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INTERSECTION COHOMOLOGY OF SYMPLECTIC
QUOTIENTS BY CIRCLE ACTIONS

YOUNG-HOON KIEM and JONATHAN WOOLF

Abstract

Let T = U(1) and M be a Hamiltonian T -space with proper moment map µ : M → R. When 0 is
not a regular value of µ, the symplectic quotient X = µ−1(0)/T is a singular stratified space. In
this paper, we provide a description of the middle perversity intersection cohomology of X as a
subspace of the equivariant cohomology H∗

T (µ−1(0)). Our approach is sheaf theoretic.
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1. Introduction

Throughout this paper, T denotes the circle group U(1). Let M be a Hamilto-
nian T -space with proper moment map µ : M → R. When 0 is a regular value of µ,
Z = µ−1(0) is a smooth manifold and the quotient X = Z/T has at worst orbifold
singularities. In particular, the equivariant cohomology H∗

T (Z) is isomorphic to the
ordinary cohomology H∗(X) which in turn is isomorphic to the middle perversity
intersection cohomology IH∗(X). By the Atiyah-Bott-Kirwan theory, the equivari-
ant cohomology ring can be computed and hence we can compute the cohomology
of the symplectic quotient X.

When 0 is not a regular value of µ, the equivariant cohomology H∗
T (Z) is isomor-

phic to neither H∗(X) nor IH∗(X). So knowledge of H∗
T (Z) does not directly enable

us to compute either the ordinary cohomology or the intersection cohomology of
X.

For singular stratified spaces, the middle perversity intersection cohomology has
proven to be an important topological invariant. The purpose of this paper is to
provide a simple recipe to compute the intersection cohomology of X when 0 is not
a regular value of µ.

Let F1, · · · , Fr be the T -fixed components in Z. For 1 ≤ i ≤ r, the normal space
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of Fi decomposes into positive and negative weight spaces W+
i , W−

i . Let

di =
1
2

min{dim W+
i , dim W−

i }.
Note that we have a canonical isomorphism H∗

T (Fi) ∼= H∗(Fi)⊗H∗
T . Our description

of IH∗(X) is as follows.

Theorem 1.1. (Theorem 7.1) The intersection cohomology IH∗(X) is isomor-
phic to the (graded) subspace

V ∗ = {η ∈ H∗
T (Z) | η|Fi

∈ H∗(Fi)⊗H≤2di−2
T }.

This gives us a very simple recipe to compute the intersection Betti numbers.

Corollary 1.2. (Corollary 7.2) Let Pt(Fi) =
∑

tk dim Hk(Fi) and

IPt(X) =
∞∑

k=0

tk dim IHk(X)

PT
t (Z) =

∞∑

k=0

tk dim Hk
T (Z).

Then

IPt(X) = PT
t (Z)− 1

1− t2

∑

1≤i≤r

t2diPt(Fi).

The intersection cohomology IH∗(X) is equipped with a nondegenerate intersec-
tion pairing which is also a topological invariant. We can compute the intersection
pairing in terms of the cup product structure of H∗

T (Z).

Theorem 1.3. (Theorem 7.6) Let ν : IH∗(X) → V ∗ be the isomorphism in
Theorem 7.1. For two classes a, b in IH∗(X) such that deg a + deg b = dimX we
have

ν(a) ∪ ν(b) = 〈a, b〉 ν(e)

where e is the unique top degree class representing a point.

Our approach to intersection cohomology is sheaf theoretic, as developed in [4],
[2]. Gysin morphims (§2) play a crucial role in this paper and all the above results
are consequences of a decomposition of a sheaf complex (Theorem 6.2).

The circle case is special because the local structure near a singular point is easy
to describe (§5). For groups other than U(1), we don’t have such a nice local descrip-
tion yet and so we don’t know how to generalize our results to more complicated
groups.

Now let us discuss some related work. For geometric invariant theory (GIT) quo-
tients, Kirwan [9] invented a method to compute the Betti numbers of the inter-
section cohomology groups by using her partial desingularization [8]. However this
method works only for the algebraic setting. In [6], a theorem similar to Theorem
1.1 is proved for GIT quotients by reductive groups under a technical assumption.
(See also [5].)
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Lerman and Tolman studied the circle quotients [10]. They constructed a small
resolution by perturbing the moment map and then used this to give a very nice
description of the intersection cohomology as a quotient of the equivariant coho-
mology ring H∗

T (M) when M is compact. We provide a new proof of their theorem
in §7 (Corollary 7.8).

