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Abstract. We show that a cosection of the obstruction sheaf of a perfect

obstruction theory localizes the virtual cycle to the non-surjective locus of the

cosection. We construct a localized Gysin map and localized virtual cycles.
Various applications of this construction are discussed.

1. Introduction

Invariants defined by virtual cycles of moduli spaces have played important roles
in research in algebraic geometry. Invariants of this kind include the much studied
Gromov-Witten (in short GW) invariants of varieties, and the recently introduced
Donaldson-Thomas (in short DT) invariants of Calabi-Yau three-folds.

One of the main challenges in studying such invariants is to develop techniques
for investigating virtual cycles. In this paper, we will present a new technique,
which we call localization by a cosection of the obstruction sheaf (Theorem 1.1).
This is achieved after constructing a localized Gysin map (Proposition 1.3).

Theorem 1.1 (Localization by a cosection). Let M be a Deligne-Mumford stack
endowed with a perfect obstruction theory. Suppose the obstruction sheaf ObM
admits a surjective homomorphism σ : ObM|U → OU over an open U ⊂ M. Let
M(σ) =M\ U . Then (M, σ) has a localized virtual cycle

[M]vir
loc ∈ A∗M(σ).

This cycle satisfies the usual properties of virtual cycles; it relates to the usual
virtual cycle [M]vir via [M]vir = ι∗[M]vir

loc ∈ A∗M, where ι : M(σ) → M is the
inclusion.

This work originated from our effort to understand Lee-Parker’s discovery that
GW-invariants of surfaces with holomorphic two-forms localize along the loci of sta-
ble maps to canonical divisors [21]. We show that a holomorphic two-form induces
a cosection of the obstruction sheaf of the moduli space; applying localization by
cosection we recover and generalize Lee-Parker’s theorem as follows.

Let X be a smooth quasi-projective variety with a holomorphic two-form θ ∈
H0(Ω2

X). Let Mg,n(X,β) denote the moduli stack of n-pointed stable maps of
genus g to X with homology class β. The two-form θ on X induces a cosection σ
of the obstruction sheaf of Mg,n(X,β); the degeneracy loci M(σ) consist of stable
maps [u : C → X] satisfying θ(u∗TC) = 0 (called θ-null stable maps) where θ is
viewed as an antisymmetric homomorphism TX → ΩX . Applying the localization
by cosection, we obtain
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Theorem 1.2. For a pair (X, θ) of a smooth quasi-projective variety and a holo-
morphic two-form, the virtual fundamental class of Mg,n(X,β) vanishes unless β
is represented by a θ-null stable map.

The localization by cosection has other applications in the study of GW-invariants
and of DT-invariants. One is the work on quantum cohomology of the Hilbert
scheme of points by W.-P. Li and the second named author. Using meromorphic
two-forms of algebraic surfaces, they determined the two-point extreme quantum
cohomology of the Hilbert scheme of points of any algebraic surface [23].

A special but important case is when the cosection is regular and surjective ev-
erywhere. In this case, a reduced virtual cycle can be defined using localization by
a cosection. The notion of reduced virtual fundamental class was first introduced
by Okounkov-Pandharipande in [29, §3.4.3] for GW-invariants of holomorphic sym-
plectic varieties. However, the idea was already around before, e.g. in the work
of Donaldson [8], Lee [19], Bryan-Leung [3, 4] and J. Li [22]. In studying curve
counting [28], Maulik-Pandharipande-Thomas use localization of the virtual cycle
by a cosection to define the reduced Gromov-Witten and Pandharipande-Thomas
invariants of a class of Calabi-Yau three-folds; in the appendix of the same paper,
they provide an in-depth discussion on the relationships between the reduced class
construction and usual deformation-obstruction theories.

Another application of reduced virtual cycles appears in a recent paper [15]:
the authors use localization by a cosection to prove a C∗-wall crossing formula
of DT-invariants by producing a reduced virtual fundamental class of the master
space.

Quite recently, H.-L. Chang and the second named author, in [6], use the cosec-
tion localization to define the Gromov-Witten invariants of stable maps to P4 with
p-fields and relate them to those of stable maps to a quintic 3-fold.

The proof of localization by a cosection (Theorem 1.1) consists of two parts.
In one part, we prove that the intrinsic normal cone of the perfect obstruction
theory of M lies in the kernel cone stack of the cosection σ. In particular, if
there is a surjective homomorphism σ : ObM → L to a locally free sheaf L, the
intrinsic normal cone lies in a smaller cone stack and we can define a reduced virtual
fundamental class.

The other part of the proof is the construction of the following localized Gysin
map.

Proposition 1.3 (Localized Gysin Map). Let E be a rank r vector bundle on a
Deligne-Mumford stack M, and let σ be a meromorphic surjective cosection of E,
meaning that there is an open U ⊂ M so that σ is a surjective homomorphism
σ : E|U → OU . Let M(σ) =M\ U and let E(σ) = E|M(σ) ∪ ker{σ : E|U → OU}.
The Basic Construction stated in Section 2 defines a homomorphism

s!
E,σ : A∗E(σ)→ A∗−rM(σ),

which we call the localized Gysin map. Furthermore, if we denote the inclusions by
ι : M(σ) → M, ι̃ : E(σ) → E, and let sE : A∗E → A∗−rM be the usual Gysin
map of intersecting with the zero section of E, then we have

ι∗ ◦ s!
E,σ = s!

E ◦ ι̃∗ : A∗E(σ)→ A∗−rM.



LOCALIZING VIRTUAL CYCLES BY COSECTIONS 3

By applying the localized Gysin map to the intrinsic normal cone in E(σ), we
obtain the localized virtual cycle [M]vir

loc in Theorem 1.1.

The paper is organized as follows. In Sections 2 and 3, we construct the localized
Gysin map. In Section 4, we show that the intrinsic normal cone lies in the kernel
cone stack. In Section 5, we define the localized virtual cycles and prove its defor-
mation invariance. An application of this localization technique to GW-invariants
of varieties with holomorphic two-forms is presented in Section 6. In Section 7, we
discuss other possible applications. In the Appendix, we give an analytic definition
of the localized Gysin map and prove its equivalence with the algebraic definition.

Addendum. The current version is the replacement of the first half of [12]. Our
prior treatment of localization by a cosection used a topological definition of the
localized Gysin map [12], which limits its application in algebraic geometry. In this
paper, we provide an algebraic construction of the localized Gysin map, including
the Chow groups of the total space of a cone-stack over a Deligne-Mumford stack.
This makes it possible to directly apply other developed techniques on virtual cycles
to localized virtual cycles.

In the sequel to this paper, we will prove a degeneration formula of localized
GW-invariants, and include its application worked out in [12], in proving Maulik-
Pandharipande’s conjecture ([27]) on degree two GW-invariants of surfaces.

Notation: In this paper, all schemes and stacks are defined over the complex
number field C. We will use Z∗X (resp. A∗X; resp. W∗X) to denote the group of
algebraic cycles (resp. group of algebraic cycles modulo rational equivalence; resp.
group of rational equivalences) with Q-coefficients.

Since we will be working with locally free sheaves and cycles in the total spaces of
the vector bundles associated to the locally free sheaves, to streamline the notation,
we will use the same symbol to denote a locally free sheaf as well as its associated
vector bundle. Thus, given a vector bundle (locally free sheaf) E, by Z∗E we mean
the group of cycles of the total space of E, and by E → ObM we mean a sheaf
homomorphism OM(E)→ ObM.

Given a subvariety T ⊂ E, we denote by [T ] ∈ Z∗E its associated cycle, and
denote by [T ] ∈ A∗E its rational equivalence class in A∗E.

Acknowledgment: The first named author is grateful to the Stanford Mathe-
matics department for support and hospitality while he was visiting during the
academic year 2005/2006. We thank J. Lee and T. Parker for stimulating questions
and for pointing out several oversights in our previous draft. Also we are grateful
to the referee(s) for careful reading and helpful comments.

2. Localized Gysin maps

Let π : E →M be a rank r vector bundle over a Deligne-Mumford (DM for short)
stack M. The usual Gysin map s!

E : AdE → Ad−rM is defined by “intersecting”
cycles in E with the zero section sE of E.

In this section, we suppose that E has a surjective meromorphic cosection σ.

Definition 2.1. A surjective meromorphic cosection is a surjective homomorphism
σ : E|U → OU for an open substack U ⊂M.
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Remark 2.2. For the purpose of defining the localized Gysin map, the degeneracy
locus of a meromorphic cosection σ : E− → OM includes the loci where σ is
undefined and where σ is not surjective. In the definition above, the open U is the
locus where σ is defined and surjective.

For such a σ, we let M(σ) = M \ U , let G = ker{σ : E|U → OU} and let
E(σ) = E|M(σ) ∪ G, which is closed in E. The goal of this section is to define a
localized Gysin map

s!
E,σ : AdE(σ)→ Ad−rM(σ)

that has the usual properties of the Gysin map and coincides with s!
E when com-

posed with the tautological Ad−rM(σ)→ Ad−rM.

Definition 2.3. Let ρ : X → M be a morphism from a variety X to M such
that ρ(X) ∩ U 6= ∅. We call ρ a σ-regularizing morphism if ρ is proper, and ρ∗(σ)
extends to a surjective homomorphism

σ̃ : Ẽ := ρ∗E → OX(D)

for a Cartier divisor D ⊂ X. We adapt the convention that ρ̃ : Ẽ → E is the
projection; G̃ := ker{σ̃} ⊂ Ẽ; |D| ⊂ X is the support of D, and ρ(σ) : |D| → M(σ)
is the ρ restricted to |D|.

Basic Construction: Let [B] ∈ ZdE(σ) be a cycle represented by a closed integral
substack B ⊂ E(σ). In case B ⊂ E|M(σ), we define s!

E,σ([B]) = s!
E|M(σ)

([B]) ∈
Ad−rM(σ). Otherwise, we pick a variety X and a σ-regularizing ρ : X →M such

that there is a closed integral B̃ ⊂ G̃ so that ρ̃∗([B̃]) = k · [B] ∈ ZdE for some
k ∈ Z. We define

(2.1) s!
E,σ([B])ρ,B̃ = k−1 · ρ(σ)∗([D] · s!

G̃
([B̃])) ∈ Ad−rM(σ).

Here [D]· : A∗X → A∗−1|D| is the intersection with the divisor D.

Here is a simple example.

