d. Let C = C(r,d) be the space
of holomorphic structures on £. Then C is an infinite dimensional affine space based on
Q%1(gl(r)). The group of automorphisms Aut(€) can be identified with the complexification
G. of the U(r) gauge group G.

Let C® (C*®) be the open subset of stable (semistable) holomorphic structures on £. In

fact, C*® is the unique open dense stratum in the Shatz stratification: Any holomorphic
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bundle E has the canonical Harder-Narasimhan filtration
O=EyCE{CEyC---CE;=F

such that D; = E;/E;_; are semistable and u(D;) > p(D;y1). Let rank(D;) = r; and

degree(D;) = d;. We assign to E an r-vector, the type

_

2 (7"1,”"2)

in such a way that each f—: is repeated r; times. For each p, we define C, as the set of
holomorphic structures whose types are p.

On the other hand, we consider the space A of all connections on the U(2) principal
bundle P associated to £. It is an affine space based on the space of Lie algebra u(2) valued
1-forms Q'(u(2)). Each connection A defines a u(2) valued 2-form, namely the curvature

F(A). This can be interpreted as the moment map for the gauge group action with respect

to the symplectic form
w(a,b) = / tr(a A D)
by

for a,b € Q' (u(2)). The Yang-Mills functional is defined as the norm square of the curvature

Js1F(A)P.
Notice that taking (0, 1) part of the covariant derivative of a connection defines an affine

linear isomorphism

A—=C

based on Q'(u(r)) = Q%! (gl(r)). Hence, we can import the Shatz stratification of C to A

via this isomorphism. One fascinating result of Atiyah and Bott [3] is the following.

Theorem 6.8 The Shatz stratification of A coincides with the Morse stratification by the

Yang-Mills functional.

In particular, C*® retracts onto the space of flat connections Ay by the gradient flow

of the Yang-Mills functional. Moreover, any two semistable holomorphic structures retract
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to the same point in Ay, if and only if they are s-equivalent. Therefore, we can identify

the moduli space M (r,d) with
C*Ge == Afiat/G-

From this together with the holonomy theorem, we deduce the celebrated Narasimhan-

Seshadri theorem.

Theorem 6.9 M(r,d) is homeomorphic to
2mid

{(a;) € U(2)¥] H[ai,aiﬂ] —er I}

2

It turns out that this is a stratified symplectic space [47]. The symplectic structure (on
each piece) is the descent of the symplectic structure on A. Heuristically, the moduli space
is a symplectic reduction of the infinite dimensional symplectic space A by the gauge group
and the theorem of Marsden and Weinstein (or Sjamaar and Lerman) tells us that there is
an induced symplectic structure.

The unstable strata and its normal bundles have a nice homotopical description.

Proposition 6.10 [3] Let p = (%, e ,f—:). The homotopy quotient (C,)g = C,, xg EG is

homotopically equivalent to the product of homotopy quotients [[7_,(C(r;, di)**)g(ri,d;)- The

normal bundle of C,, restricted to []7_, C(ri, d;)** is
Rl’/’r*(@i<jH0m(Wia W]))

where W; is the pull-back to ([[;_, C(ri, d;)**) x ¥ of the universal bundle over C(r;,d;)*s x 2

SS

and m is the projection onto []_, C(r;, d;)
6.5 Cohomology of the moduli spaces

The Morse stratification of the previous section provides a powerful method in computing
the cohomology of moduli spaces. First we give a partial ordering on the index set for the
stratification: Let A = (Ay,---,A) and g = (1, - , pbr) be two r-vectors. Then

A>pif ZAJ'ZZMJ'

J<i J<i
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for each i. With this ordering, we have the “frontier condition” [3]
gli C Ux> MC A

Let U, be an open union of strata containing C, as a closed subset. Consider the Gysin
sequence

*—2d * *
o= Hg “M(Cu) = HgUy) — Hg(Uu \Cp) — -+

where 2d,, is the real codimension of the stratum C,. Notice that C, retracts onto the
product [[;_, C(ri,d;)®® where the product of s copies of the circle group acts trvially.
From the description of the normal bundle in the previous section, it is easy to check that
the torus action on the fiber of the normal bundle has no nonzero fixed point. Hence,
Atiyah and Bott’s criterion [3] tells us that the Gysin map is injective and hence the Gysin

sequence breaks into short exact sequences:

0 — Hy % (C.) — HEU,) — HEU,\ Cy) = 0.

Therefore, the restriction map Hg(C) — H;(C*®) is surjective and

H(C) = Hy(C*) & @ Hy *™(Cu).
w

Here, H;(C) = H*(BG) since C is contractible. Now, the classifying space of the gauge

group BG is homotopically equivalent to
Mapp (2, BU(2)).
Consider the evaluation map
ev : Mapp(2, BU(2)) x ¥ — BU(2).

The Chern classes of the pull-back V' of the universal bundle over BU(2) decompose as

follows by the Kiinneth theorem,

29
i(V)=a®1+) bl e+ f®[X)
7j=1

where {e;} is a symplectic basis of H!(Z) such that ejej, = [E] € H*(D).
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Proposition 6.11 [3]/ The elements ai,b{,fz- freely generate the cohomology ring of the

classifying space of the gauge group.

Hence, since the restriction to C*° is surjective, the classes above generate the cohomology
ring H(C*).

On the other hand, the cohomology ring H;(C,,) is isomorphic to Qi1 Hg(r, a0 (C(ri, d;)®®).
Thus we can compute the cohomology ring H(C*®) inductively.

Let G denote the quotient of the gauge group G by the constant central U(1) subgroup.
Then we have

HG(C*) = H(C) © Hyy,

Finally, G acts freely on C* and hence Hé(CS) = H*(C®*/G¢). If r is coprime to d, then

C® = C*® and thus H*(M(r,d)) = Hé(C”) which can be computed inductively.

Example 6.12 We compute the Poincaré series of H*(M(2,1)). The Poincaré series of the

classifying space of U(2) gauge group is

(14 1)29(1 +t3)%
1—2)2(1—th

For each unstable stratum of type (i + 1, —1), the Poincaré series of its equivariant coho-

mology is
(1+1)% 5
(1—1¢2)2

and the codimension of the stratum is 4¢ 4+ 2g by Riemann-Roch. Hence, the G equivariant

cohomology of C*® has the Poincaré series

1+1)29(1 + 13)%9 1+t)% ;
((1 — 12)5(1 — #)1) El — t;)Q)2 2t

i>0
and thus the Poincaré series of the moduli space M (2,1) is

(1+6)%((A +¢%)% —129(1 + 1))
(1—12)(1 —¢t%) '
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Similarly, the Poincaré series for Hé(C (2,0)%%) is

(L+6)%0((1+¢%)% — 12972 (1 + 1))
(1 —#)(1 =)

6.6 Stratifications of the singular moduli spaces and partial
desingularizations

Suppose r,d are not coprime. Then the moduli space M (r,d) is singular but it can be
decomposed into a union of locally closed smooth subvarieties in a nice way, known as the
Kirwan stratification [27].

Let I denote the set of finite sequences p = {(m;,r;)} of pairs of natural numbers such
that 7, myr; =r, ry > 19 > -+ > 1, For each p, we assign a subgroup R” of GL(p),
isomorphic to [[7_; GL(m;) as follows: Fix an isomorphism

s
[[cher =
i=1
for p; = d; + ri(1 —g), d; = rig. GL(m;) acts on the first factor C™ in the standard way
and thus we get an embedding [[ GL(m;) C GL(p).

Let R = {Rf|p € I}. Then R is a set of representatives of the conjugacy classes of
the identity components of all reductive subgroups of GL(p) which appear as stabilizers of
points in A(r,d)** whose orbits are closed in A(r,d)**.

Let Z? denote the subset of points in A(r,d)*S whose stabilizers have the identity com-

ponent RP.

Proposition 6.13 [27] If E is semistable and gr(E) = m1 FE1®- - -®&msEs where Ey,--- | E;
are nonisomorphic stable bundles with u(E;) = u(E) for all i, then
S
dim AutE < dimH GL(m;)
=1
with equality if and only if E = gr(E), in which case

S
AutE = [ ] GL(my).
i=1
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Hence, GL(p)Z? is the set of h € A(r,d)®® such that E(h) = gr(E(h)) 2 miE1®---®mE;s
and ZP/N? = GL(p)Z?/GL(p) is a smooth locally closed subvariety of A(r,d)**GL(p)
where N? = T]7_; (GL(m;) x GL(p;))/C* is the normalizer of R” in GL(p).

