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1 Introduction

Let Y be a smooth complex projective algebraic curve of genus g with a very
ample line bundle OY (1). For a vector bundle E over Y , the slope of E is
defined as

µ(E) =
deg E

rankE
.

We say a vector bundle E over Y is (semi)-stable if

µ(F ) < µ(E) (≤)

for any proper nonzero subbundle F of E. The category of semistable bundles
of slope µ is a noetherian and artinian abelian category whose simple objects
are stable bundles and thus each semistable bundle E has a filtration

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ek = E

by semistable subbundles such that Ei/Ei−1 are stable of slope µ. The filtration
may not be unique but the grading

gr(E) = ⊕Ei/Ei−1

is independent of the filtration. We say two semistable bundles E and E′ are
s-equivalent if gr(E) ∼= gr(E′).

The set of s-equivalence classes of semistable vector bundles of rank r and
degree d admits a structure of irreducible projective variety Mr,d(Y ) by the
recipe of geometric invariant theory [MFK94]. In fact, any semistable bundle
of rank r and degree d is the quotient of OY (−m)⊕p for suitable integers p and
m which depends only on r and d. Grothendieck’s Quot scheme parameterizes
such quotient sheaves and two quotient sheaves are isomorphic if and only if
they are in the same orbit under the natural action of PGL(p). Now the moduli
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space Mr,d(Y ) is the good quotient of the (smooth) subvariety Rr,d of semistable
points in the Quot scheme.

In this paper, unless stated otherwise, we always assume that the integers
r and d are coprime. Then semistable bundles are automatically stable and
the stabilizer groups of points in Rr,d are all trivial. Hence the moduli space
Mr,d(Y ) is smooth and the universal quotient bundle over Rr,d×Y descends to
a universal bundle E over Mr,d(Y )× Y .

By a local study using deformation theory, the tangent space at a point
[E] ∈ Mr,d(Y ) is isomorphic to H1(Y, EndE) and the tangent bundle of the
moduli space is

TMr,d(Y ) ∼= R1p∗(EndE) (1)

where p : Mr,d(Y )× Y → Mr,d(Y ) is the projection onto the first component.
The famous theorem of Narasimhan and Seshadri says the moduli space

Mr,d(Y ) is homeomorphic to the moduli space of flat unitary connections on
(punctured) Y . In other words,

Mr,d(Y ) ' {(Ai) ∈ U(r)2g |
∏

[Ai, Ai+g] = exp(
2πid

r
)I}/U(r)

where the action of U(r) is by conjugation.
The purpose of this paper is to explain the results of the joint paper [KL]

with Jun Li about the Chern classes of the moduli spaces. In §2, I describe the
cohomology ring of the moduli space. In §3, the Newstead-Ramanan conjecture
is explained. In §4, I explain Gieseker’s proof of the vanishing of Chern classes
for the rank 2 case. In §5, our generalization to higher rank cases is discussed.

Notation: We will use the following notations throughout the paper.

• Y = smooth irreducible projective curve of genus g.

• X = smooth irreducible projective curve of genus g − 1.

• p1, p2 = two distinct points in X.

• X0 = X/{p1 ∼ p2} a curve of genus g with one node.

• Xn = a curve obtained by gluing a chain of n P1s to X at p1 and p2. The
rational components are denoted by C1, · · · , Cn from left to right.

Pictorially, the curves are as follows:

X X0 X1 X2

ttttttttttt JJJJJJJJJJJ

· · · · · ·
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2 Cohomology ring of the moduli space

We now have a very good understanding of the cohomology ring of Mr,d(Y ).
After pioneering works of Newstead, Atiyah and Bott made a major break-
through in the seminal paper [AB83]. They applied Morse theory argument
to the space A of unitary connections using the norm square of curvature as
the Morse function and showed that the Morse stratification is perfect for the
equivariant cohomology with respect to the action of the gauge group G. As
a result, they proved that the cohomology of Mr,d(Y ) is torsion-free. So from
now on, we consider only the rational cohomology groups.