Unless otherwise stated, all the intersection cohomology groups are with respect
to the middle perversity. All the cohomology groups have rational coefficients.

2. Gysin morphisms

Let α : S → M be an inclusion of a closed smooth submanifold into a smooth
manifold. Suppose the normal bundle of S is equipped with an almost complex
structure and the real codimension of S is 2d. Then the Thom isomorphism

H∗−2d(S) ∼= H∗(M, M − S)

composed with the natural map H∗(M, M − S) → H∗(M) gives us the Gysin
homomorphism

H∗−2d(S) → H∗(M) (2.1)

which fits into the long exact sequence, called the Gysin sequence

· · · → Hk−2d(S) → Hk(M) → Hk(M − S) → · · · .

If we compose the Gysin homomorphism (2.1) with the restriction to S, we get

cd : H∗−2d(S) → H∗(S) (2.2)

which is just multiplication by the top Chern class of the normal bundle of S.
Suppose T = U(1) acts on M preserving S. Let ET be a contractible free T -space

and consider the inclusion

αT : ST → MT (2.3)

where ST = ET ×T S and MT = ET ×T M . This induces the equivariant Gysin
homomorphism

H∗−2d
T (S) = H∗−2d(ST ) → H∗(MT ) = H∗

T (M) (2.4)

whose composition with the restriction H∗
T (M) → H∗

T (S) is multiplication by the
equivariant top Chern class of the normal bundle

cT
d : H∗−2d

T (S) → H∗
T (S). (2.5)

This equivariant Gysin homomorphism also fits into the equivariant Gysin sequence

· · · → Hk−2d
T (S) → Hk

T (M) → Hk
T (M − S) → · · · .

The fundamental observation for the Atiyah-Bott-Kirwan theory is the following.

Lemma 2.1. ([1] 13.4) Let F be a connected T -space on which T acts trivially.
Let N be a complex T -vector bundle on F . Assume that the weights of the T -action
on the fiber of N are all nonzero. Then the equivariant top Chern class of N is not
a zero divisor.

Suppose S equivariantly retracts onto a T -fixed connected closed submanifold F
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in M . Assume that the weights of the action on the normal space of S at a point in
F are all nonzero. Then we have H∗

T (S) ∼= H∗
T (F ) and the Gysin homomorphism

for the pair (M, S)
H∗−2d

T (F ) ∼= H∗−2d
T (S) → H∗

T (M)

is injective because its composition with the restriction to F is injective by Lemma
2.1. Therefore the equivariant Gysin sequence splits into short exact sequences

0 → H∗−2d
T (F ) → H∗

T (M) → H∗
T (M − S) → 0 (2.6)

A useful observation is that the Gysin homomorphism arises from a morphism
in the derived category D+

c (M) of bounded below constructible sheaves on M . For
definitions and basic results on derived category, see [3].

Lemma 2.2. (cf. [4] 1.13 (15)) α!QM
∼= QS [−2d].

Proof. Let β denote the inclusion of the complement U of S. Then we have the
distinguished triangle (see for instance [2] V 5.14)†

α!α
!QM → QM → β∗β∗QM → α!α

!QM [1]. (2.7)

Let p ∈ S. From the associated long exact sequence ([2] V 1.8 (7))

· · · → Hi
(
(α!QM )p

) → Hi ((QM )p) → Hi ((β∗β∗QM )p) → · · ·
we see that Hi

(
(α!QM )p

)
is trivial unless i = 2d and H2d

(
(α!QM )p

) ∼= Q. By [3]
III 5.2, we get the desired result.

Since α is a closed immersion, α! = α∗. By composing the isomorphism in Lemma
2.2 with the adjunction morphism α!α

!QM → QM , we get the Gysin morphism

α∗QS [−2d] ∼= α!α
!QM → QM

whose hypercohomology is the Gysin homomorphism (2.1). Furthermore, by (2.7)
we have the distinguished triangle

α!QS [−2d] → QM → β∗β∗QM → α!QS [−2d + 1].

