
DESINGULARIZATIONS OF THE MODULI SPACE OF RANK 2
BUNDLES OVER A CURVE

YOUNG-HOON KIEM AND JUN LI

Abstract. Let X be a smooth projective curve of genus g ≥ 3 and M0 be the
moduli space of rank 2 semistable bundles over X with trivial determinant.
There are three desingularizations of this singular moduli space constructed
by Narasimhan-Ramanan [NR78], Seshadri [Ses77] and Kirwan [Kir86b] re-
spectively. The relationship between them has not been understood so far.
The purpose of this paper is to show that there is a morphism from Kirwan’s
desingularization to Seshadri’s, which turns out to be the composition of two
blow-downs. In doing so, we will show that the singularities of M0 are ter-
minal and the plurigenera are all trivial. As an application, we compute the
Betti numbers of the cohomology of Seshadri’s desingularization in all degrees.
This generalizes the result of [BS90] which computes the Betti numbers in low
degrees. Another application is the computation of the stringy E-function (see
[Bat98] for definition) of M0 for any genus g ≥ 3 which generalizes the result
of [Kie03].

Dedicated to Professor Ronnie Lee.

1. Introduction

Let X be a smooth projective curve of genus g ≥ 3. Let M0 be the moduli space
of rank 2 semistable bundles over X with trivial determinant, which is a singular
projective variety of dimension 3g − 3. There are three desingularizations of M0.

(1) Seshadri’s desingularization S : fine moduli space of parabolic bundles of
rank 4 and degree zero such that the endomorphism algebra of the under-
lying vector bundle is isomorphic to a specialization of the matrix algebra
M(2). This is constructed in [Ses77].

(2) Narasimhan-Ramanan’s desingularization N : moduli space of Hecke cy-
cles, as an irreducible subvariety of the Hilbert scheme of conics. This is
constructed in [NR78].

(3) Kirwan’s desingularization K : the result of systematic blow-ups of M0,
constructed in [Kir86b].

For cohomological computation, K is most useful thanks to the Kirwan theory
[Kir85, Kir86a, Kir86b]. On the other hand, S and N are moduli spaces themselves.
The relationship between these desingularizations has not been understood.

The first main result of this paper is that there is a birational morphism (Theo-
rem 4.1)

ρ : K → S.

1991 Mathematics Subject Classification. 14H60, 14F25, 14F42.
Key words and phrases. Moduli space, vector bundle, desingularization.
YHK was partially supported by KOSEF and SNU. JL was supported in part by NSF.

1



2 YOUNG-HOON KIEM AND JUN LI

Since both S and K contain the open subset Ms
0 of stable bundles, there is a

rational map ρ′ : K 99K S. By GAGA and Riemann’s extension theorem [Mum76],
it suffices to show that ρ′ can be extended to a continuous map with respect to the
usual complex topology. By Luna’s slice theorem, for each point x ∈ M0−Ms

0 , there
is an analytic submanifold W of the Quot scheme whose quotient by the stabilizer H
of a point in both W and the closed orbit represented by x is analytically equivalent
to a neighborhood of x in M0. Furthermore, Kirwan’s desingularization W̃//H of
W//H is a neighborhood of the preimage of x in K by construction. Our strategy is
to construct a nice family of (parabolic) vector bundles of rank 4 parametrized by
W̃ , starting from the family of rank 2 bundles parametrized by W , which is induced
from the universal bundle over the Quot scheme. This is achieved by successive
applications of elementary modifications. Because S is the fine moduli space of
such parabolic bundles of rank 4, we get a morphism W̃ → S. This is invariant
under the action of H and hence we have a morphism W̃//H → S. Therefore, ρ′

extends to a neighborhood of the preimage of x in K.
The second main result of this paper is that the above morphism ρ is in fact the

consequence of two blow-downs which can be described quite explicitly (Theorem
5.6). To prove this theorem, we first show that Kirwan’s desingularization K can
be blown down twice by finding extremal rays. O’Grady in [OGr99] worked out
such contractions for the moduli space of rank 2 sheaves on a K3 surface. Since
the proofs are almost same as his case, we provide only the outline and necessary
modifications in §5.1. Next, we show that ρ is constant along the fibers of the
blow-downs and thus ρ factors through the blown-down of K. Finally, Zariski’s
main theorem tells us that S is isomorphic to the blown-down. Using this theorem,
we can compute the discrepancy divisor of πK : K → M0 (Proposition 5.3) and
show that the singularities are terminal. This implies that the plurigenera of M0

(or K, or S) are all trivial (Corollary 5.4). We conjecture that the intermediate
variety between K and S is the desingularization N by Narasimhan and Ramanan.

Our third main result is the computation of the cohomology of S. In [Bal88,
BS90], Balaji and Seshadri provides an algorithm for the Betti numbers of S for
degrees up to 2g − 4. The cohomology of Kirwan’s partial desingularization is
computed in [Kir86b] and K is obtained as a single blow-up of this partial desingu-
larization. Since it is well-known how to compare cohomology groups after blow-up
(or blow-down) along a smooth submanifold of an orbifold ([GH78] p.605), we can
compute the cohomology of S.

The last result of this paper is the computation of the stringy E-function of
M0. The stringy E-function is a new invariant of singular varieties, obtained as the
measure of the arc space (see, for instance, [Bat98]). From the knowledge of the
discrepancy divisor (Proposition 5.3) and explicit descriptions of the exceptional
divisors of πK : K → M0 (Proposition 5.1), we show that

Est(M0) = (1−u2v)g(1−uv2)g−(uv)g+1(1−u)g(1−v)g

(1−uv)(1−(uv)2)

− (uv)g−1

2

( (1−u)g(1−v)g

1−uv − (1+u)g(1+v)g

1+uv

)
.

Surprisingly, this is equal to the E-polynomial of the intersection cohomology of
M0 when g is even. For g odd, Est(M0) is not a polynomial. As a consequence, the
stringy Euler number is

est(M0) := lim
u,v→1

Est(M0) = 4g−1.
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If we denote by eg the stringy Euler number of the moduli space M0 for a genus g
curve, then the equality ∑

g

egq
g =

1
4

1
1− 4q

holds for degree ≥ 2. The coefficient 1
4 might be related to the “mysterious”

coefficient 1
4 for the S-duality conjecture test in [VW94].

This paper is organized as follows. In sections 2 and 3, we review Seshadri’s and
Kirwan’s desingularizations respectively. In section 4, we construct a morphism
ρ : K → S by elementary modification. In section 5, we show that ρ is the
composition of two blow-downs. In section 6, we compute the cohomology of S and
the stringy E-function of M0.

The first named author thanks Professor Ramanan for useful conversations at
the Korea Institute for Advanced Study during the spring of 2003 and Professor
Ronnie Lee for illuminating discussions at Yale on desingularizations about 5 years
ago. Part of this paper was written while the first named author was visiting
Stanford University and Fudan University. Their hospitality is greatly appreciated.

2. Seshadri’s desingularization

Let X be a compact Riemann surface of genus g ≥ 3. Let M0 = MX(2,O)
denote the moduli space of semistable vector bundles over X of rank 2 with triv-
ial determinant. Then M0 is a singular normal projective variety of (complex)
dimension 3g − 3. In [Ses77], Seshadri constructed a desingularization

πS : S → M0

which restricts to an isomorphism on ρ−1
S (Ms

0 ) where Ms
0 denotes the open subset

of stable bundles. In fact, this is constructed as the fine moduli space of a moduli
problem which we recall in this section. The main reference is [Ses82] Chapter 5
and [BS90].

Fix a point x0 ∈ X. Let E be a vector bundle of rank 4 and degree 0 on X and
0 6= s ∈ E∗

x0
be a parabolic structure with parabolic weights 0 < a1 < a2 < 1.

Lemma 2.1. ([Ses82] 5.III Lemma 5) There are real numbers a1, a2 such that for
any semistable parabolic bundle (E, s) of rank 4 and degree 0, we have

(1) (E, s) is stable
(2) E is a semistable vector bundle.

If we take sufficiently small a1 and a2, it is easy to see that the conditions of the
lemma are satisfied. Let us fix such a1, a2.

It is well-known from [MS80] that the moduli functor

(2.1) P : Var → Sets

which assigns to each variety T the set of equivalence classes of families of stable
parabolic bundles of rank 4 and degree 0 over X parameterized by T , is represented
by a smooth projective variety, which we denote by P . It turns out that Seshadri’s
desingularization S is a closed subvariety of P .

We need a few more facts from [Ses82] (Chapter 5, Propositions 7, 8, 9).