Atiyah and Bott furthermore found a set of generators for the cohomology
ring in terms of the Chern classes of the universal bundle E over Mr,d(Y )× Y .

Theorem 2.1. [AB83, Theorem 9.11] Let ai, b
j
i , fi be the classes defined by the

Künneth decomposition

ci(E) = ai ⊗ 1 +
2g∑

j=1

bj
i ⊗ σj + fi ⊗ [Y ]

where {σj , σj+g}g
j=1 is a symplectic basis of H1(Y ) and [Y ] is the fundamental

class in H2(Y ). Then the set

{ai, b
j
i , fi | 1 ≤ i ≤ r, 1 ≤ j ≤ 2g}

generate the cohomology ring H∗(Mr,d(Y )).

Since a1 can be expressed in terms of the other classes and f1 is just the
degree d, we may delete a1 and f1 from the list of generators. See [AB83, p582]
for a normalization of the universal bundle E .

By equivariant Morse theory on the space A of unitary connections, we have
a surjective map

H∗
G(A) → H∗

G(Aflat)

where Aflat is the set of flat unitary connections and G is the quotient of
the gauge group G by U(1). Also we have H∗

G(Aflat) ∼= H∗(Mr,d(Y )) by the
Narasimhan-Seshadri theorem. The space A is contractible and thus the equiv-
ariant cohomology is

H∗
G(A) ∼= H∗(BG)

which is freely generated by some classes âi, b̂
j
i , f̂i. These are mapped to ai, b

j
i , fi

respectively. This proves the above theorem.
Once we know the generators of a ring, it is natural to ask for the rela-

tions. Since Mr,d(Y ) is a compact smooth oriented manifold, the relations are
completely determined by the intersection pairing because of Poincaré duality.
The formula for the intersection numbers in the rank 2 case was first deduced
by Thaddeus using the Verlinde formula [T92]. Later Witten gave formulas
for arbitrary rank cases which were subsequently proved by Jeffrey and Kirwan
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[JK98] mathematically by their non-abelian localization theorem. Instead of
reproducing the complicated formulas,1 let me just write down the formula for
the rank 2 case to hint a flavor of the formulas;

∫

M2,1(Y )

aj
2e

f2 =
(−1)g−1−j

2g−1
Rest=0

(
1

t2g−2−2j sin t

)
.

Remark 2.2. In [JKKW], we will generalize these formulas to the cases where
the rank r and degree d are no longer coprime.2 We will provide formulas
for the intersection pairing of the middle perversity intersection cohomology
of Mr,d(Y ) which turn out to be exactly the same as Witten’s formulas with
obvious modifications. We will also give formulas for the intersection numbers
of equivariant cohomology classes evaluated over the partial desingularization
of Mr,d(Y ).

3 Characteristic classes

After learning about the cohomology ring of a manifold, the next natural ques-
tion is probably about characteristic classes. In the rank 2 case, there are two
classical conjectures due to Newstead and Ramanan. The first is about the
Chern classes and the second is about the Pontrjagin classes:

1. ci(M2,1(Y )) = 0 for i > 2(g − 1).

2. pj(M2,1(Y )) = 0 for j > g − 1.

Using the description (1) and the Grothendieck-Riemann-Roch theorem, it
is in principle possible to express the characteristic classes in terms of the gen-
erators in Theorem 2.1. It turns out that the Pontrjagin classes have much
simpler expressions. For instance, in the rank 2 case, the total Pontrjagin class
is

p(TM2,1(Y )) = (1 + 4a2)2(g−1)

and thus the second conjecture is equivalent to the vanishing of only one class

ag
2 = 0.

This was first proved by Kirwan [K92] by equivariant Morse theory argument,
in early 1990’s. Recently, in collaboration with Earl, she proved a vanishing
result of the Pontrjagin ring for arbitrary rank cases.

Theorem 3.1. [EK99] (a) The Pontrjagin classes are contained in the subring
generated by a2, · · · , ar.

(b) The subring of H∗(Mr,d(Y )) generated by a2, · · · , ar vanishes in degrees
> 2r(r − 1)(g − 1).