When T acts on M preserving S, consider the inclusion (2.3). The normal bundle
of this embedding has real rank 2d and by Lemma 2.2 we get the equivariant Gysin
morphism

(αT )∗QST [−2d] → QMT (2.8)

whose hypercohomology is the equivariant Gysin homomorphism (2.4). This also
fits into the distinguished triangle

αT
! QST

[−2d] → QMT
→ βT

∗ (βT )∗QMT
→ αT

! QST
[−2d + 1].

3. Hamiltonian circle actions

Let T = U(1) and M be a Hamiltonian T -space with equivariant proper moment
map

µ : M → R.

†Following the widely used convention, we write f∗ for the derived direct image Rf∗.
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Let Z = µ−1(0) and X = Z/T . Consider the gradient flow of f = −µ2 and define
Mss as the opens subset

{p ∈ M | p retracts to a point in Z by the gradient flow of f}.
Let φ : Z → X be the quotient map and ψ : Mss → X be the composition of the
retraction to Z and φ.

Since Z is compact and T -fixed components are disjoint, there are only finitely
many T -fixed components in Z, say F1, · · · , Fr. Each Fi is a symplectic submanifold
and a neighborhood of Fi is T -equivariantly diffeomorphic to a neighborhood of
the zero section of the normal bundle of Fi. Pick any pi ∈ Fi and let Wi be the
normal space to Fi at pi. Then Wi is a Hamiltonian T -vector space. By choosing a
T -equivariant almost complex structure compatible with the symplectic form, we
may assume that Wi is a complex vector space on which T = U(1) acts unitarily.

It is well-known that a unitary action of U(1) is completely reducible. Hence we
can write

Wi = W+
i ⊕W−

i

where W+
i (resp. W−

i ) is the positive (resp. negative) weight space. Define

di = min{1
2

dim W+
i ,

1
2

dim W−
i } and ei = max{1

2
dim W+

i ,
1
2

dimW−
i }.

Let

S+
i = {p ∈ Mss | p retracts to a point in Fi by the gradient flow of − µ}

S−i = {p ∈ Mss | p retracts to a point in Fi by the gradient flow of µ}.
Then S+

i is a closed submanifold with codimension dim W−
i and S−i is a closed

submanifold with codimension dimW+
i . Let

Si =
{

S+
i if dim W−

i ≤ dim W+
i

S−i otherwise.

In other words, Si is whichever of {S+
i , S−i } has larger dimension such that

codim Si = 2di.

Let αi : Si ↪→ Mss denote the inclusion.
Since Si is a closed T -invariant submanifold of Mss, we have the equivariant

Gysin morphism (2.8) which fits into the distinguished triangle

(αT
i )∗Q[−2di] → QMss

T
→ (βT

i )∗(βT
i )∗QMss

T
(3.1)

where αT
i is the inclusion of ET ×T Si in Mss

T = ET ×T Mss and βT
i is the inclusion

of its complement.
Since Fi is T -fixed in Z, Fi is mapped bijectively onto its image by ψ : Mss → X.

By abuse of notation, we denote ψ(Fi) by Fi and the inclusion of Fi in X by σi. Since
the paths of the steepest descent for |µ| and µ2 are identical up to parameterization,
ψ(Si) = Fi and thus

Si
αi //

ψi

²²

Mss

ψ

²²

Fi
σi // X.
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commutes.
Let ψT : Mss

T = ET ×T Mss → X and ψT
i : ET ×T Si → Fi be the obvious maps

induced from ψ and ψi respectively. We define the following objects in the derived
category D+

c (X) :

C Ṫ (X) = ψT
∗ QMss

T

C Ṫ (Fi) = (σi)∗(ψT
i )∗QET×T Si = ψT

∗ (αT
i )∗QET×T Si

whose hypercohomology groups are H∗
T (Mss) and H∗

T (Si) respectively. By taking
ψT
∗ , the Gysin morphisms in (3.1) give rise to a morphism

δ :
⊕

i

C Ṫ (Fi)[−2di] → C Ṫ (X) (3.2)

whose hypercohomology over X is just the sum of equivariant Gysin homomor-
phisms ⊕

i

H∗−2di

T (Si) → H∗
T (Mss). (3.3)

Since Si equivariantly retracts to Fi, (3.3) is equivalent to a homomorphism

δ′ :
⊕

i

H∗−2di

T (Fi) → H∗
T (Mss). (3.4)

Lemma 3.1. δ′ is injective.