Proposition 2.2. Let E be a semistable vector bundle of rank 4 and degree 0 on
X. There is 0 6= s ∈ E∗

x0
such that the parabolic bundle (E, s) is stable if and only
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if for any line bundle L on X of degree 0 there is no injective homomorphism of
vector bundles

L⊕ L ↪→ E.

Proposition 2.3. Let (E, s) be a stable parabolic bundle of rank 4 and degree 0.
Then the algebra EndE of endomorphisms of the underlying vector bundle E has
dimension ≤ 4. Moreover, if the algebra EndE is isomorphic to the matrix algebra
M(2) of 2 × 2 matrices, then E ∼= F ⊕ F for a unique stable vector bundle F of
rank 2 and degree 0.

Proposition 2.4. Let (E1, s1), (E2, s2) be two stable parabolic bundles of rank 4,
degree 0 over X. Suppose dimEndE1 = dim EndE2 = 4. Then they are isomorphic
as parabolic bundles if and only if the underlying vector bundles E1 and E2 are
isomorphic.

Let S′ be the subset of P consisting of stable parabolic bundles (E, s) such
that EndE ∼= M(2) and detE is trivial. Then Proposition 2.3 says we have a map
S′ → Ms

0 from S′ to the set of stable vector bundles. By Proposition 2.4, this map is
injective. By Proposition 2.2, it is surjective as well. Seshadri’s desingularization S
of M0 is defined as the closure of S′ in P which is nonsingular by [BS90] Proposition
1. Furthermore, the morphism S′ → Ms

0 extends to a morphism πS : S → M0 such
that for each (E, s) ∈ S, grE ∼= F⊕F where F is the polystable bundle representing
the image of (E, s) in M0.

Fix a nonzero element e0 ∈ C4. Let A(2) be the set of elements in

Hom(C4 ⊗ C4,C4)

which gives us an algebra structure on C4 with the identity element e0. There is a
subset of A(2) which consists of algebra structures on C4, isomorphic to the matrix
algebra M(2). Let A2 be the closure of this subset. An element of A2 is called a
specialization of M(2). Obviously, there is a locally free sheaf W of OA2 -algebras
on A2 such that for every z ∈ A2, Wz⊗C is the specialization of M(2) represented
by z.

Let F be the subfunctor of the functor P (2.1) defined as follows. For each
variety T , F(T ) is the set of equivalence classes of families E → T × X of stable
parabolic bundles on X of rank 4 and degree 0 that satisfies the following property
(*):
for any t ∈ T there is a neighborhood T1 of t in T and a morphism f : T1 → A2

such that f∗W ∼= (pT )∗(EndE)|T1 as OT1-algebras where pT : T × X → T is the
projection to T .

Theorem 2.5. ([Ses82] Chapter 5, Theorem 15) The functor F is represented by
S.

The condition (*) can be weakened slightly by the following proposition.

Proposition 2.6. ([Ses82] Chapter 5, Proposition 1) Let T be a complex mani-
fold and B be a holomorphic vector bundle of rank 4 equipped with an OT algebra
structure. Suppose there is an open dense subset T ′ of T such that for each t ∈ T ′,
Bt ⊗ C is a specialization of M(2). Then for every t ∈ T , there is a neighborhood
T1 of t and a morphism f : T1 → A2 such that f∗W ∼= B|T1 .

To prove this, it suffices to consider any open set of T over which B is trivial.
But in this trivial case, the proposition is obvious.



DESINGULARIZATIONS OF MODULI SPACE 5

The singular locus of M0 is the Kummer variety K or the complement of Ms
0 ,

isomorphic to the quotient Jac0/Z2 of the Jacobian of degree 0 line bundles over X

by the involution L → L−1. There are 22g fixed points Z2g
2 = {[L⊕L−1] : L ∼= L−1}

and we have a stratification

(2.2) M0 = Ms
0 t (K− Z2g

2 ) t Z2g
2 .

On the other hand, Seshadri’s desingularization S is stratified by the rank of
the natural conic bundle on S ([Bal88] §3) and thus we have a filtration by closed
subvarieties

(2.3) S ⊃ S1 ⊃ S2 ⊃ S3

such that S − S1 = π−1
S (Ms

0 ) ∼= Ms
0 .

Proposition 2.7. ([BS90])
(1) The image πS(S1 − S2) is precisely the middle stratum K − Z2g

2 . In fact,
S1 − S2 is a Pg−2 × Pg−2 bundle over K− Z2g

2 .
(2) The image of S2 is precisely the deepest strata Z2g

2 and S2−S3 is the disjoint
union of 22g copies of a vector bundle of rank g−2 over the Grassmannian
Gr(2, g) while S3 is the disjoint union of 22g copies of the Grassmannian
Gr(3, g).

We end this section with the following proposition which is the key for our
construction of the morphism from Kirwan’s desingularization to Seshadri’s desin-
gularization.

Proposition 2.8. (1) Let E → T × X be a family of semistable holomorphic
vector bundles of rank 4 and degree 0 on X parameterized by a complex
manifold T . Assume the following:
(a) for any t ∈ T and any line bundle L of degree 0 on X, L ⊕ L is not

isomorphic to a subbundle of E|t×X

(b) there is an open dense subset T ′ of T such that End(E|t×X) ∼= M(2)
for any t ∈ T ′.

Then we have a holomorphic map τ : T → S.
(2) Suppose a holomorphic map τ : T → S is given. Suppose T is an open

subset of a nonsingular quasi-projective variety W on which a reductive
group G acts such that every point in W is stable and the (smooth) geomet-
ric quotient W/G exists. Furthermore, assume that there is an open dense
subset W ′ of W such that whenever t1, t2 ∈ T ∩W ′ are in the same orbit,
we have τ(t1) = τ(t2). Then τ factors through the (smooth) image T of T
in the quotient W/G, i.e. we have a continuous map T → S such that the
diagram

T
τ //

ÂÂ
??

??
??

? S

T

??¡¡¡¡¡¡¡

commutes.

Proof. (1) Let Et = E|t×X . For each t ∈ T , there is a parabolic structure 0 6= st ∈
(Et)∗x0

such that (Et, st) is a stable parabolic bundle by (a) and Proposition 2.2.
Hence we get a set-theoretic map τ : T → P . Moreover, by (b), a dense open subset
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of T is mapped to S′ and thus τ is actually a map into S. We show that this is in
fact holomorphic.

By Proposition 2.3, dim EndEt ≤ 4. Since dimEndEt is an upper semi-continuous
function of t, {t ∈ T | dim EndEt = 4} is a closed subset of T . But there is a dense
open subset in T where dim EndEt = 4 by (b). Hence, dim EndEt = 4 for all t ∈ T .
Consequently, (pT )∗End(E) is a locally free sheaf of OT -algebras of rank 4.

Since stability is an open property, there is a neighborhood T1 of t and s ∈
E|T1×x0 such that (Et′ , st′) is a stable parabolic bundle for every t′ ∈ T1. Therefore
(E|T1×X , s) is a family of stable parabolic bundles and (pT1)∗End(E|T1×X) is a
locally free sheaf of OT1-algebras. Hence by assumption (b) and Proposition 2.6,
we see that (E|T1×X , s) is a family of stable parabolic bundles satisfying (*) above.
By deformation theory, we have a linear map from the tangent space of T1 at t′ to
the deformation space of (Et′ , st′) which is isomorphic to the tangent space of P .
This is the derivative of τ at t′. So we see that τ is a holomorphic map from T1 to
S. Because we can find a covering of T by such open sets T1, we deduce that τ is
holomorphic.

(2) This is an easy consequence of the étale slice theorem. In particular, the
image T is an open subset of W/G in the usual complex topology. ¤

3. Kirwan’s desingularization

In this section we recall Kirwan’s desingularization from [Kir86b]. We refer to
[Kie03] for a very explicit description of this desingularization process for the genus
3 case.

Note that we have the decomposition (2.2). The idea is to blow up M0 along the
deepest strata Z2g

2 and then along the proper transform of the middle stratum K.
Let M1 denote the result of the first blow-up and M2 the second blow-up. Kirwan’s
partial desingularization is the projective variety M2 which we have to blow up one
more time to get the full desingularization K.