Example 2.4. Let M be an n-dimensional smooth scheme, E a vector bundle
of rank n on M and σ : E → OM a cosection so that σ−1(0) = p is a simple
point in M . Let [M ] be the cycle of the zero section of E in ZnE(σ). Then
s!
E,σ([M ]) = (−1)n[p].

The proof is straightforward. Let ρ : M̃ → M be the blow-up at p and let
D ⊂ M̃ be the exceptional divisor. We let F = ker{ρ∗E → OM̃ (−D)}, and

compute s!
F ([M̃ ]) = cn−1(F )[M̃ ] = [D]n−1. Since s!

E,σ([M ]) = ρ∗
(
[−D] · s!

F ([M̃ ])
)
,

s!
E,σ([M ]) = ρ∗

(
[−D] · cn−1(F )

)
= ρ∗cn(ρ∗E) = cn(E) = (−1)n[p].

See [5] for a direct application of Example 2.4.

Lemma 2.5. Let the notation be as in the basic construction. Then for each
closed integral B ⊂ E(σ) not contained in E|M(σ), we can find a pair (ρ, B̃) so

that s!
E,σ([B])ρ,B̃ is defined. Furthermore the resulting cycle class s!

E,σ([B])ρ,B̃ ∈
Ad−rM(σ) is independent of the choice of (ρ, B̃).
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Proof. We let B ⊂ E be as in the statement of the Lemma; we let B0 = π(B) ⊂M,
where π : E → M is the projection. To pick ρ, we then pick a normal variety X
and a proper and generically finite morphism ρ : X → B0. SinceM is a DM-stack,
such ρ exists. Using ρ, we pull back Ẽ = ρ∗E, and ρ∗σ : ρ∗E|ρ−1U → Oρ−1U . Since
B ×M U 6= ∅, ρ−1U 6= ∅.

Next, possibly after replacing X by a blow-up of X, we can assume that ρ∗σ
extends to a surjective homomorphism σ̃ : Ẽ → OX(D) for a Cartier divisor D ⊂ X.

Thus ρ is a σ-regularizing morphism. We let ρ̃ : Ẽ → E and G̃ ⊂ Ẽ be as defined
in Definition 2.3.

Since ρ : X → B0 is generically finite, there is an open O ⊂ B0 so that
ρ|ρ−1O : ρ−1O → O is flat and finite. We let B̃ be an irreducible component

of ρ̃−1(B ∩ π−1(O)). Since B is integral and ρ̃ is proper, ρ̃(B̃) = B, thus ρ̃∗([B̃]) =
k[B] for an integer k. This shows that s!

E,σ([B])ρ,B̃ is defined according to the Basic
Construction.

We next check that s!
E,σ([B])ρ,B̃ is independent of the choice of (ρ, B̃). Let

ρ′ : X ′ →M, Ẽ′ := ρ′∗E and B̃′ ⊂ Ẽ′ be another choice that fulfills the requirement
of the Basic Construction, thus giving rise to the class s!

E,σ([B])ρ′,B̃′ ∈ Ad−rM(σ).

We show that s!
E,σ([B])ρ,B̃ = s!

E,σ([B])ρ′,B̃′ .

We form Y = X ×M X ′; denote by q : Y → X and q′ : Y → X ′ the projections,
and by p : Y →M the composite ρ ◦ q = ρ′ ◦ q′. Since ρ : X →M is generically
finite and B̃ → X is dominant, B̃ ×E B̃′ contains a pure dimension d irreducible
component B̄ that surjects onto B̃ and B̃′ via the tautological projections q̃ : Ē :=
p∗E → Ẽ and q̃′ : Ē → Ẽ′, respectively.

We claim that there is an isomorphism OY (q∗D) ∼= OY (q′∗D′) so that

(2.2) q∗σ̃ = q′∗σ̃′ : Ē = q∗Ẽ = q′∗Ẽ′ −→ OY (q∗D) ∼= OY (q′∗D′).

Indeed, since q∗σ̃|p−1U = q′∗σ̃′|p−1U = p∗σ|p−1U , the kernel sheaves ker{q∗σ̃}|p−1U =
ker{q′∗σ̃′}|p−1U . Since both are subsheaves of the locally free sheaf Ē, the two ker-
nels are identical. Therefore, since both q∗σ̃ and q′∗σ̃′ are surjective, we obtain (2.2).
Furthermore, since when restricted to p−1U the last isomorphism in (2.2) is the
identity, the arrow in (2.2) sends 1 ∈ Γ(OY (q∗D)|p−1U ) to 1 ∈ Γ(OY (q′∗D′)|p−1U ).
We conclude that q∗D = q′∗D′ as divisors. We denote this divisor by D̄.

We let σ̄ = q∗σ̃ = q′∗σ̃′, and let Ḡ = ker{σ̄}. By (2.2), Ḡ is the pull-back of G̃

via q∗ and of G̃′ = ker{σ̃′} via q′∗. Back to B̄, since B 6⊂ E|M(σ), B ⊂ E(σ) and

p̃(B̄) = B, we have B̄ ⊂ Ḡ. We let ki be the integers so that

q̃∗([B̄]) = k1[B̃], q̃′∗([B̄]) = k2[B̃′], ρ̃∗([B̃]) = k3[B], ρ̃′∗([B̃
′]) = k4[B].

Then since ρ̃ ◦ q̃ = ρ̃′ ◦ q̃′, we have k1k3 = k2k4.
We let p(σ) : |D̄| → M(σ), q(σ) : |D̄| → |D| and ρ(σ) : |D| → M(σ) be the

restrictions of p, q and ρ to |D̄| and |D|, respectively. Since the projections q̃ and

ρ̃ are proper and because q̃−1G̃ = Ḡ, applying the projection formula (and using
D̄ = q∗D), we obtain

s!
E,σ([B])p,B̄ = (k1k3)−1 · p(σ)∗([D̄] · s!

Ḡ([B̄])) = (k1k3)−1 · ρ(σ)∗([D] · s!
G̃

([q̃∗B̄]))

= k−1
3 · ρ(σ)∗([D] · s!

G̃
([B̃])) = s!

E,σ([B])ρ,B̃ .

Similarly, we have s!
E,σ([B])p,B̄ = s!

E,σ([B])ρ′,B̃′ . This proves the Lemma. �
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The Lemma shows that the Basic Construction defines a homomorphism

(2.3) s!
E,σ : ZdE(σ) −→ Ad−rM(σ).

We next check that this homomorphism descends to a homomorphism AdE(σ) →
Ad−rM(σ). We need a simple Lemma. Let 0 → F1 → F2 → F3 → 0 be an exact
sequence of vector bundles (locally free sheaves) on a variety Y . Let ri = rankFi
and pi : Fi → Y be the projections. Let ι : F1 → F2 be the inclusion.

Lemma 2.6. For any cycle α ∈ AdF1, we have

s!
F2

(ι∗α) = cr3(F3) ∩ s!
F1

(α) = s!
F1

(cr3(F3) ∩ α)

Proof. By [10, Thm 3.3], there is a cycle B ∈ Zd−r1Y so that α = p∗1B ∈ A∗F1.
Since p∗1B is the total space of F1 restricted to B, its Segre class is s(p∗1B) =
c(F1)−1 ∩B, where c(F1) is the total Chern class of F1. By the formula expressing
Gysin map in terms of the Segre class [10, Prop. 6.1],

s!
F2

(ι∗α) = s!
F2

(p∗1B) = [c(F2)∩ (c(F1)−1∩B)]d−r2 = [c(F3)∩B]d−r2 = cr3(F3)∩B.

On the other hand,

s!
F1

(cr3(F3) ∩ α) = s!
F1

(cr3(F3) ∩ [p∗1B]) = s!
F1

(p∗1(cr3(F3) ∩ [B])) = cr3(F3) ∩ [B].

This proves the Lemma. �

The same method proves the following Lemma that will be useful later. Let
ρ′ : X ′ → M be a σ-regularizing morphism; let σ̃′ : Ẽ′ = ρ′∗E → OX′(D′),
G̃′ = ker{σ̃′}, and ρ′(σ) : |D′| → M(σ) be the tautological projection, as in the
proof of Lemma 2.5.

Lemma 2.7. Let the notation be as before. Suppose [B̃′] ∈ ZdG̃′ such that ρ̃′∗[B̃
′] =

0 ∈ ZdE. Then ρ′(σ)∗([D
′] · s!

G̃′
([B̃′]) = 0 ∈ Ad−rM(σ).

Proof. We let B = ρ̃′(B̃′). Since ρ̃′ is proper, B is closed and integral in E; since

ρ̃′∗([B̃
′]) = 0 in ZdE, dimB < d. We let B0 = π(B) ⊂M. We then pick ρ : X →M

a σ-regularizing morphism so that ρ(X) = B0 and ρ : X → B0 is generically finite.
We form Y = X ×M X ′ and let p : Y → M be the induced morphism. As

in the proof of Lemma 2.5 (and using the notations developed in the proof), we

have Ē = p∗E → Y , q̃′ : Ē → Ẽ′ and an integral B̄ ⊂ Ē so that q̃′(B̄) = B̃′.

Let q̃ : Ē → Ẽ and let B̃ = q̃(B̄). Since B̃ is integral, since ρ̃(B̃) = B, since
B → B0 is dominant, and since ρ : X → B0 is dominant and generically finite,
dim B̃ = dim ρ̃(B̃) = dimB0 < d. Thus q̃∗([B̄]) = 0 ∈ ZdẼ. Therefore,

k · ρ′(σ)∗([D
′] · s!

G̃′
([B̃′])) = p(σ)∗([D̄] · s!

Ḡ([B̄])) = ρ(σ)∗([D] · s!
G̃

([q̃∗B̄])) = 0.

This proves the Lemma. �

We next show that the map s!
E,σ preserves rational equivalence. In this paper,

we adopt the the convention that a rational equivalence R ∈ WdE is a sum R =∑
α∈Λ nα[Sα, φα], where Sα ⊂ E are (d + 1)-dimensional closed integral and φα ∈

k(Sα)∗. We also use ∂0[S, φ] = (φ = 0) · [S] and ∂∞[S, φ] = (φ =∞) · [S].

Lemma 2.8. For R ∈WdE(σ), s!
E,σ(∂0R) = s!

E,σ(∂∞R).
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Proof. We only need to prove the Lemma for R = [S, φ] ∈ WdE(σ), where S ⊂
E(σ) is closed and integral. In case S ⊂ E|M(σ), then both ∂0R and ∂∞R ∈
ZdE|M(σ), and the required identity holds because the usual Gysin map s!