Proof. The normal space of Si at a point in Fi is either W+
i or W−

i . In particular,
the weights for the T -action are all nonzero. By Lemma 2.1, the equivariant Gysin
homomorphism composed with the restriction to Fi

H∗−2di

T (Fi) → H∗
T (Mss) → H∗

T (Fi)

is injective. By the exactness of the Gysin sequence, the composition

H∗−2di

T (Fi) → H∗
T (Mss) → H∗

T (Mss − Si)

is zero. If j 6= i, then Fj ⊂ Mss − Si and hence

H∗−2di

T (Fi) → H∗
T (Mss) → H∗

T (Fj)

is zero. Therefore δ′ composed with the sum of restrictions
⊕

i

H∗−2di

T (Fi) → H∗
T (Mss) →

⊕

i

H∗
T (Fi)

is the direct sum of the injective homomorphisms. Hence δ′ is injective.

4. A decomposition of C Ṫ (X)

For 1 ≤ i ≤ r, Fi is a subset of Z and we have a fiber square

Fi
� � ι //

φi

²²

Z

φ

²²

Fi
� �

σi

// X
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which induces the fiber square

ET ×T Fi
� � ιT

//

φT
i

²²

ET ×T Z

φT

²²

Fi
� �

σi

// X.

Hence by [4] 1.13 (13), we have

(σi)∗φT
∗QET×T Z

∼= (φT
i )∗(ιT )∗QET×T Z

∼= (φT
i )∗QET×T Fi

. (4.1)

Notice that since Si retracts to Fi by the gradient flow of the T -equivariant
function µ or −µ, the inclusion

ET ×T Fi
� � //

φT
i $$IIIIIIIIII ET ×T Si

ψT
izzuuuuuuuuuu

Fi

is a homotopy equivalence and hence

C Ṫ (Fi) = (σi)∗(ψT
i )∗QET×T Si

∼= (σi)∗(φT
i )∗QET×T Fi . (4.2)

Similarly, as Mss is T -equivariantly homotopy equivalent to Z,

C Ṫ (X) = (ψT )∗QMss
T

∼= (φT )∗QET×T Z . (4.3)

Therefore, by (4.1), (4.2) and (4.3), we get

(σi)∗(σi)∗C Ṫ (X) ∼= (σi)∗(σi)∗(φT )∗QET×T Z
∼= (σi)∗(φT

i )∗QET×T Fi
∼= C Ṫ (Fi)

When composed with the adjunction morphism

C Ṫ (X) → (σi)∗(σi)∗C Ṫ (X),

this gives us the morphism

C Ṫ (X) → C Ṫ (Fi) (4.4)

Let C Ṫ (Fi) → τ≥2diC Ṫ (Fi) be the truncation morphism ([4] 1.14). Then (4.4)
composed with the truncation morphism gives us the morphism

ρi : C Ṫ (X) → τ≥2diC Ṫ (Fi) (4.5)

Adding up, we get

ρ = ⊕ρi : C Ṫ (X) →
r⊕

i=1

τ≥2diC Ṫ (Fi). (4.6)

Recall that we have the Gysin morphism δ defined in (3.2).

Proposition 4.1. ρ ◦ δ is an isomorphism in D+
c (X).

Proof. It suffices to show that ρ◦δ induces an isomorphism on stalk cohomology.
For x ∈ X −∪Fi, there is nothing to prove since ⊕r

i=1C Ṫ (Fi) is supported on ∪Fi.
Let x ∈ Fi. The fiber of

φT
i : ET ×T Fi = BT × Fi → Fi
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is the classifying space BT = ET/T whose cohomology, denoted by H∗
T , is iso-

morphic to the polynomial ring Q[t] with deg t = 2. Hence the stalk cohomology
of C Ṫ (Fi) and τ≥2diC Ṫ (Fi) are H∗

T
∼= Q[t] and H≥2di

T
∼= Q[t]/span(1, t, · · · , tdi−1)

respectively. The induced homomorphism on stalk cohomology

H∗
T
∼= Q[t] → Q[t]/span(1, t, · · · , tdi−1) ∼= H≥2di

T

is the result of the equivariant Gysin homomorphism for the embedding of 0 into the
normal space of Si, followed by restriction to 0. Hence this is just the multiplication
by the product of all weights on the normal space of Si which is a nonzero multiple
of tdi . This is obviously an isomorphism of Q-vector spaces. So we are done.