The moduli space M0 is constructed as the GIT quotient of a smooth quasi-
projective variety R, which is a subset of the space of holomorphic maps from the
Riemann surface to the Grassmannian Gr(2, p) of 2-dimensional quotients of Cp

where p is a large even number, by the action of G = SL(p). Over each point in the
deepest strata Z2g

2 there is a unique closed orbit in Rss. By deformation theory, the
normal space of the orbit at a point h, which represents L⊕ L−1 where L ∼= L−1,
is

(3.1) H1(End0(L⊕ L−1)) ∼= H1(O)⊗ sl(2)

where the subscript 0 denotes the trace-free part. According to Luna’s slice theo-
rem, there is a neighborhood of the point [L⊕ L−1] with L ∼= L−1, homeomorphic
to H1(O)⊗sl(2)//SL(2) since the stabilizer of the point h is SL(2) ([Kir86b] (3.3)).
More precisely, there is an SL(2)-invariant locally closed subvariety W in Rss con-
taining h and an SL(2)-equivariant morphism W → H1(O)⊗sl(2), étale at h, such
that we have a commutative diagram

(3.2) G×SL(2)

(
H1(O)⊗ sl(2)

)

²²

G×SL(2) W

²²

//oo Rss

²²

H1(O)⊗ sl(2)//SL(2) W//SL(2) //oo M0
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whose horizontal morphisms are all étale.
Next, we consider the middle stratum K−Z2g

2 . For each point, the normal space
to the unique closed orbit over it at a point h representing L⊕L−1 with L 6= L−1,
is isomorphic to

(3.3) H1(End0(L⊕ L−1)) ∼= H1(O)⊕H1(L2)⊕H1(L−2).

The stabilizer C∗ acts with weights 0, 2,−2 respectively on the components. Hence,
there is a neighborhood of the point [L⊕ L−1] ∈ K− Z2g

2 in M0, homeomorphic to

H1(O)
⊕ (

H1(L2)⊕H1(L−2)//C∗
)
.

Notice that H1(O) is the tangent space to K and hence

H1(L2)⊕H1(L−2)//C∗ ∼= C2g−2//C∗

is the normal cone. The GIT quotient of the projectivization PC2g−2 by the induced
C∗ action is Pg−2 × Pg−2 and the normal cone C2g−2//C∗ is obtained by collapsing
the zero section of the line bundle OPg−2×Pg−2(−1,−1).

Let H be a reductive subgroup of G = SL(p) and define Zss
H as the set of

semistable points in Rss fixed by H. Let R1 be the blow-up of Rss along the
smooth subvariety GZss

SL(2). Then by Lemma 3.11 in [Kir85], the GIT quotient

Rss
1 //G is the first blow-up M1 of M0 along GZss

SL(2)//G ∼= Z2g
2 . The C∗-fixed point

set in Rss
1 is the proper transform Z̃ss

C∗ of Zss
C∗ and the quotient of GZ̃ss

C∗ by G is
the blow-up K̃ of K along Z2g

2 . If we denote by R2 the blow-up of Rss
1 along the

smooth subvariety GZ̃ss
C∗ = G ×NC∗ Z̃ss

C∗ where NC∗ is the normalizer of C∗, the
GIT quotient Rss

2 //G is the second blow-up M2 again by Lemma 3.11 in [Kir85].
This is Kirwan’s partial desingularization of M0 (See §3 [Kir86b]).

The points with stabilizer greater than the center {±1} in Rss
2 is precisely the

exceptional divisor of the second blow-up and the proper transform ∆̃ of the subset
∆ of the exceptional divisor of the first blow-up, which corresponds, via Luna’s
slice theorem, to

SL(2)P{
(

0 b
c 0

)
| b, c ∈ H1(O)} ⊂ P(H1(O)⊗ sl(2)).

This is a simple exercise. Hence, if we blow up M2 along ∆̃//SL(2), we get a smooth
variety K, Kirwan’s desingularization.

4. Construction of the morphism

The goal of this section is to prove the following.

Theorem 4.1. There is a birational morphism

ρ : K → S

from Kirwan’s desingularization K to Seshadri’s desingularization S.

Since the desingularization morphisms

πK : K → M0, πS : S → M0

are both isomorphisms over Ms
0 , we have a rational map

ρ′ : K 99K S.
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By GAGA ([Har77] Appendix B, Ex.6.6), it suffices to find a holomorphic map
ρ : K → S that extends ρ′. By Riemann’s extension theorem [Mum76], it suffices
to show that ρ′ can be extended to a continuous map with respect to the usual
complex topology.

4.1. Points over the middle stratum. Let us first extend to points over the
middle stratum of M0. Let l = [L⊕ L−1] ∈ K− Z2g

2 ⊂ M0 and let Wl be the étale
slice of the unique closed orbit in Rss over l. By Luna’s slice theorem we have a
commutative diagram

(4.1) G×C∗ Nl

²²

G×C∗ Wl

²²

//oo Rss

²²

Nl//C∗ Wl//C∗ //oo M0

whose horizontal morphisms are all étale where G = SL(p) and

Nl = H1(End(L⊕ L−1)0) = H1(O)⊕H1(L2)⊕H1(L−2).

The slice Wl is a subvariety of Rss and the universal bundle over Rss ×X gives us
a vector bundle over Wl ×X. Since Wl → Nl is étale, this gives us a holomorphic
family F of semistable vector bundles over X parametrized by a neighborhood Ul

of 0 in Nl. The idea now is to modify F ⊕F to make it satisfy the assumptions of
Proposition 2.8.

The restriction of F to (Ul ∩H1(O))×X is a direct sum

L ⊕ L−1

where L is a line bundle coming from an étale map between H1(O) and the slice
in the Quot scheme for degree 0 line bundles.

To get Kirwan’s desingularization, we blow upNl along H1(O). Let πl : Ñl → Nl

be the blow-up map. Let Ũl = π−1
l (Ul) ∩ Ñ ss

l and Dl be the exceptional locus in
Ũl. Let F̃ and L̃ denote the pull-backs of F and L to Ũl and Dl respectively. Then
we have surjective morphisms

F̃ |Dl
→ L̃, F̃ |Dl

→ L̃−1.

Let F̃ ′ and F̃ ′′ be the kernels of

F̃ → F̃|Dl
→ L̃, F̃ → F̃|Dl

→ L̃−1

respectively. Define E = F̃ ′ ⊕ F̃ ′′ over Ũl ×X.

Lemma 4.2. The bundle E is a family of semistable vector bundles of rank 4 and
degree 0 over X parametrized by Ũl such that the assumptions of Proposition 2.8
are satisfied, i.e.

(1) For each t ∈ Ũl and L′ ∈ Pic0(X), L′ ⊕ L′ is not isomorphic to any
subbundle of E|t×X .

(2) E|(Ũl−Dl)×X
∼= (F̃ ⊕ F̃)|(Ũl−Dl)×X and there is an open dense subset of Ũl

where End(E|t×X) is a specialization of M(2).
(3) With respect to the action of C∗ on Ñl −Dl, if t1, t2 ∈ Ũl −Dl are in the

same orbit, then E|t1×X
∼= E|t2×X .
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Proof. Since Dl is a smooth divisor in Ũl, E is locally free of rank 4. Let (a, b, c) ∈
Nl = H1(O) ⊕ H1(L2) ⊕ H1(L−2). The weights of the C∗ action are 0, 2,−2
respectively. It is well-known (see [Kir86b, (2.5) (iv)]) that the bundle F|(a,b,c)×X

is stable if and only if the image of (a, b, c) in Rss is a stable point. This is equivalent
to saying that (a, b, c) is stable with respect to the C∗ action. Hence F|(a,b,c)×X is
stable if and only if b 6= 0 and c 6= 0.

Let t0 ∈ Ũl − Dl and πl(t0) = (a, b, c). This point has nothing to do with
the blow-up and the Hecke modification. Hence Ẽ |t0×X

∼= F ⊕ F|πl(t0)×X . The
unstable points in Ñl are the proper transform of {(a, b, c)|b = 0 or c = 0}. Since
t0 is (semi)stable, we have b 6= 0 and c 6= 0 which implies that F = F|πl(t0)×X is
stable. Therefore, End(F ⊕ F ) ∼= M(2) which proves (2).

For t1, t2 ∈ Ũl − Dl, Ẽ |tj×X
∼= F ⊕ F|πl(tj)×X (j = 1, 2). But F|πl(t1)×X

∼=
F|πl(t2)×X if and only if πl(t1) and πl(t2) are in the same orbit. This is equivalent
to t1 and t2 being in the same orbit since Ũl −Dl is isomorphic to the stable part
of Nl. So we proved (3).

Let us prove (1). For t ∈ Ũl−Dl, it is trivial since F̃ ′|t×X
∼= F̃ |t×X

∼= F|πl(t)×X

which is stable and the same is true for F̃ ′′.
Let C be a line in Nl given by a map C → Nl with z → (a, zb, zc) for a ∈

H1(O), 0 6= b ∈ H1(L2), 0 6= c ∈ H1(L−2). Note that any point in Dl is represented
by such a line. Let t be the point in Dl represented by C.