E|M(σ)
:

Zd(E|M(σ))→ Ad−rM(σ) preserves the rational equivalence.
We now suppose S 6⊂ E|M(σ). We let S0 = π(S) ⊂ M. We pick a proper

and generically finite σ-regularizing ρ : X → M so that ρ(X) = S0. We let

σ̃ : Ẽ := ρ∗E → OX(D) be the surjective homomorphism extending ρ∗σ. By
Lemma 2.5, such ρ exists. Because ρ is generically finite, we can find a closed
integral d+ 1 dimensional S̃ ⊂ Ẽ so that with ρ̃ : Ẽ → E the projection, ρ̃(S̃) = S.

We let G̃ = ker{σ̃ : Ẽ → OX(D)}. Because S ⊂ E(σ) and S 6⊂ E|M(σ), S̃ ⊂ G̃.

We let φ̃ be the pull-back ρ̃∗φ, and let R̃ = [S̃, φ̃]. Thus, ρ̃∗R̃ ∈ WdE(σ) and

ρ̃∗R̃ = k ·R, for an integer k; since ρ̃ is proper,

(2.4) ρ̃∗(∂0R̃) = k · ∂0R and ρ̃∗(∂∞R̃) = k · ∂∞R.

We now decompose the cycle ∂0R = B1 + B2 so that each summand [T ] ∈ B1

(resp. [T ] ∈ B2) satisfies T ⊂ E|M(σ) (resp. T 6⊂ E|M(σ)). We also decompose
∂∞R = C1 + C2 according to the same rule with Bi replaced by Ci.

For ∂0R̃, we decompose it into the sum of three parts ∂0R̃ = B̃0 + B̃1 + B̃2

so that [T ] ∈ B̃0 (resp. [T ] ∈ B̃1; resp. [T ] ∈ B̃2) satisfying ρ̃∗([T ]) = 0 (resp.

T ⊂ Ẽ||D|; resp. T 6⊂ Ẽ||D|). By moving all summands [T ] with ρ̃∗[T ] = 0 to

B̃0, no [T ] appears simultaneously in two of the three factors B̃0, B̃1 and B̃2. We

decompose ∂∞R̃ = C̃0 + C̃1 + C̃2 according to the same rule with B̃i replaced by
C̃i. By (2.4), and using the property of the decompositions, we have ρ̃∗(B̃i) = k ·Bi
and ρ̃∗(C̃i) = k · Ci for i = 1, 2.

Applying the definition of s!
E,σ, to ∂0R (resp. ∂∞R):

s!
E,σ(∂0R) = s!

E|M(σ)
(B1) + k−1ρ(σ)∗([D] · s!

G̃
(B̃2)),

(resp. same formula with ∂0R replaced by ∂∞R), we obtain identities in Ad−rM(σ):

s!
E,σ(∂0R)− s!

E,σ(∂∞R) = s!
E|M(σ)

(B1 − C1) + k−1 · ρ(σ)∗([D] · s!
G̃

(B̃2 − C̃2)).

We claim that

(2.5) ρ(σ)∗([D] · s!
G̃

(∂0R̃− ∂∞R̃)) = 0 ∈ Ad−rM(σ).

This is true because s!
G̃

(∂0R̃− ∂∞R̃) = 0 ∈ Ad−r+1X, and ρ(σ)∗ and [D]· preserve
rational equivalence.

Applying Lemma 2.7, we also have

(2.6) ρ(σ)∗([D] · s!
G̃

(B̃0)) = ρ(σ)∗([D] · s!
G̃

(C̃0)) = 0 ∈ Ad−rM(σ).

Furthermore, because of Lemma 2.6 and the fact that B̃1 and C̃1 lie over |D|,

ρ(σ)∗([D] · s!
G̃

(B̃1 − C̃1)) = ρ(σ)∗s
!
Ẽ||D|

(B̃1 − C̃1) = s!
E|M(σ)

(ρ̃∗B̃1 − ρ̃∗C̃1).

Therefore, using B̃2 − C̃2 = (∂0R̃ − ∂∞R̃) − (B̃0 − C̃0) − (B̃1 − C̃1), (2.5) and

(2.6), and ρ̃∗(B̃1) = k ·B1 and same for C1, we obtain s!
E,σ(∂0R)− s!

E,σ(∂∞R) = 0.
This proves the Lemma. �

Corollary 2.9. The Basic Construction defines a homomorphism

s!
E,σ : A∗E(σ)→ A∗−rM(σ),
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which we call the localized Gysin map. Furthermore, if we let ι :M(σ) →M and
ι̃ : E(σ)→ E be the inclusions, then ι∗ ◦ s!

E,σ = s!
E ◦ ι̃∗ : A∗E(σ)→ A∗−rM.

Proof. The first part is the combination of Lemma 2.8 and 2.5. The second part is
the consequence of Lemma 2.6. �

3. Localized Gysin maps for bundle stacks

To construct localized virtual cycles, we need to generalize the localized Gysin
map to bundle stacks over a DM stack M.

Let E• ∈ D(M) be a derived (category) object that is locally quasi-isomorphic
to a two-term complex of locally free sheaves concentrated at [0, 1]. We let E =
h1/h0(E•), which is a bundle stack isomorphic to [E1/E0] in case E• ∼=qis [E0 →
E1] (cf. [2]).

In case there is a vector bundle V that surjects onto E, one defines s!
E : A∗E→

A∗M as the composite of the flat pull-back A∗E → A∗V and the Gysin map
s!
V : A∗V → A∗M.

Without such a vector bundle, one can either use the intersection theory de-
veloped by Kresch [16] to define s!

E, or follow the recipe developed in [25] by the
second named author. We will follow the latter approach in this paper.

We suppose there is a surjective homomorphism of sheaves on an open substack
U ⊂M
(3.1) σ : h1(E•)|U −→ OU .
It induces a morphism from the bundle stack E|U to the line bundle CU . As before,
we let M(σ) =M\ U . We let E(σ) be the kernel cone stack in E,

(3.2) E(σ) = E|M(σ) ∪ ker{E|U → CU} ⊂ E

endowed with the reduced structure. (Since σ is surjective on U , E|U → CU is
surjective; thus the kernel is well-defined and is a closed substack of E|U .)

Our goal is to construct a localized Gysin map

(3.3) s!
E,σ : A∗E(σ) −→ A∗M(σ).

It is constructed by finding for each irreducible cycle [c] ∈ Z∗E(σ) a proper rep-
resentative m−1

X [C] ∈ Z∗F of [c] in a vector bundle F over a variety X with a
surjective meromorphic cosection (F, σX) and a proper ρ : X → M, and then
defining

s!
E,σ([c]) = m−1

X ρ(σ)∗(s
!
F,σX ([C])) ∈ A∗M(σ).

We remark here that any homomorphism V → h1(E•) from a locally free sheaf
V to h1(E•) induces canonically a bundle-stack morphism V → E. Indeed, let
η : M → M be an étale open so that η∗E• ∼=qis [F 0 → F 1] with both F i locally
free on M . We lift the pull-back η∗V → η∗h1(E•) to a homomorphism η∗V → F 1,
which defines a homomorphism of complexes η∗V [−1] → [F 0 → F 1]. By the
functorial construction of h1/h0, we obtain a morphism

η∗V = h1/h0(η∗V [−1])→ h1/h0(η∗E•) = E×MM.

One checks that any two liftings η∗V → F 1 define homotopic η∗V [−1] → [F 0 →
F 1], and thus induce canonically isomorphic maps η∗V → E ×MM . Since the so
constructed morphism is canonical, it descends to a morphism

(3.4) V −→ E.
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We now construct representatives of irreducible [c] ∈ Z∗E. Let π : E → M be
the projection; let Mc be the closure of the image π(c) ⊂ M. Applying Chow’s
Lemma [18, Cor. 16.6.1], we can find a quasi-projective variety X, a proper and
surjective morphism ρ : X → Mc such that for a Zariski dense open X0 ⊂ X,
ρ|X0

: X0 → Mc is étale. Since X is quasi-projective, we can find a complex of
locally free sheaves F • = [F0 → F1] of OX -modules that is quasi-isomorphic to
ρ∗E•. By abuse of notation, we view F1 as a vector bundle over X, and obtain a
flat morphism

γ : F1 −→ h1/h0(F •) = h1/h0(ρ∗E•) = ρ∗E.

Since ρ|X0
: X0 →Mc is étale, the induced

γ|X0
: F1 ×X X0 −→ E|Mc = h1/h0(E•)×MMc

is flat.

Definition 3.1. A proper representative of an irreducible [c] ∈ Z∗E consists of
(ρ, F1) just constructed and a cycle CX =

∑
imi[Ci] ∈ Z∗F1, where Ci are closed

and integral in F1 and mi ∈ Z, such that
∑
imi[Ci ×X X0] = (γ|X0)∗(c), and

Ci = Ci ×X X0 for all i.

Using proper representatives of [c] ∈ Z∗E, we can define s!
E,σ at the cycle level.

Let [c] ∈ Z∗E(σ) be an irreducible cycle. Let (ρ,X, F1) with
∑
imiCi be a proper

representative of [c]. Let σX : F1|ρ−1U → Oρ−1U be the composite of F1|ρ−1U →
ρ∗h1(E•)|ρ−1U with ρ∗σ. Automatically [Ci] ∈ Z∗F1(σX). We let ρ(σ) : X(σX)→
M(σ) be the restricton of ρ to X(σX) = X \ ρ−1U .

Definition 3.2. We define s!
E,σ([c]) = m−1

X ρ(σ)∗(s
!
F1,σX

([CX ])), where mX is the

degree of ρ : X →Mc. We extend it to s!
E,σ : Z∗E→ A∗M(σ) by linearity.

Proposition 3.3. The map s!
E,σ in Definition 3.2 is well-defined. The map s!

E,σ

preserves the rational equivalence, and thus defines a (localized Gysin) homomo-
prhism

(3.5) s!
E,σ : A∗E(σ) −→ A∗M(σ).

Proof. Since the existence of proper representatives of [c] is guaranteed by the Chow
Lemma, to show that the localized Gysin map is well-defined at the cycle level we
need to check that it is independent of the choice of proper representatives.

To check that it is well-defined, we need to show that ifm−1
X′ [CX′ ] with (ρ′, X ′, F ′1)

is another proper representative of [c], then

m−1
X ρ(σ)∗(s

!
F1,σX ([CX ])) = m−1

X′ρ
′(σ)∗(s

!
F ′1,σX′

([CX′ ])).