In particular, ρ induces a surjection on stalk cohomology. An immediate conse-
quence is the following decomposition.

Corollary 4.2. Let A˙ be an object in the triangulated category D+
c (X) which

fits into the distinguished triangle

A˙
θ // C Ṫ (X)

ρ
//
⊕r

i=1 τ≥2diC Ṫ (Fi) // A˙[1].

Then

A˙⊕
(

r⊕

i=1

C Ṫ (Fi)[−2di]

)
∼= C Ṫ (X).

Proof. The morphisms θ and δ give us a morphism

A˙⊕
(

r⊕

i=1

C Ṫ (Fi)[−2di]

)
→ C Ṫ (X).

This induces an isomorphism on every stalk cohomology and hence we get the
isomorphism.

Such an A˙ always exists because we can simply take the mapping cone of ρ
translated by −1 ([2] V 5.2). We shall see that A˙ is isomorphic to the intersection
cohomology sheaf IC˙X of X.

5. Local study of circle quotients

Recall that, for 1 ≤ i ≤ r, Wi is the normal space of Fi in Mss at a point and
we have a decomposition into positive and negative weight spaces

Wi = W+
i ⊕W−

i .

By the local normal form theorem ([12] 7.4), the normal cone of Fi in X is the
symplectic quotient Wi//T . As remarked in §3, we may assume T = U(1) acts uni-
tarily so that the symplectic quotient Wi//T is homeomorphic to the good quotient
Wi//C∗ in geometric invariant theory [7].

Let γi : Wi → Wi//C∗ be the quotient map. It is well-known ([11] Proposition
2.2) that γ−1

i (γi(0)) is the affine cone over the set of unstable points in PWi which is
exactly PW+

i ∪PW−
i by the Hilbert-Mumford criterion ([11] Chapter 2 §1). Hence

γ−1
i (γi(0)) = W+

i ∪W−
i and thus

Wi//C∗ − γi(0) =
(
Wi − (W+

i ∪W−
i )

)
/C∗.
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Since C∗ acts locally freely on Wi − (W+
i ∪W−

i ), we get

H∗ (Wi//C∗ − γi(0)) ∼= H∗
C∗

(
Wi − (W+

i ∪W−
i )

)
∼= H∗

T

(
Wi − (W+

i ∪W−
i )

)
.

(5.1)

Lemma 5.1. Let mi = di + ei − 2 = 1
2codim XFi − 1. Then we have

H≤mi (Wi//C∗ − γi(0)) ∼= H≤2di−2
T .

Proof. Without loss of generality we may assume dimW+
i ≤ dim W−

i . Consider
first the equivariant Gysin sequence for the pair (Wi,W

−
i ):

· · · // Hk−2di

T (W−
i )

g
// Hk

T (Wi)
h // Hk

T (Wi −W−
i ) // · · ·

Since Wi and W−
i are contractible, H∗

T (Wi) ∼= Q[t] and H∗
T (W−

i ) ∼= Q[t]. The com-
position of the equivariant Gysin map g with the restriction to W−

i is multiplication
by the equivariant top Chern class which is just a nonzero multiple, say atdi , of tdi .
Hence g is injective and the Gysin sequence gives us the short exact sequence

0 // Q[t] atdi
// Q[t] h // H∗

T (Wi −W−
i ) // 0.

This implies that H∗
T (Wi − W−

i ) ∼= Q[t]/(tdi) ∼= H≤2di−2
T . In particular, since

mi ≥ 2di − 2,
H≤mi

T (Wi −W−
i ) ∼= H≤2di−2

T . (5.2)

Since codim WiW
+
i = 2ei ≥ di + ei ≥ mi +2, we deduce from the Gysin sequence

for the pair (Wi −W−
i , W+

i − 0) that

H≤mi

T (Wi −W−
i ) ∼= H≤mi

T

(
Wi − (W+

i ∪W−
i )

)
. (5.3)

The lemma follows from (5.1), (5.2) and (5.3).