It is not difficult to see ([27] Lemma 3.11) that
S
z¢ = [[ Alri,di)* \ A¥
i=1
where A# is the “diagonal” part, i.e. {(E;)|E; = E; for some i # j}. Therefore,

7P INP =2 ﬁM(m,di)s \ A,
i=1
where A, denotes (the quotient of) the “diagonal” part. Since every point in the moduli
space M (r,d) is represented by a “split” bundle, i.e. E = gr(E), we get the decomposition
5
M(r,d) = Uper ([ M(riy d)* \ A,)
i=1

into smooth locally closed subvarieties.

This decomposition is in fact a Whitney stratification. Here, we just check the normal
structure to each stratum. Let h € A(r,d)** be a split element, i.e. E(h) = gr(E(h)) =
miFEy & --- ®mgEs. Then the normal space to GZ?, for p = {(m;,r;)} with r; = rank(E;),

is known to be isomorphic to [3]
VP 1= (@, H (Hom(E;, E;)) @ Hom(C™ ,C™ )] @ [@; H (End(E;)) ® sl(m;)).

The local normal form theorem (or the slice theorem) now tells us that the normal to the

stratum Z”/N? in M(r,d) is isomorphic to the quotient of the vector space
VP | R?
which is a complex cone.

Example 6.14 Consider M(2,0). There are only three elements in I, namely,

{(1,2)}, (1 1), (1L, DA, 1)}
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The smallest stratum in M (2,0) parametrizes bundles of the form F = L @ L for some line

bundle L and it is isomorphic to the Jacobian Jacg/o. The normal space to the stratum is
H'(End(L)) ® sl(2) JGL(2) = T ® sl(2) | GL(2)

where GL(2) acts by conjugation on the second factor.
The next stratum parametrizes bundles of the form £ = L1 & L9 for nonisomorphic line
bundles Ly, Ly and it is isomorphic to Jacge X Jacgy)s \ A where A is the diagonal. The

normal space to this stratum is
HY L} @ Ly) @ HY (L5 @ L)) JC" x Cr =9 x v L jcr x C*
where the first C* acts on L; while the second C* acts on Lo by weight 1. [

Now, we consider the partial desingularization of the moduli space. The points with the
largest stabilizers are those h € A(r, d)®* such that E(h) = L&---@ L for a line bundle L if
there is any. We blow up A(r,d)®® along the set GL(p)Z*!* of those points for p; = {(r,1)}
and let A;(r,d)*® denote the set of semistable points in this blow-up i.e. A;(r,d) minus
the proper transform of {h|gr(E(h)) = L @ ---® L}. Next we blow up along (the proper
transform of) the set GL(p)ZP?> = {h|E(h) 2 L®---® L& L', for nonisomorphic L, L'} for
p2 = {(r —1,1),(1,1)} and remove the proper transform of {h|gr(E(h)) X L& ---& L@
L', for nonisomorphic L, L'} to get As(r,d). We can keep blowing up till we get A(r, d)**

on which SL(p) acts locally freely. The partial desingularization of M(r,d) is then
M(r,d) = A(r,d)** /SL(p).

This is the same as the space obtained from M(r,d) by blowing up along each stratum

ZP /NP one by one.



Chapter 7

Vector bundles of rank 2 and odd
degree

In this chapter, we prove the structure theorem and the Mumford conjecture for H*(M (2,1))
which determine the cup product structure completely. The proof is based on Zagier’s
technique but it is improved and clarified. We also prove the strong Mumford conjecture

which was open before this work [23, 49].

7.1 Cohomology ring of M(2,1)

Let M = M(2,d) be the moduli space of rank 2 stable holomorphic vector bundles of odd
degree over a Riemann surface ¥ of genus g > 2. Tensoring by a line bundle of degree 1

gives us an isomorphism

M(2,d) — M(2,d +2)

and thus we may take d = 4g — 3 without loss of generality. Fix a line bundle L of degree
4g — 3 over X and let N be the moduli space of stable vector bundles with determinant L.

Clearly, N is a subspace of M and is the fiber, over L, of the determinant map

N———M

ldet

Jacyg_3.
Since every semistable rank 2 bundles of odd degree are stable and stable bundles

have only constant automorphisms (i.e. simple), the moduli spaces M and N are smooth

97
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projective varieties of complex dimension 4¢g — 3 and 3g — 3 respectively. These are fine
moduli spaces. In fact, the universal bundle U — M x ¥ is the descent of the pull back of

the universal bundle of the Grassmannian via the evaluation map
ev: A(2,d)° x ¥ C Hol(¥,Gr(2,p)) x £ — Gr(2,p)

as explained in the previous chapter. The restriction of U to N then is the universal bundle
over N x X.
Consider the Kiinneth decompositions of the Chern classes of the universal bundle:
29

al)=M4g-3)®[E]+) dide+z@1
=1

2
c2(End(U)) =2a® [X] + 4Zg¢i e —FR1
i=1

where e; are symplectic basis of H'(X) so that e;e;+4 = [X]. Newstead [40] and Atiyah-Bott
[3] showed that «, [, ¥;, d; generate H* (M) while (restricted) «, 3, 1; generate H*(N).

By Narasimhan-Seshadri theorem, N is diffeomorphic to the quotient of ®~'(—1) by
SU(2) where ® : SU(2)%9 — SU(2) is the group valued moment map given by ®((a;)) =
[1lai, aitg). Let ¥ denote ¥ minus a small disk and let X' be the universal cover of %' and

consider the vector bundle
(@ 1(—1) x End(C?)) Xp sy & = & 1(—1) x &

which g € 71(X') maps (¢,v) € & 1(—1) x End(C?) to (¢, Ad((g)v). If we glue a trivial
bundle over the deleted small disk, then we get a vector bundle which descends to End(U) —
N x ¥ since the stabilizers act trivially on the fiber. It is easy to see that the (Z/2)%9
action on N by multiplication on each component (a;) by +1 preserves the bundle End(U).
Therefore, this finite group action preserves the generators «, 3,1); since ca(End(U)) are
unchanged and thus H*(N) remains fixed.

Tensoring gives us a finite covering N x Jacy — M with the structure group (Z/2)9.

As the finite group acts trivially on the cohomology H*(N) as well as H*(Jac), we get an



7.2. THE STRUCTURE THEOREM 99

isomorphism of rings

H*(M) = H*(N) ® H*(Jac).

The goal of this chapter is to describe the cohomology ring H*(N).

Since a, (3, 1; generate H*(N), we have a surjection

Qlev, B] @ A(¢pi) — H*(N)

and so it suffices to understand the kernel ideal.
Let f: M x ¥ — M denote the projection onto the first component. The pushforward
f1(U) is a vector bundle since H'(X, E) = 0 by semistability due to a lemma in the previous

chapter. By Riemann-Roch, the rank of the bundle is (49 —3) —2(g—1) = 2g—1. Therefore,
e (A1) =0 € H* (M) = H*(N) @ H*(Jac)

for r > 2g — 1. Mumford conjectured that the Kiinneth components of ¢,(fi(U)) form a
complete system of relations for H*(NN). This was proved by Kirwan in [31] and by Zagier
[54]. But it turns out that a lot of the relations are redundant. We will prove a stronger
version of this conjecture in §3. Namely, the Mumford relations from only the first vanishing
Chern class ¢y (fiU) generate the relation ideal in Qor, 8] ® A(9;).

Thaddeus used the Verlinde formula and Riemann-Roch to compute the intersection
pairing [48] and left it as a “number theoretic exercise” to deduce the ring structure. Zagier
[54] picked up this problem and proved the structure theorem of H*(N) which was also first
conjectured by Mumford. We will develop his technique further to prove the theorem in
a purely combinatorial way in the next section. This theorem not only describes the cup
product structure but also the mapping class group action precisely. This was also proved

by Newstead-King [23], Baranovsky [5] and Siebert-Tian [45].

7.2 The structure theorem

In this section, we recall and generalize Zagier’s technique in [54], to prove the “structure

theorem” for H*(N).
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Let «, B, ;, d; are as in the previous section and let v = —2 Zle Yiiry and § =
aff +27v. We first compute the Chern classes of fiU. As observed by Zagier ([54], p557), for
our purpose, we may assume that z = 0. Let v = =237 | 4;1p;1, and £ = a3 + 2. Then
a, 3, v generate the invariant part of Q[a, 5] ® A(1);) with respect to the Sp(2g) action on
1;’s and so do «, (3, &.

