
SCIENCE CHINA
Mathematics

. ARTICLES . August 2011 Vol. 54 No. 8: 1679–1706

doi: 10.1007/s11425-011-4258-x

c© Science China Press and Springer-Verlag Berlin Heidelberg 2011 math.scichina.com www.springerlink.com

Low degree GW invariants of surfaces II
To Fabrizio Catanese on the Occasion of his 60th Birthday

KIEM Young-Hoon1 & LI Jun2,∗

1Department of Mathematics and Research Institute of Mathematics,
Seoul National University, Seoul 151-747, Korea;

2Department of Mathematics, Stanford University, Stanford, USA
Email: kiem@math.snu.ac.kr, jli@math.stanford.edu

Received March 22, 2011; accepted May 10, 2011; published online July 14, 2011

Abstract We prove a conjectural formula of Maulik-Pandharipande on the degree one and two GW invariants

of a surface with a smooth canonical divisor. We use the method of degeneration and the localized GW invariants

introduced by the authors.

Keywords Gromov-Witten invariant, cosection, degeneration formula, localized virtual cycle

MSC(2000): 14N35, 14C17, 14D06

Citation: Kiem Y H, Li J. Low degree GW invariants of surfaces II. Sci China Math, 2011, 54(8): 1679–1706, doi:

10.1007/s11425-011-4258-x

1 Introduction

In this paper, we continue our study of the GW-invariants of algebraic surfaces with positive pg. We will

prove a deformation invariance of localized GW-invariants of surfaces, prove a degeneration formula of

localized GW-invariants of spin surfaces, and in the end prove the formulas of low degree GW-invariants

of surfaces with positive pg conjectured by Maulik-Pandharipande.

In [7], in our attempt to understand Lee-Parker’s work [16] on GW-invariants of Kähler surfaces with

positive pg, the authors constructed the cosection localized virtual class for a DM stack with a perfect

obstruction theory and a cosection of its obstruction sheaf; the algebro-geometric construction of such

cycles was completed after constructing the algebraic localized Gysin map [8]. Applied to the moduli of

stable morphisms to surfaces, this reproduces Lee-Parker’s localization of GW-invariants of surfaces with

positive pg.

Given an algebraic surface X , a holomorphic two-form θ ∈ Γ(Ω2
X) induces a cosection (i.e., a homo-

morphism to the structure sheaf) of the obstruction sheaf

σθ : ObMχ,n(X,β)• −→ OMχ,n(X,β)•

of the moduli of stable morphisms to X of not necessarily connected domains and of fundamental class

β ∈ H2(X,Z) (cf. Definition 2.1). Let Z(σθ) be the non-surjective locus of σθ. On the one hand, the

cosection localized virtual class (cf. (2.3))

[Mχ,n(X, β)
•]virloc ∈ A∗Z(σθ)

∗Corresponding author
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coincides with the ordinary virtual class [Mχ,n(X, β)
•]vir, after applying the push-forward A∗Z(σθ) →

A∗Mχ,n(X, β)
•. On the other hand, since Z(σθ) consists of [u,C] ∈ Mχ,n(X, β)

• such that u(C) ⊂
θ−1(0) (cf. Lemma 2.3), it points to that localized virtual cycle only depends on the infinitesimal structure

of X near D = θ−1(0).

In this paper, we prove a deformation invariance result. It applies to cases when X → T = A
1

is the deformation of X to the normal bundle ND/X of a smooth canonical divisor D ⊂ X , or when

X → T is a family of spin surfaces (they are total spaces of theta characteristics over smooth curves (cf.

Example 2.5)). In each case we have a tautological holomorphic two-form Θ ∈ Γ(Ω2
X ).

Let X → T be a family as indicated. For c ∈ T a closed point and a class β �= 0 ∈ H2(Xc,Z), we let

Θc ∈ Γ(Ω2
Xc
) be the pull-back of Θ to Xc; we form the moduli spaces of stable morphisms Mχ,n(X , β)•

and Mχ,n(Xc, β)•. Using the two-form Θ, and applying [8, Sect. 6], we obtain cosections σΘ and σΘc of

the respective obstruction sheaves of Mχ,n(X , β)• and Mχ,n(Xc, β)•, and then their respective cosection

localized virtual classes.

Theorem 1.1. Let the notation be as stated, let Z(σΘc) be the non-surjective locus of σΘc , and let

ιc : c→ T be the inclusion. Then we have

[Mχ,n(Xc, β)•]virloc = ι!c[Mχ,n(X , β)•]virloc ∈ A∗Z(σΘc).

The corresponding invariance in GW-invariants was proved in [16].

Given a smooth curve D and a theta characteristic L over D, we form the surface S, called a spin

surface, that is the total space of L; S has a tautological holomorphic two-form θ ∈ Γ(Ω2
S). Using its

cosection localized virtual cycle [Mχ,n(S, d[D])•]virloc, d > 0, we can form the localized GW-invariants with

descendants

〈τα1 (γ1) · · · ταn(γn)〉
S,•
χ,d,loc, γi ∈ H∗(S,Z).

(We use d to mean the class d[D].) The deformation invariance implies that the GW-invariants of an

algebraic surface X having a smooth canonical divisor D are equal to the GW-invariants of S with the

choice L = ND/X .

Conjecture 1.2. Let X be a smooth minimal general type surface with positive pg > 0. Its GW-

invariants 〈· · · 〉X,•β,g vanish unless β is a non-negative integral multiple of c1(KX). In case β = dc1(KX)

for an integer d > 0, we let (D,L) be a pair of a smooth projective curve of genus K2
X + 1 and its

theta characteristic with parity χ(OX), and let S be the total space of L. Then there is a canonical

homomorphism ρ : H∗(X,Z) → H∗(S,Z) so that for any classes γi ∈ H∗(X,Z) and integers αi � 0,

i = 1, . . . , n,

〈τα1 (γ1) · · · ταn(γn)〉
X,•
χ,β = 〈τα1 (ρ(γ1)) · · · ταn(ρ(γn))〉

S,•
χ,d,loc.

This conjecture was proved by Lee-Parker [16] when X has a smooth canonical divisor.

The main technical part of our paper is to prove a degeneration formula for spin surfaces. Let S be a

spin surface that is the total space of a theta characteristic L over a smooth curve D. We pick a point

q ∈ D and let E = S ×D q (the fiber of S over q); we then form X → A
1 the blowing up of S × A

1 along

E × 0 ⊂ S ×A
1. The family X → A

1 has general fibers S and special fiber (over 0 ∈ A
1) the union of two

surfaces: one is S, which we denote by Y1, and the other is E×P
1, which we denote by Y2. Note that Y1

and Y2 intersect transversally along E = Y1 ∩ Y2.
We fix integers α1, . . . , αn ∈ Z

�0. Let μ = (μ1, . . . , μ�(μ)) be a partition of d. Using the holomorphic

two-form θ on S = Y1, we define in Section 5 a localized relative GW-invariants of the pair (Y1, E):

〈 n∏
j=1

ταj (γj)

〉Y1/E,•

χ,μ,loc

∈ A∗(e�(μ)), γj ∈ H∗(S,Z),

where e denotes the intersection of E with the zero section of Y1 → D.

We fix a splitting n1 + n2 = n, and adopt the intersection pairing

� : A∗El ×A∗el −→ Z, [El] · [pt] = 1.
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Theorem 1.3. Let the situation be as stated, and let γi ∈ H�1(X ) be classes such that for ιi : Yi → X
the inclusion, ι∗1(γi) = 0 for i > n1 and ι∗2(γi) = 0 for i � n1. Then we have the degeneration formula

〈 n∏
j=1

ταj (γj)

〉S,•
χ,d,loc

=
∑ μ!

|Aut(μ)| ·
〈 n1∏
j=1

ταj (γj)

〉Y1/E,•

χ1,μ,loc

�

〈 n∏
j=n1+1

ταj (γj)

〉Y2/E,•

χ2,μ

,

where
〈∏n

j=n1+1 ταj (γj)
〉Y2/E,•
χ2,μ

is the ordinary relative GW-invariant of the pair (Y2, E), and the sum-

mation is over all possible partitions μ 	 d and χ = χ1 + χ2 − �(μ).

In the end, by applying this degeneration formula, and a calculation of low degree GW invariants of

surfaces [9], we prove the following low degree formulas originally conjectured by Maulik and Pandhari-

pande [21].

Theorem 1.4. Let X → D be a theta characteristic over a smooth curve of genus h. Let γ ∈ H2(D,Z)

be the Poincaré dual of a point in D. Then the degree one and two GW-invariants with descendants are

〈 n∏
i=1

ταi(γ)

〉X,•
[D],loc

= (−1)h
0(L)

n∏
i=1

αi!

(2αi + 1)!
(−2)−αi ; (1.1)

〈 n∏
i=1

ταi(γ)

〉X,•
2[D],loc

= (−1)h
0(L) 2h+n−1

n∏
i=1

αi!

(2αi + 1)!
(−2)αi . (1.2)

The paper is organized as follows. In Section 2, the localized GW-invariants of not necessarily connected

domains are introduced. Section 3 is devoted to prove the deformation invariance. In Section 4 and

Section 5, we introduce localized relative GW-invariants of spin surfaces; in Section 6 we prove the

degeneration formula of GW-invariants of spin curves. Finally, in Section 7 we prove the formulas (1.1)

and (1.2).

Remarks on preprint [7]. In [16], Lee-Parker proved that a holomorphic two-form θ on a Kähler

surface localized its GW-invariants to a neighborhood of the locus of (θ = 0). They conjectured a

general form of the GW-invariants of surfaces with non-trivial holomorphic two-forms θ, and proved that

a universal formula in case (θ = 0) is smooth.

In searching for an algebro-geometric analogue of Lee-Parker’s work, the authors constructed the

cosection localized virtual cycles. This construction was presented in the preprint [7], which contains

a reduction of virtual normal cone at the presence of a cosection of obstruction sheaf, and defines the

cosection localized virtual cycle in Borel-Moore homology using an analytic version of localized Gysin map.

In the same preprint, they phrased a more general version of conjecture on the structure of GW-invariants

of surfaces with holomorphic two-forms (cf. Conjecture 1.2), and proved the Maulik-Pandharipande

formulas (Theorem 1.4) of low-degree GW-invariants of surfaces, assuming the degeneration formula

(Theorem 1.3).

Shortly after, in [14] Lee proved the Maulik-Pandharipande’s formulas of low degree GW-invariants by

developing a degeneration formula of localized GW-invariants of surfaces in symplectic geometry.

Later, the authors constructed the algebraic version of the localized Gysin map in [8]. Because the

construction of cosection localized virtual cycles has shown larger potential in applications in a wider range

of problems, we have grouped the basic construction of cosection localized virtual cycles, the algebraic

construction of localized Gysin map, and the application to GW-invariants of surfaces with holomorphic

two-forms in the preprint [8].

The part of [7] on explicit calculation of low degree GW-invariants of surfaces, and the formula relating

localized GW-invariants of spin surfaces with the twisted GW-invariants of surfaces form the preprint [9].

In this paper, we prove the deformation invariance, and the degeneration formula put forward in [7].

The proof is made possible after the algebraic construction of localized Gysin map.
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2 Localized GW-invariants

Let X be a smooth complex quasi-projective variety and β ∈ H2(X,Z) be a curve class. In this paper,

we focus on the moduli space of stable morphisms to X of not necessarily connected domains.

Definition 2.1. [23] We define Mχ,n(X, β)
• as the moduli stack of stable morphisms u :C → X of

not necessarily connected n-pointed nodal curves C of Euler characteristic χ(OC) = χ and of fundamental

class u∗([C]) = β, such that the restriction of u to each connected component of C is non-constant. We

call u stable when the automorphism group of u is finite.

Let θ be a non-trivial holomorphic two-form on X . The construction of localized GW-invariants in [7]

can be applied to this moduli space. We divide Mχ,n(X, β)
• into a disjoint union

Mχ,n(X, β)
• =

∐
r�1

Mr,

where Mr consists of stable morphisms [u,C] ∈ Mχ,n(X, β)
• whose domains C have r connected compo-

nents. Let (πr , fr) : Cr → Mr ×X be the universal family on Mr. Then the cosection of the obstruction

sheaf of Mr was constructed as a lift of (cf. [8, Sect. 6])

R1πr∗f∗
r TX

∧f∗
r θ−→ R1πr∗f∗

rΩX
f∗
r−→R1πr∗ωCr/Mr

ψr−→OMr . (2.1)

When r = 1, the last homomorphism ψr is the Serre duality R1πr∗ωCr/Mr
∼= OMr . For r � 2, at each

closed ξ = [u,C] ∈ Mr, we have

R1πr∗ωCr/Mr
⊗OMr

k(ξ) ∼= k⊕r, (2.2)

where the summands are indexed by the connected components of C. In this case, we define ψr so

that ψ|ξ : k⊕r → k is the summation map. Since the summation is independent of the indexing of the

summands of k⊕r, it extends to a global homomomorphism ψr as in the sequence (2.1).