1See §8, §9 of [JK98].
2In these cases, the moduli spaces Mr,d(Y ) are singular and we don’t have universal bun-

dles. Furthermore, the equivariant Morse theory is not so much helpful directly.
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The proof of (b) is based on Witten’s formulas. Earl and Kirwan showed
that the intersection number of a class of degree > 2r(r−1)(g−1) in the subring
with any class of complementary degree is zero. Since the intersection pairing
is perfect, the classes vanish.

The Newstead-Ramanan conjecture about the Chern classes is more difficult
because the expressions for the Chern classes are extremely complicated. Even
in the rank 2 case, Zagier’s formula [Z95] reads as

c(TM2,1(Y )) = (1− β2)g−1 exp
(

2α

1− β
+ 2

( tanh−1√β

β
√

β
− 1

β(1− β)
)
γ∗

)

where α = 4f2 + 2
∑g

j=1 bj
1b

j+g
1 , β = 4a2, γ∗ = αβ + 2

∑
bj
2b

j+g
2 .

Using his incredible computational skills and insights, Zagier was able to
show that ∫

M2,1(Y )

ξ · c(TM2,1(Y )) = 0

for any ξ ∈ H≤4g−4(M2,1(Y )) by Thaddeus’s formula. So he proved the Newstead-
Ramanan conjecture for the rank 2 case.

However, in the rank 3 or higher cases, it doesn’t seem possible to work out
the computation by hand and hence generalization to higher rank cases with
this method seems unlikely. Fortunately, there is another way.

4 Gieseker’s proof

In [G84], Gieseker provided a geometric proof of the vanishing of the Chern
classes of M2,1(Y ) by induction on the genus of the Riemann surface. In this
section, we explain his proof.

When g = 1, M2,1(Y ) ∼= Y by Atiyah’s theorem and hence ci(M2,1(Y )) = 0
for i > 0. So from now on, we assume g ≥ 2. He used then the degeneration
argument to complete the induction.

Let W be a flat family of curves over A1 ∼= C such that

• Ws = W |s is a smooth projective curve of genus g for s 6= 0,

• W0 = W |0 = X0 is the nodal curve,

• W is smooth.

If we delete the central fiber W0 from W , then by the recipe of geometric
invariant theory there is a smooth projective family M2,1(W −W0) over A1− 0
of moduli spaces whose fiber over s is diffeomorphic to M2,1(Y ). The question
now is how to fill in the central fiber into the family M2,1(W −W0) so that we
get a flat projective family of moduli spaces over A1.

There are two ways, due to Seshadri and Gieseker respectively. The moduli
space of stable vector bundles over X0 is not compact and we need to compactify
it. Seshadri’s approach is to include torsion-free sheaves on X0. Namely, the
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set of s-equivalence classes of semistable torsion-free sheaves on X0 admits a
structure of irreducible projective variety as the good quotient of the Quot
scheme. This construction performed for the family W gives us a family of
moduli spaces, projective over A1. This approach is useful for many other
purposes but in order to deduce the vanishing result for the general fiber from
a suitable vanishing result of the central fiber we want the following properties:

• The total space M2,1(W ) with the central fiber included is smooth.

• The central fiber has normal crossing singularities.

Unfortunately, Seshadri’s family does not satisfy either of the properties.
Instead of the Quot scheme, Gieseker used the Hilbert scheme

HilbP (X0 ×Gr(p, 2))

of curves in X0 × Gr(p, 2) where P (m) = dm + 2 − 2g, p = P (1) and Gr(p, 2)
is the Grassmannian of 2 dimensional quotients of Cp. An embedding

Xn ↪→ X0 ×Gr(p, 2)

gives rise to a vector bundle E → Xn by pulling back the universal quotient
bundle over the Grassmannian. Gieseker’s central fiber is constructed as the
quotient

HilbP (X0 ×Gr(p, 2))//PGL(p)

and this is the moduli space of vector bundles E over Xn for n = 0, 1, 2 with a
suitable stability condition. More generally, curves over A1 in W ×Gr(p, 2) are
parameterized by a smooth variety,

HilbP
A1(W ×Gr(p, 2))

projective over A1, whose fiber over 0 has normal crossing singularities. The
group PGL(p) acts freely on the semistable points. Hence, the quotient

M2,1(W ) = HilbP
A1(W ×Gr(p, 2))//PGL(p)

is smooth, projective over A1 and the central fiber has normal crossing singu-
larities. Thus we have a nice degeneration of M2,1(Y ) to M2,1(W0).