Let

/\j:(2g—%—( )2;;/_ +Z %)@ei—l—(—l)j%ﬁ@l.

Then one can check that Ay + Ao = ¢1 () and A\; A2 = co(Uf). Hence,

ch(U) = eM + e

_ 3 RS
-2 ey m ) o)
9, d; i Vi 1L d; -y /B
(1+ ;(5 - (—1)1\/3) ®e; + 5(;(5 —(=1) \/B) ® e;)? )e$p((_1).77)
29 d: ¢
=Y 0+ G- e
3 ¢ 9 d; Capy - d; b /B
”29—5_(_1”@—;(5—(—1)]\/@)( 32— (F17 ) @ [Sean(-1)7 )
(7.1)
and by Grothendieck-Riemann-Roch
ch(£i(U)) = f.(ch(U)(1 = (g — 1))
— _l__ & _g %__ - di+g_ 7/%+g o ﬁ
_j:m(g RARETNG ;(2 (1P (5% = (1P ea((-1)7 )
. (94 — (L) (1)1 VB/2)"
j=1,2n>0 n!
_(n+1)( L% — ()7 5% — (-1 B5) (-7 VB/2)"
(n+1)!
(7.2)

Noticing

log H(l + ug) = Z —(—1)"—1 2

n
n>1
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T = ah

n>0

we deduce that

P VB, TLi(§ - (e - 1y hy
! U) = ———(=1) log(14+(—1)? ~25)— :
weAf) = 3 (=51 g5 pplos1 (1P 50) Ly
Therefore,
-2t = Zcr i
r>0
_ 1+tVB At +2Bt? — 24t/ (7.3)
= (1= p)r () P eap( ST,
= o(t) G(t)
where
B 2 At + 2Bt? — 2v¢
G(t) - (1 _ﬂt )ge:rp( 1_Bt2 )7
n 1 ng—thk—i—l B t 1+\/_t
cht = (1-pt%)" 2ewp(at+fZT+l)=(1—ﬁt2) (1_\m) ",

k>1

g g
A=Y diding, B=Y —dihirg +disgthi-

From Riemann-Roch, fiU is a vector bundle of rank 2¢g — 1 and therefore ®(¢) G(¢) is a
polynomial of degree< 2g — 1.

Now, the question is how to read the Mumford relations off the expression. Our strategy
is the following: Let {u,} be a basis of H*(Jac) and let {u}} be the dual basis with
respect to the top degree class [[[7_; diditg], Le. wlfuj/[[1%; diditq] = 0ij. (Poincaré
duality! Here, -/[[]/_, didit4] means the coefficient of the top degree class.) Then for any
z € H*(M) = H*(N) @ H*(Jac), the coefficient of u} in z is zu, /[[]{_; did;i+4]. Therefore,
{e(iU)un/[[1)_, didit4]} gives us all the Mumford relations.

We need to generalize a lemma of Zagier ([54], p559). Let A*H? = &f_, @i;g vk Prim,
be the Lefshetz decomposition of the exterior algebra of H3(N) = Q{41,- - ,42,}. Now, let
o] = Z|I|:l arr € Primi{en, -+ , 124} be a primitive element and put &; = Z|I|:l ardr €

Primi{di,--- ,day}. Then we have the following
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Lemma 7.1

A9-l-ppBl+2p ( )p
- 1-pi+ 2z Hdd”g]
A’B]
il H didiyg) = 0 otherwise.

Proof The second statement is obvious.
Considering the Spo, action, we may assume that o = g1 -+ 1y since Prim; is an

irreducible module. Now, Zagier’s original lemma claims

(= Zf:_f Pithivg)? (7 _f didiyg)"™' P (02, —ditpiyg + ditgthi)* H diditg).

p! (g—1- )-( 2p)!

Thus,

(F)P (= 971 hitpigg)P o)
p

o] =
pl
_ (Zzilddﬁ- )g ! ”(Zg l d¢z+ +dz+ ¢z
- — (g—1- )!(2p). ; ’ Hddz+g] (7.4)
(Zgzl didiJrg)g_l_p(Z? —d; 7>bz+g + dz+g¢z H did; . ]
= itg

(g—1—p)!(2p+1)!

as one can check directly. So we are done. [
Therefore, for o, € Prim;(d;),

4

G(t) A6/ ]| didisg]

=1

_ 5 ATt 25 Bt =293 .
=2 (=AY gy ai P Bt2 JA%a/ Hd dio]

r,s

_27,53 B B A9—l-p Bl+2p
= exp( )71 — Br2ykpoltangalesk P al/[H ditq]
p

1— G2

3 ol
—2vt )Z(l . Bt?)k—p2l+2pt9+l+3p—k (g—t-p! ) o)

(g—1l—p—Fk) p!

_ ol 2\k gtk —29t3 (g—1—p)! (29t7)P
=2'(1 — pt*)Fot exp(l —ﬂtz)z (g—1—p—k)pl(L _Btg)paz.

(7.5)
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When k = 0,
9 3 3
N —2vt (2vt°)P
G(t)o didi = 2ltg+l€x g
( ) l/[l]l +g] p(l —ﬁtQ) . p|(1 —,Bt2)p l (76)
= 2l49tq,.
When k£ =1,
g
G(t) A/ ([ ] didivq)
i=1
_ —2vt3 (2vt3)P (7.7)
_ olygHl—1(1 _ 342 8 7 2
24 (1 — pt*)exp(5 _ﬂtQ)g(g L= p)
=249t (g — 1 — (g — 1)Bt? — 29t)0y.
When k£ = 2,
g
G(t) A6 /[[ [ didivg]
i=1
_ —2t3 (2vt3)P
— 9lpgtl=2(1 _ 342)2 Y g O G L0
P = ep(Tgp) Y (9~ L=p)e L -p = Vmgmnet (7)

P
=242 (g =g =1 =1) = 2(g = D9 =1 = 1)Bt* — (49 — 4l — )7t
+(g—D(g—1—1)Bt" + (49 — 4l — 4)Byt° + 47°1%) 0.

Recall that ¢, was defined to be the n-th coefficient of ®(t) = Y 7 je,t" = (1 —

k—142k+1 _ 29t

_1 _1 _&
Bt?) zexp(at + &€ ks ﬁZT) =(1-Bt%)"2e 8 (%)2Bﬁ' One can check that the

sequence {c, } is determined by the following recursion formula;

ne, = acp—1 + (n—1)Ben—9 + 2yep—3

2 3
where ¢g = 1, ¢1 = «, 02:a;ﬁ,03:%{3+47,etc.

Let I, be the ideal of Q[cv, 8,7] generated by ¢; for i > ¢g. Then by the above recursion
formula, I, is in fact generated by just three elements, ¢y, cg41, cg42.

By the formula (7.6) above,

g
c(fiU) 261/ [[ [ didisg] = 2197 ®(t)0,
i1

and thus c,0; is a relation for n > g — [. Hence, Prim; ® I,_; is a set of relations. One

can compute the Poincaré series ! as in [54, 23] to show that @7 _ Prim; ® I, is in fact

!See the similar computation in the next chapter §2.
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the complete set of relations. Therefore, we obtained a new proof of the following structure

theorem [45, 23, 54, 5].
Theorem 7.2 H*(N) = @&]_,Prim; @ Qe 8,7]/I,—;.

Since all the relations are from the Mumford relations, we deduce that the Mumford con-
jecture is true.

From Atiyah-Bott’s gauge theory description, we can prove that the mapping class
group action on H*(N) factors through the symplectic group action on ;’s. Hence the
above structure theorem describes the action precisely, as Prim;’s are irreducible Sp(2g)-

modules.

7.3 The strong Mumford conjecture

Though we proved that the Mumford relations generate the relation ideal, many of them
are redundant. At the end of his excellent survey article [49], Thaddeus raised the following
question (see also [23]): “..... But there is considerable redundancy among the Mumford
relations. In fact, the shape of Harder-Narasimhan formula suggests that the cohomology
ring is isomorphic to the quotient of Q[a, 5] ® A* (;),......, by the ideal freely generated over
Qe ] by the Mumford relations for r = 2g only,...... This question remains open.” We
provide an answer to this question.

It is not literally true in the sense that the Mumford relations are not independent
over Q[o, B]. For example, the coefficient of dyi1dg 2 --dog—1 in cog(fiU) is up to con-
stant (a? — B)ih19h - - - 1g—1 and the coeflicient of dgdy41dg4s - - dog—1dag is up to constant
2

a1z - - - P41 as one can deduce from the computation below.