Proposition 2.2. The composite (2.1) lifts to a cosection of the obstruction sheaf of Mχ,n(X, β)
•

σθ : ObMχ,n(X,β)• → OMχ,n(X,β)• .

Proof. Since Mr ⊂ Mχ,n(X, β)
• is both open and closed, we only need to show that σθ exists over

each Mr.

We let Mχ,n be the Artin stack of n-pointed not necessarily connected nodal curves. By forgetting the

maps, we obtain qr : Mr −→ Mχ,n. The relative obstruction theory of Mr → Mχ,n is given by

(
R•πr∗f∗

r TX)
∨ −→ LMr ,

where LMr is the cotangent complex ofMr. Its relative obstruction sheaf is R1πr∗f∗
r TX , and its (absolute)

obstruction sheaf fits into the exact sequence

q∗rΩ
∨
Mχ,n

−→ R1πr∗f∗
r TX −→ ObMr −→ 0.

See [8, Sect. 6] for details.

Repeating the argument in [8, Sect. 6], we see that the arrow R1πr∗f∗
r TX → R1ωCr/Mr

in (2.1) factors

through

ObMr −→ R1πr∗ωCr/Mr
.

Composed with the ψr constructed using the rule stated after (2.2), we obtain the desired cosection.

We now describe the locus Z(σθ) ⊂ Mχ,n(X, β)
• where σ fails to be surjective. We call a stable map

u :C → X θ-null if the composite

u∗(θ) ◦ du : TCreg −→ u∗TX |Creg −→ u∗ΩX |Creg

is trivial over the regular locus Creg of C.
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Lemma 2.3. [8] The locus Z(σθ) (i.e., the non-surjective locus of σθ) consists of all θ-null stable

morphisms in Mχ,n(X, β)
•.

Proof. This is proved in [8, Prop. 6.4] for M1 ⊂ Mχ,n(X, β)
•. The case Mr�2 is similar, using that for

every [u,C] ∈ Mr, u restricted to each connected component of C is non-constant. We omit the details

for it is a special case of Proposition 5.6.

Using the cosection σθ and applying [8], we obtain a cosection localized virtual cycle

[Mχ,n(X, β)
•]virloc ∈ A∗Z(σθ). (2.3)

In case Z(σθ) is proper, one defines the localized GW-invariants of the pair

(Mχ,n(X, β)
•, σθ)

by pairing [Mχ,n(X, β)
•]virloc with the cohomology classes of Mχ,n(X, β)

•.
Application to surfaces is particularly interesting.

Example 2.4. [16] When X is a smooth algebraic surface and θ ∈ H0(Ω2
X) is a non-zero holomorphic

two form. Let D = (θ = 0) ⊂ X . Then for β �= 0, Z(σθ) is the union of Mχ,n(D, β
′)•, where

β′ ∈ H2(D,Z) run through all classes such that ι∗(β′) = β with ι : D ⊂ X .

Note that in case D is smooth, Z(σ) �= ∅ only if β is a positive integral multiple of [D]. Also,

when X is proper, the localized GW-invariants coincide with the ordinary GW-invariants of X [16] (see

also [8, Lemma 6.5]).

Example 2.5. (Spin surfaces) Let S be a spin surface, which is the total space of a theta characteristic

of a smooth curveD, i.e. L⊗2 ∼= KD. We let p :S → D be the projection. SinceKS
∼= p∗KD⊗p∗L∨ ∼= p∗L,

the identity section of p∗L defines a section θ ∈ H0(Ω2
S), which we call the standard two-form on S. Since

θ−1(0) = D is the zero-section of L and is proper, the localized GW-invariants of S are well-defined.

For a spin surface S associated with a theta characteristic L on D, and for γi ∈ H∗(X), αi ∈ Z
�0,

and ψi the first Chern class of the relative cotangent line bundle of the domain curves at the i-th marked

point, using the evaluation morphism

ev : Mχ,n(S, d[D])• −→ Sn,

we define the localized GW-invariant of S with descendants to be

〈τα1(γ1) · · · ταn(γn)〉
S,•
χ,d,loc =

∫
[Mχ,n(S,d[D])]virloc

ev∗(γ1 × · · · × γn) · ψα1
1 · · ·ψαn

n .

In [16], Lee-Parker conjectured the structure of GW-invariants of Kähler surfaces of positive pg in

terms of the structure of their canonical divisors. They proved the conjecture when the surfaces have

smooth canonical divisors.

We make the following conjecture.

Conjecture 2.6. [7] Let X be a smooth minimal general type surface with positive pg. Its GW-

invariants 〈· · · 〉Xβ,g vanish unless β is a non-negative integral multiple of c1(KX). In the case β =

dc1(KX) for an integer d > 0, we let (D,L) be a pair of a smooth curve of genus K2
X + 1 and its

theta characteristic with parity χ(OX), and let S be the total space of L. Then there is a canonical

homomorphism ρ :H∗(X,Z) → H∗(S,Z) so that for classes γi ∈ H∗(X,Z) and integers αi � 0,

〈τα1 (γ1) · · · ταn(γn)〉
X,•
χ,β = 〈τα1 (ρ(γ1)) · · · ταn(ρ(γn))〉

S,•
χ,d,loc.

Using a deformation argument, one can verify the conjecture in several cases where the singularity of

a canonical divisor of X is relatively simple.
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3 Surfaces with smooth canonical divisors

Like the ordinary GW-invariants, the localized GW-invariants are expected to remain constant under

deformation of complex structures. In the following, we shall prove this for the circumstances relevant to

our study.

We consider a smooth family X/T of quasi-projective varieties over a connected smooth affine curve

T ; we assume that this family admits a regular (relative) homomorphic two-form Θ ∈ Γ(X ,Ω2
X/T ). We

let β ∈ H2(X ,Z) be a (fiber) curve class and denote by

MT = Mχ,n(X/T, β)•

the moduli space of stable morphisms (of not necessarily connected domains) to fibers of X/T of funda-

mental class β. For closed t ∈ T , we write

Mt =MT ×T t = Mχ,n(Xt, β), Xt = X ×T t.

Let f : C → X and π : C → MT be the universal family of this moduli stack; let κ ∈ H1(X , TX/T ) be

the Kodaira-Spencer class of the first order deformation of X/T— it is the extension class of the exact

sequence of sheaves of tangent bundles

0 −→ TX/T −→ TX −→ OX −→ 0.

As shown in [3, 20], the obstruction sheaf ObMT and its relative obstruction sheaf ObMT /T , which is the

sheaf whose restriction to each fiber Mt is the obstruction sheaf ObMt of Mt, fit into the exact diagram:

π∗f∗OX
f∗κ−−−−→ R1π∗f∗TX/T

surj−−−−→ ker
(
R1π∗f∗TX → R1π∗f∗OX

)
∥∥∥ surj

⏐⏐� surj

⏐⏐�
π∗f∗OX −−−−→ ObMT /T

surj−−−−→ ObMT .

(3.1)

Applying the previous construction, we check that the form Θ induces a cosection of R1π∗f∗TX/T that

descends to a cosection

σΘ : ObMT /T −→ OMT . (3.2)

The restriction of σ to each fiber Mt is the previously constructed cosection σΘt of ObMt . We let Z(σ)

be the union of Z(σΘt) ⊂Mt for all t ∈ T .

Suppose that Z(σ) is proper over T , for each t ∈ T we can define the localized GW-invariants of Xt:

〈τα1(γ1) · · · ταn(γn)〉
Xt,•
g,β,loc, γi ∈ H∗(X ,Z).

The deformation invariance principle states that the above is independent of t. In this section, we shall

prove this principle for the localized GW-invariants for the circumstances relevant to our study.

According to [8, Thm. 5.2], the constancy of the localized GW-invariants follows from the lifting of

the homomorphism σΘ to a homomorphism

σ̄Θ : ObMT −→ OMT , (3.3)

which by the lower exact sequence in (3.1) amounts to the vanishing of the composite

π∗f∗OX −→ ObMT /T
σΘ−→OMT . (3.4)

Lemma 3.1. Suppose that the relative holomorphic two-form Θ ∈ Γ(Ω2
X/T ) is the image of a Θ̃ ∈

Γ(Ω2
X ) via ΩX → ΩX/T . Then the lifting σ̄Θ in (3.3) exists.
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Proof. This is because the form Θ̃ defines a homomorphism R1π∗f∗TX → OMT like in (2.1) with X

replaced by X , which is compatible with the cosection of R1π∗f∗TX/T . Because of the sequence (3.1),

we see that the composite (3.4) is trivial.

We now prove the vanishing of the composite (3.4) in some special situation without assuming the

existence of Θ̃. The first case is the deformation to the normal bundle of a smooth canonical divisor in a

surface X . Let (X, θ) be a pair of a smooth surface and a holomorphic two-form with smooth D = θ−1(0).

By blowing up X × A
1 along D × 0, and removing the proper transform of X × 0 in the blown-up, we

obtain a family of surfaces πA1 :Z → A
1 whose fiber over t �= 0 is X and whose fiber over 0 ∈ A

1 is a spin

surface that is the total space of the normal bundle ND/X .

Using the projection πX : Z → X , we obtain the pull back π∗
Xθ. We claim that the t−2π∗

Xθ in-

duces a family of relative holomorphic two-form whose restriction to Z0 is proportional to the standard

holomorphic two-form on Z0.

Let U ⊂ X be an analytic open neighborhood of D with analytic coordinate functions (z1, z2) so that

θ|U = z2dz1 ∧ dz2. Then π−1
X (U) has analytic coordinate (z1, t, ξ) with z2 = t · ξ. The pull-back

π∗
Xθ|π−1

X (U) = t2ξ dz1 ∧ dξ + tξ2dz1 ∧ dt ∈ Γ(Ω2
U )

has its image in Γ(Ω2
U/A1) of the form

(
π∗
Xθ|π−1

X (U)

)
U/A1

= t2ξ dz1 ∧ dξ ∈ Γ(Ω2
U/A1).

This proves that the image of t−2π∗
Xθ in Ω2

X/A1 is a regular relative holomorphic two-form whose restriction

to Zt = X (t �= 0) and Z0 are proportional to the form θ and the standard two-form on Z0, respectively.

We let

Θ =
(
t−2π∗

Xθ
)
X/A1 ∈ Γ(Ω2

X/A1)

be this family of relative holomorphic forms.

Proposition 3.2. Let X → A
1 be the deformation of X to the normal bundle ND/X , and let Θ be

the relative holomorphic two-form specified above. Then the associated cosection σΘ in (3.2) lifts to a

cosection σ̄Θ as in (3.3).

Proof. We let β = d[D], and let MT = Mχ,n(X/T, β)•. Following the diagram (3.1), we need to show

that the composite

π∗f∗OX
f∗κ−→R1π∗f∗TX/T −→ ObMT /T

σΘ−→OMT (3.5)

is zero, where κ is the Kodaira-Spencer class. In this case, since Z → A
1 over A

1 − 0 is the constant

family, κ is trivial over Z ×A1 (A
1 − 0).

We now consider X0 ⊂ X . Let D0 ⊂ X0 be the intersection of X0 with the proper transform of D×A
1 ⊂

X×A
1. Then TX |D0

∼= TX0|D0 ⊕OD0 . Since X0 is a line bundle over D0, we have TX |X0
∼= TX0 |X0 ⊕OX0 .

This shows that κ restricted to X0 is a trivial cohomology class in H1(X0, TX0). In particular, f∗κ = 0

in (3.5). This proves the proposition.

We next consider the case where X is a smooth family of spin surfaces. We let D → T be a smooth

family of curves and L be a family of theta characteristics of D/T ; i.e. L⊗2 ∼= ΩD/T . The total spaces

X of L form a family of spin surfaces. We let Θ ∈ Γ(X ,Ω2
X/T ) be the standard relative holomorphic

two-form. We let β ∈ H2(X ,Z) be the class generated by a d-multiple of the zero section of one of Xt.
As before, we denote Mχ,n(X/T, β)• by MT .

Proposition 3.3. The conclusion of Proposition 3.2 holds for the family of spin surfaces X and its

associated two-form Θ.