This can be proved by choosing a third proper representative using Y ⊂ X×MX ′ →
M an irreducible component, choosing a complex F̄ • quasi-isomorphic to the pull-
backs of F • and (F ′)• and whose projections commute with the projections to the
pull-backs of h1(E•). Since X → Mc and X ′ → Mc are étale over dense open
subsets, we can choose Y so that Y →Mc is étale over a dense open subset as well.
The remaining proof is parallel to the proof of Lemma 2.5, and will be omitted.
This defines the homomorphism s!

E,σ : Z∗E(σ) −→ A∗M(σ).
Finally, we check that it preserves the rational equivalence. This time the proof

is a line by line repetition of the proof of Lemma 2.8, incorporating the need to use
proper representatives to make sense of degrees of maps. Since the modification is
routine, we will omit the details here. �
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4. Reducing intrinsic normal cones by cosections

In this section, we show that a Deligne-Mumford stack equipped with a perfect
obstruction theory and a meromorphic cosection of its obstruction sheaf has “re-
stricted” intrinsic normal cones. Applying the localized Gysin maps, we obtain the
localized virtual cycles.

We let π :M→ S be a DM stack M over a smooth Artin stack S; we assume
π is representable. We assume M/S admits a relative perfect obstruction theory
E• → L•M/S formulated in [2] using cotangent complexes.1 As part of the defini-

tion, locally E• is quasi-isomorphic to two-term complexes of locally free sheaves
concentrated at [−1, 0].

We introduce the obstruction sheaf of a relative perfect obstruction theory. We
recall that ObM/S = h1((E•)∨) is the relative obstruction sheaf of E• → L•M/S .

To introduce its (absolute) obstruction sheaf, we pick a smooth chart M/S ofM/S
by affine schemes M and S such that S → S is smooth, M ⊂M×S S is open and
M → M is étale. (This is possible since M → S is representable.) We pick an
S-embedding M → V into an affine V , smooth over S. Since M is affine, we pick
a presentation E•|M = [E−1 → E0] as a complex of locally free sheaves so that the
perfect obstruction theory of M/S lifted to M/S is given by a homomorphism of
complexes of sheaves

(4.1) (φ−1, φ0) : [E−1 → E0]→ τ≥−1L•M/S = [IM/I
2
M → ΩV/S |M ],

where IM is the ideal sheaf of M ⊂ V . We let πS : M → S be the projection.
We denote

ObM/S := ObM/S ⊗OM OM = h1((E•|M )∨).

From the distinguished triangle

π∗SL
•
S −→ L•M −→ L•M/S −→ π∗SL

•
S [1] = [π∗SΩS → 0],

we have the composition

E• −→ τ≥−1L•M/S −→ π∗SΩS [1]

and a distinguished triangle

Ê• −→ E• −→ π∗SΩS [1],

which fits into a commutative diagram of distinguished triangles

(4.2)

Ê• −−−−→ E• −−−−→ π∗SΩS [1]
+1−−−−→y y ∥∥∥

L•M −−−−→ L•M/S −−−−→ π∗SΩS [1]
+1−−−−→ .

1We recall that there are two versions of perfect obstruction theories. One formulated by

Behrend-Fantechi [2] using an arrow from a derived object to the relative cotangent complex

E• →  L•M/S ; the other by Li-Tian [24] using obstruction to deformation assignment in the

cohomology of a derived object. By [2, Theorem 4.5], the BF’s version of perfect obstruction

theories induces LT’s version of perfect obstruction theories.

Conversely, it will be shown in [7] that LT’s version of perfect obstruction theory is affine
locally equivalent to BF’s version. Furthermore, all available technical tools concerning cycles

constructed from BF’s version of perfect obstruction theory work for LT’s version as well.
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By the standard 5-lemma, we find that Ê• → L•M is a perfect obstruction theory
of M and that the obstruction sheaf ObM is the quotient

(4.3) ObM/S −→ ObM = coker{π∗SΩ∨S −→ ObM/S}
of ObM/S .

Since this construction is canonical, the object Ê• is unique up to quasi-isomor-
phism; the arrow π∗SΩS → Ê• (in (4.2)) is unique up to homotopy. Thus ObM =

h1((Ê•)∨) in (4.3) is canonically defined, and the first arrow in (4.3) is unique. This
proves that (4.3) descends to a quotient homomorphism of sheaves on M
(4.4) ObM/S −→ ObM.

Definition 4.1. We call ObM the (absolute) obstruction sheaf of the obstruction
theory E• → L•M/S .

We denote
E := h1/h0((E•)∨)

and let cM ⊂ E be the relative intrinsic normal cone introduced in [2]. A meromor-
phic cosection of ObM will reduce the intrinsic normal cone [cM] to a subcone-stack
of E. Let U ⊂M be an open substack and let

(4.5) σ : ObM|U −→ OU
be a surjective homomorphism. As before, we call σ a meromorphic cosection
surjective on U ; we call M(σ) =M− U the degeneracy locus of σ.

The homomorphism σ induces a homomorphism (E•)∨|U → [0→ OU ], and thus
a surjective cone-stack morphism σ̄ : E|U −→ h1/h0([0 → OU ]) = CU . (Here we
use CM to denote the trivial line bundle A1 ×M→M.)

Definition 4.2. We define E(σ) to be the union of E×MM(σ) with ker{σ̄ : E|U →
CU}, endowed with the reduced structure. The closed substack E(σ) ⊂ E is called
the kernel cone-stack of σ.

Proposition 4.3. Let the notation be as stated, and let σ : ObM|U → OU be
surjective. Then the cycle [cM] ∈ Z∗E lies in Z∗E(σ).

We consider a simple case. Let M ⊂ V be a closed subscheme of a smooth
scheme V defined by the vanishing s = 0 of a section s of a vector bundle E on V ;
let CM/V be the normal cone to M in V , embedded in E|M via the section s. We
suppose σ̄ : E|M → OM is a surjective homomorphism. Let IM be the ideal sheaf
of M ⊂ V .

Lemma 4.4 (Cone reduction criterion). Suppose the defining equation s satisfies
the following criterion: for any germ ϕ : Speck[[ξ]] → V , ϕ(0) ∈ M , the section
σ̄ ◦ s ◦ ϕ ∈ k[[ξ]] satisfies σ̄ ◦ s ◦ ϕ ∈ ξ · ϕ∗IM . Then the support of the cone CM/V

lies entirely in the kernel F = ker{σ̄ : E|M → OM} ⊂ E.

Proof. The cone CM/V ⊂ E is the specialization of the section t−1s ⊂ E as t→ 0.
More precisely, we consider the subscheme

Γ = {(t−1s(w), t) ∈ E × (A1 \ 0) | w ∈ V, t ∈ A1 \ 0}.
For t ∈ A1 \ 0, the fiber Γt of Γ over t ∈ A1 is the section t−1s of E. We let Γ̄ be
the closure of Γ in E ×A1. The central fiber Γ̄×A1 0 ⊂ E is the normal cone CM/V

embedded in E|M . Clearly, CM/V is of pure dimension dimV .
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Now let N ⊂ CM/V be any irreducible component. Let v ∈ N be a general
closed point of N . Then we can find a smooth affine curve 0 ∈ S and a morphism
ρ : (0, S) → (v, Γ̄) such that ρ(S \ 0) ⊂ Γ. We let ρV : S → V and ρA1 : S → A1

be the composites of ρ with the projections from E × A1 to V and to A1. Since
ρ(S \ 0) ⊂ Γ, ρA1 dominates A1.

We then choose a uniformizing parameter ξ of S at 0 so that (ρA1)∗(t) = ξn for
some n. Because ρ(0) = v, ξ−n · s ◦ ρV : S \ 0 → E specializes to v; hence s ◦ ρV
has the expression

s ◦ ρV = vξn +O(ξn+1).

Applying σ̄, we obtain σ̄ ◦ s ◦ ρV = σ̄(v)ξn +O(ξn+1).
Now suppose N 6⊂ E(σ); in particular v does not lie in the zero section of E.

Then ρ∗V IM = (ξn). By assumption, σ̄ ◦ s ◦ ρV ∈ (ξn+1) = ξ · ρ∗V IM , we must have
σ̄(v) = 0. This proves that v ∈ F = ker{σ̄}. Since v is general in CM/V , v ∈ F
implies that the support of CM/V lies in F . This proves the Lemma. �

Let ObM = coker{ds : TV |M → E|M}; let pr : E|M → ObM be the projection.

Corollary 4.5. Let the notation be as in Lemma 4.4. Suppose we have a surjective
homomorphism σ :ObM → OM . Then the support of the cone CM/V lies entirely
in the kernel F = ker{σ ◦ pr : E|M → OM} ⊂ E.

Proof. We verify the cone reduction criterion. Let ϕ : Spec k[[ξ]] → V , ϕ(0) ∈ M ,
be any morphism. Suppose ϕ∗IM = (ξn). Pulling back the exact sequence

OM (TV )
ds−→OM (E) −→ ObM −→ 0

via the induced morphism ϕ̄ = ϕ|ϕ−1(M) : ϕ−1(M) = (ξn = 0)→M , we obtain

(4.6) ϕ̄∗(TV )
ϕ̄∗(ds)−→ ϕ̄∗(E)

ϕ̄∗(pr)−→ ϕ̄∗(ObM ) −→ 0,

where ϕ̄∗(pr) is the pullback of the projection pr : E|M → ObM .
Let v ∈ E|ϕ(0) be the element so that s ◦ ϕ = vξn + O(ξn+1). Thus ϕ̄∗(ds) =

d(vξn) = nvξn−1dξ.
Let σ̄ = pr◦σ. Because (4.6) is exact, we have the vanishing ϕ̄∗(σ̄)(ϕ̄∗(ds)) = 0,

which proves that σ̄(v) = 0; hence σ̄ ◦ s ◦ϕ = O(ξn+1). Thus the section s satisfies
the cone reduction criterion (Lemma 4.4). This proves the corollary. �

Assume there is a vector bundle (locally free sheaf of OM-modules) F that sur-
jects ontoObM/S . This homomorphism induces a flat morphism F → h1/h0((E•)∨)
(cf. (3.4)), which pulls back [cM] to a cycle [CM] ∈ Z∗F . We let σ̃ be the compo-
sition

(4.7) σ̃ : F |U −→ ObM/S |U −→ ObM|U −→ OU ,

which is surjective. Let F (σ̃) ⊂ F be F |M(σ) ∪ ker{σ̃}, endowed with the reduced
structure.

Corollary 4.6. Let the notation be as stated and let σ be a surjective homomor-
phism σ : ObM|U → OU over an open U . Then the cycle [CM] ∈ Z∗F lies in
Z∗F (σ̃).