However, we can prove the following

2 Another argument for Q[a, 8]-dependence of the Mumford relations from caq (fiU) is as follows. Because
of the Harder-Narasimhan formula, they are dependent over Q[«, (] if and only if the Q[a, 8]-module gen-
erated by them is a proper subspace of the relation ideal. Since dim N = 6g — 6 and degy? = 6g, 7Y is
a relation but clearly it is not contained in the Q[a, 8]-module generated by the Mumford relations from

2 (£U).
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Theorem 7.3 The Mumford relations from only cog(fiU) generate the whole relation ideal

in Qla, B] ® A" (¢i).

Therefore, the relations from ¢, (fiU), for r > 2g, are all redundant.

Note that we used just the formula (7.6) to prove the structure theorem. We now use
the other two formulas to prove our main theorem. As a by-product of the proof, we will
see that the Q[«, 3, v]-module in Q[c, 5] ® A*(1;) generated by the Mumford relations from
c2q(f1U) is a proper subspace of the relation ideal.

Proof From the structure theorem above, we note that it suffices to show that c,_;o,
cg—i+107 and cy_j 907 belong to the ideal J generated by the Mumford relations for r = 2g
only, i.e.

g
{eog (AU ARG /([ [ didisg) |0 <k <g—1, 0<1<g, 6 € Primy(d;)}.
i=1
By (7.6), cg—0y is, up to constant,

g g
Cag(AU)61/ ([ [ didisg] = Coefl g (2(£)G(1)51/[] [ didlisg])

=1 =1
= Coefft2g(@(t)2ltg+lal) = QZCQ,ZUZ

(7.9)

and so ¢;_y0; € J. By (7.7) and the recursion forumla, coq(/iU)Ad/[[17_; didisg] is, up to

constant,
(g —eg-141— (g —1)Beg 11 —27¢g 1 2)01 = (¢4 141 + acy 1)oy

and thus ¢;_;410; € J unless [ = g. Similarly, by (7.8), co0(fiU)A%5/[[17_, didi+ ] is, up

to constant,
[(—2g + 20 + 2)cgfl+2 —2acg 41 + (29 —20-1)B + a2)cgfl)]al

and thus ¢;_j 00, € J unless [ > g — 1.
In particular, ¢4, cgy1, cg42 are in J and cy_j0; € J. As any o; € Prim; is a sum of

elements of the form o;_j0; for some 0,1 € Prim;_1 and o1 € Primg,

Cg—i+101 = (Cg—1+101-1)01 € J



106 CHAPTER 7. VECTOR BUNDLES OF RANK 2 AND ODD DEGREE

and similarly

/
Cg—14+20] = (Cg_l+20l_2)0101 e J.

Note that for [ = 0,1, the same follows from the fact that ¢4, cg41, cg42 are in J. Therefore,

we proved our theorem. [

Remark 7.4 Technically, Zagier assumed 2 = 0 in the expression for ¢ (U), which amounts
to saying that ®(¢t)G(t) = (1 — 2vt)29~lc(fiU) —o for a class v € H?(Jac). But the
1-2vt

coefficient of t29 in c(fiU) _o; and that in ®(¢)G/(t) are same up to constant as one can check

by expanding both in ¢. Therefore, for our purpose, we can take ®(¢t)G(t) = c¢(fiU)—_2.

Remark 7.5 One may ask whether the Mumford relations, for r = 2¢g only, generate the
whole relations as a Q[a, 3,y] module. The answer is negative because the module does
not contain c3o,_1. Actually, those elements are the only missing piece and the Q[o, 3, 7]-
module generated by the relations from cyg41(fiU) as well as those from cog(fiU) is the
whole set of relations as one can deduce from the above formulas. Therefore, even as a

Q[a, B, v]-module, the relations from ¢, (fiU) for r > 2g + 1 are all redundant.



Chapter 8

Vector bundles of rank 2 and even
degree

We study M := M (2,0). First we will prove (analogues of) the structure theorem and the
Mumford conjecture for the equivariant cohomology ring Hé(C” ). Then using the splitting
theorem, we will compute the intersection cohomology TH*(M(2,0)) and consider some

applications.
8.1 The equivariant cohomology ring

In this section, we recall various facts about the equivariant cohomology of the moduli space
of rank 2 semistable vector bundles over a Riemann surface ¥ of genus g > 2.

Let C be the space of holomorphic structures on a fixed rank 2 complex Hermitian vetor
bundle £ of even degree, 4g — 2. It is an affine space of Cauchy-Riemann operators based
on Q%! (End€) and therefore contractible. If we denote by C** the subspace of semistable
holomorphic structures, then the moduli space of semistable bundles can be thought of as
the “infinite dimensional symplectic quotient” C** /G, where G, is the complexification of the
gauge group G of the principal U(2)-bundle associated to £. Obviously, constants commute
with Cauchy-Riemann operators and thus act trivially on C**. We put G. = G./C*. Then
G, acts freely on the open dense subset C* of stable holomorphic structures, but not on C*°.

So, we consider the homotopy quotient
Cés =C* xg EG.

107
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In this chapter, the equivariant cohomology means the cohomology of this homotopy quo-
tient.

Even though there does not exist any (holomorphic) universal bundle for the moduli
space C*?//G. (See [41], Thm 2), we do have a (topological) universal bundle for the ho-
motopy quotient as follows (See [3], p579): Let W be the obvious universal vector bundle
over C* x 3. By taking quotient of the pullback of PW, over C** x EG x %, by G, we get
a projective bundle PU over Cés x 3. This bundle lifts to a vector bundle U/ because the

obstruction for the lifting vanishes by the existence of a vector bundle W' over
CFx X CCgxX=DBGxX=Mapsy_2(E,BU(2)) x &
which is the pullback of the universal bundle over BU(2) via the evaluation map
ev : Mapsg—o(3,BU(2)) x ¥ — BU(2).

The universal bundle i/ is continuous in the Cés direction and holomorphic in the ¥ direction.

The moduli space of vector bundles can be also thought of as the moduli space of flat
connections as follows [3]: Let A be the space of connections on the principal U(2)-bundle
associated to £. It is an affine space based on the space of u(2)-valued 1-forms. By taking
the (0, 1)-part of a connection, we get an isomorphism A — C. The Morse stratification on
A with respect to the norm square of curvature is equivalent to the Shatz stratification of

C and the map induces an identification
Afiat/G = C**|Ge = M(2,0)

where Ay, is the subspace of flat connections. Moreover, if we let Go = {g : ¥ —

U(2)|g(p) = id} with p € X, then Gy acts freely on Ay, and

Afiat/Go = Hom(m,(X),U(2)) =: Rﬁ(z)-

Therefore, Cés = Afiat Xg EG = Rf; X py(2) EPU(2) and thus

(2)

HZ(C*) = Hi(Afiar) = Hppyo) (R ) = Hipo) (R )
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With the above identification, we can construct
EndU — (R ) X py(2) EPU(2)) x &
as follows: Let ¥ be the universal cover of X. Consider

(R} ) X End(C?)) Xny (5 & = R ) x 3

(2) (2)

where g € 71 (X2) maps (¢,v) € R#(Z) x End(C?) to (¢, Ad ¢(g) v). Tt is a vector bundle of
rank 4 which induces EndU over (R#(Q) X pr(2) EPU(2)) x ¥ by pulling back and taking
quotient.

Now, we consider the special structure: Fix a line bundle L of degree 4g —2 over 3. Let
C7® denote the subspace of semistable holomorphic structures with determinant L. Then

we have the following fibration by taking determinant

(R

J

JaC4g_2

By the same arguments for C**, the homotopy quotient (C{*)z = C{* XEEE is homotopically
om(m

equivalent to R?U(Z) X py(2) EPU(2) where R?U(Z) = Hom/(m(X),SU(2)). Therefore,

% (18S\ v * # ~ * #
HZ(C1") = Hpy () (R e) = Hgpa) (Ripg))-
AsU(2) = SU(2) xz,,U(1),
#  _npt#t
Rijo) = Riy(e) X@/2)20 Jac

and

R} o) Xpu@) EPU(2) = (RYy o) Xpue) EPU(2)) X (22 Jac.

According to [3], Hé(C” ) is generated by the classes a, 3, 9;, d; defined by the Kiinneth

decompositions of the Chern classes as follows:

29
aU)=(4g-2) @[S+ ) di®e+z01
i=1
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29
c2(BndU)) =20 @ [S]+4) 9i®ei— @1
=1

where e; are symplectic basis of H!(Z) so that e;e;4 = [E]. Similarly, Hé(CZs ) is generated
by the (restricted) classes a, 3, ;.