Proof. Let 0 ∈ T be a closed point. We first check that restricting to X0 the Kodaira-Spencer class

κ0 ∈ H1(X0, TX0) of the family X has the following property: Let (f0, C0) be the universal family of

M0 = Mχ,n(X0, β)
•. Then the composite

π∗f∗OX0

f∗
0 κ0−→ R1π∗f∗TX0 −→ ObM0

σΘ0−→OM0 (3.6)
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is locally constant.

We first describe the Kodaira-Spencer class κ0, which depends on the family D. For simplicity, we

shall work with the analytic charts of D0 = D ×A1 0. We pick an analytic open U ⊂ D0 so that U is

isomorphic to the unit disk Δ ⊂ C. We then let V = D0 − A with A ⊂ U a compact subset so that

U − A is isomorphic to an annulus. The two open sets U and V form an open covering of D0. Since

H1(TU ) = H1(TV ) = 0, H0(TU∩V ) → H1(TD0) is surjective. Hence, for small t the family Dt can be

realized by an analytic deformation of the gluing map

U ⊃ U ∩ V
∼=−→U ∩ V ⊂ V.

In concrete terms, if we let z and w be the analytic coordinates of U and V near U∩V , and let z = h(w, 0)

be the identity map of U ∩ V in coordinate variables z and w, then Dt can be realized by gluing U and

V via z = h(w, t) with h(w, t) an analytic deformation of h(w, 0).

To proceed, we need the transition function of Xt. Because Dt = U ∪ V , the surface Xt is the union of

the total space of K
1
2

U and K
1
2

V . To build a transition function of Xt, we let ξ = (dz)
1
2 and η = (dw)

1
2 be

bases of K
1
2

U and K
1
2

V over U ∩ V . Then by adopting the convention that hw = ∂h
∂w and ḣ = dh

dt , the two

pairs of local charts (z, ξ) and (w, η) are related by

z = h(w, t) and ξ = (hw)
1
2 η.

Accordingly, the Kodaira-Spencer class of the first order deformation of Xt at t = 0 can be represented

by Čech 1-cocycle

κ0(U ∩ V ) =

(
dh

dt
· ∂
∂z

+
d

dt
((hw)

1
2 η) · ∂

∂ξ

)∣∣∣∣
t=0

=

(
ḣ · ∂

∂z
+
ξ ḣw
2hw

· ∂
∂ξ

)∣∣∣∣
t=0

.

Because over K
1
2

U ∩K
1
2

V , the standard holomorphic two-form is Θ0 = ξ dξ ∧ dz, the contraction is

Θ0(κ0) = −ξḣ dξ + 1

2
ξ2ḣwh

−1
w dz.

Therefore, using ḣz = ḣw
∂w
∂z = −ḣwh−1

w ,

∂(Θ0(κ0)) = −ξḣzdz ∧ dξ + ξḣwh
−1
w dξ ∧ dz = 0.

Combined with the fact that ∂̄Θ0(κ0) = 0, we see that the form Θ0(κ0) is d-closed.

The lemma now follows easily. We let p :X0 → D0 be the projection and let W ⊂M0 be the (analytic)

open subset consisting of those u :C → X0 so that p ◦ u :C → D0 are unramified over U ∩ V . We then

pick an oriented embedded circle S1 ⊂ U ∩V that separates the two boundary components of U ∩V . An

easy argument shows that the homomorphism (3.6) is the function, up to sign,

[u,C] ∈W �−→
∫
u−1(S1)

Θ0(κ0) ∈ C.

Because Θ0(κ0) is d-closed, this integral only depends on the topological class of u−1(S1), hence it must

be locally constant over W . But then this constant must be zero since it vanishes on those u so that

u(C) ⊂ D0 ⊂ X0, and since by dilation along fibers of L0 each u :C → X0 can be deformed to a stable

map from C to D0 ⊂ X0 within W . This shows that (3.6) is zero over W .

Finally, we observe that for each stable map in M0, we can choose U ⊂ D0 so that this stable map

lies in the W associated with U . Therefore (3.6) must be zero on all M0, completing the proof of the

lemma.

These two deformation invariance properties provide an algebro-geometric proof of Conjecture 2.6 in

case X has a smooth canonical divisor, which was originally proved in [16].
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4 A degeneration formula

One of the major tools in studying GW-invariants of varieties is the degeneration formula. The symplectic

version of this theory is completed in [6,19]; the algebraic version of this theory is developed by the second

author in [17, 18]. In this section, we will work out a parallel theory of localized relative GW-invariants

and prove a degeneration formula for spin surfaces. The degeneration will be used to prove a conjetured

formula of low degree GW-invariants of surfaces [21].

We continue to denote by S a spin surface that is the total space of a theta-chracteristic L on a smooth

curve D. We pick a point q ∈ D and denote by E ⊂ S the fiber of S over q; we blow up S × A
1 along

E × 0 to obtain a family X over A
1 whose fiber over t �= 0 ∈ A

1 is the original S, and its central fiber

X0 := X ×A1 0 is the union of S with E×P
1, intersecting transversally along E ⊂ S and E× 0 ⊂ E×P

1.

To distinguish the S ⊂ X0 from Xt ∼= S, we denote by Y1 ⊂ X0 the component S ⊂ X0 and denote

E × P
1 ⊂ X0 by Y2. We denote E = Y1 ∩ Y2, viewed as a divisor in both Y1 and Y2. Let e ∈ E be the

intersection point of E with the zero section of Y1 → D.

The family X is the total space of a line bundle L on the blow-up of D×A
1 along (q, 0). We let D be this

blow-up. The line bundle L is the pull-back of L via the composite of the projections D → D×A
1 → D.

The total space X has a holomorphic two-form by pulling back the standard two-form θ on S:

Θ := π∗
Sθ ∈ Γ(Ω2

X ), πS : X → S × A
1 → S. (4.1)

We will show that this holomorphic two-form defines a cosection of the obstruction sheaf of the moduli

of stable morphisms to the family X/A1 in the sense of [18]. The cosection localized virtual cycle of this

moduli space is the bridge to prove the degeneration formula for the localized GW-invariants.

The moduli of stable morphisms to X/A1 constructed in [17] is the moduli of stable morphisms to the

stack of expanded degenerations X of X/A1, whose construction we now recall. To each integer m � 0,

we let Am+1 → A
1 be (z1, . . . , zm+1) �→ z1 · · · zm+1, and let the expanded degeneration

X [m] −→ A
m+1

be the small resolution of Xm := X ×A1 A
m+1 characterized by the properties:

1. for each t ∈ A
m+1 the fiber X [m]t := X [m]×Am+1 t is a surface with normal crossing singularities;

2. in case t = (ti) has exactly k vanishing ti’s, the irreducible components of X [m]t are Y1 = S, (k−1)

copies of Δ := P
1 × A

1, and Y2 = E × P
1 (in case k > 0), with a chain like intersection patten;

3. the union of the fibers of X [m] over the i-th coordinate line in A
m+1 is a smoothing of the i-th

singular divisor of X [m]0, following the convention that Y1 ⊂ X [m]0 is the 0-th component; Y2 is the

(m + 1)-th component, and the i-th singular divisor is the intersection of the i-th and the (i + 1)-th

irreducible components of X [m]0.

The (C∗)m action on A
m+1 via

(z)τ = (τ1z1, τ
−1
1 τ2z2, . . . , τ

−1
m zm+1)

lifts to a unique action on X [m] → A
m+1. This group action defines a class of equivalences of X [m].

The space X [m] has another class of partial equivalences. For 1 � i � m+ 1, we denote by

A
m+1
zi=1 := A

i−1 × 1× A
m−i+1 ⊂ A

m+1

the hypersurface parallel to the coordinate hyperplane (zi = 0) and passing through (1, . . . , 1). Following

the construction, we have a canonical isomorphism

ıi : X [m− 1]
∼=−→X [m]×Am+1 A

m+1
zi=1. (4.2)

By a direct inspection, via the inclusion

(C∗)m−1 = (C∗)i−1 × {1} × (C∗)m−i ⊂ (C∗)m, (4.3)
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the inclusion ıi is (C
∗)m−1 equivariant.

Using the standard isomorphism C
∗ ∼= A

1− 0 and C
∗-action induced by the i-th factor of C∗ in (C∗)m,

we obtain an isomorphism

ı̃i : X [m− 1]× (A1 − 0)
∼=−→X [m]×Am+1

(
A
m+1 − A

m+1
zi=0

)
, (4.4)

where A
m+1
zi=0 is the coordinate hyperplane zi = 0 in A

m+1.

We define the stack [X [m]/∼] be X [m] quotient by the equivalence relations generated by the (C∗)m-

action and the equivalences ı̃i ◦ ı̃−1
j (cf. (4.4)) for all possible i � j. Using (4.2), we have inclusion

[X [m]/∼] ⊂ [X [m+ 1]/∼]; we define

X = lim
m

[X [m]/∼].

It was shown in [17] that X is an Artin stack.

We next recall the construction of expanded relative pairs. We let E ⊂ Y be either E ⊂ Y1 or E ⊂ Y2.

Inductively,

1. we let Y [0] = Y and E[0] = E;

2. after E[i] ⊂ Y[i] and Y[i] → A
i are constructed, we let Y[i + 1] be the blow-up of Y[i] × A

1 along

E[i] × 0, let E[i + 1] be the proper transform of E[i] × A
1, and let Y[i + 1] → A

i+1 be induced by

Y[i]× A
1 → A

i × A
1 = A

i+1.

Note that the central fiber Y[i]×Ai 0 is the union of Y with i copies of Δ’s.

We denote by Y[m] the pair of a variety and a divisor plus the projection:

Y[m] = (Y[m], E[m]), Y[m] −→ A
m. (4.5)

The standard (C∗)m action (z)τ = (τ1z1, . . . , τmzm) on A
m lifts to a (C∗)m action on Y[m]/Am. Also,

for each 1 � i � m, we have isomorphisms and inclusions

ji : Y[m− 1]
∼=−→Y[m]×Am A

m
zi=1 ⊂ Y[m], (4.6)

which is (C∗)m−1-equivariant via the group homomorphism (4.3), and the isomorphisms

j̃i : Y[m− 1]× (A1 − 0)
∼=−→Y[m]×Am (Am − A

m
zi=0). (4.7)

We define [Y[m]/∼] to be Y[m] quotiented by the equivalences generated by the (C∗)m action and the

isomorphisms j̃i ◦ (j̃j)−1 for all i �= j. Using (4.6), we have inclusions

[Y[m]/∼] −→ [Y[m+ 1]/∼];

we define

Y = lim
m

[Y[m]/∼].

It is an Artin stack.

The families X [m], Y1[k] and Y2[k]
1) are related by the following decomposition:

X [m]×Am+1 A
m
zi=0 = Y1[i]× A

m−i ∪ Y2[m− i+ 1]× A
i, 1 � i � m+ 1,

which is a union of two smooth varieties (as shown) intersecting transversally along a smooth divisor.

Passing to limits, we obtain a co-fiber product

E −−−−→ Y1⏐⏐� ⏐⏐�
Y2 −−−−→ X×A1 0.

(4.8)

1) Y1[m] is Y [m] with Y replaced by Y1; same for Y1 and Y1.
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We introduce three more stacks. Using that S is (the total space of) a line bundle over D, the zero

section D ⊂ S provides us with closed substacks D ⊂ X and Bk ⊂ Yk via fiber products

D = X×S D and Bk = Yk ×S D. (4.9)

Here since the projection πS : X → S (cf. (4.1)) induces projections X [m] → S that commute with

the equivalence relations defining X, we have the induced X → S; similarly, for projections Yk → S for

k = 1, 2. The fiber products above use these projections.

Like X, we can construct D from quotients [D[m]/∼], where D[m] = X [m]×SD are small resolutions of

D×A1A
m+1, parallel to the construction of X [m]. By the same reason, if we let Bk ⊂ Yk be Bk = Yk×SD

with relative divisor e = E ∩Bk, Bk is the stack of expanded relative pair (Bk, e). By construction, both

D/A1 and Bk are proper.

We next recall the moduli stackMχ,n(X, d)
• of stable morphisms to X of the given topological type and

its key ingredients relevant to this paper. We form the moduli stack Mχ,n(X [m], d)• of stable morphisms

to X [m] of domain curves with indicated topological type and of fundamental classes d-multiple of the

zero section of X [m]t for some t ∈ A
m+1. (The zero section is X [m]t ×S D.)