Let C0 = C ∩ Ul. By restricting Ul if necessary, we can find an open covering
{Vi} of X such that F|C0×Vi are all trivial. Fix a trivialization for each i and let
La = L|a×X . Since F|0×X

∼= La ⊕ L−1
a , the transition matrices are of the form

(
λij zbij

zcij λ−1
ij

)

where λij |z=0 is the transition for La. The cocycle condition tells us that

{λijbij |z=0}, {λ−1
ij cij |z=0}

are cocycles whose cohomology classes are nonzero because F|(a,zb,zc)×X is stable
for z 6= 0. Let F ′ be the kernel of F|C0×X → F|0×X

∼= La ⊕ L−1
a → La where

the first morphism is the restriction and the last is the projection. Define F ′′
as the kernel of F|C0×X → F|0×X

∼= La ⊕ L−1
a → L−1

a . Let F ′ = F ′|0×X and
F ′′ = F ′′|0×X . Then by construction, F̃ ′|t×X

∼= F ′ and F̃ ′′|t×X
∼= F ′′.

Any section of F ′ over C0 × Vi is of the form (zs1, s2). Because
(

s1

s2

)
←→

(
zs1

s2

)
7−→

(
λij zbij

zcij λ−1
ij

)(
zs1

s2

)
=

(
z(λijs1 + bijs2)
λ−1

ij s2 + z2cijs1

)
←→

(
λijs1 + bijs2

λ−1
ij s2 + z2cijs1

)

the transition for F ′ is (
λij bij

z2cij λ−1
ij

)
.

Hence F ′ fits into a short exact sequence

0 → La → F ′ → L−1
a → 0

whose extension class is given by {λijbij |z=0} which is nonzero. Hence, F ′ = F ′|z=0

is a nonsplit extension of L−1
a by La and similarly F ′′ = F ′′|z=0 is a nonsplit

extension of La by L−1
a . It is now an elementary exercise to show that E = F ′⊕F ′′
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does not have a subbundle isomorphic to L′ ⊕ L′ for any L′ ∈ Pic0(X). So we
proved (1). ¤

By Proposition 2.8, we have a holomorphic map from the image of Ũl in Ñ ss
l /C∗

to S. Since the image is open in the usual complex topology by the slice theorem,
this implies that ρ′ extends continuously to a neighborhood of the points in K lying
over l. Since ρ′ is defined on an open dense subset, there is at most one continuous
extension. Therefore, the extensions for various points l in the middle stratum
K − Z2g

2 are compatible and so ρ′ is extended to all the points in K except those
over the deepest strata Z2g

2 .

4.2. Points over the deepest strata. Let us next extend ρ′ to the points over
the deepest strata Z2g

2 . The exactly same argument applies to all the points in Z2g
2 ,

so we consider only the points in K over 0 = [O ⊕O]. Let W be the étale slice of
the unique closed orbit in Rss over [O ⊕O] ∈ M0. Let

N = H1(O)⊗ sl(2).

By Luna’s slice theorem, a neighborhood of [O⊕O] in M0 is analytically equivalent
to a neighborhood of the vertex 0 in the cone N//SL(2) from the diagram (3.2).
Hence a neighborhood of the preimage of [O⊕O] in K is biholomorphic to an open
set of the desingularization Ñ//SL(2), obtained as a result of three blow-ups from
N//SL(2), described below. Therefore it suffices to construct a holomorphic map
from a neighborhood Ṽ of the preimage of 0 in Ñ//SL(2) to S.

Let Σ be the subset of N defined by

SL(2){H1(O)⊗
(

1 0
0 −1

)
}.

Let π1 : N1 → N be the first blow-up in the partial desingularization process, i.e.
the blow-up at 0, and let D(1)

1 be the exceptional divisor. Recall that ∆ is the
subset of D(1)

1 defined as

SL(2)P{
(

0 b
c 0

)
| b, c ∈ H1(O)}.

Let Σ̃ be the proper transform of Σ in N1. Then the singular locus of N ss
1 //SL(2)

is the quotient of ∆ ∪ Σ̃ by SL(2). It is an elementary exercise to check that

(4.2) D(1)
1 ∩ Σ̃ = SL(2)P{H1(O)⊗

(
1 0
0 −1

)
} = ∆ ∩ Σ̃.

Let π2 : N2 → N1 be the second blow-up, i.e. the blow-up along Σ̃ and let D(2)
2

be the exceptional divisor. Let D(1)
2 be the proper transform of D(1)

1 . The singular
locus of N2//SL(2) is the quotient of the proper transform ∆̃ of ∆.

Finally let π3 : Ñ = N3 → N2 denote the blow-up of N2 along ∆̃ and let
D̃(3) = D(3)

3 be the exceptional divisor while D̃(1) = D(1)
3 , D̃(2) = D(2)

3 are the proper
transforms of D(1)

2 and D(2)
2 respectively. Let π : Ñ → N be the composition of the

three blow-ups. Also let D
(j)
i be the quotient of D(j)

i in Ni//SL(2) for 1 ≤ i ≤ 3
and 1 ≤ j ≤ i.

As in the middle stratum case, the pull-back of the universal bundle over Rss×X
to W ×X gives us a holomorphic family F of rank 2 semistable vector bundles over
X parametrized by an open neighborhood U of 0 in N . Let V be the image
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of U under the good quotient morphism N → N//SL(2). Then V is an open
neighborhood of 0. Let U1 = π−1

1 (U)∩N ss
1 and V1 be the image of U1 by the good

quotient morphism N1 → N1//SL(2). From the commutative diagram

N ss
1

//

π1

²²

N1//SL(2)

π1

²²

N // N//SL(2)

we see that V1 = π−1
1 (V ).

Let U2 = π−1
2 (U1)∩N ss

2 and V2 be the image of U2 in the quotient of N2. Then
we have V2 = π−1

2 (V1) where π2 : N2//SL(2) → N1//SL(2). Similarly, let Ũ =
π−1

3 (U2) ∩ Ñ ss and Ṽ be the image of Ũ in the quotient of Ñ . By construction, Ṽ

is smooth with simple normal crossing divisors D̃(1), D̃(2), D̃(3) where D̃(j) = D
(j)
3 .

To simplify our notation we denote the intersection of D̃(2) with Ṽ again by D̃(2).
Since we already extended ρ′ to the points over the middle stratum, we have a

holomorphic map ρ′ : Ṽ −(D̃(1)∪D̃(3)) → S and we have to extend it to ρ : Ṽ → S.

4.3. Points in D̃(1) − (D̃(2) ∪ D̃(3)). In this subsection, we extend ρ′ to points in
Ṽ that lies over the quotient of D(1)

1 − ∆ via π3 ◦ π2. Notice that D(1)
1 − ∆ does

not intersect with the blow-up centers of the second and third blow-up and hence
it remains unchanged.

Our strategy is again to modify the pull-back of F ⊕F to U1−∆∪ Σ̃ so that ρ′

extends to a holomorphic map near the quotient of D(1)
1 −∆ by Proposition 2.8.

Let F1 be the pull-back of F to U1 ×X via π1 × 1X . Then F1|D(1)
1 ×X

∼= O ⊕O
since F|0×X is trivial. Let F ′1 be the kernel of

F1 → F1|D(1)
1 ×X

∼= OD(1)
1 ×X

⊕OD(1)
1 ×X

→ OD(1)
1 ×X

where the second arrow is the projection onto the first component. Let F ′′1 be
defined similarly with the projection onto the second component. By computing
transition matrices as in the proof of Lemma 4.2, it is immediate that F ′1|t1×X and

F ′′1 |t1×X are nonsplit extensions of O by O if t1 =
[
a b
c −a

]
∈ PN = D(1)

1 with

b 6= 0 and c 6= 0 in H1(O).
Suppose t1 ∈ D(1)

1 −∆. Then a, b, c are linearly independent because otherwise
we can find g ∈ SL(2) such that gt1g

−1 is of the form

(4.3)
[
0 ∗
∗ 0

]
or

[∗ 0
∗ ∗

]
.

The first case belongs to ∆ while the second is unstable in Ñ and is deleted after
all. In particular, a, b, c are all nonzero and thus F ′1|t1×X and F ′′1 |t1×X are nonsplit
extensions of O by O whose extension classes are b, c respectively.

The inclusion F ′1 ↪→ F1 gives us a homomorphism F ′1|D(1)
1 ×X

→ F1|D(1)
1 ×X

∼=
O⊕O whose image is the second factor O and the kernel of this homomorphism is
O. Similarly, the trivial bundle OD(1)

1 ×X
is a subbundle of F ′′1 |D(1)

1 ×X
and we have

a diagonal embedding of OD(1)
1 ×X

into F ′1 ⊕F ′′1 |D(1)
1 ×X

. Let E1 be the kernel of

F ′1 ⊕F ′′1 → F ′1 ⊕F ′′1 |D(1)
1 ×X

→ F ′1 ⊕F ′′1 |D(1)
1 ×X

/OD(1)
1 ×X

.
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As in the proof of Lemma 4.2, introduce a local coordinate z of a suitable curve
passing through t0 and write the transition for F ′1 ⊕F ′′1 as

(4.4)




λij bij 0 0
z2cij λ−1

ij 0 0
0 0 λij z2bij

0 0 cij λ−1
ij




where λij = 1+zaij . Note that, when restricted to z = 0, the cocycles {aij}, {bij},
{cij} represent the classes a, b, c ∈ H1(O) respectively.

