REMARKS ON HYPERKAHLER GEOMETRY

YOUNG-HOON KIEM

FOREWORD

I intend to talk about some results and open problems on hyperkahler
geometry. I will explain basic notions on hyperkahler geometry and dis-
cuss the known examples of hyperkahler manifolds which include Hilbert
schemes of points on K3 or abelian surfaces, moduli of instantons, moduli
of monopoles and quiver varieties. Also I will discuss hyperkahler quotient
which is a method to construct new hyperkéhler manifolds from the known
examples. I don’t (to be honest, can’t) provide a systematic or complete
survey of this fascinating subject. Rather I will just discuss several topics
that make sense to me (or topics that please me). For instance, important
recent progresses concerned with periods, mirror symmetry and 3-manifold
invariants will not be considered in this article.

1. WHAT IS GEOMETRY?

(1.1) It is well-known that the word “geometry” is a combination of “geo”
and “metry”. Of course, “geo” means earth and “metry” means measure.
To mathematicians, earth is a manifold' and measure is a metric.> Hence
the word “geometry” literally stands for the study of

manifolds equipped with a metric.

(1.2) Suppose we have a Riemannian manifold (M, g), i.e. a manifold M
equipped with a metric g. In order to say anything geometric (like “straight
line”) we need the notion of differentiation. Let us consider an example:
M =R", g = standard Euclidean metric. Let F' be a vector field on M. Its
derivative DF is defined by the equation

lim F(z+h)—F(z) — DF(x)h

= 0.
h—0 |h|

'A manifold is a paracompact Hausdorff locally Euclidean topological space whose
transition maps are differentiable. In this talk, we consider only orientable manifolds which
means that the determinant of the Jacobian of a transition map is positive everywhere.

2A metric is (a differentiable choice of) an inner product on each tangent space.
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What is implicit here is that the tangent vector F'(z+h) at x+h is compared
with the tangent vector F'(x) at z. More precisely, the tangent vector at
x 4+ h is translated to x. This is what we need to make sense of derivatives,
i.e. for each path v on M from p to ¢, we need an isomorphism

0« T,M — T,M

which we call “parallel transportation”. By the well-known existence and
uniqueness theorem of an ODE solution, it suffices to give an infinitesimal
variation of the isomorphism ¢, for each direction at any point. This is
the notion of connection (on the tangent bundle). Given a metric g, there
is a unique connection, called the Levi-Civita connection, which is compat-
ible with the metric. In particular, the parallel transport . is always an
isometry (or an orthogonal transformation if y is a loop). In the rest of this
section a connection means the Levi-Civita connection of a metric.

(1.3) Let us try a simple experiment about parallel transportation. Let
M = S? be the “earth” equipped with the metric induced from the inclusion
S2 C R3. Let’s imagine you are on the equator with your right arm pointing
Fast and left arm pointing North. Walk to the East along the equator for
10000 kilometers. Your right arm is still pointing East while your left arm
is pointing North. Now walk to the North until you reach the North pole
and then walk straight to the point you started. Then you find your right
arm is pointing North and your left arm is pointing West! But if you just
walk along the equator for 40000 kilometers you get back to the same point
and your arms are pointing the same directions as you started. The lesson
here is that the parallel transportation depends on the choice of the curve
7.3 For any loop v based at € M, we have an isometry oy € O(T, M),
which is called the holonomy along the loop ~.

(1.4) Definition. (i) The holonomy group of a Riemannian manifold
(M, g) is the group

H={p, € O(T,M) |~ is aloop based at 2} C O(T,,M)

of orthogonal transformations. By fixing an orthonormal basis of T, M, H
is identified with a subgroup of O(n) where n = dimg M.

(ii) A Riemannian manifold (M, g) is called irreducible if the representa-
tion of the holonomy group H on 7, M is an irreducible representation.