Let ι : X [m] → X be the tautological morphism from the definition of X. For ξ = [u,C] ∈
Mχ,n(X [m], d)•, we let ι(ξ) be the induced morphism ι ◦ u : C → X. Following the definition of X,

given ξ = [u,C] and ξ′ = [u′, C′] ∈ Mχ,n(X [m], d)•, ι(ξ) = ι(u′) if there is a pair (ϕ, τ) of an isomor-

phism ϕ : C → C′ of pointed curves and τ ∈ (C∗)m so that τ · u = u ◦ ϕ.
Definition 4.1. We define an equivalence ξ ∼X ξ′ to be a pair (ϕ, τ) that makes ι(ξ) = ι(u′). We

define AutX(ξ) to be the set of self-equivalences of ξ; it is a group.

We call ξ = [u,C] a stable morphism to X if u : C → X [m] is pre-deformable 2) and |AutX(ξ)| <∞.

We let

Mst

χ,n(X [m], d)• ⊂ Mχ,n(X [m], d)•

be the locally closed substack of stable morphisms (to X). Because of the finite stabilizer assumption,

Mst

χ,n(X [m], d)•/(C∗)m is a DM-stack.

Proposition 4.2. [17, Thm. 3.10] The moduli stack Mχ,n(X, d)
• of stable morphisms to X of the

given topological type is a separated DM-stack over A
1. The set of its closed points is

Mχ,n(X, d)
•(C) =

∐
m�0

(Mst

χ,n(X [m], d)•(C))/∼X .

For each m, the tautological

Mst

χ,n(X [m], d)•/(C∗)m −→ Mχ,n(X, d)
• (4.10)

is finite and étale. For large m, (4.10) is surjective. For c �= 0 ∈ A
1, canonically

Mχ,n(Xc, d)
• := Mχ,n(X, d)

• ×A1 c ∼= Mχ,n(S, d)
•.

We define the moduli of relative stable morphisms of not necessarily connected domains in Y = (Y,E),

where Y = Y1 or Y2. We pick a partition μ = (μ1 � · · · � μ�) of d, (we write � = �(μ),) and for (χ, n)

and an m � 0, we call a stable map

u : (C, p1, . . . , pn, q1, . . . , q�) −→ Y [m] (4.11)

in Mχ,n+�(Y[m], d)• of the contact type μ if as divisors

u−1(E[m]) =
∑

μiqi.

(Here, the stable maps having fundamental classes u∗[C] are d-multiples of the zero sections of Y [m]t,

t ∈ A
m.)

2) We refer the definition of pre-deformability to [17]; it is repeated in this paper in Remark 5.2. It was proved that

pre-deformability is a locally closed condition.
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Definition 4.3. [17] For two stable maps u and u′ to Y[m], we define an equivalence u ∼Y u′ to be a

pair (ϕ, τ) of an isomorphism ϕ : C → C ′ as pointed curves and τ ∈ (C∗)m so that τ · u = u′ ◦ ϕ. We

define AutY(u) to be the set of self-equivalences of u; it is a group.

We call u a stable relative morphism of type μ to Y if u has the contact type μ, it is pre-deformable

and the group AutY(u) is finite.

We let

Mst

χ,n(Y[m], μ)• ⊂ Mχ,n+�(Y[m], d)•

be the locally closed substack of stable relative morphisms in Mχ,n+�(Y[m], d)• (cf. [17]). Because of the

finiteness of AutY assumption, Mst

χ,n(Y[m], μ)•/(C∗)m is a DM-stack.

We list the relevant property of the stack Mχ,n(Y, μ)
• of the stable relative morphisms of type μ to

Y proved in [17].

Proposition 4.4. [17, Thm. 4.10] The moduli stack Mχ,n(Y, μ)
• is a separated DM-stack. As sets,

Mχ,n(Y, μ)
•(C) =

∐
m�0

(Mst

χ,n(Y[m], μ)•(C))
/
∼Y .

For each m, the tautological

Mst

χ,n(Y[m], μ)•/(C∗)m −→ Mχ,n(Y, μ)
• (4.12)

is finite and étale ; for large m, it is surjective.

The moduli space Mχ,n(Y, μ)
• has two evaluation morphisms: one ordinary and one special: for

u : C → Y[m] in Mχ,n(Y, μ)
•, letting ũ be the composite C

u−→Y[m]
pr−→Y, we define

ev(u) =
(
ũ(p1), . . . , ũ(pn)

)
∈ Y n, ẽv(u) = (ũ(q1), . . . , ũ(q�)) ∈ E�, � = �(μ).

Using the co-fiber product (4.8), we have the gluing construction which we recall now. For an integer

n, we denote [n] = {1, . . . , n}. We let

γ =
(
μ 	 d;χ = χ1 + χ2 − �(μ); λ : [n1] → [n] order preserving

)
. (4.13)

(The role of λ will be clear shortly.) Using the special evaluation morphism, we define

M(Y1 �Y2, γ)
• := Mχ1,n1(Y1, μ)

• ×E�(μ) Mχ2,n2(Y2, μ)
•. (4.14)

We recall the construction of the gluing morphism

Ψγ : M(Y1 �Y2, γ)
• −→ Mχ,n(X0, d)

• := Mχ,n(X, d)
• ×A1 0. (4.15)

Given (u1, u2) ∈ M(Y1 �Y2, γ), and suppose that ui are of the forms ui : Ci → Yi[mi] for some mi, with

ordinary marked points pi1, . . . , p
i
ni

and special marked points qi1, . . . , q
i
�,

1. we let C = C1 ∪ C2/∼, where ∼ is identifying q1j ∈ C1 with q2j ∈ C2 for all j;

2. using (4.8), u1 and u2 patch to form a morphism u : C → X [m]0, where m = m1 +m2;

3. we let λ′ : [n2] → [n] be the complement of λ3), and define the marked points p1, . . . , pn1+n2 of C to

be pλ(j) = p1j and pλ′(j) = p2j .

By construction, we see that χ(OC) = χ1 + χ2 − �, and thus [u,C] ∈ Mχ,n(X, d)
•. Working out the

family version of this construction, we obtain the gluing morphism (4.15).

Let Γ be the collection of all possible γ in (4.13). It is clear that the union of the images of Ψγ for all

γ ∈ Γ surjects onto Mχ,n(X0, d)
•.

We now state the degeneration of localized virtual classes. Recall that since D ⊂ X is a substack, we

have canonical inclusion Mχ,n(D, d)
• ⊂ Mχ,n(X, d)

•. For c ∈ A
1, we let

ιc : Mχ,n(Dc, d)
• := Mχ,n(D, d)

• ×A1 c −→ Mχ,n(D, d)
•

3) Here, [n] = {1, . . . , n}; λ′ is order preserving so that λ([n1]) ∪ λ′([n2]) = [n1 + n2].
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be the fiber over c and its tautological embedding; we let

ι!c : A∗Mχ,n(D, d)
• −→ A∗Mχ,n(Dc, d)

•

be the associated Gysin map.

We also need the following commutative square. Given γ ∈ Γ (cf. (4.13)), we let

M(B1 �B2, γ)
• = Mχ1,n1(B1, μ)

• ×E�(μ) Mχ2,n2(B2, μ)
•.

We claim that the following commutative square is a Cartesian square:

M(B1 �B2, γ)
• δ−−−−→ Mχ1,n1(B1, μ)

• ×Mχ2,n2(Y2, μ)
•

⏐⏐�ẽv

⏐⏐�(ẽv,ẽv)

E�(μ)
diag−−−−→ E�(μ) × E�(μ).

(4.16)

Indeed, because Y2 → B2 is the trivial line bundle, the induced morphism (by composing u : C → Y2[m]

with Y2[m] → B2[m])

Mχ2,n2(Y2, μ)
• −→ Mχ2,n2(B2, μ)

•

is a fiber bundle with fibers (A1)r, where r is the number of connected components of the domain curves,

which varies over different connected components of Mχ2,n2(Y2, μ)
•. Because a relative stable map

[u,C] ∈ Mχ2,n2(Y2, μ)
• restricted to every connected component of its domain is non-constant,

Mχ2,n2(Y2, μ)
• ×E�(μ) e�(ν) = Mχ2,n2(B2, μ)

•.

(Recall e = E ∩ B2, and Mχ2,n2(Y2, μ)
• → E�(μ) is via special evaluation.) This proves that (4.16) is a

Cartesian square. We let

δ! : A∗
(
Mχ1,n1(B1, μ)

• ×Mχ2,n2(Y2, μ)
•) −→ A∗M(B1 �B2, γ)

•

be the associated Gysin map. We let

ψγ : M(B1 �B2, γ)
• −→ Mχ,n(D0, d)

• (4.17)

be induced by the gluing morphism Ψγ .

Let

[Mχ,n(S, d)
•]virloc ∈ A∗Mχ,n(D, d)

•

be the localized virtual class constructed in [8] (and Section 2) that defines the localized GW-invariants

of S.

Theorem 4.5. The holomorphic two-form Θ on X and its restriction to Y1 define cosection localized

virtual classes

[Mχ,n(X, d)
•]virloc ∈ A∗Mχ,n(D, d)

•, [Mχ,n(Y1, μ)
•]virloc ∈ A∗Mχ,n(B1, μ)

•;

these classes fit into the identities

ι!c[Mχ,n(X, d)
•]virloc = [Mχ,n(S, d)

•]virloc ∈ A∗
(
Mχ,n(D, d)

•), c �= 0 ∈ A
1; (4.18)

ι!0[Mχ,n(X, d)
•]virloc =

∑
γ∈Γ

μ !

|Aut(μ)| (ψγ)∗δ
!
(
[Mχ1,n1(Y1, μ)

•]virloc

× [Mχ2,n2(Y2, μ)
•]vir

)
∈ A∗Mχ,n(D0, d)

•. (4.19)

Here μ! = μ1 · · ·μ�(μ) and Aut(μ) consists of all permutations α ∈ S�(μ) so that μi = μα(i) for all i.
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The proof of this theorem will occupy the next two sections.

This theorem implies the degeneration formula of the localized GW-invariants of X . We pick classes

γi ∈ H∗(Y1) and non-negative integers αi; we define the reduced relative GW-invariants

〈τα1 (γ1) · · · ταn(γn)〉
Y1/E,•
χ,μ,loc ∈ A∗e�(μ)

to be the direct image

ẽv∗(ev∗(γi × · · · × γn) · ψα1
1 · · ·ψαn

n

[
Mχ,n(Y1, μ)

•]vir
loc

) ∈ A∗e�(μ). (4.20)

Here ψi is the ψ class of the universal curve of Mχ,n(Y1, μ)
• associated with the i-th marked points.

Since the localized virtual class lies in A∗Mχ,n(B1, μ)
•, the class (4.20) lies in e�(μ) ⊂ E�(μ).

For Y2 = (Y2, E), we take the virtual cycle of Mχ,n(Y2, μ)
• using its perfect obstruction theory

constructed in [18]:

[Mχ,n(Y2, μ)
•]vir ∈ A∗Mχ,n(Y2, μ)

•.

Since Y2 = B2 × A
1 and E is one of the A

1 in the product, the special evaluation morphism

ẽv : Mχ,n(Y2, μ)
• −→ E�(μ)

is proper. Using the proper push-forward, we define

〈τα1(γ1) · · · ταn(γn)〉Y2/E,•
χ,μ ∈ A∗E�(μ) (4.21)

to be (4.20) with [·]virloc replaced by [Mχ,n(Y2, μ)
•]vir.

We fix integers α1, . . . , αn ∈ Z
�0; a splitting n1 + n2 = n and classes γi ∈ H�1(X ) such that for

ιi : Yi → X the inclusion, ι∗1(γi) = 0 for i > n1 and ι∗2(γi) = 0 for i � n1. We also adopt the intersection

pairing

� : A∗El ×A∗el −→ Z, [El] · [pt] = 1.

Theorem 4.6. Let the situation be as stated. We have the degeneration formula

〈 n∏
j=1

ταj (γj)

〉S,•
χ,d,loc

=
∑ μ!

|Aut(μ)| ·
〈 n1∏
j=1

ταj (γj)

〉Y1/E,•

χ1,μ,loc

�

〈 n∏
j=n1+1

ταj (γj)

〉Y2/E,•

χ2,μ

.

Here the summation is over all possible partitions μ 	 d and χ = χ1 + χ2 − �(μ).

Proof. Applying the class version of the degeneration formulas in Theorem 4.5, we obtain the formula

in the statement of the theorem with summation over all possible partitions μ 	 d, χ = χ1 + χ2 − �(μ)

and λ : [n1] → [n]. Using the assumption ι∗1(γi) = 0 for i > n1 and ι∗2(γi) = 0 for i � n1, we see that the

terms in the summation may possibly be non-vanishing only if λ([n1]) = {1, . . . , n1} ⊂ [n]. This proves

the theorem.

