ON THE EXISTENCE OF A SYMPLECTIC DESINGULARIZATION OF SOME MODULI SPACES OF SHEAVES ON A K3 SURFACE

YOUNG-HOON KIEM

1. Introduction

Let X be a projective K3 surface with generic polarization $\mathcal{O}_X(1)$ and let $M_c = M(2,0,c)$ be the moduli space of semistable torsion-free sheaves on X of rank 2, with Chern classes $c_1 = 0$ and $c_2 = c$. When $c = 2n \ge 4$ is even, M_c is a singular projective variety. Recently O'Grady raised the following question ([OGr99] 0.1).

Question 1.1. Does there exist a symplectic desingularization of M_{2n} ?

In [OGr99], he analyzes Kirwan's desingularization \widehat{M}_c of M_c and proves that \widehat{M}_c can be blown down twice and that as a result he gets a symplectic desingularization \widehat{M}_c of M_c in the case when c=4. This turns out to be a new irreducible symplectic variety.

When $c \geq 6$, O'Grady conjectures that there is no smooth symplectic model of M_c ([OGr99] page 50). The purpose of this paper is to provide a partial answer to Question 1.1.

Theorem 1.2. There is no symplectic desingularization of M_{2n} if $\frac{n a_n}{2n-3}$ is not an integer where a_n is the Euler number of the Hilbert scheme $X^{[n]}$ of n points in X.

It is well-known that a_n is given by the equation

$$\sum_{n=0}^{\infty} a_n q^n = \prod_{n=1}^{\infty} 1/(1 - q^n)^{24}.$$

By direct computation, one can check that $\frac{n a_n}{2n-3}$ is not an integer for $n = 5, 6, 8, 11, 12, 13, 15, 16, 17, 18, 19, <math>20, \cdots$.

The idea of the proof is to use properties of the stringy Euler numbers. If there is an irreducible symplectic desingularization \widetilde{M}_c of M_c , then the stringy Euler number of M_c is equal to the ordinary Euler number of \widetilde{M}_c because the canonical divisors of both \widetilde{M}_c and M_c are trivial (Theorem 2.2). In particular, we deduce that the stringy Euler number $e_{st}(M_c)$ must be an integer. Therefore, Theorem 1.2 is a consequence of the following.

Proposition 1.3. The stringy Euler number $e_{st}(M_{2n})$ is of the form

$$\frac{n a_n}{2n-3} + integer.$$

²⁰⁰⁰ Mathematics Subject Classification. 14H60, 14F25, 14F42.

Key words and phrases. irreducible symplectic variety, moduli space, sheaf, K3 surface, desingularization.

Partially supported by KOSEF R01-2003-000-11634-0 and KRF 2003-070-C00001.

We prove this proposition in section 3 after a brief review of preliminaries.

One motivation for Question 1.1 is to find a mathematical interpretation of Vafa-Witten's formula ([VW94] 4.17) which says that the "Euler characteristic" of M_{2n} is

$$e^{VW}(M_{2n}) = a_{4n-3} + \frac{1}{4}a_n.$$

Because $k/4 \neq l/(2n-3)$ for $1 \leq k \leq 3, 1 \leq l < 2n-3$, we deduce the following from Proposition 1.3.

Corollary 1.4. The stringy Euler number $e_{st}(M_{2n})$ is not Vafa-Witten's Euler characteristic $e^{VW}(M_{2n})$ in general.

Independently, Kaledin and Lehn in [KaL04] prove that there is no symplectic desingularization of M_{2n} for any $n \geq 3$ by a very different method.

It is my great pleasure to express my gratitude to Professor Jun Li for useful discussions and to Jaeyoo Choy for motivating questions.

2. Preliminaries

In this section, we recall the definition and basic facts about stringy Euler numbers. The references are [Bat98, DL99].

Let W be a variety with at worst log-terminal singularities, i.e.

- W is \mathbb{Q} -Gorenstein
- for a resolution of singularities $\rho: V \to W$ such that the exceptional locus of ρ is a divisor D whose irreducible components D_1, \dots, D_r are smooth divisors with only normal crossings, we have

$$K_V = \rho^* K_W + \sum_{i=1}^r a_i D_i$$

with $a_i > -1$ for all i, where D_i runs over all irreducible components of D. The divisor $\sum_{i=1}^{r} a_i D_i$ is called the *discrepancy divisor*.

For each subset $J\subset I=\{1,2,\cdots,r\}$, define $D_J=\cap_{j\in J}D_j,\ D_\emptyset=Y$ and $D_J^0=D_J-\cup_{j\in I-J}D_j$. Then the stringy E-function of W is defined by

(2.1)
$$E_{st}(W; u, v) = \sum_{J \subset I} E(D_J^0; u, v) \prod_{j \in J} \frac{uv - 1}{(uv)^{a_j + 1} - 1}$$

where

$$E(Z;u,v) = \sum_{p,q} \sum_{k \geq 0} (-1)^k h^{p,q} (H_c^k(Z;\mathbb{C})) u^p v^q$$

is the Hodge-Deligne polynomial for a variety Z. Note that the Hodge-Deligne polynomials have

- the additive property: E(Z;u,v)=E(U;u,v)+E(Z-U;u,v) if U is a smooth open subvariety of Z
- the multiplicative property: E(Z; u, v) = E(B; u, v) E(F; u, v) if Z is a locally trivial F-bundle over B.