3In the Euclidean case, the parallel transportation has nothing to do with the path
but this is precisely because the Euclidean space is flat (curvature is zero) and simply
connected. Simply connected roughly means that any loop can be continuously deformed
to a point.

4H O(n) is unique up to conjugation.
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(1.5) As any representation of a compact Lie group is a direct sum of
irreducible representations, it is reasonable to expect the following theorem
of de Rham.

(1.6) Theorem. A compact simply connected Riemannian manifold is a
product of irreducible Riemannian manifolds.

(1.7) By Theorem 1.6, we can effectively restrict our concern to irreducible
manifolds if we are only interested in simply connected manifolds. Surpris-
ingly the list of irreducible compact simply connected manifolds is quite
limited by the following theorem of Berger.

(1.8) Theorem. Let M be an irreducible compact simply connected man-
ifold which is not a symmetric space.> Then the holonomy group H of M is
one of the following:

i) SO(n) where dimM =n  : general Riemannian manifold,
i) U(m) where dim M = 2m : Kéhler manifold,

i) SU(m) where dim M = 2m : Calabi-Yau manifold,

) Sp(r) where dim M = 4r : hyperkahler manifold,

v)  Sp(r)Sp(1) where dim M =4r : quaternionic Ké&hler manifold,
i) Go where dim M =7,

vii)  Spin(7) where dim M = 8.

(1.9) The above theorem gives us a classification of geometries. For exam-
ple, the study of general Riemannian manifolds is the Riemannian geometry
and the study of Kéhler manifolds is the Kéhler geometry. Complex alge-
braic geometry is mostly about (ii), (iii), and (iv). The study of hyperkéhler
manifolds is the hyperkéhler geometry which we shall discuss in the rest of
this paper.

2. WHAT IS HYPERKAHLER?

(2.1) We've seen above that the holonomy group of an irreducible compact
simply connected hyperkdhler manifold is Sp(r). But what is hyperkéhler
anyway? To answer this question we start with the definition of Kéhler
manifold.

5A symmetric space is a manifold of the form G/H where G is a compact Lie group
endowed with an involution and H is the subgroup of invariant elements. The symmetric
spaces have been all classified and studied with care.
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(2.2) Definition. A Riemannian manifold (M, g) is called Kdhler if it is
equipped with a compatible complex structure J i.e. an orthogonal trans-
formation

J:TM —TM

such that J? = —1 and J is parallel.5 The Kdhler form w of (M, g,J) is
defined by

w(X,Y) =g(JX,Y)
for any tangent vectors X,Y € T, M.”

(2.3) The simplest example of a Kéhler manifold is C" with the standard
hermitian inner product (z,y) = > x;y; for z = (z;), y = (y;). The real
part of this hermitian inner product is the standard Riemannian metric and
its imaginary part is the Kéhler form.

If A is a full lattice in C™ then C"/A is a compact Kéhler manifold with
the induced metric and complex structure from C™.

The projective space P* = C"*! —0/C —0 equipped with the Fubini-Study
metric is a Kéhler manifold. In terms of local coordinates (1: 2y : --- : zp),
its Kahler form is given by the formula

w = \/2?88(1 +) " #7).

A smooth quasi-projective variety has the induced Kéhler structure from

P". Hence every algebraic manifold is a Kéhler manifold.

(2.4) Hyperkahler manifold is a manifold equipped with not just one Kéhler
structure but an S%-family of Kéhler structures.

(2.5) Definition. A Riemannian manifold (M, g) is hyperkdhler if there
are three complex structures I,J, K (I? = J?> = K2 = —1 and I, J, K are
parallel) such that IJ = K = —JI. By the equation in (2.2), we get three
Kahler forms wy,wy, wgk.

(2.6) The simplest example of a hyperkéhler manifold is of course the
quaternionic vector space H" where H is the division algebra of quaternions.
Also the quotient of H" by a discrete group action is also a hyperkahler man-
ifold. However, the quaternionic projective space HP" is not a hyperkéahler
manifold. (Exercise: Why?)