A local section of E1 as a subsheaf of F ′1⊕F ′′1 is of the form (s1, zs2, zs3, s1+zs4).
Because
(4.5)


s1

s2

s3

s4


 ↔




s1

zs2

zs3

s1 + zs4


 7→




λij bij 0 0
z2cij λ−1

ij 0 0
0 0 λij z2bij

0 0 cij λ−1
ij







s1

zs2

zs3

s1 + zs4




=




λijs1 + zbijs2

z2cijs1 + zλ−1
ij s2

z2bijs1 + zλijs3 + z3bijs4

zcijs3 + λ−1
ij s1 + zλ−1

ij s4


 ↔




λijs1 + zbijs2

zcijs1 + λ−1
ij s2

zbijs1 + λijs3 + z2bijs4
λ−1

ij −λij

z s1 − bijs2 + cijs3 + λ−1
ij s4


 ,

the transition for E1 is

(4.6)




λij zbij 0 0
zcij λ−1

ij 0 0
zbij 0 λij z2bij

−2aij −bij cij λ−1
ij


 .

Put z = 0 to see that the transition for E|t1×X is

(4.7)




1 0 0 0
0 1 0 0
0 0 1 0

−2aij |z=0 −bij |z=0 cij |z=0 1


 .

Hence we have a filtration by subbundles

(4.8) E|t1×X = E4 ⊃ E3 ⊃ E2 ⊃ E1 ⊃ E0 = 0

such that Ei+1/Ei
∼= OX . The extension E2 of O by E1

∼= O is nontrivial since
c 6= 0. An extension of O by E2 is parameterized by Ext1(O, E2) which fits in the
exact sequence

Hom(O,O) c // Ext1(O,O) // Ext1(O, E2) → Ext1(O,O)

and E3 is the image of b ∈ Ext1(O,O) ∼= H1(O) which is nonzero since b, c are
linearly independent. Hence E3 is a nonsplit extension. Similarly E4 is a nonsplit
extension since a, b, c are linearly independent. Hence (4.8) is the result of three
nonsplit extensions. This certainly implies that the condition (a) of Proposition 2.8
is satisfied for points in Ũ over D(1)

1 −∆. The other conditions of Proposition 2.8
(1), (2) are trivially satisfied and hence ρ′ extends to the points over the quotient
of the points over D(1)

1 −∆ as desired.
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4.4. Points in D̃(3) − D̃(2). We use the notation of §4.3. Suppose now t1 =[
a b
c −a

]
∈ ∆− Σ̃. Then a, b, c span 2-dimensional subspace of H1(O). The bundle

E1|t1×X in the previous subsection has transition matrices of the form (4.7). The
one dimensional space of linear relations of a, b, c gives rise to an embedding of O
into E1|t1×X . More generally, the family of linear relations of a, b, c gives us a line
bundle over ∆− Σ̃. Let L1 denote the pull-back of this line bundle to (∆− Σ̃)×X.
Then we have an embedding of L1 into E1|(∆−Σ̃)×X . Let E3 (resp. L3) be the
pull-back of E1 (resp. L1) to Ũ = U3 (resp. D̃(3) − D̃(2)).

Let Ẽ be the kernel of

E3| → E3|(D̃(3)−D̃(2))×X → E3|(D̃(3)−D̃(2))×X/L3.

We claim that Ẽ satisfies the conditions of Proposition 2.8 and hence ρ′ extends to
the quotient of D̃(3) − D̃(2).

For simplicity, let t1 be
[
0 b
c 0

]
∈ ∆ − Σ̃ with b, c linearly independent. (The

general case is obtained by conjugation.) Let t3 ∈ D̃(3) − D̃(2) be a (semi)stable
point lying over t1. Now we make local computations as in (4.5) and (4.6).

A point t3 ∈ D̃(3) represents a normal direction to ∆ at t1. Choose a local
parameter z of the direction such that z = 0 represents t1.

If t3 represents a normal direction of ∆ tangent to D̃(1), then from (4.7), the
transition of the restriction of E3 to the direction is of the form

(4.9)




1 0 0 0
0 1 0 0
0 0 1 0

−2zdij −bij cij 1




for some cocycle {dij} which gives rise to a nonzero class d ∈ H1(O) at z = 0 such
that d, b, c are linearly independent. In this case, the transition for Ẽ |t3×X is of the
form

(4.10)




1 0 0 0
0 1 0 0
0 0 1 0

−2dij |z=0 −bij |z=0 cij |z=0 1




by a local computation. Hence, the condition (1) of Proposition 2.8 is satisfied
because the bundle is obtained by three nonsplit extensions.

Suppose t3 represents the direction normal to D(1). Then we can use the same
curve we used in §4.3 and the transition of E3 is given by (4.6). More generally, the
transition of E3 restricted to the direction of any t3, not tangent to D(1), is of the
form

(4.11)




1 + zaij zbij 0 0
zcij 1− zaij 0 0
zbij 0 1 + zaij 0
−2zdij −bij cij 1− zaij




mod z2 for some cocycle {dij}. A local section of Ẽ is of the form (s1, zs2, zs3, zs4)
and by computing as in (4.5) starting with (4.11), we deduce that the transition
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for Ẽ |t3×X is of the form

(4.12)




1 0 0 0
cij |z=0 1 0 0
bij |z=0 0 1 0
−2dij |z=0 −bij |z=0 cij |z=0 1


 .

This implies that the bundle has a filtration by subbundles as in (4.8) obtained by
three nonsplit extensions. Hence Ẽ |t3×X satisfies the condition (1) of Proposition
2.8.

Because the other conditions of Proposition 2.8 are trivially satisfied on the
stable part of U , we deduce that the holomorphic map ρ′ extends to the quotient
of Ũ − D̃(2). So far, we extended ρ′ to the complement of the quotient of D̃(2) ∩
(D̃(1) ∪ D̃(3)) which consists of points lying over ∆ ∩ Σ̃.

4.5. Points in D̃(2) ∩ (D̃(1) ∪ D̃(3)). In this subsection, we finally extend ρ′ to
everywhere in K and finish the proof of Theorem 4.1. We use the notation of §4.2.
By the slice theorem, we have a map Ṽ → K, biholomorphic onto a neighborhood
of the preimage of [O ⊕O]. So it suffices to construct a holomorphic map Ṽ → S.

We have a commutative diagram

Ṽ
Â Ä //

α

²²

K

β

²²

V1
Â Ä // M1

where the vertical maps are blow-ups. We already constructed a holomorphic map

ν : Ṽ − α−1(∆ ∩ Σ̃//SL(2)) → S

Let x be any point in ∆∩ Σ̃//SL(2). From (4.2), x is represented by the orbit of[
a0 0
0 −a0

]
for some [a0] ∈ H1(X,O). The stabilizer of the point in SL(2) is C∗ and

the normal space Y to its orbit is isomorphic to Cg⊕C2g−2 where Cg is the tangent
space of the blow-up H̃1(O) = bl0H1(O) and C2g−2 ∼= H1(O)/Ca0 ⊕H1(O)/Ca0.

Obviously, a neighborhood Y1 of 0 in Y is holomorphically embedded into U1,
perpendicular to the SL(2)-orbit of the point [a0] and the vector bundle F1|Y1×X

has transition matrices of the form

(4.13)
(

1 + z1(a0
ij + aij) z1bij

z1cij 1− z1(a0
ij + aij)

)
.

Here a = {aij}, b = {bij}, c = {cij} are classes in H1(O), not parallel to a0 if

nonzero and z1 is the coordinate for the normal direction of PH1(O) in H̃1(O).
By Luna’s étale slice theorem, a neighborhood of the vertex of the cone Y//C∗

is analytically equivalent to a neighborhood of x in V1 or M1. Let Ỹ denote the
proper transform of Y1 in Ũ . Then the image of Ỹ in Ṽ is biholomorphic to a
neighborhood of α−1(x). Our goal is to construct a family of rank 4 bundles on
X parametrized by Ỹ satisfying the conditions of Proposition 2.8. Then we can
conclude that ν extends to α−1(x).
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Recall that we have a rank 2 bundle F1 over U1 ×X. Let FY1 = F1|Y1×X . Let
D(1)

Y1
be the divisor in Y1 given by z1 = 0. Then from (4.13) we see that

FY1 |D(1)
Y1
×X

∼= O ⊕O.