Definition 2.1. The stringy Euler number is defined as

(2.2)
$$e_{st}(W) = \lim_{u,v\to 1} E_{st}(W; u, v) = \sum_{J\subset I} e(D_J^0) \prod_{j\in J} \frac{1}{a_j + 1}$$

where $e(D_J^0) = E(D_J^0; 1, 1)$.

The "change of variable formula" (Theorem 6.27 in [Bat98], Lemma 3.3 in [DL99]) implies that the function E_{st} is independent of the choice of a resolution and the following holds.

Theorem 2.2. ([Bat98] Theorem 3.12) Suppose W is a \mathbb{Q} -Gorenstein algebraic variety with at worst log-terminal singularities. If $\rho: V \to W$ is a crepant desingularization (i.e. $\rho^*K_W = K_V$) then $E_{st}(W; u, v) = E(V; u, v)$. In particular, $e_{st}(W) = e(V)$ is an integer.

3. Proof of Proposition 1.3

We fix a generic polarization of X as in [OGr99] page 50. The moduli space M_{2n} has a stratification

$$M_{2n} = M_{2n}^s \sqcup (\Sigma - \Omega) \sqcup \Omega$$

where M_{2n}^s is the locus of stable sheaves and

$$\Sigma \cong (X^{[n]} \times X^{[n]})/\text{involution}$$

is the locus of sheaves of the form $I_Z \oplus I_{Z'}$ ($[Z], [Z'] \in X^{[n]}$) while

$$\Omega \cong X^{[n]}$$

is the locus of sheaves $I_Z \oplus I_Z$. Kirwan's desingularization $\rho: \widehat{M}_{2n} \to M_{2n}$ is obtained by blowing up M_c first along the deepest stratum Ω , next along the proper transform of the middle stratum Σ and finally along the proper transform of a subvariety Δ in the exceptional divisor of the first blow-up which is the locus of \mathbb{Z}_2 quotient singularities [Kir85]. This is indeed a desingularization by [OGr99] Proposition 1.8.3.

Let $D_1 = \widehat{\Omega}$, $D_2 = \widehat{\Sigma}$, $D_3 = \widehat{\Delta}$ be the (proper transforms of the) exceptional divisors of the three blow-ups. Then they are smooth divisors with only normal crossings and the discrepancy divisor of $\rho : \widehat{M}_{2n} \to M_{2n}$ is ([OGr99] 6.1)

$$(6n-7)D_1 + (2n-4)D_2 + (4n-6)D_3$$
.

Therefore the singularities are terminal for $n \geq 2$ and from (2.2) the stringy Euler number of M_{2n} is given by

$$(3.1) \begin{array}{c} e(M_{2n}^s) + e(D_1^0) \frac{1}{6n-6} + e(D_2^0) \frac{1}{2n-3} + e(D_3^0) \frac{1}{4n-5} \\ + e(D_{12}^0) \frac{1}{6n-6} \frac{1}{2n-3} + e(D_{23}^0) \frac{1}{2n-3} \frac{1}{4n-5} \\ + e(D_{13}^0) \frac{1}{6n-6} \frac{1}{4n-5} + e(D_{123}^0) \frac{1}{6n-6} \frac{1}{2n-3} \frac{1}{4n-5} \end{array}.$$

We need to compute the (virtual) Euler numbers of D_J^0 for $J \subset \{1,2,3\}$. Let (E,ω) be a symplectic vector space of dimension c=2n. Let $\mathrm{Gr}^{\omega}(k,c)$ be the Grassmannian of k dimensional subspaces of E isotropic with respect to the symplectic form ω (i.e. the restriction of ω to the subspace is zero).

Lemma 3.1. For $k \le n$, the Euler number of $Gr^{\omega}(k, 2n)$ is $2^{k} \binom{n}{k}$.

Proof. Consider the incidence variety

$$\{(a,b) \in \operatorname{Gr}^{\omega}(k-1,2n) \times \operatorname{Gr}^{\omega}(k,2n) \mid a \subset b\}.$$

This is a $\mathbb{P}^{2n-2k+1}$ -bundle over $\operatorname{Gr}^{\omega}(k-1,2n)$ and a \mathbb{P}^{k-1} -bundle over $\operatorname{Gr}^{\omega}(k,2n)$. The formula follows from an induction on k.

