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Abstract. We construct the Mumford-Knudsen space M0,n of n-pointed
stable rational curves by a sequence of explicit blow-ups from the GIT quotient
(P1)n//SL(2) with respect to the symmetric linearization O(1, · · · , 1). The
intermediate blown-up spaces turn out to be the moduli spaces of weighted
pointed stable curves M0,n·ε for suitable ranges of ε. As an application,
we provide a new unconditional proof of M. Simpson’s Theorem about the log
canonical models of M0,n. We also give a basis of the Picard group of M0,n·ε.

1. Introduction

Recently there has been a tremendous amount of interest in the birational geom-
etry of moduli spaces of stable curves. See for instance [1, 4, 7, 10, 11, 17, 19, 21]
for the genus 0 case only. Most prominently, it has been proved in [1, 4, 21] that the
log canonical models for (M0,n, KM0,n

+αD), where D is the boundary divisor and
α is a rational number, give us Hassett’s moduli spaces M0,n·ε of weighted pointed
stable curves with symmetric weights n · ε = (ε, · · · , ε). See §2.1 for the definition
of M0,n·ε and Theorem 1.2 below for a precise statement. The purpose of this
paper is to prove that actually all the moduli spaces M0,n·ε can be constructed by
explicit blow-ups from the GIT quotient (P1)n//SL(2) with respect to the symmet-
ric linearization O(1, · · · , 1) where SL(2) acts on (P1)n diagonally. More precisely,
we prove the following.

Theorem 1.1. There is a sequence of blow-ups
(1)
M0,n = M0,n·εm−2

→ M0,n·εm−3
→ · · · → M0,n·ε2

→ M0,n·ε1
→ (P1)n//SL(2)

where m = bn
2 c and 1

m+1−k < εk ≤ 1
m−k . Except for the last arrow when n is even,

the center for each blow-up is a union of transversal smooth subvarieties of same
dimension. When n is even, the last arrow is the blow-up along the singular locus
which consists of 1

2

(
n
m

)
points in (P1)n//SL(2), i.e. M0,n·ε1

is Kirwan’s partial
desingularization (see [14]) of the GIT quotient (P1)2m//SL(2).

If the center of a blow-up is the transversal union of smooth subvarieties in a
nonsingular variety, the result of the blow-up is isomorphic to that of the sequence
of smooth blow-ups along the irreducible components of the center in any order
(see §2.3). So each of the above arrows can be decomposed into the composition of
smooth blow-ups along the irreducible components.

As an application of Theorem 1.1, we give a new proof of the following theorem
of M. Simpson ([21]) without relying on Fulton’s conjecture.
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Theorem 1.2. Let α be a rational number satisfying 2
n−1 < α ≤ 1 and let D =

M0,n − M0,n denote the boundary divisor. Then the log canonical model

M0,n(α) = Proj


⊕

l≥0

H0(M0,n,O(bl(KM0,n
+ αD)c))




satisfies the following:

(1) If 2
m−k+2 < α ≤ 2

m−k+1 for 1 ≤ k ≤ m − 2, then M0,n(α) ∼= M0,n·εk
.

(2) If 2
n−1 < α ≤ 2

m+1 , then M0,n(α) ∼= (P1)n//G where the quotient is taken
with respect to the symmetric linearization O(1, · · · , 1).

There are already two different unconditional proofs of Theorem 1.2 by Alexeev-
Swinarski [1] and by Fedorchuk-Smyth [4]. See Remark 5.13 for a brief outline of
the two proofs. In this paper we obtain the ampleness of some crucial divisors
directly from Theorem 1.1. As another application, we give an explicit basis of the
Picard group of M0,n·εk

for each k.

It is often the case in moduli theory that adding an extra structure makes a
problem easier. Let 0 ≤ k < n. A pointed nodal curve (C, p1, · · · , pn) of genus 0

together with a morphism f : C → P1 of degree 1 is called k-stable if

i. all marked points pi are smooth points of C;
ii. no more than n − k of the marked points pi can coincide;
iii. any ending irreducible component C ′ of C which is contracted by f contains

more than n − k marked points;
iv. the group of automorphisms of C preserving f and pi is finite.