6. The intersection cohomology sheaf

The middle perversity intersection cohomology of X = Z/T is the hypercohomol-
ogy of an object IC˙X in D+

c (X) satisfying three axioms, called normalization, the
support, and cosupport conditions [4] §4. In our case, U := X−∪iFi is a homology
manifold because it is a symplectic orbifold and the axioms can be rephrased as fol-
lows. Let A˙ be an object in D+

c (X) such that τ≥0A˙ ∼= A˙. Then A˙ is isomorphic
to the intersection cohomology sheaf IC˙X if it satisfies

(1) normalization: A˙|U ∼= QU

(2) the support condition: for x ∈ Fi, H>mi(A˙x) = 0 where

mi =
1
2
codim XFi − 1 = di + ei − 2

(3) the cosupport condition: for x ∈ Fi, the adjunction map

H≤mi(A˙x) → H≤mi(j∗j∗A˙x)

is an isomorphism where j : U ↪→ X is the inclusion.

Lemma 6.1. The object A˙ in Corollary 4.2 satisfies the above axioms. Hence,
A˙ ∼= IC˙X .
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Proof. Recall that A˙ fits into the distinguished triangle

A˙ // C Ṫ (X)
ρ

//
⊕r

i=1 τ≥2diC Ṫ (Fi). (6.1)

(1) normalization:
⊕r

i=1 τ≥2diC Ṫ (Fi) is trivial on U by definition and hence
A˙|U ∼= C Ṫ (X)|U . But T acts locally freely on the smooth manifold Z−∪Fi, so the
fibers of

ET ×T (Z − ∪Fi) → U

are the classifying spaces BF for some finite groups F whose rational cohomology
are Q by Macdonald’s theorem. Since U is locally contractible, we deduce that
C Ṫ (X)|U ∼= QU .

(2) support condition: let x ∈ Fi. The distinguished triangle (6.1) gives rise to a
long exact sequence

· · · → Hk(A˙x) → Hk(C Ṫ (X)x) → Hk(τ≥2diC Ṫ (Fi)x) → · · · (6.2)

The middle term is H∗(C Ṫ (X)x) ∼= H∗
T
∼= Q[t], and the third term is

H∗(τ≥2diC Ṫ (Fi)x) ∼= H≥2di

T
∼= Q[t]/span(1, t, · · · , tdi−1).

The map from the middle to the third in (6.2) is truncation. Hence H>2di−2(A˙x) =
0. Since mi = di + ei − 2 ≥ 2di − 2, we get H>mi(A˙x) = 0.

(3) cosupport condition: from (6.2), we also deduce that

H∗(A˙x) ∼= H≤2di−2(C Ṫ (X)x) ∼= H≤2di−2
T .

In particular, H≤mi(A˙x) ∼= H≤2di−2
T . On the other hand, j∗A˙ = A˙|U ∼= QU by

the normalization condition. Hence

H≤mi(j∗j∗A˙x) ∼= H≤mi
(
Rdim Fi × (Wi//C∗ − γi(0))

) ∼= H≤mi(Wi//C∗ − γi(0)),

which is naturally isomorphic to H≤2di−2
T by Lemma 5.1. Therefore

H≤mi(A˙x) ∼= H≤2di−2
T

∼= H≤mi(j∗j∗A˙x).

The fact that this isomorphism is equal to the adjunction map is an easy exercise.
Consequently, A˙ satisfies all three axioms and hence A˙ ∼= IC˙X .

The main theorem of this paper now follows from Corollary 4.2.

Theorem 6.2. IC˙X ⊕ (
⊕r

i=1 C Ṫ (Fi)[−2di]) ∼= C Ṫ (X)

7. Cohomological consequences

Theorem 6.2 enables us to describe the middle perversity intersection cohomology
either as a subspace (Theorem 7.1) or as a quotient of H∗

T (Mss) (Theorem 7.7).