Let $\hat{\mathbb{P}}^5$ be the blow-up of \mathbb{P}^5 (projectivization of the space of 3×3 symmetric matrices) along \mathbb{P}^2 (the locus of rank 1 matrices). We have the following from [OGr99] §6 and [OGr97] §3.

Proposition 3.2. (1) D_1 is a $\hat{\mathbb{P}}^5$ -bundle over a $Gr^{\omega}(3,2n)$ -bundle over $X^{[n]}$.

- (2) D_0^0 is a \mathbb{P}^{2n-4} -bundle over a \mathbb{P}^{2n-3} -bundle over $(X^{[n]} \times X^{[n]} X^{[n]})$ /involution.
- (3) D_3^2 is a $\mathbb{P}^{2n-4} \times \mathbb{P}^2$ -bundle over a $\operatorname{Gr}^{\omega}(2,2n)$ -bundle over $X^{[n]}$.
- (4) $D_1 \cap D_2$ is a $\mathbb{P}^2 \times \mathbb{P}^2$ -bundle over $\operatorname{Gr}^{\omega}(3,2n)$ -bundle over $X^{[n]}$.
- (5) $D_2 \cap D_3$ is a $\mathbb{P}^{2n-4} \times \mathbb{P}^1$ -bundle over a $\operatorname{Gr}^{\omega}(2,2n)$ -bundle over $X^{[n]}$.
- (6) $D_1 \cap D_3$ is a $\mathbb{P}^2 \times \mathbb{P}^{2n-5}$ -bundle over a $\operatorname{Gr}^{\omega}(2,2n)$ -bundle over $X^{[n]}$. (7) $D_1 \cap D_2 \cap D_3$ is a $\mathbb{P}^1 \times \mathbb{P}^{2n-5}$ -bundle over a $\operatorname{Gr}^{\omega}(2,2n)$ -bundle over $X^{[n]}$.

For instance, (1) is just Proposition 6.2 of [OGr99] and (2) is Proposition 3.3.2 of [OGr97] while (3) is Lemma 3.5.4 in [OGr97].

From Proposition 3.2 and Lemma 3.1, we have the following by the additive and multiplicative properties of the (virtual) Euler numbers:

$$\begin{array}{ll} e(D_1^0) = 0, & e(D_2^0) = (2n-3)(2n-2)\frac{1}{2}(a_n^2 - a_n), \\ e(D_3^0) = 2^2\binom{n}{2}\,a_n, & e(D_{12}^0) = 3\cdot 2^3\binom{n}{3}\,a_n \\ e(D_{123}^0) = 2\cdot 2^2\binom{n}{2}\,a_n, & e(D_{13}^0) = (2n-4)2^2\binom{n}{2}\,a_n \\ e(D_{123}^0) = 2(2n-4)2^2\binom{n}{2}\,a_n & . \end{array}$$

Hence from the formula (3.1), the stringy Euler number of M_{2n} is given by

$$e_{st}(M_{2n}) = e(M_{2n}^s) + (n-1)(a_n^2 - a_n) + n\frac{2n-2}{2n-3}a_n = \frac{n a_n}{2n-3} + \text{ integer}$$

since $e(M_{2n}^s)$ is an integer. So we proved Proposition 1.3.

Remark 3.3. For the moduli space of rank 2 bundles over a smooth projective curve, the stringy E-function and the stringy Euler number are computed in [Kie03] and [KL04].

References

- [Bat98] V. Batyrev. Stringy Hodge numbers of varieties with Gorenstein canonical singularities. In Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), 1998. Pages 1-32.
- [DL99] J. Denef and F. Loeser. Germs of arcs on singular varieties and motivic integration. Invent. Math. 135, no 1, 1999. Pages 201-232.
- D. Kaledin and M. Lehn. Local structure of hyperkaehler singularities in O'Grady's [KaL04] examples. Preprint, math.AG/0405575.
- [Kie03] Y.-H. Kiem. The stringy E-function of the moduli space of rank 2 bundles over a Riemann surface of genus 3. Trans. Amer. Math. Soc. 355 (2003), no. 5, 1843-1856
- [KL04] Y.-H. Kiem and J. Li. Desingularizations of the moduli space of rank 2 bundles over a curve. To appear in Mathematische Annalen, math.AG/0402447.
- [Kir85] F. Kirwan. Partial desingularisations of quotients of nonsingular varieties and their Betti numbers. Annals of Mathematics, 122:41–85, 1985.
- [OGr99] K.G. O'Grady. Desingularized moduli spaces of sheaves on a K3. J. Reine Angew. Math. 512 (1999), 49–117.
- K.G. O'Grady. Desingularized moduli spaces of sheaves on a K3. alg-geom/9708009. [OGr97]
- [VW94] C. Vafa and E. Witten. A strong coupling test of S-duality. Nuclear Phys. B 431 (1994),

Department of Mathematics, Seoul National University, Seoul 151-747, Korea E-mail address: kiem@math.snu.ac.kr