Proof. Because of the way F (σ̃) is defined, we only need to show that [CM×MU ] ∈
Z∗(F (σ̃) ×M U). By replacing M with the open substack U , we can assume that
σ is regular and surjective on M.
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Since the statement is local, we only need to consider the case where M/S →
M/S is as introduced before (4.1). Since M is affine, we can pick E•|M = [E−1 →
E0] so that E•|M → τ≥−1L•M/S is given by (4.1) and that in addition satisfies

φ0 : E0 → ΩV/S |M is an isomorphism. Because of the exact sequence (E0)∨ →
(E−1)∨ → ObM/S → 0, possibly by replacing E−1 → E0 with a quasi-isomorphic

complex we can assume F |M → ObM/S lifts to a surjective F |M → (E−1)∨, thus
defining a homomorphism of complexes

γ : [0→ F ]→ [(E0)∨ → (E−1)∨].

Two γ’s coming from two liftings F → (E−1)∨ are homotopy equivalent, and hence
the induced morphism of bundle stacks

(4.8) γ̃ : F −→ E = h1/h0((E•)∨)

is canonically defined.
Let Ẽ−1 be a locally free sheaf on V such that Ẽ−1|M ∼= E−1. This is possible

since V is affine. By the same reason, we can lift φ−1 ∈ IM/I2
M ⊗OM (E−1)∨ to an

f ∈ IM ⊗OV (Ẽ−1)∨. Then since φ−1 : E−1 → IM/I
2
M is surjective [2, Thm. 4.5],

M = (f = 0) ⊂ V . We let CM/V be the normal cone to M = (f = 0) in V . The

cone CM/V canonically embeds in (E−1)∨ = (Ẽ−1)∨|M via the defining equation
f .

On the other hand, because the arrow in [IM/I
2
M → ΩV/S |M ] is via sending

u ∈ IM/I2
M to its relative differential d/Su ∈ ΩV/S |M , and because φ0 is an iso-

morphism, after identifying E0 with ΩV/S |M using φ0, the arrow in [E−1 → E0] is

the relative differential d/Sf ∈ ΩV/S |M ⊗OM (Ẽ−1)∨. Thus ObM/S = coker{d/Sf :

TV/S |M → (E−1)∨}. Following the definition of the obstruction sheaf ObM ,

ObM = coker{df : TV |M −→ (E−1)∨}.

Finally, we apply Corollary 4.5 to conclude that the support of the cone CM/V

lies in the kernel of the composite (E−1)∨ → ObM → OM . Since the pull-back of
cM to F under (4.8) is the pull-back of CM/V under the surjective F |M → (E−1)∨,

and since the support of CM/V lies in the kernel of (E−1)∨ → OM , the support of
CM|M lies in the kernel F (σ̃). This proves the Corollary. �

Proof of Proposition 4.3. The proof is a direct application of Corollary 4.6. We
pick an M/S → M/S as in the proof of Corollary 4.6; we only need to consider
the case where M →M factors through U ⊂M. We pick a vector bundle (locally
free sheaf) F on M so that F surjects onto ObM/S . This is possible since M is
affine. Following the proof of Corollary 4.6, γ : F → ObM/S induces a bundle stack
homomorphism γ̃ : F → E×MM . Let σ̃ be as in (4.7). (Note that M →M factors
through U ⊂ M.) Since for x ∈ M and (E•)∨ = [E0 → E1] near x, im(E0|x) ⊂
ker(E1|x → ObM/S |x

σ−→C) ⊂ γ̃−1([E1/E0](σ)|x), we have γ̃−1(E(σ)) = F (σ̃).
Hence, the statement of the Corollary is equivalent to γ̃∗[cM] ∈ Z∗F (σ̃). But this
is what is proved in Corollary 4.6. This proves the Proposition. �

We have an equivariant version of the Corollary. We supposeM/S as before has
a C∗-structure; we suppose its relative obstruction theory is C∗-equivariant. LetMc

be the C∗-fixed part of M. We suppose there is a surjective sheaf homomorphism

(4.9) σc : (ObM|Mc)C
∗
−→ OMc ,
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from the C∗-fixed part to OMc , and let F be a C∗-locally free sheaf of OM-modules
and F → ObM be a C∗-equivariant surjective homomorphism. We let σ be the
composite

σ : F |Mc −→ ObM/S |Mc −→ ObM|Mc −→ (ObM|Mc)C
∗ σc−→OMc ,

where the second arrow is the projection onto the invariant part.

Lemma 4.7. Let the notation be as before and let CM ⊂ F be the cone-cycle
that is the pull-back of the intrinsic normal cone cM (cf. Corollary 4.6). Then
the support of the restriction CM|Mc ⊂ F |Mc lies in the kernel vector bundle
F |Mc(σ) = ker{F |Mc → OMc}.

Proof. We let M/S → M/S be as in the proof of Corollary 4.6. Without loss of
generality, we can assume both S and M are C∗-schemes and M/S →M/S is a C∗-
morphism. (We can avoid this assumption by working with the formal completion
of M at a closed p ∈ M ×MMc; the remaining arguments go through.) We take
a C∗-equivariant S-embedding M → V as before.

We repeat the proof of Corollary 4.6. Since the obstruction theory is C∗-
equivariant, we can choose a C∗-complex E•|M = [E−1 → E0] so that the ob-
struction theory E•|M → τ≥−1L•M/S is given by a C∗-equivariant (4.1). We extend

E−1 to a C∗-equivariant Ẽ−1 on V . Since (4.1) is C∗-equivariant, we can choose a

C∗-equivariant lift f ∈ IM ⊗OV (Ẽ−1)∨ of φ−1.
We let V c (resp. M c; resp Eic) be the C∗ fixed part of V (resp. M ; resp. Ei);

let IMc be the ideal sheaf of M c ⊂ V c. Then the C∗-fixed part f c := (f)C
∗ ∈

IMc ⊗OV c (Ẽ−1
c )∨ defines M c = (f c = 0) ⊂ V c.

On the other hand, since the C∗-invariant part of (4.1) is a perfect obstruction
theory of M c, the cokernel of df c, which is a quotient of (E−1

c )∨, is the obstruction
sheaf ObMc of M c. One checks that it is identical to the invariant part (ObM |Mc)C

∗

(cf. [11]).
We now look at the normal cone CMc/V c (resp. CM/V ) to M c (resp. M) in V c

(resp. V ); it is a subcone of (E−1
c )∨ (resp. (E−1)∨). By the previous Corollary, the

cycle [CMc/V c ] is a cycle in ker{(E−1
c )∨ → OMc}, where the arrow is the composite

(E−1
c )∨ → ObMc

σc−→OMc (as in the statement of the Lemma).
We claim that

(4.10) (CM/V )C
∗

= CMc/V c ⊂ (E−1
c )∨.

To prove this, we consider the graph Γ of t−1f (t ∈ A1), considered as a subscheme

in (A1 \ 0) × (Ẽ−1)∨. By viewing it as a family over A1 \ 0, we can take its A1-

flat closure Γ ⊂ A1 × (Ẽ−1)∨. By the definition of normal cone, the central fiber
Γ0 := Γ|t=0 is the cone CM/V canonically embedded in (E−1)∨. Thus Γ0 = CM/V

and (Γ0)C
∗

= (CM/V )C
∗
.

On the other hand, notice that Γ is C∗-invariant with C∗ acting on A1 trivially;
the fixed part Γc := ΓC∗ of Γ is

(4.11) Γc = {the graph of t−1f c} ⊂ (A1 \ 0)× (Ẽ−1
c )∨.

We let Γc be the flat closure of Γc (over A1). Thus, (Γc)|t=0 = CMc/V c ⊂ (E−1
c )∨.

Therefore, to conclude the Lemma we only need to check that (Γc)|t=0 = (Γ0)c.
Because C∗ is reductive, the flatness of Γ over A1 implies that the fixed part (Γ)C

∗
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is also flat over A1. Then since (Γ)C
∗ ×A1 (A1 \ 0) = Γc, and Γc is A1-flat, we obtain

Γc = (Γ)C
∗
. This proves Γc|t=0 = (Γ0)C

∗
.

Finally, like in the proof of Corollary 4.6, possibly after replacing [E−1 → E0] by
a quasi-isomorphic complex, we can assume that F |M → ObM|M factors through
a C∗-equivariant F |M → (E−1)∨ → ObM . This proves the Lemma. �

5. Localized virtual cycles

We state and prove the main theorem of this paper.

Theorem 5.1. Let M/S be a Deligne-Mumford stack as before endowed with a
relative perfect obstruction theory. Suppose there is a surjective homomorphism
σ : ObM|U → OU on an open U ⊂M. Let M(σ) =M\U be the degeneracy locus
of σ. Then M admits a localized virtual cycle

[M]vir
loc ∈ A∗M(σ).

It relates to its ordinary virtual cycle by ι∗[M]vir
loc = [M]vir, where ι :M(σ) →M

is the inclusion.

Proof. Let E• → L•M/S be the obstruction theory ofM/S. Let E = h1/h0((E•)∨)

and let [cM] ∈ Z∗E be the corresponding intrinsic virtual cycle [2]. The cosection
σ defines a surjective bundle stack morphism σ̃ : E|U → CU . As before, we let
E(σ) = E|M(σ) ∪ ker{σ̃}, endowed with the reduced structure; E(σ) is a closed
substack of E.

By Proposition 4.3, [cM] is a cycle in Z∗E(σ). We apply the localized Gysin
map constructed in Proposition 3.3 to define

[M]vir
loc = s!

E,σ([cM]) ∈ A∗M(σ).

By the property of localized Gysin map, we have ι∗[M]vir
loc = [M]vir. This proves

the theorem. �

Like the ordinary virtual cycle, the localized virtual cycle is expected to remain
constant in some naturally arisen situations. We let M/S as before be a DM
stack over a smooth Artin stack S, M → S representable, with a relative perfect
obstruction theory E• → L•M/S . We let 0 ∈ T be a pointed smooth affine curve.

We suppose N/S is a DM stack over S, N → S representable, together with a
morphism π : N → T such that

M∼= N ×T 0.

We assume there is a perfect relative obstruction theory F • → L•N/S that is

compatible to that of M/S in that we have a homomorphism of distinguished
triangles in the derived category D(M):

(5.1)

F •|M
g−−−−→ E• −−−−→ OM[1]

+1−−−−→y y y
L•N/S |M

h−−−−→ L•M/S −−−−→ L•M/N
+1−−−−→ .