5 Obstruction sheaves and their cosections

We prove Theorem 4.6 in this section and the next one. Our first step is to construct the cosection localized

virtual class of Mχ,n(X, d)
•. As constructed in [18], its perfect obstruction theory is the descent of that of

Mst

χ,n(X [m], d)•. For simplicity, we denote Mm = Mst

g,n(X [m], d). Following [18], the obstruction sheaf

of Mm is the cohomology sheaf h2(E•) of a Cěch complex E• whose construction we now recall.

We begin with preferred charts of the universal family of Mm:

(fm, πm) : Cm −→ X [m]×Mm, Pm ⊂ Cm marked points.

We call U/V an étale chart of Cm/Mm if U is an affine scheme over V , and they fit into a commutative

square with étale horizontal arrows
U −−−−→ Cm⏐⏐� ⏐⏐�
V −−−−→ Mm.

(5.1)
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Given U/V an étale chart of Cm/Mm, we let CU = Cm×Mm U , and let fU : CU → X [m] be the morphisms

induced by fm : Cm → X [m]. We let zi ∈ Γ(OAm+1) be the i-th coordinate function of Am+1.

Definition 5.1. We call (U/V , fU , (wi,1, wi,2)1�i�m+1) a preferred chart of fm if

(1) U/V is an étale chart of Cm/Mm ;

(2) there is a Zariski open W ⊂ X [m] such that fU(U) ⊂ W, and

(3) wi,1, wi,2 ∈ Γ(OW) such that wi,1 ·wi,2 = ρ∗(zi), and both wi,1 = 0 and wi,2 = 0 are smooth for all

i, where ρ : W → A
m+1 is the composite W ⊂ X [m] → A

m+1.

Recall that W ∩ (ρ∗(zi) = 0) ⊂ W is a divisor of normal crossing singularity; the choice of (wi,1, wi,2)

ensures that (wi,1 = wi,2 = 0) ⊂ W is the singular locus of W ∩ (ρ∗(zi) = 0).

Remark 5.2. Using preferred charts, we can describe the notion of pre-deformable as follows. Let

Di = (wi,1 = wi,2 = 0) ⊂ W . Suppose f−1
U (Di) �= ∅. We let Ûi (resp. V̂i) be the formal completion of

U (resp. V) along f−1
U (Di) (resp. ξ−1(zi = 0)). (The morphisms ξ and others are shown in the squares

below.)

U fU−−−−→ W⏐⏐�πV

⏐⏐�ρ
V ξ−−−−→ A

m+1,

(ûi,j = 0)
⊂−−−−→ Û fÛ−−−−→ W⏐⏐�

⏐⏐�πV̂

⏐⏐�ρ
(v̂i = 0)

⊂−−−−→ V̂ ξ̂−−−−→ A
m+1.

Then after shrinking U , if necessary, that f is pre-deformable along f−1
U (Di) is equivalent to that there

are ûi,1, ûi,2 ∈ Γ(OÛ ), v̂ ∈ Γ(OV̂) and an integer ni so that ûi,1 = 0 and ûi,2 = 0 are families of smooth

curves over v̂i = 0,

ẑi,1 = f∗
Û(w

ni

i,1), ẑi,2 = f∗
Û (w

ni

i,2) and ûi,1 · ûi,2 = π∗
V̂(v̂i).

Let (U/V , wi,1, wi,2) be a preferred chart. We define Γ(U , f∗
mΩ∨

X [m])
† to be the set of data (cf. [18,

Sect. 1.2]) (
ϕ, (ηi,1, ηi,2)1�i�m+1

)
∈ Γ(U , f∗

mΩ∨
X [m])⊕ Γ(OU )⊕(2m+2)

such that for all 1 � i � m+ 1 and j = 1, 2,

ϕ(f∗
mdwi,j) = f∗

m(wi,j) · ηi,j , ϕ(f∗
mdzi) ∈ Γ(OV), ηi,1 + ηi,2 ∈ Γ(OV). (5.2)

Here by ϕ(f∗
mdzi) ∈ Γ(OV) we mean that it lies in the image of the pull-back homomorphism Γ(OV) →

Γ(OU ). Note that Γ(U , f∗
mΩ∨

X [m])
† is a Γ(OV)-module.

We cover f by finitely many preferred charts

{(Uα/Vα, fUα , (w
α
i,1, w

α
i,2)1�i�m+1)}α∈Λ.

For A = (α0, . . . , αk) ∈ Λk+1, UA = Uα0 ×C · · · ×C Uαk
coupled with similarly defined VA and (wAi,1, w

A
i,2),

we define Γ(UA, f∗
mΩ∨

X [m])
† similarly.

We form

Dk
m =

⊕
A∈Λk+1

Γ(UA, f∗
mΩ∨

X [m])
†. (5.3)

We denote by C(Mm) (resp. D(Mm)) the triangulated category (resp. derived category) of complexes

of coherent sheaves of Mm.

In [18, Sect. 1.2], the second author constructed homomorphisms

∂k : Dk
m → Dk+1

m

that make (D•
m, ∂

•) a complex in C(Mm); constructed a complex F•
m in C(Mm) that is isomorphic to

RHomπm(ΩCm/Mm
(Pm),OCm) in D(Mm), and a homomorphism δ• : F•

m → D•
m in C(Mm) that has the

following properties.
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Proposition 5.3. [18, Sect. 1] Let E•
m = c(δ•) be the mapping cone of δ•; it has hi(E•

m) = 0 for

i �= 1, 2. The complex E•
m is part of the perfect obstruction theory of Mm introduced in [18]. The

obstruction sheaf ObMm is the cohomology sheaf h2(E•
m).

The perfect obstruction theory of Mm constructed is (C∗)m-equivariant, and descends to a perfect

obstruction theory of Mχ,n(X, d)
•; the obstruction sheaf ObMm descends to the obstruction sheaf of

Mχ,n(X, d)
•.

Note that the vanishing Hi(F•
m) = H i(D•

m) = 0 for i � 2 gives the vanishing H i(E•
m) = 0 for i � 3.

Remark 5.4. Recently, Abramovich and Fantechi [1] have constructed the perfect obstruction theories

of Mχ,n(X, d)
• and Mχ,n(Yk, η)

• in the framework of [3]. The construction in this section should give

the same cosections, which together with the technique developed in [8] will give the degeneration formula

stated in Theorem 4.6.

We now construct the desired cosection of the obstruction sheaf ObMm , which is built upon a homo-

morphism

σ̄m : ObMm −→ R1πm∗ωCm/Mm
. (5.4)

We let Θm ∈ Γ(Ω2
X [m]) be the pull-back of the two-form Θ ∈ Γ(Ω2

X [m]) (cf. (4.1)) via the projection

X [m] → X . Viewing it as a homomorphism Ω∨
X [m] → ΩX [m], its pull-back f

∗
mΘm defines a homomorphism

Γ(UA,, f∗
mΩ∨

X [m])
† pr−→Γ(UA, f∗

mΩ
∨
X [m])

f∗
mΘm−→ Γ(UA, f∗

mΩX [m]), (5.5)

where “pr” sends (ϕ, (ηi,j)) to ϕ. Composed with f∗
mΩX [m] → ωCm/Mm

, it defines a homomorphism

Γ(UA, f∗
mΩ

∨
X [m])

† −→ Γ(UA, ωCm/Mm
). (5.6)

Let C•
m = C•(Λ, ωCm/Mm

) be the Cěch complex of the sheaf ωCm/Mm
associated with the covering

{U
α
}Λ. Then (5.6) defines a homomorphism of complexes D•

m → C•
m. Taking cohomologies, we obtain

σ̃m : H1(D•
m) −→ H1(C•

m) = R1πm∗ωCm/Mm
. (5.7)

Let

(π, f) : C −→ Mχ,n(X, d)
• × X

be the universal family of Mχ,n(X, d)
•.

Proposition 5.5. The homomorphism σ̃m lifts to a homomorphism

σ̄m : ObMm = H2(E•
m) −→ R1πm∗ωCm/Mm

.

For m large, σ̄m descends to a homomorphism, independent of m,

σ̄ : ObMg,n(X,d)• −→ R1π∗ωC/Mχ,n(X,d)•.

Proof. By definition, H2(E•) is the cokernel of H1(δ•) : H1(F•) → H1(D•); since H1(F•) → H1(D•)
is

Ext1πm
(ΩCm/Mm

(Pm),OCm) −→ H1(D•),

to prove this proposition, it suffices to check that the composite

Ext1πm
(ΩCm/Mm

(Pm),OCm) −→ H1(D•) −→ R1πm∗ωCm/Mm

is trivial.

According to the construction (5.5), we see that this composition is induced by the sequence

ω∨
Cm/Mm

−→ f∗Ω∨
X [m]

f∗
mΘm−→ f∗ΩX [m] −→ ΩCm/Mm

, (5.8)

where the first arrow is the dual of the composite f∗ΩX [m] → ΩCm/Mm
→ ωCm/Mm

.
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Applying [8, Prop. 3.4], we conclude that the composite (5.8) vanishes. This proves that σ̄m exists.

That σ̄m descends to σ̄ follows from Theorem 4.2. Because σ̄m is constructed canonically, using (4.2), we

see that σ̄ is independent of m.

The desired cosection

σm : ObMm −→ OMm (5.9)

is defined to be the composite of σ̄m with the sum homomorphism

sum : R1πm∗ωCm/Mm
−→ OMm

specified in (2.2) and after. Since the “sum” homomorphism is canonical, σm is well defined, and descends

to a homomorphism

σX : ObMχ,n(X,d)• −→ OMχ,n(X,d)•. (5.10)

The degeneracy (non-surjective) locus of σX is easy to describe. Let

Z(σX) = {ξ ∈ Mχ,n(X, d)
• | σ(ξ) = 0 : ObMχ,n(X,d)• |ξ → k(ξ)}.

Proposition 5.6. For d > 0, the set Z(σX) coincides with the set Mg,n(D, d)
• ⊂ Mg,n(X, d)

•. In

particular, it is proper over A
1.

Proof. Let ξ ∈ Z(σX) be a closed point, represented by a stable morphism u : C → X [m]t, where

t ∈ A
m+1, and P ⊂ C its marked points. Let A

1† be the standard log-structure of the pair 0 ∈ A
1; let

A
m+1† (resp. X [m]†) be A

m+1 (resp. X [m]) endowed with the pull-back log-structure via A
m+1 → A

1

(resp. X [m] → A
1).

Let ΩX [m]†/Am+1† be the sheaf of relative log-differentials of X [m]† → A
m+1†. By [18, Prop. 5.1], we

have the exact sequences

Ext1C(ΩC(P ),OC) −→ H1(D•|ξ) −→ ObMm |ξ −→ 0

and

H1(C, u∗Ω∨
X [m]†/Am+1†) −→ H1(D•|ξ) −→

k+1⊕
l=1

H1
et(R

•
l |ξ).

Here the exact meaning of R•
l is irrelevant to our discussion. What is crucial is that the explicit form of

the homomorphism (5.5) shows that the dual of the composite

H1(C, u∗Ω∨
X [m]†/Am+1†) −→ H1(D•|ξ) −→ ObMm |ξ

σ̄m|ξ−→H1(C, ωC)

is the arrow

H0(C,OC) −→ H0(C, u∗ΩX [m]†/Am+1† ⊗ ωC) = H1(C, u∗Ω∨
X [m]†/Am+1†)

∨ (5.11)

induced by the holomorphic two-form u∗Θm.

We now suppose that t lies in the coordinate hyperplane of Am+1. In this case, X [m]t = Y1 �Δ1 �
· · · � Δk � Y2, where k � 0 depends on the number of vanishing coordinates of t ∈ A

m+1. We let

Y c1 = Δ1 � · · · �Δk � Y2, and denote E′ = Y1 ∩ Y c1 .
We write C =

⋃r
i=1 Ci for the connected component decomposition of C. Let

φi : H
0(Ci,OCi) −→ H0(Ci, u

∗ΩX [m]†/Am+1† ⊗OC ωCi)

be the summands in (5.11), which are individually induced by u∗Θm|Ci . Note that restricting to Y1−E′ ⊂
X [m]t, Θm|Y1−E′ induces an isomorphism

Θm|Y1−E′ : Ω∨
Y1−E′ −→ ΩY1−E′ . (5.12)

We now suppose φi = 0. Because d > 0, by the pre-deformability requirement of stable morphisms in

Mχ,n(X, d)
•, we have u(Ci)∩(Y1−E′) �= ∅; because of the isomorphism (5.12), we have u(Ci)∩(Y1−E′) ⊂
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B1 (B1 = Y1 ×S D). In particular, u(Ci) ∩ E′ ⊂ B1 ∩ E′. Further more, because Y c1 → Y c1 ×S D := Bc1
is the trivial line bundle over Bc1, knowing Ci is connected and

∅ �= u(Ci) ∩ E′ ⊂ B1 ∩ E′,

we must have u(Ci) ⊂ B1 ∪Bc1.
Finally, we let ε : k → k⊕r be the diagonal homomorphism. Then

k
ε−→k⊕r =

r⊕
i=1

H0(Ci,OCi) −→
r⊕
i=1

H0(Ci, u
∗ΩX [m]†/Am+1† ⊗ ωCi) (5.13)

is zero if and only if all φi = 0, which is true only if u(Ci) ⊂ X [m] ×X D for all i; namely, u(C) ⊂
X [m]×X D.