A. Mustata and M. Mustata prove the following in [19].

Theorem 1.3. [19, §1] There is a fine moduli space Fk of k-stable pointed pa-
rameterized curves (C, p1, · · · , pn, f). Furthermore, the moduli spaces Fk fit into a
sequence of blow-ups

(2) P1[n] Fn−2
ψn−2

// Fn−3
ψn−3

// · · · ψ2 // F1
ψ1 // F0 (P1)n

whose centers are transversal unions of smooth subvarieties.

The first term P1[n] is the Fulton-MacPherson compactification of the configura-
tion space of n points in P1 constructed in [5]. The blow-up centers are transversal
unions of smooth subvarieties and hence we can further decompose each arrow into
the composition of smooth blow-ups along the irreducible components in any order.
This blow-up sequence is actually a special case of L. Li’s inductive construction of
a wonderful compactification of the configuration space and transversality of vari-
ous subvarieties is a corollary of Li’s result [17, Proposition 2.8]. (See §2.3.) The
images of the blow-up centers are invariant under the diagonal action of SL(2) on
(P1)n and so this action lifts to Fk for all k. The aim of this paper is to show that
the GIT quotient of the sequence (2) by SL(2) gives us (1).

To make sense of GIT quotients, we need to specify a linearization of the action
of G = SL(2) on Fk. For F0 = (P1)n, we choose the symmetric linearization
L0 = O(1, · · · , 1). Inductively, we choose Lk = ψ∗kLk−1 ⊗ O(−δkEk) where Ek is
the exceptional divisor of ψk and 0 < δk << δk−1 << · · · << δ1 << 1. Let Fss

k
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(resp. Fs
k) be the semistable (resp. stable) part of Fk with respect to Lk. Then by

[14, §3] or [8, Theorem 3.11], we have

(3) ψ−1
k (Fs

k−1) ⊂ Fs
k ⊂ Fss

k ⊂ ψ−1
k (Fss

k−1).

In particular, we obtain a sequence of morphisms

ψ̄k : Fk//G → Fk−1//G.

It is well known that a point (x1, · · · , xn) in F0 = (P1)n is stable (resp. semistable)
if ≥ bn

2 c points (resp. > bn
2 c points) do not coincide ([18, 13]).

Let us first consider the case where n is odd. In this case, Fs
0 = Fss

0 because
n
2 is not an integer. Hence Fs

k = Fss
k for any k by (3). Since the blow-up centers

of ψk for k ≤ m + 1 lie in the unstable part, we have Fs
k = Fs

0 for k ≤ m + 1.
Furthermore, the stabilizer group of every point in Fs

k is {±1}, i.e. Ḡ = PGL(2)
acts freely on Fs

k for 0 ≤ k ≤ n − 2 and thus Fk//G = Fs
k/G is nonsingular. By

the stability conditions, forgetting the degree 1 morphism f : C → P1 gives us an
invariant morphism Fs

n−m+k → M0,n·εk
which induces a morphism

φk : Fn−m+k//G → M0,n·εk
for k = 0, · · · , m − 2.

Since both varieties are nonsingular, we can conclude that φk is an isomorphism by
showing that the Picard numbers are identical. Since Ḡ acts freely on Fs

n−m+k, the
quotient of the blow-up center of ψn−m+k+1 is again a transversal union of

(
n

m−k

)

smooth varieties ΣS
n−m+k//G for a subset S of {1, · · · , n} with |S| = m−k, which are

isomorphic to the moduli space M0,(1,εk,··· ,εk) of weighted pointed stable curves
with n − m + k + 1 marked points (Remark 4.4). Finally we conclude that

ϕk : M0,n·εk
∼= Fn−m+k//G

ψ̄n−m+k−→ Fn−m+k−1//G ∼= M0,n·εk−1

is a blow-up by using a lemma in [14] which tells us that quotient and blow-up
commute. (See §2.2.) It is straightforward to check that this morphism ϕk is
identical to Hassett’s natural morphisms (§2.1). Note that the isomorphism

φm−2 : P1[n]//G
∼=−→ M0,n

was obtained by Hu and Keel ([9]) when n is odd because L0 is a typical linearization
in the sense that Fss

0 = Fs
0. The above proof of the fact that φk is an isomorphism

in the odd n case is essentially the same as Hu-Keel’s. However their method does
not apply to the even degree case.