Because Z/2 is the center of SU(2), (Z/2)%9 action preserves
EndU — (RY; ) Xpu(z) EPU(2)) x 2.

Hence, it acts trivially on «, (8, ¢; and it also acts trivially on the cohomology of the

Jacobian. Therefore, we get
Hg(C“) = Hg(Cis) ® H*(Jac). (8.1)

To understand the ring structure of the cohomology, we have only to understand the
relations for Hg(Cis ). Let

. 88 $8
f:CP XD —CY

be the projection onto the first component. Then filf is a vector bundle of rank 2g by
Riemann-Roch and semistability. Therefore, c¢.(fif) are relations for r > 2g + 1. By
choosing a basis of H*(Jac), we get 229 sequences of relations in Hé(Cis ) via (8.1). Those
relations are called the Mumford relations.

In the next section, we will prove that the Mumford relations generate the whole space
of relations in Q[o, 5] ® A*(¢;). (Mumford’s conjecture.) Moreover, we will find a finite

number of classes that generate all the other relations and prove the “structure theorem?”.
8.2 The structure theorem

We first compute the generating function for the Chern classes of filf and then read off the
Mumford relations in order to prove the structure theorem. The Mumford conjecture is a
consequence of our proof.
Recall that
29

aU)=(4g-2)[F]+> di®e+r®1
i=1
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29
c2(EndU)) =20 @ [S]+4) 1 ®@e;— @ 1.

As observed by Zagier ([54], p557), for our purpose, we may assume that z = 0. Let
v = =237 | ithiyg and € = af + 2y. Then «, B, v generate the invariant part of

Q[av, B] ® A(1);) with respect to the Sp(2g) action on ;’s and so do «, 3, £.

Let
. S 2 d; ;)i VB
M= @1 (Y @B 3G - D D eat (1 6L
Then one can check that Ay + Ao = ¢1 () and A\; A2 = co(Uf). Hence,
ch(U) = M + e
RS
Jz;zu 201 g5 OB
i b 1 Q5 di i VB
(1+ Z Vg et 3G — () @ ern((-1 )
> fj(d' (1L
= 1+Y (- (-1))%) Q¢
j=1,2 o 2 VB
£ =~ d; i di i VB
+(29—-1—( 1)”W—;(5—(— )J\/B)( ;g - (-1) \/g))®[z])eﬂﬂp((—1)]7)
(8.2)
and by Grothendieck-Riemann-Roch
ch(fild)) = fe(ch(U)(1 — (g — 1)[X])
_ £ = d; i\ di i VB
= ]21;2(9 - (_I)JW - Z(— - (—I)JW)( ;g - (-Ujﬁ))exp((—l)jT)
) (9— (=1 55) (=1 VB/2)" (53)
7=1,2n>0 n!
(50, (% — (~1)7 45)(%52 — (17 %52)) (~1)1 VB/2)"
—(n+1)
(n+1)!
Noticing

_1\n—1 u™
log H(l +uy) = Z %

n>1

Se-p i

n>0
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we deduce that

¢ VB, Thi§ - G - (1))
[ WU) = (=1 —=NVog(1+(—1)7 LY
og c(fid) 321;2(9 (=1) 25\/3) og(1+(=1)' =-) ()i
Therefore,

c(filh) 2 =Y e (fiUh)(—2t)
r>0
1+t At + 2Bt? — 24t/ 8.4

= (1 g9 (VD T gy ALE2EL 54

=®(t) G(t)
where

A 2 _ 3
610) = (1 - pipeap 2B BT,
" Bk 1t2k+1 ot 14 /Bt ¢
cht —expat—i—é’z 1 )=e€ ﬂ(l—ﬂt)wﬁ’

k>1

g9 g9
A= "didirg, B=Y —dithirg+ dirgthi.

From Riemann-Roch, filf is a vector bundle of rank 2g and therefore ®(¢) G(t) is a polyno-
mial of degree< 2g.

Notice that G(t) is the same as in Chapter 7 §2 though ®(¢) is different. As before
let A();) = 69?:0 @i;lo v*Prim; be the Lefshetz decomposition of the exterior algebra
of Hg(Cis) Let oy = > = arr € Primy(y;) be a primitive element and put 6; =
Z|I|:l ardy € Primy(d;). Then we proved that for o, € Prim;(d;),

9
G(t)oy/[[ [ didivg] = 2190y (8.5)
i=1

As a consequence,
g
219D (t)or = c(fiUh)) -2/ [[ | didig)

and thus ®(¢)o; is a polynomial of degree < g — 1.

Proposition 8.1 @lg:OPriml ®1,_; is a subspace of the relation ideal, where I, is the ideal

of Qlay, B,&] generated by {c;|i > n+ 1}.
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Recall that ¢, was defined to be the n-th coefficient of ®(t) = Y 7 c,t" = exp(at +
£ k>t ﬁk%ff“) One can readily check that the sequence {c,} is determined by the

following recursion formula,;

ne, = acp—1 + (n— 2)Bep—9 + 2y¢p—3

3
where co =1, c1 = a, ¢ = %2, cg =2 ?‘:25, etc. Therefore, I,, is in fact generated by just

three elements cp11, cpt2, Cnts-
Now, put ¢, = Z?:o %(”;ﬁ;i)(Zy)iﬂk_icn_k_i, for 0 < k < m. Then by modifying a

lemma of Zagier in [54], we get the following

Lemma 8.2

(—1)*en = i(—l)i((” o ) + (” e 1>)ck_icn+z..

=0
In particular, cp ) belongs to the ideal generated by cp, chy1, Cri2.
Proof One can check, as in [54], that both sides satisfy ke, = (n — 1)Bcp—1k-1 +

2v¢p 2k-1- U
Lemma 8.3 ¢, = a"/n! modulo the ideal generated by &.

Proof It follows immediately from an induction with the recursion formula. [I

It is also easy to check the following variation of a lemma in [23].

Lemma 8.4 The leading term of ¢, s, up to constant, a2 for 0 < k < (5], and
en—kg2k=n for [5] < k < n, with respect to the reverse lexicographical order where oo > & > 3.

we put ¢, n = YC, n—3 — 5 Q"C_ n—1, JOT O n, €N 11s leaaing term 1S up 1o constan
b/ tenn = 127c, n=-la?e, dd n, then its leading term is up t tant
> 2 72

n+1
2

Proof Obvious from the definition of ¢, ; and Lemma 8.3. [
From the above lemmas, we deduce that Q[a, 5,&]/1, is a quotient of the vector space

spanned by

{a'Bek | (1)i4+2k<g, (2)ifk>1 then j+ 2k < g}. (8.6)
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Recall that degar = 2, degl = 4, degé = 6. We can compute the Poincaré series for this

graded vector space.

Lemma 8.5

18946 129+2 1—¢29+2
1—¢2

P(Q{a’FE"| (1) i+2k<g, (2)ifk>1 then j+2k<g})= 1‘(tf_t2)(1_t4)

Proof Combinatorial exercise. O

As a consequence,

18946 £29+2 1—¢29+2
1—¢2

P(Qle, B,€]/1,) < l‘fi —12)(1 —t%)

Therefore, we have

Lemma 8.6

(14 t3)29 — 12972(1 4 )%
(1 —12)(1 —t%)

Py(®]_yPrim; @ Qle, 8,€]/14—1) <

Proof Combinatorial exercise. [
As @?:OPriml ®1,_; is a subspace of the relation ideal, there is a surjection @?:OPrimléQ
Qlo, B8,€] /14—y — Hé(Cis ). From Atiyah-Bott’s equivariant Morse theoretic argument, it is

well-known that
(1 + t3)29 _ t29+2(1 + t)2g
(1—12)(1 —t4)

PUH(CE)) =

Therefore, together with the previous lemma, we deduce that @lg:OPriml ® I,y is, in fact,
equal to the whole relation ideal. Since all the relations were derived from the Chern
classes of the pushforward bundle, we conclude that the obvious analogue of the Mumford

conjecture is true. In summary, we have the following “structure theorm”.