7.1. Subspace description

Notice that the hypercohomology H∗(τ≥2diC Ṫ (Fi)) of τ≥2diC Ṫ (Fi) is

H∗(Fi)⊗H≥2di

T
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since the fiber of φT
i : ET ×T Fi = BT × Fi → Fi is BT . By Lemma 6.1 and (6.1),

we have the distinguished triangle

IC˙X // C Ṫ (X)
ρ

//
⊕

i τ≥2diC Ṫ (Fi). (7.1)

This gives us a long exact sequence in hypercohomology

· · · → IHk(X) → Hk
T (Mss) →

⊕

i

Hk(τ≥2diC Ṫ (Fi)) → · · ·

By Proposition 4.1, Hk
T (Mss) → ⊕

iHk(τ≥2diC Ṫ (Fi)) is surjective and thus the
long exact sequence splits into short exact sequences

0 → IH∗(X) → H∗
T (Mss) →

⊕

i

H∗(Fi)⊗H≥2di

T → 0. (7.2)

So we have proved the following.

Theorem 7.1. The intersection cohomology IH∗(X) is isomorphic to the (graded)
subspace

V ∗ = {η ∈ H∗
T (Mss) | η|Fi ∈ H∗(Fi)⊗H≤2di−2

T }.

This theorem gives us an efficient way to compute the intersection Betti numbers.
By the equivariant Morse theory of Kirwan [7], we can compute the equivariant
Poincaré series

PT
t (Mss) =

∞∑

k=0

tk dim Hk
T (Mss)

of the equivariant cohomology. In terms of this, we can easily compute the inter-
section Betti numbers as follows.

Corollary 7.2. Let IPt(X) =
∑

tk dim IHk(X) and Pt(F ) =
∑

tk dim Hk(F ).
Then

IPt(X) = PT
t (Mss)− 1

1− t2

∑

1≤i≤r

t2diPt(Fi).

Remark 7.3. Since Mss retracts onto Z equivariantly, H∗
T (Mss) ∼= H∗

T (Z).
Hence we can replace Mss by Z in Theorem 7.1 and Corollary 7.2.

Example 7.4. We consider a linear circle action on the projective space Pn.
Let p, q and s denote the number of positive, negative, and zero weights respectively,
so that n = p + q + s− 1. Let us assume that p ≤ q (the other case being entirely
similar). Using equivariant Morse theory, we get

PT
t (Mss) = (Pt(Pn)− t2q+2sPt(Pp−1)− t2p+2sPt(Pq−1))/(1− t2)

= (1 + t2 + · · ·+ t2p+2s−2 − t2q+2s − · · · − t2n)/(1− t2).

Hence, by the above corollary, the intersection Poincaré polynomial is

PT
t (Mss)− t2pPt(Ps−1)

1− t2
=

(1− t2p)(1− t2q+2s)
(1− t2)2

which is a palindromic polynomial of degree 2n− 2.
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7.2. Intersection pairing

Since X is compact there is an intersection pairing

IH∗(X)⊗ IH∗(X) → Q.

This arises from a morphism

IC˙⊗2
X → tIC˙X (7.3)

where the latter is the top perversity intersection cohomology sheaf. Since IC˙X is
a direct summand of C Ṫ (X) by Theorem 6.2, there is a second morphism

IC˙⊗2
X → C Ṫ (X)⊗2 → C Ṫ (X) → IC˙X → tIC˙X (7.4)

where the morphism C Ṫ (X)⊗2 → C Ṫ (X) is the morphism coming from the obvious
Q⊗Q→ Q over ET ×T Mss. This gives us the cup product structure of H∗

T (Mss).

Lemma 7.5. The morphisms (7.3) and (7.4) are the same.

Proof. Both are extensions of the obvious Q ⊗ Q → Q over U = X − ∪Fi. By
[2] V 9.14, such an extension is unique.

Let

ν : IH∗(X)
∼= // V ∗ ⊂ H∗

T (Mss)

be the isomorphism from Theorem 7.1. Let a, b be two classes in IH∗(X) such that

deg a + deg b = dim X = dim Fi + 2di + 2ei − 2 ≥ dimFi + 4di − 2

for every i. By the definition of V ∗, ν(a)|Fi and ν(b)|Fi lie in H∗(Fi) ⊗ H≤2di−2
T .

Hence

ν(a) ∪ ν(b)|Fi ∈ H>dim Fi(Fi)⊗H≤4di−4
T

which must be zero since H>dim Fi(Fi) = 0. Consequently,

ν(a) ∪ ν(b) ∈ V dim X ∼= IHdim X(X).