(2.7) In fact a hyperkihler manifold has infinitely many (S2-family) of
Kihler structures since al 4 bJ + cK for (a,b, ¢) satisfying a® +b? 4+ c? = 1
is always a complex structure compatible with the metric. It is possible to

6parallel means that J commutes with parallel transportation.
Tt is elementary to show that w is skew-symmetric and J being parallel implies that
w is a closed 2-form.
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construct a complex manifold Z, called the twistor space, and a map Z — S?
whose fiber over (a, b, ¢) € S? is the Kihler manifold with complex structure
al +bJ + cK.

(2.8) Sp(r) is the group of orthogonal transformations of R*" = H"
which are linear with respect to I, J, K. Hence the holonomy group of a
hyperkahler manifold is contained in Sp(r) where dim M = 4r since the
three complex structure I, J, K makes T, M a quaternionic vector space and
I, J, K are parallel. Conversely, if the holonomy group is contained in Sp(r),
choose complex structures I, J,, K, on T, M which makes T, M a quater-
nionic vector space. The parallel transportation of these complex structures
I,J, K give us three complex structures I,J, K on M and hence M is a
hyperkahler manifold.

(2.9) Another way to think of hyperkéhler manifolds is to break the sym-
metry of the complex structures and choose one particular complex struc-
ture, say I. Then (M,g,I) is a Kéhler manifold and w¢ = wy + [wg is
a closed complex valued holomorphic 2-form on M which is nondegener-
ate everywhere. Such a form is called a holomorphic symplectic form and a
Kahler manifold equipped with a holomorphic symplectic form wc is called a
holomorphic symplectic manifold. Conversely, a compact holomorphic sym-
plectic manifold M admits a Ricci flat metric for which w¢ is parallel, by
Yau’s famous theorem and Bochner’s principle. Hence the holonomy group
is contained in Sp(r) and M is a hyperkéhler manifold.

For a Ké&hler manifold M, its cotangent bundle T*M is canonically a
holomorphic symplectic manifold and thus a hyperkahler manifold. Indeed,
for a complex vector space V of dimension n, T*V =2 V @ V* and the ob-
vious pairing gives us a holomorphic symplectic form we.® For a Kihler
manifold M, we have a holomorphic symplectic form on T*U for each co-
ordinate neighborhood U C C™ and these symplectic forms coincide on the
intersections of coordinate neighborhoods. Therefore T* M is a noncompact
hyperkahler manifold.

(2.10) Theorem/Definition. The holonomy group of a compact holo-
morphic symplectic manifold M is exactly Sp(r) if and only if M is simply
connected and the holomorphic symplectic form is unique up to a scalar
multiple. Such a manifold is called an irreducible (holomorphic) symplectic
manifold.

(2.11) In summary, the study of manifolds whose holonomy group is con-
tained in Sp(r) is the study of hyperkéhler manifolds. The study of compact
manifolds whose holonomy is exactly Sp(r) in Berger’s list (1.8) is the study
of irreducible symplectic manifolds.

8V and V* are Lagrangian subspaces.
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Irreducible symplectic manifolds are building blocks for K&hler manifolds
with trivial first Chern class? by the following theorem, often called the
Bogomolov decomposition theorem.

(2.12) Theorem. Let M be a compact Kéhler manifold with trivial first
Chern class. Then there is a finite étale cover of M, isomorphic to T' x
[1Vi x [I X; where T is a complex torus, V; are (irreducible) Calabi-Yau
and X are irreducible symplectic manifolds.

3. COMPACT HYPERKAHLER MANIFOLDS

(3.1) In this section, we consider all the known examples of irreducible sym-
plectic manifolds, i.e. compact simply connected Kéhler manifold endowed
with a closed nondegenerate holomorphic 2 form which spans the space of
holomorphic 2 forms. In the subsequent section, we will see some important
noncompact examples.