Theorem 8.7

H(CE)  Hiy (R o)) = @ Primi @ Qo 5.€]/ Iy
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Let R;id be the set of homomorphisms of 71 (X) into SU(2) whose images are abelian.
Then the inclusion Rfed — R# := RﬁU(Z) induces a homomorphism H;‘,U(Z)(R#) —
H;U(Q)(R;id). Here, according to [43], H;’U(2)(Ri3d) is the 7Z/2-invariant part of the al-
gebra freely generated by ¢; and r, of degree 1 and 2 respectively. Moreover, « restricts to
—2w, B to 4r2, 1; to —2rg; and 7 to 4r’w respectively, where w = —2 Zle qiqi+q- We can

now compute the kernel of the homomorphism.

Corollary 8.8 The kernel of the homomorphism H;‘U(Z) (R#) — H;’U(2)(Ri3d) is generated

by the single element & = af3 + 2.
Proof Trivially, £ is in the kernel. We have

) = [@f_oPrimifar, -, g2g} ® Qlr, w]/wI =12

#
H;U(Z) (R’red
Because the homomorphism respects the symplectic action, we have only to consider the

invariant part. From Lemma 8.3, one can easily deduce that

(Qlev, 8,€1/19-1)/(€) = Qlev, f] /L.

The right hand side obviously injects into [Q[r, w]/w9 "+1]%/2. This completes the proof.
|

Note that ¢ is actually the V' class in [43].

Let R = R#/SU(2), which is homeomorphic to the moduli space N. Then the natural

map R# X g7(2) ESU(2) = R induces a homomorphism H*(R) — Hp o) (R#).

Corollary 8.9 The image in Hgg—g (R#) of a top degree class in H®9=6(R) is a constant

U(2)
multiple of a9723972¢ where R = R# /SU(2) and Ryeq = szd/SU(Q).

Proof As the image of a top degree class by the composition map H%9=6(R) — H%6(R,.q)
(R,

69—6
0 — HS 2 red

U(2) ) is zero, the image of the class by the composition map H% %(R) —

Hgs;;(g)(R#) - Hgg;(g) (R ) is also zero. Thus, the image in Hgs;;(g)(R#) is in the ker-
nel of the restriction map considered in Corollary 8.8. And from Theorem 8.7, Corollary

8.8, and our choice of the basis (8.6), we deduce that the kernel has only one generator in

dimension 6g — 6, namely o9 2392¢. O
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8.3 Intersection cohomology

In this section, we combine the splitting theorem of Chapter 5 and Theorem 8.7 above
to deduce the intersection cohomology of the moduli space of rank 2 holomorphic vector
bundles of even degree with a fixed determinant line bundle, over a Riemann surface ¥ of
genus g > 2.

Recall that the moduli space N = M(2,0);, can be constructed as a GIT quotient
N = A(2,d)7*/SL(p). To apply the splitting theorem, we need to check the weakly balanced

condition.
Proposition 8.10 The SL(p)-action on A(r,d)** is balanced for any rank r and degree d.

Proof Let F be a semistable vector bundle such that £ = m1E, @ --- ® msEs where E;’s
are non-isomorphic stable bundles with the same slope. Then the identity component of
StabE is R = S([[;_; GL(m;)) where S means the subset of elements whose determinant

is 1. The normal space to GZ3’ at E is ([3], [27])

H'(S,End,E) = H' (S, ®; ;(mim; — 0;;) Hom(E;, Ej)) 7
= ®;;H' (Z, (mim; — 6;) Ef ® Ej)
More precisely,

H' (%, Bnd},B) = @;c; [H' (5. B ® Ej) ® Hom(C™,C™) & H'(S, F; ® F}) ® Hom(C™ ,C™)]

@ [@;H' (2, End E;) ® sl(m;)]
(8.8)

Because E; is not isomorphic to E; for i # j, H*(S,Ef @ E;) =0 = H'(S,E; ® EY) and
thus
dim H'(%, Ef ® E;) = —RR(Z, Ef ® E;) = (rankE;)(rankE;)(g — 1)
(8.9)
= —RR(S,E; ® E}) =dim H' (3, E; ® E})
Therefore, the weights of the representation of R on H'(Z, EndyE) are symmetric with

respect to the origin. Obviously, it implies that the action is linearly balanced. As each

stabilizer subgroup R’ C R is conjugate to S([];_; GL(m})) for a “subdivision” (m},m, ...)
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of (my,ms,...), it is easy to check that such RN N® /R’ action on the fixed point set by R’
is also linearly balanced. [

By a theorem of Kirwan [26], the equivariant cohomology H§ L(p) (A(2,d)}’) is canonically
isomorphic to Hé(Czs) = H;U(Z)(Hom(m(il), SU(2))) up to a bound which goes to infinity

as d goes to infinity. Since the intersection cohomology
IH*(N)=IH*(Hom(m(X),SU(2))/SU(2))
is finite dimensional, by taking d large enough, we can use
HE(C3) = Hiyy (o) (Hom(mi(8), SU(2)))

instead of Hg; (A(2,d)7?).
The splitting theorem now tells us that VA(Q,d)\ZS contains all the information about the

intersection cohomology. We use the notations of Chapter 5. Recall from Chapter 6 that

It turns out that we do not have to think about truncation on the SL(2) fixed point set
because it is taken care of by that for C*. For that one has only to observe that Zgr,2) C Zc-
and that ngr) =39 —3 > ne- =29 — 3.

We have to consider the following map
Hpo)(AR2,d)F) = Hip) (SL(p) X yer Z82) = [H*(Jac) © Clp]}*/?

where Jac means the Jacobian variety and 7Z/2 acts as —1 on both components. Let d;
be the basis of H!(Jac) defined as the Kiinneth coefficients of the first Chern class of a
universal line bundle corresponding to e;. Recall that « is mapped to w = =237, d;d;+,,

B to 4p?, and 1; to —2pd;.

Intersection Betti numbers
From the work of Atiyah and Bott, we know that the Poincaré series of the equivariant

cohomology is
(14 3)29 — #2972(1 + t)2%9
(1—12)(1 —t%)
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If one uses the Lefschetz decomposition of the exterior algebra in ;’s, it is an easy combi-
natorial exercise to show that the image of the restriction Hg; (A(2,d)7?) = [H*(Jac) ®
Clp])%/? is precisely

[H*(Jac) ® p?~ ' Clp))”/?

whose Poincaré series is

1L (L40)29@)9 1 (1 —t)*9(—t*)9!
2 1—¢2 14 ¢2

}.
Hence we get a closed formula for the intersection Poincaré series [27].

Theorem 8.11 Let IP,(N) =Y ,.,t'dim IH'(N). Then

3129 12g+2 2
ey = o L

(1+8)22)9 1 | (1 —1)*9(=t*)9!
1—¢2 1+1¢2

1.

Mapping class group action and Hodge structure
From the structure theorem and the Grobuner basis given in the proof in §2, we deduce

the following
Theorem 8.12 Let Wy, be the vector space spanned by
(IR | (1) i+2k<m, (2)j+2k<m (3)if k=0 thenj < [%]}.

Then

VA(?,d)SLS = @?:Opriml ('I/JZ) ® Wg_l = IH*(N)
It is well known that the mapping class group action on
IH*(N)=I1H"(Hom(m(X),SU(2))/SU(2))

factors through the symplectic group action on ;’s. As mentioned in Chapter 5, the
splitting theorem stays valid for symplectic quotients. The action of the mapping class
group F; (say, on a small neighborhood of the zero set of the moment map in the extended

moduli space!) commutes with the conjugation action of SU(2) and thus preserves our

!See Chapter 9 §1.
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splitting. Therefore, the above theorem describes the mapping class group action on the
intersection cohomology precisely. The dimension of W,_; should be thought of as the
multiplicity of the irreducible representation Prim;(1;). It is now a combinatorial exercise

to compute the dimension of W, whose Poincaré series equals

()9 1A —th) + (=#7)9 1 (1 — )

; H

1 1—¢09t6 1 —¢20+2
(1—t2)(1—¢t4)" 1—145 11—

{1912 +

This agrees with the computation of Nelson in [38] which is based on Kirwan’s calculation
[27].

The above theorem also describes the Hodge structure on IH*(NN). Choose the basis
e; of H'(X) such that e; are of type (1,0) and e;4, are of type (0,1) for 1 < i < g. Then
a is a class of type (1,1), B is of type (2,2), 9; is of type (1,2) and ;44 is of type (2,1)
for 1 <4 < g. So, the above theorem gives a Hodge structure on VA(Q,d)sLs and hence the

intersection cohomology has the induced Hodge structure by the splitting theorem.