Since (5.13) is (5.11) composed with k → H1(C,OC), and is dual to the composite

H1(C, u∗Ω∨
X [m]†/Am+1†) −→ H1(D•|ξ) −→ ObMm |ξ

σm|ξ−→ k,

we conclude that σm|ξ = 0 only if ξ ∈ Mχ,n(D, d)
•.

The remainder case is when t does not lie in the coordinate hyperplanes of A
m+1. In this case

Y1 = X [m]t is smooth and Y c1 defined previously is the empty set. Then the same argument shows that

ξ ∈ Z(σX) only if ξ ∈ Mχ,n(D, d)
•. This proves Mχ,n(D, d)

• ⊃ Z(σX).

Finally, since Θ|D ≡ 0, Mχ,n(D, d)
• ⊂ Z(σX). This proves the proposition.

We have a parallel construction for the moduli of relative stable morphisms to the pair (Y1, E1). Fixing

a partition μ of d, we form the moduli space Mχ,n(Y1, μ)
• of relative stable morphisms to Y1, as stated

in Proposition 4.4. By definition, it is étale covered by Mst

χ,n(Y1[m], μ)•/(C∗)m. For simplicity, we

abbreviate M ′
m = Mst

χ,n(Y1[m], μ)•; we denote by ObM ′
m

its obstruction sheaf.

We give a description of the obstruction sheaf of M ′
m (cf. [18, Sect. 1.3]). Let

(π′
m, f

′
m) : C′

m −→M ′
m × Y1[m]

(with the marked points implicitly understood) be the universal family of M ′
m. We cover C′

m → M ′
m by

preferred charts U/V as in (5.1) so that in addition to (5.1) and the validity of Definition 5.1 (with Cm,
fm, fU , etc. replaced by C′

m, f
′
m, f ′

U , etc.), we require

(4) there is a w ∈ Γ(OW) so that (w = 0) = W ∩ E[m].

We then define Γ(U , f ′∗
mΩ∨

Y1[m])
† to be the set of data

(
ϕ, (ηi,1, ηi,2)1�i�m+1, η

)
∈ Γ(U , f∗

mΩ∨
X [m],OCm)⊕ Γ(OU )⊕(2m+2) ⊕ Γ(OU )

such that in addition to (5.2), we have

ϕ(f ′∗
mdw) = f ′∗

m(w) · η.

Like the case for Mm, using Γ(U , f ′∗
mΩ∨

Y1[m])
†, we form the complex D′•, and then the complex E′•.

The sheaf cohomology

H2(E′•) = ObM ′
m
.

Using Y1 = S, we have the holomorphic two-form θ ∈ Γ(Ω2
Y1
). Like the case forMm, the form θ induces

a homomorphism

σ′
m : ObM ′

m
= H2(E′•) −→ OM ′

m
.

Because the construction of σ′
m is canonical, it is (C∗)m-equivariant and descends to a homomorphism

(independent of m)

σY1 : ObMχ,n(Y1,η)• −→ OMχ,n(Y1,η)• . (5.14)

As before, we denote B1 = Y1 ×Y1 B1, where B1 = D ⊂ S = Y1.
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Proposition 5.7. The locus Z(σY1) of non-surjectivity of σY1 is

Z(σY1) = Mχ,n(B1, η)
• ⊂ Mχ,n(Y1, η)

•.

It is proper.

Proof. The proof is similar to that of Mχ,n(X, d)
•, and will be omitted.

6 Proof of Theorem 4.5

Applying cosection localized virtual class construction [8], we obtain

Definition-Proposition 6.1. The cosection σX in (5.10) and σY1 in (5.14) define cosection localized

virtual classes:

[Mχ,n(X, d)
•]virloc ∈ A∗Mχ,n(D, d)

• and [Mχ,n(Y1, η)
•]virloc ∈ A∗Mχ,n(B1, η)

•.

To prove Theorem 4.5, the first step is to use [Mχ,n(X, d)
•]virloc to produce a numerical equivalence of

[Mχ,n(S, d)
•]virloc in (4.18) with the cosection localized virtual class of Mχ,n(X0, d)

•.
For c ∈ A

1, we endow Mχ,n(Xc, d)
• with the perfect obstruction theory induced by the Cartesian

product above and the obstruction theory of Mχ,n(X, d)
•. (Recall that for c ∈ A

1, Mχ,n(Xc, d)
• =

Mχ,n(X, d)
• ×A1 c; for c �= 0, using Xc ∼= S, we have Mχ,n(Xc, d)

• = Mχ,n(S, d)
•.)

Lemma 6.2. Let c ∈ A
1 be any closed point. The obstruction sheaves of Mχ,n(X, d)

• and Mχ,n(Xc, d)
•

fit into the following exact sequence, and the cosection σX of (5.10) restricting to Mχ,n(Xc, d)
• lifts to a

cosection σXc of ObMχ,n(Xc,d)• :

ObMχ,n(X,d)• |Mχ,n(Xc,d)• −−−−→ ObMχ,n(Xc,d)• −−−−→ 0⏐⏐�σX|Mχ,n(Xc,d)•
⏐⏐�σXc

OMχ,n(Xc,d)• OMχ,n(Xc,d)• .

(6.1)

Proof. Recall that Θ is the pull-back of θ ∈ Γ(Ω2
S) via the projection X → S; for c �= 0, using Xc ∼= S,

we obtain the following commutative square

Ω∨
X |Xc

Θ−−−−→ ΩX |Xc�⏐⏐
⏐⏐�

Ω∨
Xc

θ−−−−→ ΩXc .

Since the cosection σX is constructed using Θ, this commutative square guarantees that the cosection

σXc shown in (6.1) constructed using θ on Xc ∼= S commutes with σX as shown in (6.1). This proves the

lemma for c �= 0.

For c = 0, the proof is similar. In this case, the square (6.1) is commutative with ΩXc replaced by

ΩX0(logE). Since maps [u,C] ∈ Mχ,n(X0, d)
• are pre-deformable, the pull-back u∗ is a homomophism

u∗ : u∗ΩX0(logE) → ωC . Using these, we see that σX0 exists and fits into the commutative diagram

(6.1).

Remark 6.3. For c �= 0, using Xc ∼= S, the obstruction theory of Mχ,n(Xc, d)
• induced from

Mχ,n(X, d)
• coincides with that of Mχ,n(S, d)

• (without referring to the family X → A
1); the cosec-

tion σXc coincides with the cosection of ObMχ,n(S,d)• constructed in Section 2.

Applying Proposition 5.6, we see that the non-surjective locus Z(σXc) of σXc is Mχ,n(Dc, d)
•. We let

[Mχ,n(Xc, d)
•]virloc ∈ A∗Mχ,n(Dc, d)

•

be the cosection localized virtual class of Mχ,n(Xc, d)
•, using the cosection σXc .
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Proposition 6.4. Let c ∈ A
1 be any closed point, and let ιc : c→ A

1 be the inclusion. Then

ι!c [Mχ,n(X, d)
•]virloc = [Mχ,n(Xc, d)

•]virloc ∈ A∗Mχ,n(Dc, d)
•.

Proof. This follows from [8, Thm 5.2].

Corollary 6.5. For c �= 0 ∈ A
1, using the canonical isomorphism Xc ∼= S, we have

[Mχ,n(Xc, d)
•]virloc = [Mχ,n(S, d)

•]virloc ∈ A∗Mχ,n(D, d)
•.

Proof. For c �= 0 ∈ A
1, by Remark 6.3, the obstruction theory and the cosection of the obstruction

sheaf of Mχ,n(Xc, d)
• coincide with that of Mχ,n(S, d)

•. Thus [Mχ,n(Xc, d)
•]virloc = [Mχ,n(S, d)

•]virloc. This

proves the corollary, which implies (4.18) in Theorem 4.5.

We quote the following existence result. Let πA1 : Mχ,n(X, d)
• → A

1 be the projection; let t ∈ Γ(OA1)

be the standard coordinate function. We continue to denote by Γ the set of possible decompositions

defined in and after (4.13).

Lemma 6.6. [18, Sect. 3.1] There are pairs (Lγ , sγ), indexed by γ ∈ Γ, of line bundles and sections

sγ ∈ Γ(Lγ) on Mχ,n(X, d)
• such that

⊗
γ∈Γ

Lγ ∼= π∗
A1
OA1 , and

∏
γ∈Γ

sγ = π∗
A1
t.

Let L0 = π∗
A1
OA1 and s0 = π∗

A1
t ∈ Γ(L0). Let

c1(L0, s0) : A∗Mχ,n(D, d)
• −→ A∗−1Mχ,n(D0, γ)

•

be the localized first Chern class of the pair (L0, s0).

Proposition 6.7. We have the identity

[Mχ,n(X0, d)
•]virloc = c1(L0, s0)[Mχ,n(X, d)

•]virloc =
∑
γ∈Γ

c1(Lγ , sγ)[Mχ,n(X0, d)
•]virloc.

Proof. The first identity follows from that c1(L0, s0) = ι!0 and Proposition 6.4; the second identity

follows from Lemma 6.6.

The summands in the last summation have their own virtual cycle interpretations. We fix a γ ∈ Γ.

We define

Mχ,n(X0, γ)
• := (sγ = 0) ⊂ Mχ,n(X, d)

•. (6.2)

Because it is defined by the vanishing of a section of a line bundle on Mχ,n(X, d)
•, it has an induced

perfect obstruction theory from that of Mχ,n(X, d)
• [18, Prop. 3.8].

Proposition 6.8. The cosection σX restricted to Mχ,n(X0, γ)
• lifts to a cosection σX0,γ:

ObMχ,n(X,d)• |Mχ,n(X0,γ)• −−−−→ ObMχ,n(X0,γ)• −−−−→ 0⏐⏐�σX|Mχ,n(X0,γ)•
⏐⏐�σX0,γ

OMχ,n(X0,γ)• OMχ,n(X0,γ)• .

(6.3)

Let [Mχ,n(X0, γ)
•]virloc be the cosection localized virtual class of Mχ,n(X0, γ)

• using the cosection σX0,γ.

Then

[Mχ,n(X0, γ)
•]virloc = c1(Lγ , sγ)[Mχ,n(X, d)

•]virloc ∈ A∗Mχ,n(D0, γ)
•.

Proof. We comment that the first line in (6.3) is an exact sequence, which follows from the fact that

the obstruction theory of Mχ,n(X0, γ)
• is induced from that of Mχ,n(X, d)

•. That σX0,γ exists follows

the same reasoning as in the proof of Lemma 6.2. Finally, the proof of the identity of cycles follows from

the proof of [8, Thm. 5.2].
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We next give M(Y1 �Y2, γ)
•, defined via the Cartesian product (4.14), a perfect obstruction theory.

Using the Cartesian product, and that each factor Mχi,ni(Yi, μ)
• has perfect obstruction theory, we

obtain a perfect obstruction theory of M(Y1 � Y2, γ)
•. We call this the perfect obstruction theory

induced by the Cartesian product (4.14).

It has a second induced perfect obstruction theory. We let M be the Artin stack of not necessarily

connected nodal curves; for μ the partition appearing in the decomposition index γ (cf. (4.13)) and

� = �(μ), we denote by M� be the Artin stack of (ordered) �-pointed not necessarily connected nodal

curves. By identifying the q1i with q2i for all i of all pairs
(
(C1, q

1
i ), (C2, q

2
i )
)
in M� × M�, we obtain a

gluing morphism

M� ×M� −→ M. (6.4)

By the Cartesian product above and the pre-deformable assumption, one sees that the tautological

inclusion

M(Y1 �Y2, γ)
• ⊂−→Mχ,n(X, d)

• ×M

(
M� ×M�

)
(6.5)

is both open and closed.

Since (6.4) is a regular local immersion of smooth stacks, together with the perfect obstruction theory of

Mχ,n(X, d)
•, it induces a perfect obstruction theory of the fiber product (on the right hand side) in (6.5).

As the arrow in (6.5) is both open and closed, it defines a perfect obstruction theory of M(Y1 �Y2, γ)
•.