The case where n is even is more complicated because Fss
k 6= Fs

k for all k. Indeed,
Fm//G = · · · = F0//G = (P1)n//G is singular with exactly 1

2

(
n
m

)
singular points.

But for k ≥ 1, the GIT quotient of Fn−m+k by G is nonsingular and we can
use Kirwan’s partial desingularization of the GIT quotient Fn−m+k//G ([14]). For
k ≥ 1, the locus Yn−m+k of closed orbits in Fss

n−m+k − Fs
n−m+k is the disjoint

union of the transversal intersections of smooth divisors ΣS
n−m+k and ΣSc

n−m+k

where S t Sc = {1, · · · , n} is a partition with |S| = m. In particular, Yn−m+k is
of codimension 2 and the stabilizers of points in Yn−m+k are all conjugates of C∗.
The weights of the action of the stabilizer C∗ on the normal space to Yn−m+k are
2, −2. By Luna’s slice theorem ([18, Appendix 1.D]), it follows that Fn−m+k//G is
smooth along the divisor Yn−m+k//G. If we let F̃n−m+k → Fss

n−m+k be the blow-up
of Fss

n−m+k along Yn−m+k, F̃ss
n−m+k = F̃s

n−m+k and F̃n−m+k//G = F̃s
n−m+k/G is
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nonsingular. Since blow-up and quotient commute (§2.2), the induced map

F̃n−m+k//G → Fn−m+k//G

is a blow-up along Yn−m+k//G which has to be an isomorphism because the blow-
up center is already a smooth divisor. So we can use F̃s

n−m+k instead of Fss
n−m+k

and apply the same line of arguments as in the odd degree case. In this way, we
can establish Theorem 1.1.

To deduce Theorem 1.2 from Theorem 1.1, we note that by [21, Corollary 3.5],
it suffices to prove that KM0,n·εk

+ αDk is ample for 2
m−k+2 < α ≤ 2

m−k+1 where

Dk = M0,n·εk
−M0,n is the boundary divisor of M0,n·εk

(Proposition 5.6). By the
intersection number calculations of Alexeev and Swinarski ([1, §3]), we obtain the
nefness of KM0,n·εk

+αDk for α = 2
m−k+1 + s for some (sufficiently small) positive

number s. Because any positive linear combination of an ample divisor and a nef
divisor is ample, it suffices to show that KM0,n·εk

+αDk is ample for α = 2
m−k+2 +t

for any sufficiently small t > 0. We use induction on k. By calculating the canonical
divisor explicitly, it is easy to show when k = 0. Because ϕk is a blow-up with
exceptional divisor Dm−k+1

k , ϕ∗k(KM0,n·εk−1
+ αDk−1) − δDm−k+1

k is ample for
small δ > 0 if KM0,n·εk−1

+ αDk−1 is ample. By a direct calculation, we find that

these ample divisors give us KM0,n·εk
+αDk with α = 2

m−k+2 +t for any sufficiently
small t > 0. So we obtain a proof of Theorem 1.2.

For the moduli spaces of unordered weighted pointed stable curves

M̃0,n·εk
= M0,n·εk

/Sn

we can simply take the Sn quotient of our sequence (1) and thus M̃0,n·εk
can be

constructed by a sequence of weighted blow-ups from Pn//G =
(
(P1)n//G

)
/Sn. In

particular, M̃0,n·ε1
is a weighted blow-up of Pn//G at its singular point when n is

even.