Casson’s invariant

Casson’s invariant is defined by counting intersection points algebraically of two La-
grangian (real) subvarieties in the moduli space N. Namely, given a Heegaard splitting
of an integral homology 3-sphere, M = H; Uy Hs, we get two Lagrangian subvarieties
Hom(m (H;),SU(2))/SU(2) for i = 1,2 in Hom(7(X), SU(2))/SU(2) which is homeomor-
phic to the moduli space. Their common intersection with the singular part consists of a
single element, the trivial representation, at which they intersect transversely. We can per-
turb one of the subvarieties while keeping their intersection at the trivial element transverse
and then count the number of intersection points algebraically with respect to the naturally
given orientations [1]. This is Casson’s invariant. In terms of gauge theory, this invariant
can be thought of as the “number” of irreducible flat connections on M.

For the past 15 years, various attempts have been made to generalize this to a larger
class of 3 manifolds in the one direction (e.g. Walker’s generalization to rational homology
3 spheres) and to Lie groups other than SU(2) in the other (e.g. Cappell, Lee and Miller’s

generalized Casson invariants for SU(n)). In an attempt to generate a knot invariant
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using Casson’s idea, Frohman and Nicas defined an intersection homology invariant for a 3
manifold M with a nontrivial element ( € Hy(M) [13]. In fact, they defined a cobordism
functor for 3 manifolds with at least 2 boundary components each of which has genus > 1.

The 3 manifold invariant is obtained by considering the cobordism
M\XxI

obtained by removing a neighborhood of a closed surface 3 representing the homology class.
The invariant is defined as the supertrace of the cobordism functor. The knot invariant is
thus obtained by choosing a Seifert surface for any homologically trivial knot in a rational
homology 3 sphere and then “capping off” the Seifert surface.

The cobordism functor of Frohman and Nicas is defined as follows: Let H be an oriented
compact 3 manifold with boundaries F, F7,--- , F; with [ > 1. Consider the moduli space of
SU (r) connections on H whose restrictions to the boundary components have given degrees.
This embeds into the product of the moduli spaces Np, Np, of SU(r) connections of given
degrees over the boundary Riemann surfaces. It turns out that this subvariety intersects
the singular part in a sufficiently nice way (s-allowable) so that we get a homomorphism

Q(H) : IH*(Np) — [] IH*(NE,)
1<i<l
by intersecting an intersection cycle with the moduli for H. 2

Since every cobordism with > 2 boundary components is a product of cobordisms with
only one “in” or “out” component as those in the previous paragraph, we get a functor
assigning to each Riemann surface of genus > 1 the intersection homology of the moduli
space of vector bundles, and to each cobordism a homomorphism between the intersection
homology groups for the in and out components. In terms of gauge theory, one can think
of the functor as propagation of flat connections along the cobordism. The 3 manifold
(or knot) invariant defined by this cobordism functor can be thought of as the number of

irreducible SU(r) connections on the 3 manifold (or the knot complement).

For a more gauge theoretic description, see [38].
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From now on, we consider only rank 2 and even degree case. If the knot is fibred,
i.e. the knot complement is a surface bundle over circle with monodromy diffeomorphism

h : ¥ — ¥, the (polynomial) knot invariant is the Lefshetz polynomial of the induced map
h* . ITH*(N) — IH*(N)

which can be expressed in terms of the Alexander polynomial because of the following

proposition ([13], Proposition 5.4.)
Proposition 8.13 The Lefschetz polynomial of the induced map
r* : H*(Jac) — H*(Jac)
is the (un-normalized) Alexander polynomial c(t) of the fibred knot K.

The Lefschetz polynomial of the equivariant cohomology H L(p)(A(Q, d)7®) is just (up

to sufficiently large degree)
c(t3) — t29+2¢(t)
(1—¢2)(1 —¢t4)

The truncation for the definition of V(g g)ss is equivariant for the Sp(2g) action and hence

we subtract out
1{(t2)g_16(t) (—=t*)97"e(—t)
2 1 —¢2 1+ ¢2

}

to get the Lefschetz polynomial for the intersection homology by the splitting theorem:

_ o) =829 2c(t) 1, ()9 e(t) | (=79 e(—t)
L(h)_(l—tZ)(l—t4)_§{ e T ise b

In particular, if we take ¢t = 1, we get

Yo = —50(g — Del) + 1{(~1)e(~1) — (1)} + 2"(1)

by applying L’Hospital’s law twice and the fact ¢/(1) = ge(1). Let ¢(t) = t 9¢(t) be the
normalized Alexander polynomial. Then by substitution we get the following theorem ([13],

Theorem 6.4.)
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Theorem 8.14 The intersection Lefschetz number of the monodromy action on N is

hao = TlE(-1) = #D} + 320,

Intersection pairings

From Corollary 8.9, we can easily deduce the following

Corollary 8.15 The fundamental class in IH%976(N) corresponds to a constant multiple

Of 04972,89725 m VA(?,d)SLS'

Because we can compute the cup product efficiently by using the structure theorem of
the equivariant cohomology and the Griobner basis, we can also compute the intersection

pairings of ITH*(N) by the splitting.
Example 8.16 Let g = 4. Then the fundamental class is o?3%¢.

1. From our choice of Grébner basis, the degree 6 part of Wy is W¢ = C{a?, af3,£} and
the degree 12 part is W}? = C{a*p, aB¢,£2}. One can check that the intersection

matrix for these bases is

56 —4 0
-20 1 -1
-4 -1 3

whose determinant is —144 # 0.

2. W =C{a*,a?B,a} and W} = C{a? B, a?¢, BE}. The intersection matrix is

56 24 —4
-20 -4 1
-4 0 -1

whose determinant is —288 # 0.

Direct computation using the Grébner basis shows

0923972
(g —2)!

m 2on
a"p" = —mlby_p_1
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for m+2n =39 —3, n < g — 1 and by are given by

t
tanht Z k
k>0

at least for low genus. Hence, if we take 7 = 0 af 2p9 >

(== then we get

< k(a'B),k(a*B) >= —(—=4)9 'mlby 1

fori+k=m,j5+1l=mn,m+2n=39g—3,n <g— 1. In principle, it is a number theoretic
or combinatorial exercise to deduce the above formula from the structure theorem but it
seems very difficult to achieve this in practice.

The above pairing formula, however, can be justified by using the computation of in-
tersection pairings on the moduli spaces of parabolic bundles by Jeffrey and Kirwan [20]
which will be reviewed in the next chapter.

Finally, let us point out that the formula can be derived by applying Thaddeus’s tech-
nique in [48] formally or by using Donaldson theory over ¥ x S2. This formal computation

was carried out by some physicists.



Chapter 9

Vector bundles of higher rank

We complete this work with a brief survey of higher rank case. For smooth moduli spaces,
i.e. when rank and degree are coprime, the cohomology ring is completely determined by
intersection pairng by Poincaré duality. For rank 2 odd degree case, Thaddeus [48] and
Donaldson [9] obtained formulas for the pairing, which were generalized to arbitrary rank
case by Jeffrey and Kirwan [20] by using nonabelian localization principle described in
Chapter 4. In fact, they also computed the pairings for the moduli spaces of parabolic
bundles. For singular moduli spaces, i.e. noncoprime case, we can use their results to
compute the pairing of the intersection homology. This will be part of [32] and it will be

only sketched here.

9.1 Smooth moduli spaces

This section is from [20].

Let N(r,d) be the moduli space of (semi)stable holomorphic vector bundles of rank r,
degree d and fixed determinant on a compact Riemann surface ¥ of genus g > 2. We assume
in this section that the rank is coprime to the degree so that the moduli space is a smooth
projective variety of real dimension (2g — 2)(r? — 1).

There is a universal bundle U — N(r,d) x ¥ and the Kiinneth components a;, bZ , fi of
the Chern classes of U generate the cohomology ring H*(N(r,d)) from [3]. These classes

come from the equivariant cohomology classes Hg(./lﬂat) which we denote by the same

124
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notations. The Betti numbers can be computed by Morse theory inductively.
We wish to compute the intersection pairing by applying the nonabelian localization
principle to the extended moduli space [21]: Let ¢ = emp(ZﬂTM)I € SU(r) and consider the

fibred product of the maps ® : SU(r)?9 — SU(r) and e, = c - exp : su(r) — SU(r)

M:(c) __________ o su(r)

€c
o

SU(r)29 —2— SU(r).
Explicitly, let P : SU(r)%9 x su(r) — SU(r) be the map given by
P((h])aA) = H[hja hj+g]C_1€£Ep(—A).