We call this perfect obstruction theory the one induced by (6.5).

Lemma 6.9. [18] The two perfect obstruction theories of M(Y1 � Y2, γ)
• induced by the Cartesian

product (4.14) and by the open and closed immersion (6.5) are identical.

We now look at the product

Mχ1,n1(Y1, μ)
• ×Mχ2,n2(Y2, μ)

•.

Since its obstruction sheaf is the direct sum of the pull-back of the obstruction sheaves of the two

individual factors, it has a cosection that is the pull-back of the cosection σY1 in (5.14) and the zero

cosection σY2 = 0 of ObMχ2,n2 (Y2,μ)• . We denote this cosection by σY1×Y2 .

Proposition 6.10. The cosections σY1×Y2 and σX restricted to M(Y1 � Y2, γ)
• lift to cosections of

ObM(Y1�Y2,γ)• via (4.14) and (6.5), respectively. The two (lifted ) cosections are identical, which we

denote by

σY1�Y2 : ObM(Y1�Y2,γ)• −→ OM(Y1�Y2,γ)• . (6.6)

The locus of its non-surjectivity is M(B1 �B2, γ)
•. Let [M(Y1 �Y2, γ)

•]virloc be the cosection localized

virtual class, then

[M(Y1 �Y2, γ)
•]virloc = δ!

(
[Mχ1,n1(Y1, η)

•]virloc × [Mχ2,n2(Y2, η)
•]vir

)
,

as classes in A∗M(B1 �B2, γ)
•.

Proof. The proof of the existence of the lifting is parallel to the proof of Lemma 6.2; the two lifted

cosections coincide because both are induced by the same two-form θ ∈ Γ(Ω2
S). Finally, the identity on

cycles follows from the proof of [8, Thm. 5.2].

Theorem 4.5 will follow after we prove

Proposition 6.11. Let μ be the partition appearing in the data γ ∈ Γ, and let ψγ be the morphism

defined in (4.17). Then

μ!

|Autμ| · (ψγ)∗[M(Y1 �Y2, γ)
•]virloc = [Mχ,n(X0, γ)

•]virloc ∈ A∗Mχ,n(D0, d)
•.

We prove the proposition. Consider the morphism (cf. (4.15))

Ψγ : M(Y1 �Y2, γ)
• −→ Mχ,n(X, d)

•.
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We let φ̂γ : Ξ̂γ −→ Mχ,n(X, d)
• (resp. φ� : M̂�×� → M) be the formal completion of Mχ,n(X, d)

• (resp.

M) along the image ImΨγ (resp. the image of (6.4)). We have the following commutative diagram

M(Y1 �Y2, γ)
• Φγ−−−−→ Ξ̂γ

φ̂γ−−−−→ Mχ,n(X, d)
•

⏐⏐�
⏐⏐�

⏐⏐�
M� ×M�

ζ�−−−−→ M̂�,�
φγ−−−−→ M.

Here Φγ is the lift of Ψγ . Note that the left square is a Cartesian square. Since the lower left horizontal

arrow is finite and étale (of degree �!) to its image, by the topological invariance of étale morhisms, we

can find an Artin stack M̃�,� that contains M�×M� as its closed substack and a pure degree �! finite and

étale morphism M̃�,� → M̂�,� that extends M� ×M� → M̂�,�.

We let Ξ̃γ = Ξ̂γ ×M̂�,�
M̃�,�; by definition, it contains M(Y1 �Y2, γ)

• as its closed substack, and Φγ

lifts to a finite and étale ϑγ : Ξ̃γ → Ξ̂γ . A direct inspection shows that ϑγ has pure degree |Aut γ|.
We can insert Ξ̃γ and M̃�,� in the above diagram to get a commutative

M(Y1 �Y2, γ)
• ⊂−−−−→ Ξ̃

ϑγ−−−−→ Ξ̂γ
φ̂γ−−−−→ Mχ,n(X, d)

•
⏐⏐�

⏐⏐�h̃γ

⏐⏐�
⏐⏐�

M� ×M�
ζ�−−−−→ M̃�,� −−−−→ M̂�×�

φ�−−−−→ M.

(6.7)

This time, the two left horizontal arrows are closed immersions, and the two middle horizontal arrows

are finite and étale. (We comment that M̃�,� is the Q mentioned in [18, Lemma 4.10].)

The importance of the M̃�,� is the following existence result [18, Lemma 4.12]. There are pairs of line

bundles and sections (L̃i, s̃i), where L̃i are line bundles on M̃�,�, s̃i ∈ Γ(L̃i) and 1 � i � �, such that

(i) (ϑγ ◦ φ̂γ)∗Lγ = h̃∗γ
(⊗�

i=1 L
⊗μi

i

)
, and (ϑγ ◦ φ̂γ)∗sγ = h̃∗γ

(∏�
i=1 s

μi

i

)
;

(ii) (si = 0) ⊂ M̃�,� is the divisor of the locus where the i-th gluing-nodes of curves in Im(ζ�) are not

smoothed.

Because of (ii), Φγ factors and effects an isomorphism

Φγ : M(Y1 �Y2, d)
• ∼=−→

�⋂
i=1

(h̃∗γsi = 0) ⊂ Ξ̃γ .

We let

N0 =

�⋂
i=1

(si = 0) ⊂ N =

�⋂
i=1

(sμi

i = 0) ⊂ M̃�,�;

We define

M∼
χ,n(X0, γ)

• :=

�⋂
i=1

(h̃∗γs
μi

i = 0) = Ξ̃γ ×M̃�,�
N ⊂ Ξ̃γ . (6.8)

Then we have the Cartesian square

M(Y1 �Y2, γ)
• −−−−→ M∼

χ,n(X0, γ)
•

⏐⏐�
⏐⏐�

N0 −−−−→ N
⊂−−−−→ M̃.

(6.9)

Using the top line of (6.7), we also have an induced morphism

M∼
χ,n(X0, γ)

• −→ Mχ,n(X, d)
•. (6.10)

Lemma 6.12. The stack M∼
χ,n(X0, γ)

• has a perfect obstruction theory induced by the arrow (6.10).
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Proof. Using the definition of Mχ,n(X0, γ)
• (in (6.2)), and using the item (i) above, the morphism

(6.10) factors through a finite, étale morphism

M∼
χ,n(X0, γ)

• −→ Mχ,n(X0, γ)
• (6.11)

of pure degree |Aut γ|. Thus, the perfect obstruction theory of Mχ,n(X0, γ)
• (defined after (6.2),

using the defining equation sγ = 0 and that of Mχ,n(X, d)
•) induces a perfect obstruction theory of

M∼
χ,n(X0, γ)

•.
Like in [18, p. 278], one works out the perfect relative obstruction theory of the pairM∼

χ,n(X0, γ)
• → N;

using that N0 ⊂ N is a closed substack, and the Cartesian square (6.9), we obtain an induced perfect

relative obstruction theory of M(Y1 �Y2, γ)
• → N0.

Lemma 6.13. [18, Lemma 4.13] The relative obstruction theory of M∼
χ,n(X0, γ)

• → N is compatible

with the perfect obstruction theory of M∼
χ,n(X0, γ)

• given in Lemma 6.12; the relative obstruction theory

of M(Y1 �Y2, γ)
• → N0 is compatible with the perfect obstruction theory of M(Y1 �Y2, γ)

•.

Repeating the previous argument, using that both cosections σX and σY1�Y2 are induced by the two-

form θ ∈ Γ(Ω2
S), one checks that the cosection σX0,γ (cf. Proposition 6.8) lifts to a cosection σX∼

0 ,γ
of the

obstruction sheaf of M∼
χ,n(X0, γ)

•, and that the later fits into the following commuting square

ObM∼
χ,n(X0,γ)

|M(Y1�Y2,γ)•
surj−−−−→ ObM(Y1�Y2,γ)•⏐⏐�σX∼

0 ,γ

⏐⏐�σY1�Y2

OM(Y1�Y2,γ)• OM(Y1�Y2,γ)• .

(6.12)

Recall that using the relative obstruction theories, we can construct the virtual cycles [M∼
χ,n(X0,

γ)•/N]vir and [M(Y1 �Y2, γ)
•/N0]

vir (cf. [18, Sect. 4], see also [3]). Applying the cosection localized

virtual cycle construction, using σX∼
0 ,γ

and σY1�Y2 , we obtain cosection localized virtual cycles

[M∼
χ,n(X0, γ)

•/N]virloc and [M(Y1 �Y2, γ)
•/N0]

vir
loc ∈ A∗M(B1 �B2, γ)

•.

Here the inclusion M(Y1 �Y2, γ)
• ⊂ M∼

χ,n(X0, γ)
• is a bijection.

Since N0 is smooth, using the second part of Lemma 6.13, we have identity

[M(Y1 �Y2, γ)
•/N0]

vir
loc = [M(Y1 �Y2, γ)

•]virloc ∈ A∗M(B1 �B2, γ)
•, (6.13)

without relying on any rational equivalence.

Because M̃�,� is smooth, N0 ⊂ M̃�,� is smooth of codimension � and defined by ∩(si = 0), and because

N ⊂ M̃�,� is defined by ∩(sηii = 0), parallel to the proof of [18, Lemma 4.8], we conclude

μ! · [M(Y1 �Y2, γ)
•/N0]

vir
loc = [M∼

χ,n(X0, γ)/N]virloc ∈ A∗M(B1 �B2, γ)
•, (6.14)

without relying on any rational equivalence.

At last, using the cosection σX∼
0 ,γ

, repeating the argument in [8, Thm. 5.2], we conclude that the

canonical rational equivalence constructed by Vistoli [24] (see also [11] and [10]) provides a rational

equivalence

[M∼
χ,n(X0, γ)

•/N]virloc = [M∼
χ,n(X0, γ)

•]virloc ∈ A∗M(B1 �B2γ)
•. (6.15)

Since the argument is similar, we omit the details here.

Proof of Proposition 6.11. Combining identities (6.13), (6.14) and (6.15), we obtain

μ! · [M(Y1 �Y2, γ)
•/N0]

vir
loc = [M∼

χ,n(X0, γ)
•]virloc ∈ A∗M(B1 �B2γ)

•.

Because (6.11) is finite, étale and of pure degree |Autμ|, and that the obstruction theory of M∼
χ,n(X0, γ)

•

is the pull-back of that of Mχ,n(X0, γ)
•, for ψγ the morphism defined in (4.17), we have

(ψγ)∗[M
∼
χ,n(X0, γ)

•]virloc = |Aut γ| · [Mχ,n(X0, γ)
•]virloc ∈ A∗Mχ,n(D0, d)

•.

This proves the proposition.
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7 Low-degree GW-invariants of surfaces

In this section, we use degeneration formula to prove the formulas of low degree GW-invariants of surfaces.

Applying the deformation invariance results in Section 3, for smooth algebraic surfaces X with θ ∈
H0(KX) and (θ = 0) smooth, its GW-invariants are given by the local GW-invariants of any spin surface

S that is the total space of a theta-characteristic L of a smooth curve D of genus

h = K2
X + 1

such that h0(L) ≡ χ(OX) mod 2.

We denote the localized GW-invariants of S by

〈 n∏
i=1

ταi(γ)

〉S,•
χ,d[D],loc

= 〈τα1 (γ1) · · · ταn(γn)〉
X,•
χ,d[D],loc, for γi ∈ H∗(S). (7.1)

In this section, we use d[D] to signify that d is the degree of stable maps.

Following the convention, since (7.1) is possibly non-trivial only when

−χ = dK2
S +

n∑
i=1

αi, αi ∈ Z�0, (7.2)

we shall omit the reference to χ in the notation of (7.1) with the understanding that it is given by (7.2).

Let γ ∈ H2(D,Z) be the Poincaré dual of a point in D. The main result of this section is the following

theorem, conjectured by Maulik and Pandharipande [21, (8)–(9)].

Theorem 7.1. Let S → D and h = g(D) be as before. Then the degree one and two localized GW-

invariants with descendants are

〈 n∏
i=1

ταi(γ)

〉S,•
[D],loc

= (−1)h
0(L)

n∏
i=1

αi!

(2αi + 1)!
(−2)−αi , (7.3)

〈 n∏
i=1

ταi(γ)

〉S,•
2[D],loc

= (−1)h
0(L) 2h+n−1

n∏
i=1

αi!

(2αi + 1)!
(−2)αi . (7.4)

The first identity is proved in [9, Prop. 1.3] (see also [7]). Before we prove (7.4) using the degeneration

formula proved above, we recall the following two identities proved in [9].