Here is an outline of this paper. In §2, we recall necessary materials about the
moduli spaces M0,n·εk

of weighted pointed stable curves, partial desingularization
and blow-up along transversal center. In §3, we recall the blow-up construction of
the moduli space Fk of weighted pointed parameterized stable curves. In §4, we
prove Theorem 1.1. In §5, we prove Theorem 1.2. In §6, we give a basis of the
Picard group of M0,n·εk

as an application of Theorem 1.1.

Acknowledgement. This paper grew out of our effort to prove a conjecture
of Brendan Hassett (passed to us by David Donghoon Hyeon): When n is even,
M̃0,n·ε1

is the (weighted) blow-up of Pn//G at the singular point. It is our pleasure
to thank Donghoon Hyeon for useful discussions. We are also grateful to David
Smyth who kindly pointed out an error in a previous draft.

2. Preliminaries

2.1. Moduli of weighted pointed stable curves. We recall the definitions and
basic facts on Hassett’s moduli spaces of weighted pointed stable curves from [7].

A family of nodal curves of genus g with n marked points over base scheme B

consists of
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(1) a flat proper morphism π : C → B whose geometric fibers are nodal con-
nected curves of arithmetic genus g and

(2) sections s1, s2, · · · , sn of π.
An n-tuple A = (a1, a2, · · · , an) ∈ Qn with 0 < ai ≤ 1 assigns a weight ai to the
i-th marked point. Suppose that 2g − 2 + a1 + a2 + · · ·+ an > 0.

Definition 2.1. [7, §2] A family of nodal curves of genus g with n marked points
(C, s1, · · · , sn)

π→ B is stable of type (g,A) if
(1) the sections s1, · · · , sn lie in the smooth locus of π;
(2) for any subset {si1

, · · · , sir } of nonempty intersection, ai1
+ · · ·+ air ≤ 1;

(3) Kπ + a1s1 + a2s2 + · · ·+ ansn is π-relatively ample.

Theorem 2.2. [7, Theorem 2.1] There exists a connected Deligne-Mumford stack
Mg,A, smooth and proper over Z, representing the moduli functor of weighted
pointed stable curves of type (g,A). The corresponding coarse moduli scheme Mg,A
is projective over Z.

When g = 0, there is no nontrivial automorphism for any weighted pointed stable
curve and hence M0,A is a projective smooth variety for any A.

There are natural morphisms between moduli spaces with different weight data.
Let A = {a1, · · · , an}, B = {b1, · · · , bn} be two weight data and suppose ai ≥ bi

for all 1 ≤ i ≤ n. Then there exists a birational reduction morphism

ϕA,B : Mg,A → Mg,B.

For (C, s1, · · · , sn) ∈ Mg,A, ϕA,B(C, s1, · · · , sn) is obtained by collapsing compo-
nents of C on which ωC + b1s1 + · · · + bnsn fails to be ample. These morphisms
between moduli stacks induce corresponding morphisms between coarse moduli
schemes.

The exceptional locus of the reduction morphism ϕA,B consists of boundary
divisors DI,Ic where I = {i1, · · · , ir} and Ic = {j1, · · · , jn−r} form a partition of
{1, · · · , n} satisfying r > 2,

ai1
+ · · ·+ air > 1 and bi1

+ · · ·+ bir ≤ 1.

Here DI,Ic denotes the closure of the locus of (C, s1, · · · , sn) where C has two
irreducible components C1, C2 with pa(C1) = 0, pa(C2) = g, r sections si1

, · · · sir

lying on C1, and the other n − r sections lying on C2.

Proposition 2.3. [7, Proposition 4.5] The boundary divisor DI,Ic is isomorphic
to M0,A ′I × Mg,A ′

Ic
, with A ′

I = (ai1
, · · · , air , 1) and A ′

Ic = (aj1
, · · · , ajn−r , 1).

Furthermore, ϕA,B(DI,Ic) ∼= Mg,B ′
Ic

with B ′Ic = (bj1
, · · · , bjn−r ,

∑r
k=1 bik

).