(3.2) The dimension of a hyperkéhler manifold is always 4r, r > 1. We first
consider the case r = 1 so that dim M = 4. Observe that Sp(1) = SU(2).
Hence M is an irreducible symplectic manifold if and only if M is a simply
connected Calabi-Yau which amounts to saying that the canonical bundle
/\(QCT M is isomorphic to Ops and M is simply connected, i.e. M is a K3
surface.

There are numerous examples of K3 surfaces: quartic surface X, in
P3, complete intersections X(23) C P4, X222 C P?, double cover of P?
branched along a sextic, a smooth divisor in | — K| on a smooth 3-fold V.

If you don’t demand simple connectedness, M being hyperkéahler is equiv-
alent to M being either a K3 or a complex torus.

(3.3) For the case of dim M = 4r with r > 2, there are two standard series
of irreducible symplectic manifolds provided by Beauville. The first series
are the Hilbert schemes X! of r points'® in a K3 surface X.'' That X"
is projective follows from the general theory of Grothendieck’s Quot scheme
construction and smoothness is proved by deformation theory. Beauville
gives a simple proof of the existence of a holomorphic symplectic form by

9The first Chern class being trivial is equivalent to the top exterior power of the complex
tangent bundle being trivial topologically.

100 fore precisely the Hilbert scheme of zero dimensional subschemes of length r.

11Quite surprisingly the cohomology @®,H* (X[T]) of the Hilbert schemes is an irre-
ducible representation space of the Heisenberg superalgebra associated with H*(X) by a
famous work of Nakajima.
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using the Hilbert-Chow morphism X7 — §”X12 where S” X is the symmet-
ric product of X i.e. X7/S,.13

The second series of irreducible symplectic manifolds also arise from Hilbert
schemes. Let A be an abelian surface and let ATt be the Hilbert scheme of
r+ 1 points in A. Beauville’s argument proves that Al is a holomorphic
symplectic manifold. But this is not simply connected. So we consider the
Albanese map a : AUt — A which is just the sum by the group struc-
ture of A. Let K, = a~1(0). Then K, is simply connected with induced
holomorphic symplectic structure. Hence K, is a 4r dimensional irreducible
symplectic manifold, called the generalized Kummer variety. If r = 1 we
recover the classical Kummer variety. (Exercise: Why?)

Until very recently, there were no other examples. To be precise, there
were other examples but they were diffeomorphic to Beauville’s examples.
By Mukai’s theorem every moduli space M (r, c1, c2)® of rank r stable sheaves
with Chern classes (c1,c2) on a K3 surface X is an irreducible symplectic
manifold if the moduli space is compact. However it was shown by Mukai,
O’Grady and Yoshioka that a compact moduli space of stable sheaves is
deformation equivalent to the Hilbert scheme X[ of the same dimension
by Fourier-Mukai transformation and Huybrechts’s theorem. In particular,
they are diffeomorphic. Hence as a manifold, the compact moduli spaces of
stable sheaves are the same as Beauville’s examples.

(3.4) Recently (1999 and 2003), two new'? irreducible symplectic mani-
folds of dimensions 12 and 20 were discovered by O’Grady. The first one
comes from a K3 surface X: let Mg3(2,0,2m) be the moduli space of rank
2 semistable sheaves F' on X with Chern classes ¢;(F) = 0, co(F) = 2m.
This is an irreducible normal singular projective variety of (real) dimension
16m — 12 whose singularities are terminal Gorenstein'® for m > 2. O’Grady
considered Mg3(2,0,4) (dimension 20) and constructed a desingularization

Mg3(2,0,4) which admits a holomorphic symplectic form by blowing up
Mg3(2,0,4) twice and then blowing down once. The hard part is to show
that this is indeed simply connected and the second Betti number is greater
than or equal to 24. O’Grady used an idea of Jun Li which utilizes the
generalized Lefschetz hyperplane theorem and the map to Uhlenbeck com-
pactification constructed also by Jun Li.