Next, we need to relate M2,1(W0) = M2,1(X0) with M2,1(X). Recall that
the genus of X is g−1. Let M0 be the normalization of M2,1(X0). This amounts
to considering vector bundles E over Xn equipped with a marked node †.

X0

†

X1

†

X1

†

X2

ttttttttttt JJJJJJJJJJJ†

...
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Let U be the open dense subset of vector bundles E over X0 whose pull-back
to the normalization X of X0 is a stable bundle. Then U is a GL(2)-bundle
over M2,1(X) where GL(2) accounts for gluing of E|p1 with E|p2 . It turns out
that the complement of U in M0 consists of 4 smooth normal crossing divisors,
i.e. M0 − U = Y0 ∪ Z0 ∪Y1 ∪ Z1.

//
//

//
//

//
//

/

²²
²²
²²
²²
²²
²²
²

U

Z0

Y0

Z1

Y1

By the moduli property of M2,1(X), we get a morphism U → M2,1(X) and
thus a rational map

M0 99K M2,1(X). (2)

In fact, the morphism U → M2,1(X) can be extended slightly as follows: Sup-
pose for instance (E → X2, †) is an element of M0. Let ρ be the normalization
of X2 only at † and π be the contraction of rational components. Put Ẽ = ρ∗E.

X2

ttttttttttt JJJJJJJJJJJ†

← X̃2

ÄÄÄÄÄÄÄÄÄ ??
??

??
??

?

→ X

Sometimes the sheaf (π∗Ẽ∨)∨ is a stable bundle over X and the rational map
extends to this point.

Gieseker proves that the indeterminacy locus of the rational map (2) is pre-
cisely a projective bundle PW+ over the product B = Jac0(X) × Jac1(X) of
Jacobians where W+ is a vector bundle over B. The normal bundle to PW+

is the pull-back of a vector bundle W− → B, tensored with OPW+(−1). This
is the typical situation for flips in the sense of [T96]. We blow up M0 along
PW+ and then blow down along the PW+ direction in the exceptional divisor
PW+ ×B PW−. Let M1 be the result of this flip. What we achieve by this flip
is that the rational map becomes a morphism

M1 → M2,1(X).

Moreover, the morphism is a fiber bundle over M2,1(X) with fiber GL(2), the
wonderful compactification of GL(2): The wonderful compactification of GL(2)
is constructed as follows. The complement of GL(2) in

P
(
End(C2)⊕ C)
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consists of two divisors Z ′0 (divisor at infinity) and Y ′
1 (zero locus of determi-

nant). The divisor Y ′
1 is singular at 0 and so we blow up at 0. Let Y0 be the

exceptional divisor. Next we blow up along Y ′
1 ∩Z ′0 and let Z1 denote the excep-

tional divisor. This is the wonderful compactification of GL(2). Let Y1 and Z0

be the proper transforms of Y ′
1 and Z ′0 respectively. Let D = Y0 +Z0 +Y1 +Z1.

½½
½½
½½
½½
½½
½½
½½
½½
½½

GL(2)

Z ′0

Y ′
1

//
//

//
//

//
//

/

²²
²²
²²
²²
²²
²²
²

GL(2)

Z0

Y0

Z1

Y1

We are ready to prove the vanishing of Chern classes by degeneration. We
have the following diagram.