Let F ′Y1
(resp. F ′′Y1

) be the kernel of

FY1 → FY1 |D(1)
Y1
×X

∼= O ⊕O → O

where the last arrow is the projection onto the first (resp. second) component.
From a local computation as in §4.1, the transition matrices of F ′Y1

and F ′′Y1
are

respectively
(

1 + z1(a0
ij + aij) bij

z2
1cij 1− z1(a0

ij + aij)

)
,

(
1 + z1(a0

ij + aij) z2
1bij

cij 1− z1(a0
ij + aij)

)

In particular, F ′Y1
and F ′′Y1

restricted to

Σ̃Y1 = Y1 ∩ {b = c = 0} = Y1 ∩ (Cg ⊕ 0) ⊂ Cg ⊕ C2g−2 = Y

are given by transition matrices
(

1 + z1(a0
ij + aij) 0
0 1− z1(a0

ij + aij)

)

and thus
F ′Y1

|Σ̃Y1×X
∼= LY1 ⊕ L−1

Y1

for some line bundle LY1 over Σ̃Y1 ×X.
Let Y2 be the proper transform of Y1 in U2 by the blow-up (and subtraction of

unstable points) map U2 → U1. In other words, Y2 is the blow-up of Y1 along Σ̃Y1

with unstable points removed. Let z2 be the coordinate of the normal direction
of the exceptional divisor D(2)

Y2
at a point [b, c] over (z1, a). Let F ′2,0, F ′′2,0 be the

pull-back of F ′Y1
, F ′′Y1

to Y2 ×X respectively. Let LY2 denote the pull-back of LY1

to D(2)
Y2
×X.

Let F ′Y2
be the kernel of

F ′2,0 → F ′2,0|D(2)
Y2
×X

∼= LY2 ⊕ L−1
Y2
→ LY2

and F ′′Y2
be the kernel of

F ′′2,0 → F ′′2,0|D(2)
Y2
×X

∼= LY2 ⊕ L−1
Y2
→ L−1

Y2
.

Let D(1)
Y2

be the proper transform of D(1)
Y1

. By a local computation, it is easy to see
that the trivial bundle O is a subbundle of both F ′Y2

|D(1)
Y2
×X

and F ′′Y2
|D(1)

Y2
×X

as in

§4.3. Let EY2 be the kernel of

F ′Y2
⊕F ′′Y2

→ F ′Y2
⊕F ′′Y2

|D(1)
Y2
×X

→ F ′Y2
⊕F ′′Y2

|D(1)
Y2
×X

/O.

The inclusion EY2 ↪→ F ′Y2
⊕ F ′′Y2

induces EY2 |D(1)
Y2
×X

→ F ′Y2
⊕ F ′′Y2

|D(1)
Y2
×X

whose

image is the diagonal O. Hence EY2 |D(1)
Y2
×X

is a family of extensions of a line bundle

by rank 3 bundles. This extension splits along ∆̃∩Y2 so that we have an embedding
of O into EY2 |∆̃∩Y2×X .
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Note that Ỹ is the blow-up of Y2 along ∆̃ ∩ Y2 with unstable points removed.
Let EỸ be the pull-back of EY2 to Ỹ ×X and D(3)

Ỹ
be the exceptional divisor while

D(1)

Ỹ
and D(2)

Ỹ
denote the proper transforms of D(1)

Y2
and D(2)

Y2
respectively. Let Ẽ be

the kernel of
EỸ → EỸ |D(3)

Ỹ
×X

→ EỸ |D(3)
Ỹ
×X

/O
This is the desired family of semistable bundles of rank 4. Verifying that this
satisfies the conditions of Proposition 2.8 is a repetition of the computations in the
previous subsections and so we leave it to the reader.

5. Blowing down Kirwan’s desingularization

In this section we show that the morphism

ρ : K → S

constructed in section 4, is in fact the result of two contractions. In [OGr99],
O’Grady worked out such contractions for the moduli space of sheaves on a K3
surface. We follow O’Grady’s arguments to show that K can be contracted twice

(5.1) f : K
fσ // Kσ

fε // Kε

and these contractions are actually blow-downs. Then we show that the map ρ
factors through Kε, i.e.

(5.2) K
ρ

//

f
ÃÃ

BB
BB

BB
BB

S

Kε

ρε

>>}}}}}}}}

By Zariski’s main theorem, we will conclude that Kε
∼= S.

5.1. Contractions. Since the details are almost identical to section 3 of [OGr99],
we provide only the outline.

Let A (resp. B) be the tautological rank 2 (resp. rank 3) bundle over the
Grassmannian Gr(2, g) (resp. Gr(3, g)). Let W = sl(2)∨ be the dual vector space
of sl(2). Fix B ∈ Gr(3, g). Then the variety of complete conics CC(B) is the
blow-up

P(S2B) CC(B)
ΦBoo

Φ∨B // P(S2B∨)

of both of the spaces of conics in PB and PB∨ along the locus of rank 1 conics.

Proposition 5.1. (1) D̃(1) is the variety of complete conics CC(B) over Gr(3, g).
In other words, D̃(1) is the blow-up of the projective bundle P(S2B) along
the locus of rank 1 conics.

(2) There is an integer l such that

D̃(3) ∼= P(S2A)×Gr(2,g) P(Cg/A⊕O(l)).

Hence D̃(3) is a P2 × Pg−2 bundle over Gr(2, g).
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(3) The intersection D̃(1) ∩ D̃(3) is isomorphic to the fibred product

P(S2A)× P(Cg/A)

over Gr(2, g). As a subvariety of D̃(1), D̃(1)∩D̃(3) is the exceptional divisor
of the blow-up CC(B) → P(S2B∨).

(4) The intersection D̃(1) ∩ D̃(2) ∩ D̃(3) is isomorphic to

P(S2A)1 × P(Cg/A)

over Gr(2, g) where P(S2A)1 denotes the locus of rank 1 quadratic forms.
(5) The intersection D̃(1)∩D̃(2) is the exceptional divisor of the blow-up CC(B) →

P(S2B).

Proof. The proofs are identical to (3.1.1), (3.5.1), and (3.5.4) in [OGr99]. ¤

Next, we consider some rational curves to be contracted. Define the following
classes in N1(D̃(1)) (the group of numerical equivalence classes of 1-cycles)

σ := the class of lines in the fiber of Φ∨B

ε := the class of lines in the fiber of ΦB

γ := the class of {Φ−1
Bt

(qt)}t∈Λ

where {Bt} is a line Λ of 3-dimensional subspaces in Gr(3, g) containing a fixed
2-dimensional space A with q ∈ S2A and qt is the induced quadratic form on Bt.

To show that these form a basis of N1(D̃(1)) we consider the following diagram

D̃(1)
θ // P(S2B)

φ

²²

Gr(3, g)

where θ is the blow-up. Let h = c1(B∨), x = c1(OP(S2B)(1)) and e be the exceptional
divisor of θ. Then obviously h, x, e form a basis of N1(D̃(1)) which is dual to
N1(D̃(1)). By elementary computation, the intersection pairing is given by the
table

h x e
ε 0 0 −1
σ 0 1 2
γ 1 0 0

Hence, σ, ε, γ form a basis of N1(D̃(1)).

Lemma 5.2. (1) [D̃(1)]|CC(B) = −2x + e|CC(B) for B ∈ Gr(3, g).
(2) [D̃(2)]|D̃(1) = e

(3) [D̃(3)]|D̃(1) = 3x− 2h− 2e
(4) ΘD̃(1) = −(g − 4)h− 6x + 2e where ΘD̃(1) denotes the canonical divisor of

D̃(1).

The proofs are identical to those of (3.2.3) - (3.2.5), (3.4.3) with obvious modi-
fications.

Let σ̂ = ı∗σ, ε̂ = ı∗ε and γ̂ = ı∗γ where ı is the inclusion of D̃(1) into K.
By the above lemma, x, h, e are in the image of N1(K) by restriction. Hence,
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N1(K) → N1(D̃(1)) is surjective and dually ı∗ is injective. Consequently, σ̂, ε̂, γ̂
are linearly independent.

At this point, we can compute the discrepancy ωK − π∗ωM0 of the canonical
divisors ωK and ωM0 .

Proposition 5.3.

ωK − π∗ωM0 = (3g − 1)D̃(1) + (g − 2)D̃(2) + (2g − 2)D̃(3)

Proof. Obvious adaptation of the proof of (3.4.1) in [OGr99]. ¤

Corollary 5.4. For g ≥ 3, M0 has terminal singularities and the plurigenera are
all trivial.