From now on, we focus on the g = 0 case. Let

m = bn
2
c, 1

m − k + 1
< εk ≤ 1

m − k
and n · εk = (εk, · · · , εk).

Consider the reduction morphism

ϕn·εk,n·εk−1
: M0,n·εk

→ M0,n·εk−1
.

Then DI,Ic is contracted by ϕn·εk,n·εk−1
if and only if |I| = m − k + 1. Certainly,

there are
(

n
m−k+1

)
such partitions I t Ic of {1, · · · , n}.
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For two subsets I, J ⊂ {1, · · · , n} such that |I| = |J| = m − k + 1, DI,Ic ∩ DJ,Jc

has codimension at least two in M0,n·εk
. So if we denote the complement of the

intersections of the divisors by

M
′
0,n·εk

= M0,n·εk
−

⋃

|I|=|J|=n−k+1,I 6=J

DI,Ic ∩DJ,Jc ,

we have Pic(M
′
0,n·εk

) = Pic(M0,n·εk
). The restriction of ϕn·εk,n·εk−1

to M
′
0,n·εk

is a contraction of
(

n
m−k+1

)
disjoint divisors and its image is an open subset whose

complement has codimension at least two. Therefore we obtain the following equal-
ity of Picard numbers:

(4) ρ(M0,n·εk
) = ρ(M0,n·εk−1

) +

(
n

m − k + 1

)
.

It is well known that the Picard number of M0,n is

(5) ρ(M0,n) = ρ(M0,n·εm−2
) = 2n−1 −

(
n

2

)
− 1.

Hence we obtain the following lemma from (4) and (5).

Lemma 2.4. (1) If n is odd, ρ(M0,n·εk
) = n +

∑k
i=1

(
n

m−i+1

)
.

(2) If n is even, ρ(M0,n·εk
) = n + 1

2

(
n
m

)
+

∑k
i=2

(
n

m−i+1

)
.

2.2. Partial desingularization. We recall a few results from [14, 8] on change of
stability in a blow-up.

Let G be a complex reductive group acting on a projective nonsingular variety
X. Let L be a G-linearized ample line bundle on X. Let Y be a G-invariant closed
subvariety of X, and let π : X̃ → X be the blow-up of X along Y, with exceptional
divisor E. Then for sufficiently large d, Ld = π∗Ld ⊗ O(−E) becomes very ample,
and there is a natural lifting of the G-action to Ld ( [14, §3]).

Let Xss(resp. Xs) denote the semistable (resp. stable) part of X. With respect
to the polarizations L and Ld, the following hold ([14, §3] or [8, Theorem 3.11]) :

(6) X̃ss ⊂ π−1(Xss), X̃s ⊃ π−1(Xs).

In particular, if Xss = Xs, then X̃ss = X̃s = π−1(Xs).
For the next lemma, let us suppose Yss = Y∩Xss is nonsingular. We can compare

the GIT quotient of X̃ by G with respect to Ld with the quotient of X by G with
respect to L.

Lemma 2.5. [14, Lemma 3.11] For sufficiently large d, X̃//G is the blow-up of
X//G along the image Y//G of Yss.

Let I be the ideal sheaf of Y. In the statement of Lemma 2.5, the blow-up is
defined by the ideal sheaf (Im)G which is the G-invariant part of Im, for some
m. (See the proof of [14, Lemma 3.11].) In the cases considered in this paper, the
blow-ups always take place along reduced ideals, i.e. X̃//G is the blow-up of X//G

along the subvariety Y//G because of the following.

Lemma 2.6. Let G = SL(2) and C∗ be the maximal torus of G. Suppose Yss is
smooth. The blow-up X̃//G → X//G is the blow-up of the reduced ideal of Y//G if
any of the following holds:
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(1) The stabilizers of points in Xss are all equal to the center {±1}, i.e. Ḡ =
SL(2)/{±1} acts on Xss freely.