The second example comes from an abelian surface A: let M45(2,0,2n)
be the moduli space of rank 2 semistable sheaves F' on A with Chern classes

127his is just a blow-up along the diagonal if you delete a suitable codimension 2 subset
and Hartog’s theorem says it is okay to do that.

13The holomorphic symplectic form of X induces a holomorphic symplectic form on
X" which induces a holomorphic 2 form on the blow-up of X" along the diagonal. This
is S, invariant and hence it comes from a holomorphic 2 form on X ["] which turns out to
be nondegenerate.

14New means that it is not diffeomorphic to Beauville’s manifolds.

15 Just ignore if the words like “normal”, “terminal” do not make sense to you.
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c1(F) =0, co(F) = 2n. O’Grady constructs a symplectic desingularization
M4p(2,0,2) in exactly the same way as in the K3 case. The trouble is as in

Beauville’s case that Mp(2,0,2) is not simply connected. The way out is
to consider the Albanese map. Let

a: May(2,0,2) — A x Pic’(A)

be the product of addition' and the determinant map. Then K = a=1(0,0)
is simply connected and equipped the induced holomorphic symplectic form.
Hence K is an irreducible symplectic manifold. By comparing the second
Betti numbers O’Grady proved that K is not homeomorphic to any of the
previously known examples.

In this context O’Grady asked if one can find, as O’Grady did, new ir-
reducible symplectic manifolds by constructing a desingularization M of
Mg3(2,0,2m) for m > 3 or Myp(2,0,2n) for n > 2 such that M is holomor-
phic symplectic. In other words, he raised the following question.

(3.5) Question. Does there exist a holomorphic symplectic desingulariza-
tion of Mg3(2,0,2m) for m > 3 or M (2,0,2n) for n > 27

(3.6) Answer. By using properties of stringy E-function (which is an
incarnation of motivic integral) Jaeyoo Choy and I showed that the answer
is unfortunately NO for all m > 3 and all n > 2. Kaledin, Lehn and Sorger
prove the non-existence in a more general context by studying factoriality.

(3.7) Problem. Study the topology and geometry of O’Grady’s irreducible
symplectic manifolds. For example, compute the Betti numbers and the
Picard group of the varieties.!”

(3.8) Problem. Based on physics arguments, Vafa and Witten says the
Euler characteristic of Mg3(2,0,2n) must be ey,—3 + %en where e, is the
Euler characteristic of the Hilbert scheme X of k points in a K3 surface
X. Find a natural mathematical explanation.

After all, the list of irreducible symplectic manifolds is “embarrassingly”
scarce. Hence the following is still an important open problem for geometers.

(3.9) Problem. Find new examples of irreducible symplectic manifolds.

1675 be precise, this is obtained as follows: first take the second Chern class in the
Chow group and then add them up using the group structure of A.

17g, far, only the Euler characteristic of the 12 dimensional example is known to be
1920.
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4. NONCOMPACT HYPERKAHLER MANIFOLDS

(4.1) In this section I will discuss several important examples of noncom-
pact hyperkahler manifolds. As we observed in (2.9), the cotangent bundle
of a Kéhler manifold is a noncompact hyperkéhler manifold. The examples
discussed in this section are constructed by the technique of hyperkahler
quotient which will be considered in the subsequent section.