Proof. It is well-known that ωM0 is anti-ample. Since the singularities are terminal,
π∗ωK = ωM0 . It follows from spectral sequence and Kodaira’s vanishing theorem
that H0(K, ω⊗m

K ) ∼= H0(M0, ω
⊗m
M0

) = 0 for m > 0. ¤

Finally we can show that K can be blown-down twice.

Proposition 5.5. (1) σ̂, ε̂ are ωK-negative extremal rays. For g > 3, γ̂ is also
ωK-negative extremal.

(2) The contraction Kσ of the ray R+σ̂ is a smooth projective desingularization
of M0. In fact, this is the contraction of the P(S2A)-direction of D̃(3). Since
the normal bundle is O(−1) up to tensoring a line bundle on P(Cg/A ⊕
O(l)), the contraction is a blow-down map.

(3) The image of ε̂ in N1(Kσ) is ωKσ -negative extremal ray and its contraction
Kε is a smooth projective desingularization of M0. This is the contraction
of the fiber direction of P(S2B∨) → Gr(3, g) and is also a blow-down map.

The proofs are same as those of (3.0.2)-(3.0.4) in [OGr99].

5.2. Factorization of ρ. Now we can show the following

Theorem 5.6. ρ factors through Kε and Kε
∼= S.

Proof. Let us consider the first contraction fσ : K → Kσ. We claim that there is
a continuous map ρσ : Kσ → S such that ρσ ◦ fσ = ρ. (See the diagram (5.2).)
By Riemann’s extension theorem [Mum76], it suffices to show that ρ is constant on
the fibers of fσ. From Proposition 5.1, we know fσ is the result of contracting the
fibers P2 of

D̃(3) = P(S2A)× P(Cg/A⊕O(l)) → P(Cg/A⊕O(l))

which amounts to forgetting the choice of b, c in the 2-dimensional subspace of
H1(O) spanned by b, c. We need only to check that the isomorphism classes of the
vector bundles given by (4.12) and (4.10) depend not on the particular choice of
b, c but only on the points in Pg−2-bundle P(Cg/A⊕O(l)) → P(Cg/A⊕O(l)) over
Gr(2, g).

From [BS90] Proposition 5, the isomorphism classes of bundles given by (4.12)
are parametrized by a vector bundle of rank g − 2 over Gr(2, g). In particular,
the isomorphism classes are independent of the choice of b, c. Hence the bundles
given by (4.12) are constant along the P(S2A)-direction. On the other hand, it is
elementary to show that a similar statement holds for the bundles given by (4.10).
Therefore, there exists a morphism ρσ : Kσ → S such that ρσ ◦ fσ = ρ.
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Next we show that ρσ factors through Kε. The morphism fε : Kσ → Kε is the
contraction of the fibers P5 of

P(S2B) → Gr(3, g)

and general points of a fiber give rise to a rank 4 bundle whose transition matrices
are of the form (4.7). It is elementary to show that the isomorphism classes of
the bundles given by (4.7) depend only on the 3-dimensional subspace spanned by
a, b, c. Hence ρσ is constant along the fibers of fε. By Riemann’s extension theorem
again, we get a morphism ρε : Kε → S such that ρε ◦ f = ρ.

From [Bal88, BS90], ρ(D̃(2)−D̃(1)∪D̃(3)) is a smooth divisor of S−ρ(D̃(1)∪D̃(3))
that lies over K− Z2g

2 . Hence, we have a morphism from S − ρ(D̃(1) ∪ D̃(3)) to the
blow-up of M0 − Z2g

2 along K − Z2g
2 which is isomorphic to K − D̃(1) ∪ D̃(3) =

Kε − f(D̃(1) ∪ D̃(3)) by construction. Hence, ρε is an isomorphism in codimension
one. Since Kε and S are both smooth, Zariski’s main theorem says Kε is isomorphic
to S. ¤

Conjecture 5.7. The intermediate variety Kσ is the Narasimhan-Ramanan desin-
gularization.

We hope to get back to this conjecture in the future.

6. Cohomological consequences

6.1. Cohomology of Seshadri’s desingularization. In [Bal88, BS90], Balaji
and Seshadri show the Betti numbers of Seshadri’s desingularization S can be com-
puted, up to degree ≤ 2g − 4. Thanks to the explicit description of S as the
blow-down of K, we can compute the Betti numbers in all degrees.

For a variety T , let

P (T ) =
∞∑

k=0

tk dim Hk(T )

be the Poincaré series of T . In [Kir85], Kirwan described an algorithm for the
Poincaré series of a partial desingularization of a good quotient of a smooth projec-
tive variety and in [Kir86b] the algorithm was applied to the moduli space without
fixing the determinant. For P (M2) we use Kirwan’s algorithm in [Kir85].

By [AB82] §11 and [Kir86a], it is well-known that the equivariant Poincaré series
PG(Rss) =

∑
k≥0 tk dim Hk

G(Rss) is

PG(Rss) =
(1 + t3)2g − t2g+2(1 + t)2g

(1− t2)(1− t4)

up to degrees as high as we want. In order to get Rss
1 we blow up Rss along GZss

SL(2)

and delete the unstable strata. So we get

PG(Rss
1 ) = PG(Rss) + 22g

( t2 + t4 + · · ·+ t6g−2

1− t4
− t4g−2(1 + t2 + · · ·+ t2g−2)

1− t2
)
.

Now Rss
2 is obtained by blowing up Rss

1 along GZ̃ss
C∗ and deleting the unstable

strata. Thus we have
(6.1)
PG(Rss

2 ) = PG(Rss
1 ) +(t2 + t4 + · · ·+ t4g−6)

(
1
2

(1+t)2g

1−t2 + 1
2

(1−t)2g

1+t2 + 22g t2+···+t2g−2

1−t4

)

− t2g−2(1+t2+···+t2g−4)
1−t2

(
(1 + t)2g + 22g(t2 + t4 + · · ·+ t2g−2)

)
.
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Because the stabilizers of the G action on Rss
2 are all finite, we have

H∗
G(Rss

2 ) ∼= H∗(Rss
2 /G) = H∗(M2)

and hence we deduce that

(6.2)

P (M2) = (1+t3)2g−t2g+2(1+t)2g

(1−t2)(1−t4)

+22g
(

t2+t4+···+t6g−2

1−t4 − t4g−2(1+t2+···+t2g−2)
1−t2

)

+(t2 + t4 + · · ·+ t4g−6)
(

1
2

(1+t)2g

1−t2 + 1
2

(1−t)2g

1+t2 + 22g t2+···+t2g−2

1−t4

)

− t2g−2(1+t2+···+t2g−4)
1−t2

(
(1 + t)2g + 22g(t2 + t4 + · · ·+ t2g−2)

)
.

Kirwan’s desingularization is the blow-up of M2 along ∆̃//SL(2) which is isomorphic
to the 22g copies of P(S2A) over Gr(2, g). Hence,

P (K) = P (M2) + 22g(1 + t2 + t4)P (Gr(2, g))(t2 + t4 + · · ·+ t2g−4)

by [GH78] p. 605.1

On the other hand, K is the blow-up of Kσ along a Pg−2-bundle over Gr(2, g).
Hence,

P (Kσ) = P (K)− 22g(1 + t2 + · · ·+ t2g−4)P (Gr(2, g))(t2 + t4)
= P (M2) + 22gP (Gr(2, g)) t6−t2g−2

1−t2 .

Similarly, Kσ is the blow-up of Kε along a Gr(3, g) and thus

P (Kε) = P (Kσ)− 22gP (Gr(3, g))(t2 + · · ·+ t10)
= P (M2) + 22gP (Gr(2, g)) t6−t2g−2

1−t2 − 22gP (Gr(3, g))(t2 + · · ·+ t10).

Since Kε is isomorphic to Seshadri’s desingularization, we get

P (S) = (1+t3)2g−t2g+2(1+t)2g

(1−t2)(1−t4)

+22g
(

t2+t4+···+t6g−2

1−t4 − t4g−2(1+t2+···+t2g−2)
1−t2

)

+(t2 + t4 + · · ·+ t4g−6)
(

1
2

(1+t)2g

1−t2 + 1
2

(1−t)2g

1+t2 + 22g t2+···+t2g−2

1−t4

)

− t2g−2(1+t2+···+t2g−4)
1−t2

(
(1 + t)2g + 22g(t2 + t4 + · · ·+ t2g−2)

)

+22gP (Gr(2, g)) t6−t2g−2

1−t2 − 22gP (Gr(3, g))(t2 + · · ·+ t10).

By Schubert calculus [GH78], we have

P (Gr(2, g)) =
(1− t2g)(1− t2g−2)

(1− t2)(1− t4)

P (Gr(3, g)) =
(1− t2g)(1− t2g−2)(1− t2g−4)

(1− t2)(1− t4)(1− t6)
and hence we obtained a closed formula for the Poincaré polynomial of S.