This way, the (relative) obstruction sheaf ObN/S = h1((F •)∨) fits into the exact
sequence OM → ObM/S → ObN/S |M → 0. Applying the construction of the
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(absolute) obstruction sheaves, we obtain the exact sequence

(5.2) OM −→ ObM −→ ObN |M −→ 0.

We suppose there is an open U ⊂ N and a surjective homomorphism

σU : ObN |U −→ OU .
We let U = U ×NM; let σ : ObM|U → OU be the composition of ObM → ObN |M
with σU |U . As before, we let N (σU ) = N \U andM(σ) =M\U be the degeneracy
loci of σU and σ. Note that M(σ) = N (σU )×T 0.

We let τ : 0→ T be the inclusion and let τ ! : A∗N (σU )→ A∗M(σ) be the Gysin
map that is “intersecting” with 0 ∈ T .

Theorem 5.2. Let the notation be as stated; let [N ]vir
loc ∈ A∗N (σU ) and [M]vir

loc ∈
A∗M(σ) be the localized virtual cycles. Then [M]vir

loc = τ !([N ]vir
loc).

We will prove the Theorem by applying the rational equivalence inside the de-
formations of ambient cone-stacks constructed by Kim-Kresch-Pantev [17].

We begin with recalling the convention used in [17]. For an object G• in the
derived category D(M) of coherent sheaves onM, we denote p∗MG

•⊗p∗P1O(−1) by
G•(−1), where pM, pP1 are the two projections ofM× P1. Accordingly, whenever
we see a G• ∈ D(M) appearing in a sequence involving elements in D(M× P1),
we understand it as p∗MG

•.

For the top line in (5.1), we mimick the construction of [17]. Let [x, y] be the
homogeneous coordinates of P1, let g̃ : F •|M(−1) → F •|M ⊕ E• be defined by
(x · 1, y · g). The mapping cone c(g̃) of g̃ is locally quasi-isomorphic to a two-term
complex of locally free sheaves, and fits into the distinguished triangle

(5.3) F •|M(−1)
g̃−→F •|M ⊕ E• −→ c(g̃)

+1−→ .

Following [17], h1/h0(c(g̃)∨) is a vector bundle stack over M× P1, thus flat over
P1; its fibers over a = [1, 0] and b = [0, 1] ∈ P1 are

h1/h0(c(g̃)∨)×P1 a = h1/h0((E•)∨), h1/h0(c(g̃)∨)×P1 b = h1/h0((F •|M)∨)× A1.

Here the A1 in the product is the fiber of the vector bundle h1/h0([0→ OM]) ∼= CM.
We let M0

N/S be the deformation of N to its normal cone cN/S ; let cM×P1/M0
N/S

be the normal cone toM×P1 in M0
N/S . We let e = h1/h0(c(g̃)∨), which is a bundle

stack over M× P1. According to [17], we have a canonical closed immersions

(5.4) cN/S ⊂ h1/h0((F •)∨) and D := cM×P1/M0
N/S
⊂ e = h1/h0(c(g̃)∨).

We will see that D is flat over P1 − b; for E := h1/h0((E•)∨), e×P1 a ∼= E, and

(5.5) a![D] = [D ×P1 a] = [cM/S ] ∈ Z∗E.

(Following [10], for c ∈ P1 we define c![D] = [Dfl×A1 c], where Dfl is the P1-flat part
of D.) Consequently, (the flat part of) D provides a rational equivalence between
[cM/S ] and b![D].

We let Db = D ×P1 b. In [30] and [17], a canonical rational equivalence [R] ∈
W∗(Db) is constructed such that

(5.6) ∂0[R] = [b!D] and ∂∞[R] = [cM/cN/S ] ∈ Z∗(e×P1 b).

Combining, we obtain a pair of rational equivalences giving the equivalence of

[cM/S ] ∼ [cM/cN/S ] via ([D], [R]).
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This rational equivalence implies τ ![N ]vir = [M]vir.
To prove the constancy of the localized virtual cycles, we need to show that both

[D] and [R] lie in the appropriate kernel bundle stack. First, σU : ObN |U → OU
induces (F •)∨|U → OU [−1], which together with the (E•)∨|U → OU [−1] induced
by σ, defines the two right vertical arrows β1 and β2 shown below, and making the
right square a commutative square of homomorphisms of complexes. Using β1 and
β2, we construct a homomorphism of complexes σ′ (shown), which together with
the βi defines an arrow between distinguished triangles (after restricting to U×P1):
(5.7)

c(g̃)∨|U×P1 −−−−→ (F •)∨|U ⊕ (E•)∨|U −−−−→ (F •)∨|U (1)
+1−−−−→yσ′ yβ1

yβ2

c(x)[−1]
(x,y)−−−−→ O⊕2

U×P1 [−1]
x=(x,y)[−1]−−−−−−−−→ p∗P1OP1(1)[−1]

+1−−−−→

Let L be the line bundle OP1(−1). Then, c(x) ∼=qis. p
∗
P1L; thus

h1/h0(c(x)[−1]) ∼= p∗P1L,

which is a line bundle on M× P1. On the other hand, since both β1 and β2 are
defined and surjective on U × P1, σ̄ is surjective on U × P1. Thus σ̄ induces a
surjective bundle-stack homomorphism (which we still denote by σ̄)

(5.8) σ̄ : e|U×P1 −→ p∗P1L|U×P1 .

We let e(σ̄) be the union of e|M(σ)×P1 with the kernel ker{σ̄}, endowed with the
reduced structure; e(σ̄) ⊂ e is closed. As mentioned, we let W∗eb be the group of
rational equivalences of eb = e×P1 b.

Lemma 5.3. The cycle [D] ∈ Z∗e and the rational equivalence [R] ∈ W∗eb lie in
Z∗e(σ̄) and W∗e(σ̄)b, respectively.

Proof. Since R ⊂ D ×P1 b, the support of R lies in D. Thus we only need to show
that the support of D lies in e(σ̄). Furthermore, since e|M(σ)×P1 = e(σ̄)|M(σ)×P1 ,

to prove the Lemma we only need to show that the support of D ×M×P1 (U × P1)
lies in e(σ̄)|U×P1 . Thus, it suffices to prove the Lemma in case N = U ; namely, σU
is regular and surjective everywhere.

In the following, we assume σN : ObN → ON is regular and surjective on N .
Since the statement of the Lemma is local, it suffices to investigate the situation
over N/S → N/S for S smooth over S, N → N étale, and N ⊂ N ×S S is an affine
open subscheme.

We then pick a smooth affine scheme V over S and T , an embedding N → V
that is both an S and T -embedding. Using N → V , we have a representative

(5.9) τ≥−1L•N/S = [IN/I
2
N → ΩV/S |N ] and τ≥−1L•M/S = [IM/I

2
M → ΩV/S |M ],

where M = N ×T 0 is the corresponding chart of M, IN and IM are the ideal
sheaves of N ⊂ V and M ⊂ V , respectively.

Since N and V are affine, we can assume that there is a vector bundle (locally
free sheaf) F on N (resp. E on M) so that

(5.10) F •|N = [F∨ → ΩV/S |N ] and E•|M = [E∨ → ΩV/S |M ],
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and the diagram (5.1) restricted to M is represented by the following commuting
homomorphisms of complexes of sheaves2

(5.11)

[F∨ → ΩV/S |N ]|M
gN−−−−→ [E∨ → ΩV/S |M ] −−−−→ [OM → 0]y[φ−1,φ0]|M

y[ψ−1,ψ0]

y
τ≥−1L•N/S |M −−−−→ τ≥−1L•M/S −−−−→ [IM⊂N/I

2
M⊂N → 0]

which in addition satisfy φ0 = id : ΩV/S |N → ΩV/S |N and ψ0 = id, and the part of
the top line at place [−1] is an exact sequence

0 −→ F∨|M −→ E∨ −→ OM −→ 0.

Here for the terms in the second line we use representatives (5.9).
Since V is affine, we can split this exact sequence to get E∨ ∼= F∨|M ⊕ OM .

We then extend F to a vector bundle (locally free sheaf) F̃ on V ; because of the

isomorphism E∨ ∼= F∨|M ⊕OM , F̃ ⊕OV is an extension of E.
We now give an explicit description of e|M×P1 (:= e×M×P1 (M × P1)). By the

canonical construction of c(g̃), we have a canonical isomorphism

(5.12) e|M×P1 ∼= h1/h0((c(g̃N )∨),

where g̃N = (x · 1, y · gN ) is

g̃N : [F∨ → ΩV/S |N ]|M (−1) −→ [F∨ → ΩV/S |N ]|M ⊕ [E∨ → ΩV/S |M ]

(cf. g̃ in (5.3)). Using the isomorphism E ∼= F |M ⊕ OM and that the arrow
F∨|M → E∨ is the inclusion under the splitting, we see that the mapping cone

(5.13) c(g̃N ) ∼=qis. [F∨|M → ΩV/S |M ](1)⊕ [OM → 0].

Thus, following the convention that F |M (−1) = p∗MF |M ⊗ p∗P1L is a vector bundle
on M×P1, where L ∼= OP1(−1), we obtain a tautological flat bundle stack morphism

Φ : FM (−1)× A1 −→ eN = h1/h0(c(g̃N )∨).

We let D|M×P1 ⊂ e|M×P1 be the pull-back of D ⊂ e using the isomorphism (5.12),
and let

D = Φ∗(D|M×P1) ⊂ F |M (−1)× A1.

We next describe the pull-back Φ∗(e(σ̄)). (σ̄ is defined in (5.8).) Like the con-
struction of σ′ in (5.7), the surjective homomorphism σN : ObN → ON (surjectivity
is assumed at the beginning of the proof) induces a surjective homomorphism

(5.14) δ : F −→h1((F •)∨)−→ C̄N .

Cf. (5.10). Pulling back δ to N × P1 and twisting it by OP1(−1), we obtain the
second arrow shown below, which composed with the projection to the first factor
of F (−1)⊕ CN×P1 defines γN :

(5.15) γN : F (−1)⊕ CN×P1
pr−→F (−1)−→ p̄∗P1L,

where p̄P1 : N × P1 → P1 is the projection.
We let K be the kernel bundle of γN . It is direct to check that

(5.16) K|M×P1 = Φ∗(e(σ̄)) ⊂ F |M (−1)× A1.

2The bottom line of (5.11) is a truncated version of the distinguished triangle of cotangent
complexes for M → N → S. It is not necessarily exact
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This way, [D] ∈ Z∗e(σ̄) is equivalent to the reduced part Dred (of D) lying in
K|M×P1 .