Since X is connected, IHdim X(X) is one dimensional, generated by the unique
class, denoted by e, representing one point. Hence we can write

ν(a) ∪ ν(b) = l ν(e) (7.5)

for some rational number l. We claim l is the intersection number 〈a, b〉 on IH∗(X).
From (7.4) and Lemma 7.5, the intersection pairing is given by

IH∗(X)⊗2 → H∗
T (Mss)⊗2 → H∗

T (Mss) → IH∗(X) → Q.

By (7.5), if we start with a ⊗ b, we get l. Therefore, l = 〈a, b〉. So we have proved
the following theorem that enables us to compute the intersection pairing in terms
of the cup product of H∗

T (Mss).

Theorem 7.6. For two classes a, b in IH∗(X) such that deg a+deg b = dim X
we have

ν(a) ∪ ν(b) = 〈a, b〉 ν(e).
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7.3. Quotient description

Now we consider the quotient description of IH∗(X). By Theorem 6.2 we have
a distinguished triangle

⊕r
i=1 C Ṫ (Fi)[−2di]

δ // C Ṫ (X) // IC˙X (7.6)

Upon taking hypercohomology we obtain a short exact sequence

0 //
⊕r

i=1 H∗−2di

T (Fi)
δ′ // H∗

T (Mss) // IH∗(X) // 0 (7.7)

because δ′ is injective by Lemma 3.1. Hence IH∗(X) is the quotient of H∗
T (Mss) by

the images of the equivariant Gysin maps for Si. The exact sequence (2.6) applied
for each Si, one by one, now tells us the following.

Theorem 7.7. IH∗(X) ∼= H∗
T (Mss)/im δ′ ∼= H∗

T (Mss −⋃
i Si)

Suppose M is compact. Let F+ be the set of T -fixed components in M such that
either

(1) µ(F ) > 0 or
(2) F = Fi for some i and dim W−

i ≤ dim W+
i .

Let F− be the set of all other T -fixed components.
For F ∈ F+, let SF be the set of points in M which retract to F by the gradient

flow of −µ, i.e. SF is the stable manifold for µ. If F ∈ F−, let SF denote the
unstable manifold for µ, i.e. SF is the set of points in M which retract to F by the
gradient flow of µ. From [7], we see that

M −Mss =
⋃

µ(F )6=0

SF

and thus
M −

⋃

F

SF = Mss −
⋃

i

Si.

Since there are only finitely many fixed components, we can apply (2.6) for each F
in order of decreasing absolute value of µ. Therefore, we get a short exact sequence

0 →
⊕

F

H∗−2dF

T (F ) → H∗
T (M) → H∗

T (Mss −
r⋃

i=1

Si) → 0 (7.8)

where dF = 1
2codim SF . From (7.8) and Theorem 7.7, together with the abelian

localization theorem
H∗

T (M) ↪→
⊕

F

H∗
T (F )

we can deduce a theorem of Lerman and Tolman ([10] Theorem 1’).

Corollary 7.8. [10] As a graded ring, IH∗(X) is isomorphic to H∗
T (M)/K

where

K = {η ∈ H∗
T (M) | η|F = 0 ∀ F ∈ F+} ⊕ {η ∈ H∗

T (M) | η|F = 0 ∀ F ∈ F−}.

Given the above, the proof is identical to the proof of Theorem 1 in [13] for
smooth quotients, so we omit it.
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Remark 7.9. By Theorem 7.7 and Corollary 7.8, IH∗(X) is equipped with
a ring structure but this is not canonical. In the notation of §3, when dimS+

i =
dim S−i for some T -fixed component Fi in Z, we could choose either S+

i or S−i as
our Si. This gives us two different ring structures. For example, consider the action
of C∗ on M = P4 by

λ · (a0 : a1 : · · · : a4) = (a0 : λa1 : λa2 : λ−1a3 : λ−1a4).

Let S+ (resp. S−) be the stable (resp. unstable) manifold by the gradient flow of
the moment map, for the fixed point (1 : 0 : · · · : 0). Then the C∗-orbit spaces of
Mss−S+ and Mss−S− respectively give us two small resolutions and the natural
isomorphisms

H∗
T (Mss − S+) ∼= IH∗(M//T ) ∼= H∗

T (Mss − S−)

give us two different ring structures. See [2] IX Example 1, page 221.
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