In [BS90], an algorithm for the Betti numbers only up to degree 2g−4 is provided.
It is an elementary exercise to check that in this range, their answer is identical to
ours.

1The formula in [GH78] is stated for smooth manifolds. But the same Mayer-Vietoris argument
gives us the same formula in our case (of orbifold M2 blown up along a smooth subvariety). The
only thing to be checked is that the pull-back homomorphism H∗(M2) → H∗(K) is injective but
this clearly holds by the decomposition theorem of Beilinson, Bernstein, Deligne and Gabber.
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6.2. The stringy E-function. The stringy E-function is an invariant of singular
varieties introduced by Batyrev, Denef and Loeser, based on the suggestions by
Kontsevich. In [Kie03], the stringy E-function of M0 was computed for g = 3 by
using the observation that the singularities are hypersurface singularities in this
case.2 In this subsection, we compute the stringy E-function of M0 for arbitrary
genus. For the definition and some basic facts on the stringy E-functions, see the
introduction of [Kie03].

Since the discrepancy divisor is given by Proposition 5.3, our goal is to compute

Est(M0) = E(Ms
0 ) + E(D̃(1)

0 ) uv−1
(uv)3g−1 + E(D̃(2)

0 ) uv−1
(uv)g−1−1 + E(D̃(3)

0 ) uv−1
(uv)2g−1−1

+E(D̃(1,2)
0 ) uv−1

(uv)3g−1
uv−1

(uv)g−1−1 + E(D̃(2,3)
0 ) uv−1

(uv)g−1−1
uv−1

(uv)2g−1−1

+E(D̃(1,3)
0 ) uv−1

(uv)3g−1
uv−1

(uv)2g−1−1 + E(D̃(1,2,3)
0 ) uv−1

(uv)3g−1
uv−1

(uv)g−1−1
uv−1

(uv)2g−1−1

where D̃
(I)
0 = ∩i∈ID̃

(i) − ∪j /∈ID̃
(j) for I ⊂ {1, 2, 3} and E denotes the Hodge-

Deligne polynomal.
The E-function of the smooth part is from [Kie03] §4,

E(Ms
0 ) = E(M2)− E(D(1)

2 )− E(D(2)
2 −D

(1)
2 )

= (1−u2v)g(1−uv2)g−(uv)g+1(1−u)g(1−v)g

(1−uv)(1−(uv)2)

− 1
2 ( (1−u)g(1−v)g

1−uv + (1+u)g(1+v)g

1+uv ).

By Proposition 5.1, D̃
(1)
0 = D̃(1) − (D̃(2) ∪ D̃(3)) is the union of 22g copies of

P5 − P2 ×Z2 P2-bundle over Gr(3, g) and thus

E(D̃(1)
0 )

uv − 1
(uv)3g − 1

= 22g((uv)5 − (uv)2)E(Gr(3, g))
uv − 1

(uv)3g − 1
.

Since D̃
(2)
0 is the quotient of a Pg−2×Pg−2-bundle over Jac0−Z2g

2 by the action
of Z2, the E-function of D̃

(2)
0 is

E(D̃(2)
0 ) uv−1

(uv)g−1−1

=
(

1
2 (1− u)g(1− v)g + 1

2 (1 + u)g(1 + v)g − 22g
)
E(Pg−2 × Pg−2)+ uv−1

(uv)g−1−1

+
(

1
2 (1− u)g(1− v)g − 1

2 (1 + u)g(1 + v)g
)
E(Pg−2 × Pg−2)− uv−1

(uv)g−1−1

where

E(Pg−2 × Pg−2)+ =
((uv)g − 1)((uv)g−1 − 1)

(uv − 1)((uv)2 − 1)
is the E-polynomial of the Z2-invariant part of H∗(Pg−2 × Pg−2) and

E(Pg−2 × Pg−2)− = uv
((uv)g−1 − 1)((uv)g−2 − 1)

(uv − 1)((uv)2 − 1)
is the E-polynomial of the anti-invariant part.

By Proposition 5.1, D̃
(3)
0 is the union of 22g copies of a (P2×Pg−2−P2×Pg−3 ∪

P1 × Pg−2)-bundle over Gr(2, g) and thus

E(D̃(3)
0 )

uv − 1
(uv)2g−1 − 1

= 22g(uv)gE(Gr(2, g))
uv − 1

(uv)2g−1 − 1
.

2There is a small error in [Kie03] page 1852. In line -3, α1 should be replaced by α2
7 and thus

in line -1, the discrepancy divisor is 8D1 + D2 + 4D3 (cf. Proposition 5.3). The computation in
[Kie03] §7 should be accordingly modified. The correct formula for any g ≥ 3 is proved in this
paper (Theorem 6.1).
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Notice that D̃
(1,2)
0 is the disjoint union of 22g copies of a (P2 − P1)× P2-bundle

over Gr(3, g) and thus

E(D̃(1,2)
0 )

uv − 1
(uv)3g − 1

uv − 1
(uv)g−1 − 1

= 22g((uv)2+(uv)3+(uv)4)E(Gr(3, g))
uv − 1

(uv)3g − 1
uv − 1

(uv)g−1 − 1
.

Also, D̃
(1,3)
0 is a (P2 − P1)× Pg−3-bundle over Gr(2, g) and thus

E(D̃(1,3)
0 )

uv − 1
(uv)3g − 1

uv − 1
(uv)2g−1 − 1

= 22g(uv)2
(uv)g−2 − 1

uv − 1
E(Gr(2, g))

uv − 1
(uv)3g − 1

uv − 1
(uv)2g−1 − 1

.

Finally, a component of D̃
(2,3)
0 is a P1 × (Pg−2 − Pg−3)-bundle over Gr(2, g) and

a component of D̃
(1,2,3)
0 is a P1 × Pg−3-bundle over Gr(2, g). Therefore,

E(D̃(2,3)
0 )

uv − 1
(uv)g−1 − 1

uv − 1
(uv)2g−1 − 1

= 22g(1+uv)(uv)g−2E(Gr(2, g))
uv − 1

(uv)g−1 − 1
uv − 1

(uv)2g−1 − 1

and

E(D̃(1,2,3)
0 ) uv−1

(uv)3g−1
uv−1

(uv)g−1−1
uv−1

(uv)2g−1−1

= 22g(1 + uv) (uv)g−2−1
uv−1 E(Gr(2, g)) uv−1

(uv)3g−1
uv−1

(uv)g−1−1
uv−1

(uv)2g−1−1 .

Recall that

E(Gr(2, g)) =
((uv)g − 1)((uv)g−1 − 1)

(uv − 1)((uv)2 − 1)

E(Gr(3, g)) =
((uv)g − 1)((uv)g−1 − 1)((uv)g−2 − 1)

(uv − 1)((uv)2 − 1)((uv)3 − 1)
.

Putting together all the pieces above, we get

Theorem 6.1.

Est(M0) = (1−u2v)g(1−uv2)g−(uv)g+1(1−u)g(1−v)g

(1−uv)(1−(uv)2)

− (uv)g−1

2

( (1−u)g(1−v)g

1−uv − (1+u)g(1+v)g

1+uv

)
.

Remark 6.2. It is well-known that the middle perversity intersection cohomology
of M0 is equipped with a Hodge structure and hence it makes sense to think about
the E-polynomial of the intersection cohomology. The computation of the Poincaré
polynomial of IH∗(M0) in [Kir86b] can be easily refined as in [EK00] to give the
E-polynomial of IH∗(M0)

IE(M0) = (1−u2v)g(1−uv2)g−(uv)g+1(1−u)g(1−v)g

(1−uv)(1−(uv)2)

− (uv)g−1

2

( (1−u)g(1−v)g

1−uv + (−1)g−1 (1+u)g(1+v)g

1+uv

)
.

See also [Kiem]. Quite surprisingly, when g is even, Est(M0) is identical to the E-
polynomial of the middle perversity intersection cohomology of M0. This indicates
that there may be an unknown relation between the stringy E-function and the
intersection cohomology. When g is odd, Est(M0) is not a polynomial.

Corollary 6.3. The stringy Euler number of M0 is

est(M0) := lim
u,v→1

Est(M0) = 4g−1.
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Let eg be the stringy Euler number of the moduli space M0 for a genus g curve.
When g = 2, M0

∼= P3 and so e2 = 4. Therefore the equality

∑
g

egq
g =

1
4

1
1− 4q

holds for degree ≥ 2. The coefficient 1
4 might be related to the “mysterious”

coefficient 1
4 for the S-duality conjecture test in the K3 case in [VW94].
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