Then M(c) = P '(I). The map —pu above is the projection to su(r). In fact, p is the
moment map for the K-action on the smooth part. Moreover the extended moduli space

has the following properties.

Proposition 9.1 [21]

o M(c) is smooth near (h,A) € SU(r)* x su(r) for which z(h) N ker(d(exp))pn # 0

where z(h) is the Lie algebra of the stabilizer of h.

o There is an invariant 2-form w on SU(r)?9 x su(r) whose restriction to an open dense

subset of M(c) containing M (c) N SU(r)%9 x 0 is symplectic.

*

e A moment map p : M(c) — su(r)* is given by the restriction of (—1) times the

projection to su(r) with su(r) identified with su(r)* by the invariant inner product.
e M(c) is smooth in a neighborhood of 1~ 1(0).
e The moduli space N(r,d) is the symplectic quotient M (c) N p~1(0)/SU(r).

e The classes ai,b{,fz- lifts to classes &Z-,Bg,fi € Hi(M(c)).
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The problem here is that M (c) is singular and noncompact. Jeffrey and Kirwan avoided
singularities by considering the equivariant Poincaré dual of M (c) supported near P~!(B)
for a small ball B near I and integrating along P~!(B). Let T denote the maximal torus

of SU(r).

Proposition 9.2 [20] There is a T-equivariant closed differential form o € Q%(SU(r)?9 x

su(r)) of degree v — 1 with support contained in a neighborhood P~1(B) of M(c) such that

/ no = / Nl € Hr
SU(r)29 x su(r) M(c)

for any T-equivariantly closed form n € Q% (SU(r)?9 x su(r)) for which the intersection of

P~Y(B) with the support of n compact.
Then we can use Martin’s trick to reduce the computation to torus quotients. Let
s Hygy () (M()) = Hipr(M(0) 1 = (0)) = H' (N(r, d))
Kt 2 Hyy iy (M(c)) = Hp(M(c)) — Hp(M(c) np™"(0) = H* (M (c) N u™'(0)/T)
be the restrictions. Then, we have the following.

Lemma 9.3 For anyn € H;‘,U(T)(M(c)),

[ st = | ar(Dne?) = = [ wr(Dnea)
N(r,d) T J M(e)np=1(0)/T n:Jp-y(B)np=1(0)/T

where W = w + p and D is the product of positive roots of SU(r).

We apply the localization theorem for the Tj-action on P~1(B) N ut(t;)/T" where

t = Lie(T), Ty = {(t,t~",1,--- ,1)} and
T' = {(ty, tr.ts, - 1) € U(L)|(02)? [] t = 1.
7j=3

The integral can be computed from the local contributions from the T} -fixed point compo-
nents by Guillemin-Kalkman localization or by Martin’s work. Each fixed point component
turns out to be a finite quotient of the product of M (&) N ,u;l(()) /T; for lower ranks 7
periodically. So, we can apply induction to complete the computation. (Proposition 8.4 of

[20].)
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Theorem 9.4 Let ¢ = diag(c1,--- ,¢.) € T be such that the product of no proper subset of
c1, ¢ 15 1. If np is a polynomial in a; and Eg then

ZwEW e<lwe],X> fT2g ne¥
D?~2 H1§j§r71(eXP(Yj) —1)

where X € t*,Y; = X;— X1 for standard basis {X;} and ¢ is an element in the fundamen-

kr(Dne”) = (—1)"+0"YResy, o - - - Resy, ,=o(

)
/M(c)ﬂul(ﬂ)/T

tal domain defined by the simple roots for the translation action on t such that exp(¢) = c.

Here, ny is the number of positive roots, n(n—1)/2 and W is the Weyl group of SU(r —1).

The pairing for H*(N(r,d)) now follows from this theorem by Martin’s trick, Lemma
9.3.

2mid
n

Corollary 9.5 Let ¢ = exp(

)I and n as above. Then the pairing is given by

ZwEW e<lwe],X> szg ne
D272 ][ <j<r1(exp(Yj) — 1)

General pairings can be computed by the same process above after introducing formal

(=1l
/ k(ne¥) = 7'RQSY1:0"'R»€SYT,1:0(
N(r,d) n:

).

variables and the result turns out to be equivalent to Witten’s formulas in [52].

The Todd class of N(r,d) is given by [39]

erfzﬁ( ’Y(X)/2 )2972

50 sinhy(X)/2
where 7’s are positive roots of SU(r). It is well-known that the Picard group of the moduli

space is Z. Let L be the ample generator whose first Chern class is fo. Now Riemann-Roch

tells us that

i X)/2 o5
dim HO(N (r, ), £*) = / (k) o (T VX2 y2gn
W), £5) N(r,d) (7>0 51nh7(X)/2)

The corollary above now computes the integral to prove the Verlinde formula:
Theorem 9.6

—1)n+(g-1) :
dim HO(N (r,d), £F) :L Z Resy; o - - - Resy, ,—o(e(FTm)<weX>

n!
weW
(k+r)w ( ’Y(X) )2972 1 )
€ .
/Tz,g 7H>0 SO g 02 (% — 1)D%2

(9.1)
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9.2 Intersection homology pairings for singular moduli spaces

For completeness, we add this section which will be part of [32].

Let p: M — k* be a proper moment map for a Hamiltonian K-space M. Suppose 0 is
not a regular value of the moment map. Then we get a singular reduction My = p~(0)/K.
Let n = dimg M. By the de Rham model for intersection cohomology, the fundamental
class in TH™(M,) can be represented by a differential form &, with compact support in the
nonsingular part My® = 1~ (0)*/K of My, whose integral is 1.

Suppose the action of K is free on the open dense subset ~!(0)°. Then we have the

fibration
K/T ———p1(0)*/T
JW
p(0)*/K = My®

Via the natural map Hj — HZ%(u1(0)), the product of positive roots D in H% = S(t*) is
mapped to a class D of degree dim K —dim T in H3(p~(0)). Let m = n +dim K —dim T
The product of D and 7*[¢] is in HZ'(u (0)) and it comes from H™(u (0)*/T). Its
integral over the smooth part is the order of the Weyl group |W/|.

Let € € t* be a regular value sufficiently close to 0. Then there is a surjective map
fe: M. = p='(e)/T — p~(0)/T induced from the gradient flow of —|u|?. This is a
diffeomorphism over the nonsingular part and thus 7*[¢] - D, considered as an element in
H™(1=1(0)*/T), pulls back to an element in H™(M,). The integral of (7f.)*[£]- D over M,
is |W|.

In summary,

1
&= o [ (i),
[ €= [ i
Let ¢ be the image of a[¢] for a € C by the natural map C = H (M,*) = H" (Mo, (Mo)sing) =

HY (7 H0), p1(0)sing) — H(u1(0)) where (Mo)sing, #+ '(0)sing denote the singular
parts. Then the image of ¢ via the Kirwan map is the image of a[{] via the natural map

H}(Mg) — IH"(My) and thus x(¢)[Mo] = a.
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On the other hand, from the following commutative diagram (with an abuse of notations

for the maps)

*

HP (My®) = H™(My) T— H (= (0)°/T) ~—— H"(M,)

L]

fe

Hy (p='(0)) ——— Hp(u="'(0)) —— Hj(n~"(¢))
we deduce that
1 '
% (C) [ Mo] =W ME(WfE) ¢-D

Suppose the action of K on M is weakly balanced. Let 1, £ be two classes in Vj; of
complementary degrees with respect to n. Then it was shown in Chapter 5 that their prod-
uct ¢ = né comes from a class in H(M,®) and that the intersection pairing < x(n), x(£) >

is equal to k(()[Mp]. Therefore,

1

< K(n), k() >= W (mf)*C - D.

Finally, we return to the moduli space case. The right hand side of the above was

computed [20] as in the previous section. Namely, the right hand side equals

ZweW e<[w€},X> fT2g Cew

_1 n+(g—1) e —
( ) R'eSYl_O PiesyT*l_O(D%]_2 ngjgrfl(exp(y}) - 1)

)

if ¢ = n¢ is a polynomial of a;, l;f, f2 and n, € € VA(,«,d)is.l
Hence,

(_1)n+(g—1) ZwEW e<[w€],X> fT29 Cew

D972 [T <<y (exp(Yj) — 1)

< k(n), k(&) >= Resy;—o - - - Resy; _, —o( )

n!

General pairings follow in a similar fashion.

!The argument above also shows that there is no change in the integral by wall crossing near é and thus
we get the formula.
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