(4.2) Moduli space of magnetic monopoles. Mathematically, a magnetic
monopole is a pair of a connection A on a principal SU(n)-bundle on R3
and a Lie algebra valued holomorphic form ¢ (with appropriate decay at
infinity) which is critical for the potential function U = % [o5 [Fal? + [da¢|?
where Fy is the curvature of A.'® The moduli space M(n,k) of magnetic
monopoles is the space of such pairs (A, ¢) with magnetic charge k (the
second Chern class) where the minimum of U is attained,'® modulo gauge
equivalence. Luckily a theorem of Donaldson says this moduli space is an
object that looks quite friendly to algebraic geometers. Namely, M (n, k) is
isomorphic to the space of rational maps f : P! --» P! of degree k with
f(00) = 0. For instance we have

ag+ayz+ -+ ap_12"1
bo+biz+ - bp_12F 1+ 2
where A is the resultant of the numerator and the denominator. As an open

subset of HF, M (2, k) is a noncompact hyperkahler manifold. The topology
of M(n, k) has been studied intensively during the past 20 years.

M(2,k) = { —|A#0} CcCF 2 HF

(4.3) Moduli space of instantons on R*. The framed moduli space M (r,n)
of instantons on R?* is the space of anti-self-dual SU(r)-connections on R*
with appropriate decay modulo gauge equivalence. Luckily, M (r,n) is also
diffeomorphic to an object quite friendly to algebraic geometers: the moduli
space of rank r torsion-free sheaves E on P? equipped with an isomorphism
E| . = (’)lez with second Chern class n. By a theorem of Barth we have an
explicit description of M(r,n) as follows:

M(r,n) = {(B1, Ba,i,7) | [B1, B2] + ij = 0}°/GL(n,C)

where Bj, Bo are n X n complex matrices, ¢ is an n X r matrix, and j is an
r X n matrix. The superscript s denotes the locus of stable points which
means in this case that there is no proper subspace of C™ which is preserved
by Bi, B2 and contains the image of 1.

The set of matrices {(B1, Ba,1,7)} is the cotangent bundle of

M := Hom(C",C") x Hom(C",C")
18Ignore this sentence if it doesn’t make sense to you.

19The minimum is attained exactly when the Bogomolny equation Fa = xda¢ is
satisfied.
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and M (r,n) is the hyperkéhler quotient of T*M by the obvious action of
GL(n,C). Therefore, there is an induced hyperkéhler structure on M(r,n)
as we will see in section 6.

(4.4) Quiver varieties. For a directed graph I' with no loop? we associate
two vector spaces Vi and W, to each vertex k. For each directed edge h let
in(h) (resp. out(h)) be the vertex of origin (resp. destination). Let

M := @ Hom (Vi) Vour(n)) © @D Hom(Wy, Vi)

h:edge k:vertex

This is a complex vector space whose cotangent bundle is

T*M = @j.cage (Hom(Vinn): Vour(n)) ® Hom (Vour(n) Vineny))
X @kzverte:c (Hom(Wk, Vk) S Hom(Vk, Wk)) .

There is an obvious action of G = [[U(V}) on T*M and the hyperkéhler
quotient M (v, w) of T*M by the action of G at general ¢ € center(Lie G)*
is the quiver variety associated with the data (I',v,w) where v = (dim V})
and w = (dim Wy,).

A famous work of Nakajima says when the graph I' is of Dynkin type
A, D, E or affine, the middle degree cohomology?!

P a0, w))

is an irreducible representation space with highest weight w of the Kac-
Moody algebra generated by the Cartan matrix C' = 2I — A where A is the
adjacency matrix of I".%2

There are many more interesting noncompact hyperkahler manifolds like
the hypertoric manifolds (constructed as hyperkahler quotients) and the
moduli space of Higgs bundles over a curve.

5. HYPERKAHLER QUOTIENT

(5.1) A useful method of constructing a new hyperkdhler manifold from
the known examples is to take a quotient by a group action in Hamilton-
ian fashion. Unfortunately this method doesn’t seem to give us any new
compact hyperkahler manifold because it is very difficult to find a compact
hyperkahler manifold equipped with a nontrivial indiscrete group action
suitable for hyperkéhler quotient construction.