M̃
blow−up

~~||
||

||
|| blow−up

##HHHHHHHHH

M0

normalization

zzuuuuuuuuu
M1

GL(2)

²²

M2,1(Y )
degeneration

///o/o/o M2,1(X0)

M2,1(X)

(3)

The proof is now reduced to a series of very concrete Chern class computations.
We use the cotangent bundle Ω instead of the tangent bundle.

ci(ΩM2,1(X)) = 0 for i > 2(g − 2)
⇒ ci(ΩM1(log D)) = 0 for i > 2(g − 1)
⇒ ci(ΩfM(log D̃) = 0 for i > 2(g − 1)
⇒ ci(ΩM0(log D)) = 0 for i > 2(g − 1)
⇒ ci(ΩM2,1(Y )) = 0 for i > 2(g − 1).

5 Generalization

In this section, I will sketch our generalization of Gieseker’s proof to higher rank
cases. The details will appear in [KL].

We first need to construct a diagram like (3). Let us start with M0. Nagaraj
and Seshadri [NS99] generalized Gieseker’s construction of M2,1(W ) to higher
rank cases. Using the well-known existence of Seshadri’s quotient of the Quot
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scheme they verified the existence of the good quotient of the Hilbert scheme
of curves in X0 × Gr(p, r) and the family of moduli spaces satisfies the good
properties described in §4. So we take M0 as the normalization of the central
fiber of the family Mr,d(W ).

Next, we expect M1 to be a fiber bundle over Mr,d(X) whose fiber is GL(r),
the wonderful compactification of GL(r). The variety GL(r) is constructed from

P (End(Cr)⊕ C)

by blowing up 2(r− 1) times along smooth subvarieties and the complement of
GL(r) consists of 2r smooth normal crossing divisors. See [Ka00] for an explicit
description. We can define M1 as the blow-up of

P (Hom(E|p1 , E|p2)⊕O)

along suitable smooth subvarieties.
Having defined M0 and M1, it is natural to ask whether we can define Mα

for 0 < α < 1. If possible, we can study their variations as α moves from 1 to 0
and relate Mr,d(X) with Mr,d(X0) and then to Mr,d(Y ).

Let us define a stability condition for each α. Let E be a vector bundle
over Xn of rank r with a marked node † and let C1, · · · , Cn denote the rational
components. For a subsheaf F of E, we define

rankε(F ) = (1− εn) · rank(F |X) + ε

n∑

i=1

rank(F |Ci)

r†(F ) = dim Im(F |† → E|†)

µα(F ) =
χ(F )− αr†(F )

rankε(F )
.

Definition 5.1. We say (E, †) is α-(semi)stable if µα(F ) < µα(E) (≤) for
any proper nonzero subsheaf F of E and arbitrarily small positive number ε.

From now on, we focus on the rank 3 case. Since M3,1(Y ) ∼= M3,2(Y ) by
the morphism [E] → [E∗] and tensoring a line bundle of degree 1, we only need
to consider the case when r = 3, d = 1. Using the “stack of degeneration” from
[L01], we prove in [KL] the following.

Theorem 5.2. For α ∈ [0, 1) − {1/3, 2/3}, the set of α-stable vector bundles
admits the structure of a proper separated smooth algebraic space Mα.

In case α = 0, M0 is the biholomorphic to the normalization of the central
fiber of the family constructed by Nagaraj and Seshadri. If 2/3 < α < 1, Mα is
biholomorphic to M1.

Now we need to study the variation of Mα. By the stability condition, the
moduli spaces Mα vary only at 1/3 and 2/3. We prove in [KL] that M1/2

is obtained from M1 as the consequence of two flips and similarly M0 is the
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consequence of two flips from M1/2. The description is quite explicit and we
have the following diagram.

M0
oo

flips
//

normalization

zzuuuuuuuuu
M1/2 oo

flips
// M1

GL(3)

²²

M3,1(Y )
degeneration

///o/o/o M3,1(X0)

M3,1(X)

It is a matter of some explicit Chern class computations to verify the van-
ishing result by induction on genus g although the computation is much more
difficult than the rank 2 case.

Theorem 5.3. ci(M3,1(Y )) = 0 for i > 6g − 5.

As a result, we also have ci(M3,2(Y )) = 0 for i > 6g − 5.
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