To prove Dred ⊂ K|M×P1 , we give a graph construction of D. We pick a lifting

f1 ∈ IN ⊗OV F̃ of φ−1 ∈ IN/I
2
N ⊗ON F , and extend f1 to a lifting (f1, f2) ∈

IM ⊗OV (F̃ ⊕ CV ) of ψ−1. After shrinking V if necessary, f1 = 0 defines N and
(f1, f2) = 0 defines M . By shrinking T if necessary, we can pick a uniformizing
parameter t ∈ Γ(OT ) so that t = 0 consists of a single point 0 ∈ T .

We next view x−1 as a meromorphic section of L = OP1(−1) with no zero and
only pole at b = [0, 1]. Then ((tx)−1f1, t

−1f2) is a section of F (−1)⊕ CN×P1 over
(N \M)× (P1 − b); we denote by

(5.17) Γ ⊂ (F (−1)× A1)|(N\M)×(P1−b)

this section (graph). We let Γ be the closure of Γ in F (−1)×A1. According to the
construction in [17],

D = Γ×N×P1 (M × P1) ⊂ F |M (−1)× A1.

We now prove Dred ⊂ K|M×P1 . First, let

Γ1 ⊂ (F ⊕ CN )|N\M
be the graph of (t−1f1, t

−1f2) (recall t ∈ Γ(OT ) and M = N ∩ (f2 = 0)); let Γ1

be its closure in F ⊕ CN ; then Γ1 ×N M is the normal cone CM/V embedded in

F |M ⊕ CM = F |M × A1 by the defining equation (f1, f2) of M .
We next form the commutative diagram

(F (−1)⊕ CN×P1)|N×(P1−b)
(x·1,1)−−−−→ p̄∗N (F ⊕ CN )|N×(P1−b)yγN y(p̄∗Nδ,0)

p̄∗P1L|N×(P1−b)
x−−−−→ CN×P1 |N×(P1−b).

Note that the two horizontal arrows are isomorphisms of vector bundles. By our
construction, Γ is the preimage of p̄∗NΓ1 under the top horizontal arrow. Therefore,

Γ|N×(P1−b) is the preimage of p̄∗NΓ1|N×(P1−b), and thus

D|M×(P1−b) ⊂ (p∗MF |M × A1)|M×(P1−b)

is the preimage of p−1
M CM/V ⊂ p∗M (F |M ⊕ CM ). This proves that D is flat over

P1 − b and also the identity (5.5).
Furthermore, by Corollary 4.5, the support of CM/V ⊂ E|M ∼= F |M ⊕CM lies in

the kernel of (δ, 0) : F |M ⊕ CM → CM . Thus the support of p−1
M CM/V lies in the

kernel of (p̄∗Nδ, 0), and the support of D|M×(P1−b) lies in the kernel of γN .
It remains to show that every irreducible component of D that lies over M ×P1 b

lies in K|M×P1 (cf. (5.16)). Let A ⊂ D be an irreducible component lying over
M ×P1 b, and let v ∈ A be a general closed point. Since D ⊂ Γ̄− Γ, we can find a
smooth curve 0 ∈ S and a morphism ρ̃ : (0, S) → (v,Γ) so that ρ̃(S \ 0) ∈ Γ. We
let (ρ1, ρ2) : S → M × P1 be ρ̃ composed with the projection Γ → M × P1. By
shrinking S if necessary, we can assume ρ2(S) ⊂ P1 − a.

We let xS := x ◦ ρ2 (resp. tS := t ◦ ρ1) be the composition of x ∈ Γ(OP1−a) with
ρ2 (resp. t ∈ Γ(OT ) with the composite S

ρ1−→M → T ). Since v = lims→0 ρ̃(s), by
the definition of Γ, we have

v = (v1, v2) =
(
lim
s→0

(xS · tS)−1 · f1 ◦ ρ, lim
s→0

(tS)−1 · f2 ◦ ρ
)
.
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Let u = ρ1(0) ∈ M . Repeating the proof of Lemma 4.4 and Corollary 4.5, the
surjective homomorphism σN : ObN → ON forces v1 ∈ ker{δ(u) : F |u → C} (cf.
(5.14)). Finally, by the explicit form of γN in (5.15), ker{δ(u) : F |u → C} × A1 =
K|u×b. Therefore, v1 lies in this kernel, which proves A ⊂ K|M×P1 . This proves
the Lemma. �

Proof of Theorem 5.2. This follows from that the localized Gysin map s!
e,σ̄ pre-

serves rational equivalence. �

6. Application: Localized GW-invariants

We let X be a smooth quasi-projective variety equipped with a holomorphic
two-form θ ∈ Γ(Ω2

X). This form induces a cosection of the obstruction sheaf of

Mg,n(X,β), the moduli space of n-pointed genus g stable morphisms to X of class

β. This cosection defines a localized virtual class of Mg,n(X,β), thus localized
GW-invariants of (X, θ).

We begin with the construction of the cosection of the obstruction sheaf of
Mg,n(X,β). For simplicity, we will fix the data g, n, X and β for the moment

and abbreviate Mg,n(X,β) to M. We let f : C → X and π : C → M be the
universal family of M. If we denote by S the Artin stack of genus g connected
nodal curves with n marked points,M is a representable DM stack over S; and the
relative obstruction sheaf of the standard relative obstruction theory of M/S (cf.
[2]) is ObM/S = R1π∗f

∗TX .
We now show that a holomorphic two-form θ defines a cosection of ObM/S .

Indeed, by viewing it as an anti-symmetric homomorphism

(6.1) θ̂ : TX −→ ΩX , (θ̂(v), v) = 0,

it defines the first arrow in the following sequence of homomorphisms

(6.2) R1π∗f
∗TX −→ R1π∗f

∗ΩX −→ R1π∗ΩC/M −→ R1π∗ωC/M,

where the second is induced by f∗ΩX → ΩC/M, and the last by the tautologi-

cal ΩC/M → ωC/M. Because R1π∗ωC/M ∼= OM, the composite of this sequence
provides

(6.3) σrel
θ : R1π∗f

∗TX = ObM/S −→ OM.
The obstruction sheaf of M is the cokernel of p∗TS → ObM/S , where p :

M → S is the projection. Using the universal family f and that R1π∗f
∗TX =

Ext1
π(f∗ΩX ,OC), we have the exact sequence

(6.4) Ext1π(ΩC/M(x),OC) −→ Ext1
π(f∗ΩX ,OC) −→ ObM −→ 0,

where the first arrow is induced by f∗ΩX → ΩC/M. Here x = x1 + · · ·+xn denotes
the divisor of marked points.

Lemma 6.1. The composition

Ext1π(ΩC/M(x),OC) −→ Ext1
π(f∗ΩX ,OC)

σrel
θ−→OM

is trivial.

Proof. Applying the definition of σrel
θ , one sees that the stated composition is the

composition of the following sequence

Ext1
π(ΩC/M(x),OC) −→ Ext1

π(f∗ΩX ,OC) −→ Ext1
π(f∗TX ,OC) −→ Ext1

π(ω∨C/M,OC)
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that is induced by the sequence

Θ : ω∨C/M −→ f∗TX
f∗θ̂−→ f∗ΩX −→ ΩC/M(x),

where the first arrow is the dual of the composite f∗ΩX → ΩC/M → ωC/M.
We now prove that the composite Θ = 0. First, let Creg be the smooth loci

of the fibers of C/M. Since ΩC/M|Creg
= ωC/M|Creg

, and since θ̂ (in (6.1)) is
anti-symmetric, Θ|Creg

is anti-symmetric. Therefore, because ωC/M is invertible,
Θ|Creg

= 0.
Now let q ∈ C \ Creg; let ξ = π(q) ∈ M. We pick an affine scheme M and an

étale morphism M →M whose image contains ξ; let ξ̄ ∈ M be a lift of ξ. We let
C be an affine open C ⊂ C ×MM such that (q, ξ) ∈ C ×MM lifts to a q̄ ∈ C. We
let g : C → X be the restriction of f to C, and let ξ̄ ∈M be the image of q̄ under
C → M . Since both C and M are affine, we can find a closed immersion M ⊂ M̃
into a smooth scheme M̃ and extend C/M to a family of nodal curves C̃/M̃ so that

the node q̄ ∈ Cξ̄ is smoothed in the family C̃/M̃ , and that the morphism g : C → X

extends to g̃ : C̃ → X.
For the family g̃ : C̃ → X, we form the similarly defined homomorphism

(6.5) Θ̃ : ω∨
C̃/M̃

−→ ΩC̃/M̃ .

Like Θ, Θ̃ vanishes away from the singularities of the fibers of C̃/M̃ . On the other

hand, since M̃ is smooth and the node q̄ ∈ C̃ξ̃ is smoothed in the family C̃/M̃ ,

ΩC̃/M̃ has no torsion near q̄. Therefore, the fact that Θ̃ vanishes away from the

singular points of the fibers of C̃/M̃ implies that Θ̃ vanishes near q̃.

Finally, since Θ|Cξ̄ = Θ̃|Cξ̄ , we conclude that Θ vanishes at q ∈ C. Since q ∈ C
is an arbitrary node, this shows that Θ = 0. This proves that the composite in the
statement of the Lemma vanishes. �

Corollary 6.2. The homomorphism σrel
θ lifts to a homomorphism σθ : ObM →

OM.

Proof. This follows from Lemma 6.1 and the exact sequence (6.4). �

Definition 6.3. A stable map u :C → X is called θ-null if the composite

u∗(θ̂) ◦ du : TCreg
−→ u∗TX |Creg

−→ u∗ΩX |Creg

is trivial over the regular locus Creg of C.

Proposition 6.4. Any holomorphic two-form θ ∈ H0(Ω2
X) on a smooth quasi-

projective variety X induces a homomorphism σθ :ObM −→ OM of the obstruction
sheaf ObM of the moduli of stable morphisms M = Mg,n(X,β). The homomor-
phism σ is surjective away from the set of θ-null stable maps in M.

Proof. Only the last part needs to be proved. Since σθ is the lift of σrel
θ , it is

surjective at [u :C → X] ∈M if and only if σrel
θ is surjective at [u]. Since the latter

at [u] is the composition

H1(C, u∗TX)
u∗θ̂−→H1(C, u∗ΩX) −→ H1(C,ΩC) −→ H1(C,ωC) = C,

whose Serre dual is

C = H0(C,OC) −→ H0(f∗TX ⊗ ωC) −→ H0(f∗ΩX ⊗ ωC).