(5.2) To begin with, let us recall Kdhler quotient first. Let (M, g,I) be a
Kahler manifold, equipped with an action of a compact Lie group G which

20Think of a Dynkin diagram.
21Hmid(X) — 3 dimg X(X)
22The (i,7)-th entry of A is the number of edges joining ¢ and j.
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preserves g and I. The Kahler form w is nondegenerate and hence gives
us an isomorphism T'M = T*M. For any smooth function f on M, df is
1-form, i.e. a section of T*M. By the isomorphism T'M =2 T*M given by
w, df gives rise to a section of T'M, called the Hamiltonian vector field of f.
A moment map for the action of G is a smooth map

p: M — Lie(G)*
such that for any ¢ € Lie(G) the vector field X¢ defined by

Xe(p) = %\tzop -exp(t)

is the Hamiltonian vector field of the function (u,§) : M — Lie(G)* — R.
The action of G on M is called Hamiltonian if there is a moment map pu.
Now the Kéahler quotient is defined as

M//G = i (0)/G.

This is again a Kihler manifold if the action of G on p~1(0) is free. To see
this we note that the action of G induces an action of its complexification
GC. Consider the open set M*®® of points in M whose gradient flow with
respect to —|u|? has a limit point in the minimal critical set ©~1(0). Then
Kirwan showed that there is a bijection

pH0)/G — M*//GE.

The left hand side x~!(0)/G is equipped with a symplectic form induced
from w by a theorem of Marsden and Weinstein while the right hand side
M?*3//G® has a complex structure obviously. These symplectic structure
and complex structure make M //G a Kéhler manifold.

An important result for computing the cohomology of a Kéhler quotient
M//G is Kirwan'’s surjectivity which says the restriction map

HE(M) — He(p™(0))

of equivariant cohomology groups®® is surjective. When G acts freely on
©~1(0) we have a canonical isomorphism H{(u~1(0)) = H*(M//G) and
thus a surjective map

k2 Hi(M) — H*(M//G)

which is called the Kirwan map.

(5.3) Now suppose (M,g,1,J,K) is a hyperkihler manifold. Suppose a
compact Lie group G acts on M preserving g, I, J, K. Furthermore suppose
the group action is Hamiltonian with respect the three symplectic structures
wr,wyj,wx respectively, i.e. there are three moment maps uy, py, px. Let

23HE(X) = H* (X x EG/G) where EG is a contractible topological space on which G
acts freely.
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po= (pr, g, px) : M — ((LieG)*)® and suppose that G acts freely on
u='(0). The hyperkdhler quotient of M by G is defined by

MJJJG = i~ (0)/G.

Let us see why M///G is a hyperkéhler manifold. As mentioned in
(2.9), wy + Iwg is holomorphic with respect to the complex structure
and this implies that f; := p; + v/—1px is a holomorphic map. Hence
M/J)/G = p~1(0)/G = p;'(0) N f;71(0)/G is an analytic subvariety of the
Kihler quotient p;*(0)/G. Hence M///G is equipped with a Kihler struc-
ture which arose from I, wy. Likewise J and K give rise to Kahler structures

on M///G which make M///G is a hyperkéhler manifold.

(5.4) Problem. As in the Ké&hler quotient case (5.2), the inclusion
p~1(0) < M induces a restriction map

ko HG(M) — Hg(u™'(0)) = H*(M/)/G).

Is k surjective??*

(5.5) Question. Can you study the cohomology ring of M///G in terms of
equivariant Morse theory as Atiyah, Bott, Kirwan did in the K&hler quotient
case???

(5.6) Question. If the action of G on p~1(0) is not free, then the hy-
perkéhler quotient M ///G is a singular variety which is hyperkahler on the
smooth locus. Can you find a canonical desingularization??

LAST WORDS

I would like to thank Professor Sijong Kwak and the organizers of the
KAIST symposium on number theory and algebraic geometry in February
2005 for inviting me. Down below is an incomplete list of articles and books
from which I've stolen the contents of this paper.
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