Let Y0 be the total space of OP1(−1). Then we have (see [9, Prop. 3.3])

〈 n∏
i=1

ταi(γ)

〉Y0,•

2[P1],loc

= 2n−1
n∏
i=1

αi!

(2αi + 1)!
(−2)αi ; (7.5)

we also have (see [9, Prop. 3.4])

〈τ1(γ)〉S,•2[D],loc = (−1)h
0(L)

(
2h

−3

)
. (7.6)

Let μ = (1, 1) be the obvious partition of 2.

Lemma 7.2. Let (Y1, E) and (Y2, E) be the relative pairs resulting from the degeneration constructed

in the previous section. Then

〈1〉Y1/E,•
(1,1),loc = (−1)h

0(L) 2h [pt2] and 〈τ1(γ)〉Y2/E,•
(1,1) � [pt2] = −1

6
.

Proof. We first look at the first identity. It is easy to see, from the construction of localized relative

invariants (Definition-Proposition 6.1), that 〈1〉Y1/E,•
(1,1),loc is a scalar multiple of [pt2]. Then, an easy virtual

dimension counting shows that the stable maps that contribute to this invariant must have −χ = 2(h−1).
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By (7.2), the composites of these stable maps with p :X → D are étale covers of D. Hence the (relevant)

moduli space of relative stable maps to (Y1, E) is a disjoint union of 22h vector spaces, each consists of

all liftings of an étale cover of D. By the proof of [9, Prop. 2.5], we obtain

〈1〉Y1/E,•
(1,1),loc =

∑
u:2-fold étale covers of D

(−1)h
0(u∗L) [pt2].

It is known that étale double covers of D are parameterized by the set of order 2 line bundles on D, and

exactly 2h−1(2h + 1) of them satisfy h0(u∗L) ≡ h0(L) mod 2 (see [5]). Therefore we have

〈1〉Y1/E,•
(1,1),loc = (−1)h

0(L)
(
2h−1(2h + 1)− 2h−1(2h − 1)

)
[pt2] = (−1)h

0(L)2h[pt2].

This proves the first equation.

Since Y2 is the total space of the trivial line bundle over P1, any stable map in Mχ,n(Y2, (1, 1))
• with

two distinct intersection points with E has two irreducible components, one with the marked point and

the other without. Therefore, because

〈τ1(γ)〉Y2,E
(1) � [pt] = 〈τ1(γ)〉Y0,•

[P1],loc = − 1

12
and 〈1〉Y2/E

(1) � [pt] = 1,

we have

〈τ1(γ)〉Y2/E,•
(1,1) � [pt2] = (〈τ1(γ)〉Y2/E

(1) � [pt])(〈1〉Y2/E
(1) � [pt])

+ (〈1〉Y2/E
(1) � [pt])(〈τ1(γ)〉Y2/E

(1) � [pt]) = −1

6
.

This proves the lemma.

We prove (7.4). By the degeneration formula, we have

〈 n∏
i=1

ταi(γ)

〉S,•
2[D],loc

=
1

2
〈1〉Y1/E,•

(1,1),loc �

〈 n∏
i=1

ταi(γ)

〉Y2/E,•

(1,1)

+ 2〈1〉Y1/E,•
(2),loc �

〈 n∏
i=1

ταi(γ)

〉Y2/E,•

(2)

. (7.7)

In particular, from (7.6) and Lemma 7.2, we have

(−1)h
0(L)

(
2h

−3

)
= 〈τ1(γ)〉S,•2[D],loc =

1

2
(−1)h

0(L)

(
2h

−6

)
+ 2〈1〉Y1/E,•

(2),loc � 〈τ1(γ)〉Y2/E,•
(2) .

Comparing this with the case where D = P
1 (h = 0), we see that the relative invariants 〈1〉Y1/E,•

(1,1),loc and

〈1〉Y1/E,•
(2),loc are exactly those for D = P

1, multiplied by (−1)h
0(L) 2h. Therefore by (7.7) and (7.5), we have

〈 n∏
i=1

ταi(γ)

〉S,•
2[D],loc

= (−1)h
0(L) 2h

〈 n∏
i=1

ταi(γ)

〉Y0,•

2[P1],loc

= (−1)h
0(L) 2h+n−1

n∏
i=1

αi!

(2αi + 1)!
(−2)αi .

This proves Theorem 7.1.

We end this section by commenting on other possible degenerations of spin surfaces. Let S be a

spin surface over a smooth curve D of genus g with the associated theta-characteristic L. Besides the

situation studied in details in this paper, we can also generate S to a normal crossing surface having

three irreducible components, which we describe now.

We first degenerate D to a (chain like) nodal curve D′ of three smooth irreducible components D′
1 ∪

D′
2∪D′

3 so that D′
1 and D′

3 have genus g1 and g3 with g1+g3 = g, and D′
2
∼= P

1. The theta characteristic

L on D can be specialized to a line bundle L′ on D′ so that L′|D′
1
and L′|D′

3
are theta-characteristics of D′

1

and D′
3, respectively, and L

′|D′
2

∼= OP1(−1). We let S′ be the total space of L′; it is the union of smooth

components S′
i = S′ ×D′ D′

i. Like before, we denote by X → V the total space of this degeneration,

where 0 ∈ V is a smooth curve; we agree X0
∼= S′. Using this family X , we can form the stack X and the

moduli of stable morphisms

Mχ,n(X, d)
•
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as in Proposition 4.2.

To construct the cosection of its obstruction sheaf, we notice that the tautological holomorphic two-

form θ on S extends to a section Θ ∈ Γ(X , ωX/V ) that vanishes along S′
2 ⊂ X0. Parallel to the discussion

we had, θ′ = Θ|X0 defines a cosection σ′ of the obstruction sheaf of the moduli space

Mχ,n(X0, d)
• = Mχ,n(X, d)

• ×V 0.

One checks that the non-surjective loci of σ′ contains stable maps u : C → S′ so that u(C) ⊂
D′

1 ∪ S′
2 ∪ D′

3. Suppose d � 2. One sees that the non-surjective loci of σ′ is not proper, of which we

can not apply the proof derived in this paper. Nevertheless, it is hoped that a detailed study of this

non-properness will yield information on higher degree localized GW-invariants of spin surfaces.

8 Comment on reduced GW-invariants of K3 surfaces

Let X be a smooth projective K3 surface with a non-trivial algebraic class α �= 0 ∈ H2(X,Z). The

GW-invariant satisfies

〈·〉X,•χ,n,α := [Mχ,n(X,α)
•]vir = 0 ∈ A∗Mχ,n(X,α)

•. (8.1)

(We use 〈·〉 to represent the cycle class.) This can be seen as follows. Let θ ∈ Γ(Ω2
X) be a no-where

vanishing holomorphic two-form; it induces a cosection of the obstruction sheaf of Mχ,n(X,α)
•

σ : ObMχ,n(X,α)• −→ OMχ,n(X,α)•

that is everywhere surjective (since α �= 0). Applying the cosection localized virtual cycles [8], we obtain

the vanishing (8.1).

Toward enumerating curves in K3 surfaces, modified GW-invariants of K3 surfaces were introduced.

In [4], using twisted family of K3 surfaces Bryan-Leung introduced the family GW-invariants of a K3

surface. Later, by deforming almost complex structures of surfaces Lee introduced the family GW-

invariants of surfaces with pg > 0 [12]. For the case of K3 surfaces, Lee showed that the two versions of

family GW-invariants coincide.

Algebraic version of family GW-invariants of a K3 surface can be defined as follows. Given a pair

(X,α) of an algebraic K3 surface X with an algebraic class α �= 0 ∈ H2(X,Z), we pick a family of K3

surfaces X → T over a disk 0 ∈ T so that X0
∼= X and that the class α ∈ H2(X,Z) = H2(X ,Z) ceases to

be algebraic at the first order deformation of X0 ⊂ X . We then form the moduli space Mχ,n(X , α)• of

stable morphisms to X of class α; it is a Deligne-Mumford stack proper over T . Since α does not deform

in the first order as an algebraic class, the tautological embedding

Mχ,n(X,α)
• = Mχ,n(X0, α)

• ∼=−→Mχ,n(X , α)• (8.2)

is an isomorphism.

Let (π, f) : C → Mχ,n(X , α)• × X be its universal family. To define the family GW-invariants, we

form the perfect relative obstruction theory

(
Rπ∗f∗TX/T

)∨ −→ L
•
Mχ,n(X ,α)•/Mχ,n×T . (8.3)

Let CT ⊂ h1/h0
(
Rπ∗f∗TX/T

)
be the intrinsic normal cone embedded via the obstruction theory (8.3).

Because of (8.2), Mχ,n(X , α)• = Mχ,n(X,α)
• is proper. We define the algebraic version of family

GW-invariants of X to be

〈·〉X,•,flχ,n,α := 0![CT ] ∈ A∗Mχ,n(X,α)
•, (8.4)

where 0! is intersecting with the zero section of h1/h0
(
Rπ∗f∗TX/T

)
. (Here we use “fl” to stand for

“family”.)

In [22], Okounkov-Pandharipande introduced the reduced GW-invariants of an algebraic K3 surface.

It can be phrased using cosection of the obstruction sheaf of Mχ,n(X,α)
•. Because of the identity (8.2),
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(π, f, C) is also the universal family of Mχ,n(X,α)
•. The holomorphic two form θ ∈ Γ(Ω2

X) defines a

surjective cosection (homomorphism) [8]

σ′ : ObMχ,n(X,α)• −→ OMχ,n(X,α)• .

Since σ′ is surjective, it induces a surjective bundle stack homomorphism

[σ′] : h1/h0
(
Rπ∗f∗TX

)
−→ OMχ,n(X,α)• .

We let R be its kernel bundle stack.

Let C′ ⊂ h1/h0
(
Rπ∗f∗TX

)
be the intrinsic normal cone of Mχ,n(X,α)

•. The cosection localization

of [8] shows that the cycle [C′] lifts to a cycle [C′
lift] ∈ Z∗R. The reduced GW-invariants of X (in [22]) is

〈·〉X,•,redχ,n,α = 0!R[C
′
lift] ∈ A∗Mχ,n(X,α)

•. (8.5)

Lemma 8.1. The algebraic version of family GW-invariants (8.4) and the reduced GW-invariants

(8.5) of a K3 surface X are identical.

Proof. By (8.2), Rπ∗f∗TX/T = Rπ∗f∗TX . The Lemma then follows from the fact that CT intersects

R ⊂ h1/h0
(
Rπ∗f∗TX

)
transversally and the cycle of the (stack-theoretic) intersection [CT ∩R] is the lift

of [C′]. This can be proved using the algebraic class α ∈ H2(X,Z) when ceases to be algebraic in the first

order deformation of X in X . We leave the details to the readers.

In [15], Lee-Leung proved the index two Yau-Zaslow conjecture using a degeneration formula of the

family GW-invariants of an elliptic K3 surface. By the above equivalence result, this degeneration is also

a degeneration of reduced GW-invariants of K3. We show that the degeneration formula can be derived

parallel to the method developed in this paper.

We let X → P
1 be an elliptic K3 surface. Pick a q ∈ P

1 so that F = X ×P1 q is a smooth fiber.

We form the family X → A
1 that is the blow-up of X × A

1 along F × 0. Note that the fiber of X over

t �= 0 ∈ A
1 is X , and the special fiber X0 is the union of X with F × P

1, intersecting transversally along

F ⊂ X and F × 0 ⊂ F × P
1. To avoid confusing the X ⊂ X0 with the general fiber of X , we denote the

two irreducible components of X0 by Y1 = X and Y2 = F × P
1.

Let p : X → X be the projection, and let Θ = p∗θ ∈ Γ(Ω2
X ). Let ιi : Yi → X be the tautological

inclusion. Then

ι∗1Θ = θ ∈ Γ(Ω2
Y1
) and ι∗2Θ = 0 ∈ Γ(Ω2

Y2
). (8.6)

Parallel to the case studied in this paper, for the algebraic class α ∈ H2(X,Z), we form the moduli

Mχ,n(X, α)
• of stable morphisms to the stack X of expanded degenerations of the family X/A1; the form

Θ induces a cosection

σ : ObMχ,n(X,α)• −→ OMχ,n(X,α)• .

Suppose α·[F ] �= 0, one checks that this cosection is surjective, thus the cosection localization lemma in [8]

implies that we can define a reduced virtual cycle [Mχ,n(X, α)
•]virred. Then using (8.6), one checks that

the resulting degeneration formula of the reduced GW-invariants of X is the usual degeneration formula

after pairing the reduced relative GW-invariants of (Y1, F ) with the (ordinary) relative GW-invariants of

(Y2, F × 0). The degeneration formula used in [15] can be derived along this line.
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