22 YOUNG-HOON KIEM AND JUN LI

Because OC is generated by global sections, the composite of the above sequence
is trivial if and only if the composite

TC ⊗ ωC |Creg
−→ f∗TX ⊗ ωC |Creg

−→ f∗ΩX ⊗ ωC |Creg

is trivial. But this is equivalent to u being θ-null. This proves the Proposition. �

Using the cosection σθ, we can localize the virtual cycle ofM. LetM(σθ) ⊂M
be the collection of θ-null stable maps. Clearly, M(σθ) ⊂ M is closed. Because
σθ : ObM → OM is surjective away fromM(σθ), applying Theorem 5.1, we obtain
the localized virtual cycle

[M]vir
loc ∈ A∗M(σθ).

In case M(σθ) is proper, we define the localized GW-invariants as follows. We
let ev : M → Xn be the evaluation morphism, let γ1, · · · , γn ∈ H∗(X), let
α1, · · · , αn ∈ Z≥0, and let ψi be the first Chern class of the relative cotangent line
bundle of the domain curves at the i-th marked point. The localized GW-invariant
of X with descendants is defined to be

〈τα1
(γ1) · · · ταn(γn)〉X,loc

g,β =

∫
[M]vir

loc

ev∗(γ1 × · · · × γn) · ψα1
1 · · ·ψαnn

In case X is proper, then M(σθ) is automatically proper.

Lemma 6.5. If X is proper, the localized GW-invariant coincides with the ordinary
GW-invariant of X.

Proof. This follows from the last statement in Theorem 5.1. �

A Corollary of this is the following generalization of the vanishing results of J.
Lee and T. Parker [21, 20] for compact algebraic surfaces.

Corollary 6.6 (First vanishing). Let X be a smooth projective variety endowed
with a holomorphic two-form θ. The virtual cycle of the moduli of stable mor-
phisms Mg,n(X,β) is trivial unless the class β can be represented by a θ-null stable
morphism.

Proof. Let M =Mg,n(X,β). Suppose β cannot be represented by a θ-null stable
morphism, i.e. M(σθ) = ∅. Then obviously [M]vir

loc = 0. Since [M]vir is the image
of [M]vir

loc in A∗M, [M]vir = 0. �

A generalization of the second vanishing of Lee-Parker is as follows. Since θ̂ is a

homomorphism from TX → ΩX , det θ̂ can be viewed as a section of the line bundle

K⊗2
X . Let D = (det θ̂ = 0). Every [u,C] ∈ M(σθ) has u(C) ⊂ D. Then an easy

argument shows that

Corollary 6.7 (Second vanishing). Let (X, θ) be as in Corollary 6.6. For β 6= 0
and γi ∈ H∗(X), the GW-invariant 〈

∏
ταi(γi)〉Xg,β vanishes if one of the classes γi

is Poincaré dual to a cycle disjoint from D.

Further applications of this cycle localization technique will appear in the sequel
of this paper.
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7. Other Applications

We conclude our paper with comments on other possible applications; some have
been worked out and some are under development.

One application is the study of extremal GW-invariants of the Hilbert schemes of
points of surfaces. After Beauville, we know that every holomorphic two-form θ of
an algebraic surface X induces a holomorphic two-form on the Hilbert scheme X [k]

of k-points of X. Thus the second vanishing applied to this case gives us vanishing
of a lot of the GW-invariants of X [k]. For general X, we can pick a meromorphic
two-form θ. If β ∈ H2(X [k],Z) is an extremal class (i.e. a class in the kernel of
H2(X [k],Z)→ H2(X(k),Z)), then the meromorphic θ induces a meromorphic two-
form onMg,n(X [k], β). This form can be used to study the GW-invariants of X [k].
This has been exploited by W-P. Li and the second named author in [23].

Another application is in the study of Donaldson-Thomas invariants of a Calabi-
Yau threefold. In [15], the authors showed that the modified Kirwan blow-up of
the moduli of semistable sheaves has an obstruction theory whose obstruction sheaf
has a regular surjective cosection. Using this cosection, we can localize the virtual
cycle and prove a wall crossing formula using the master space construction and
C∗-localization. In comparison with Joyce’s proof of the wall crossing formula, our
proof does not use the Chern-Simons functional, and thus can possibly apply to a
wider classes of moduli of derived objects over Calabi-Yau three-folds.

Another potential application is the study of the GW-invariants of a three-fold
X that is a P1-bundle over a surface S equipped with a holomorphic two-form θ.
The two-form θ on S pulls back to a two-form of X. Since the geometry of this
two-form is explicit, one hopes that one can essentially reduce the study of the
GW-invariants of X to a ruled surface over the canonical divisor D ⊂ S. It will be
interesting to see some part of this carried out in the near future.

Addendum. The cosection localized virtual cycle has been applied to construct
the GW-invariants of stable morphisms with fields [6]. This is the all genus gen-
eralization of the g = 0 theory in Super-String theories. The cosection localized
virtual cycle can also give an algebro-geometric approach to FJRW-invariants of
spin curves with fields.

In [13, 14], the authors derive a degeneration formula for certain localized Gromov-
Witten invariants and use it to prove a conjecture of Maulik-Pandharipande [27]
on degree two Gromov-Witten invariants of surfaces.

In [5], the first named author and H.-L. Chang use cosection localization to prove
a conjecture of Dürr, Kabanov and Okonek [9], which gives an algebraic geometric
definition of Seiberg-Witten invariants of any smooth projective surface.

Appendix A. Analytic analogue of localized Gysin maps

In the case of schemes over C, we can construct an analytic analogue of the
localized Gysin map by picking a smooth (C∞) section of a bundle and intersecting
with the cycle representative. This was the original approach adopted in [12]. Due
to its potential applications, we include it here. We will also prove the equivalence
of the two constructions.

For simplicity, we will work out the case of schemes. The case of orbifolds (DM
stacks) is similar using multiple sections. Let π : E →M be a rank r holomorphic
vector bundle over a reduced scheme M , U ⊂M an open subset and σ : E|U → OU
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be a surjective homomorphism. We denote M(σ) = M \ U and denote E(σ) the
kernel cone of σ, as defined before. We assume M(σ) is compact.

We first pick a splitting of σ over U . Because σ is surjective, possibly by picking a
hermitian metric on E we can find a smooth section σ̌ ∈ C∞

(
E|U

)
so that σ◦σ̌ = 1.

Next, we pick an analytic neighborhood V of M(σ) ⊂M such that V has compact
(analytic) closure in M and the homomorphism

ı∗ : H∗(M(σ),Z)
∼=−→H∗(V,Z)

induced by the inclusion ı : M(σ)→ V is an isomorphism. Because M is algebraic
and M(σ) is compact, such a neighborhood V always exists ([26]). We then extend
σ̌|M−V to a smooth section σ̌ex ∈ C∞

(
E
)
. and pick a smooth function ρ :M → R>0

so that ξ = ρ · σ̌ex ∈ C∞
(
E
)

is a small perturbation of the zero section of E.
Now let B ⊂ E(σ) be a complex d-dimensional closed subvariety. By fixing a

stratification of B and of M by complex subvarieties, we can choose the extension
σ̌ex and the function ρ so that the section ξ intersects B transversely. As a conse-
quence, the intersection B ∩ ξ, which is of pure dimension, has no real codimension
1 strata. Hence, it defines a closed oriented Borel-Moore cycle in E.

But on the other hand, since σ ◦ ξ|M−V = ρ ∈ C∞
(
M − V

)
, ξ is disjoint

from B over M − V . Thus B ∩ ξ ⊂ E|V . Adding that V has compact (analytic)
closure in M , π(B ∩ ξ) defines a closed chain in V , thus defines a homology class
[π(B ∩ ξ)] ∈ H2d−2r(V,Z). Finally, applying the inverse of ı∗, we define

s!,an
E,σ([B]) = ı−1

∗ ([π(B ∩ ξ)]) ∈ H2d−2r(M(σ),Z).

Applying the standard transversality argument, one easily shows that this class
is independent of the choice of V and the section ξ; thus it only depends on the
cycle B we begin with.

Definition-Proposition A.1. The map s!,an
E,σ : ZdE(σ) → H2d−2r(M(σ),Z) so

defined descends to a homomorphism

s!,an
E,σ : AdE(σ) −→ H2d−2r(M(σ),Z),

which we call the analytic localized Gysin map. Furthermore, via the cycle-to-
homology homomorphism cl : AkM(σ) → H2k(M(σ),Z), the two versions of local-

ized Gysin maps coincide, i.e. cl ◦ s!
E,σ = s!,an

E,σ.

Proof. The proof that s!,an
E,σ preserves rational equivalence is standard and will be

omitted. We now prove the comparison by using the notation of Section 2. If
B ⊂ E|M(σ), the result follows directly from [10, Lemma 19.2 (d)]. So we suppose
B ∩G 6= ∅. We choose a σ-regularizing morphism ρ : X →M and a closed integral
B̃ ⊂ G̃ such that ρ̃∗[B̃] = k · [B] where G̃ is the kernel of σ̃ : Ẽ → OX(D) with

Ẽ = ρ∗E and ρ̃ : Ẽ → E is induced from ρ.

Observe that the intersections ξ∩B for defining s!,an
E,σ[B] and D·s!

G̃
[B̃] for defining

s!
E,σ[B] take place in the tubular neighborhood V of M(σ) in the sense that if we

replace M by V and X by the inverse image of V and so on, we get the same
classes. So for the purpose of the comparison result, we may assume that M = V
is a tubular neighborhood of M(σ).
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Consider the fiber square of zero sections

X �
� ı̃ //

ρ

��

Ẽ

ρ̃

��

M
� � ı // E.

By [10, Theorem 6.2],

ρ∗(s
!
Ẽ

[B̃]) = s!
E ρ̃∗[B̃] = k · s!

E [B].

By the excess intersection formula [10, Theorem 6.3],

ρ∗(D · s!
G̃

[B̃]) = ρ∗(s
!
Ẽ

[B̃]) = k · s!
E [B].

Applying the cycle-to-homology homomorphism cl, we obtain

cl(s!
E,σ[B]) = k−1 · cl(ρ∗(D · s!

G̃
[B̃])) = cl(s!

E [B]).

By [10, Lemma 19.2 (d)] again, this equals uı ∩ cl([B]), where uı ∈ H2r(E,E−M)
is the orientation class of E. By standard arguments, the cap product of the
orientation class is the same as intersecting B with a transversal perturbation ξ of
the zero section. This proves the Proposition. �
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