(2) If we denote the C∗-fixed locus in Xss by Zss
C∗ , Yss = Y ∩ Xss = GZss

C∗ and
the stabilizers of points in Xss −Yss are all {±1}. Furthermore suppose that
the weights of the action of C∗ on the normal space of Yss at any y ∈ Zss

C∗
are ±l for some l ≥ 1.

(3) There exists a smooth divisor W of Xss which intersects transversely with
Yss such that the stabilizers of points in Xss −W are all Z2 = {±1} and the
stabilizers of points in W are all isomorphic to Z4.

In the cases (1) and (3), Y//G = Ys/G and X//G = Xs/G are nonsingular and the
morphism X̃//G → X//G is the smooth blow-up along the smooth subvariety Y//G.

Proof. Let us consider the first case. Let Ḡ = PGL(2). By Luna’s étale slice
theorem [18, Appendix 1.D], étale locally near a point in Yss, Xss is Ḡ × S and
Yss is Ḡ × SY for some nonsingular locally closed subvariety S and SY = S ∩ Y.
Then étale locally X̃ss is Ḡ×blSY S where blSY S denotes the blow-up of S along the
nonsingular variety SY . Thus the quotients X//G, Y//G and X̃//G are étale locally
S, SY and blSY S respectively. This implies that the blow-up X̃//G → X//G is the
smooth blow-up along the reduced ideal of Y//G.

For the second case, note that the orbits in Yss are closed in Xss because the
stabilizers are maximal. So we can again use Luna’s slice theorem to see that
étale locally near a point y in Yss, the varieties Xss, Yss and X̃ are respectively
G×C∗S, G×C∗S0 and G×C∗blS0S for some nonsingular locally closed C∗-equivariant
subvariety S and its C∗-fixed locus S0. Therefore the quotients X//G, Y//G and
X̃//G are étale locally S//C∗, S0 and (blS0S)//C∗. Thus it suffices to show

(blS0S)//C∗ ∼= blS0(S//C∗).

Since X is smooth, étale locally we can choose our S to be the normal space to the
orbit of y and S is decomposed into the weight spaces S0⊕ S+⊕ S−. As the action
of C∗ extends to SL(2), the nonzero weights are ±l by assumption. If we choose
coordinates x1, · · · , xr for S+ and y1, · · · , ys for S−, the invariants are polynomials
of xiyj and thus (I2m)C∗ = (IC∗)m for m ≥ 1 where I = 〈x1, · · · , xr, y1, · · · , ys〉 is
the ideal of S0. By [6, II Exe. 7.11], we have

blS0S = ProjS(⊕mIm) ∼= ProjS(⊕mI2m)

and thus

(blS0S)//C∗ = ProjS//C∗(⊕mI2m)C∗ = ProjS//C∗ (⊕m(IC∗)
m) = blIC∗ (S//C∗).

Since S is factorial and I is reduced, IC∗ is reduced. (If fm ∈ IC∗ , then f ∈ I

and (g · f)m = fm for g ∈ C∗. By factoriality, g · f may differ from f only by a
constant multiple, which must be an m-th root of unity. Because C∗ is connected,
the constant must be 1 and hence f ∈ IC∗ .) Therefore IC∗ is the reduced ideal of
S0 on S//C∗ and hence (blS0S)//C∗ ∼= blS0(S//C∗) as desired.

The last case is similar to the first case. Near a point in W, Xss is étale locally
Ḡ×Z2

S where S = SW×C for some smooth variety SW . Z2 acts trivially on SW and
by ±1 on C. Etale locally Yss is Ḡ×Z2

SY where SY = (SW ∩Y)×C. The quotients
X//G, Y//G and X̃//G are étale locally SW ×C, (SW ∩ Y)×C and blSW∩YSW ×C.
This proves our lemma. ¤
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Corollary 2.7. Suppose that (1) of Lemma 2.6 holds. If Yss = Yss
1 ∪ · · · ∪ Yss

r is
a transversal union of smooth subvarieties of Xss and if X̃ is the blow-up of Xss

along Yss, then X̃//G is the blow-up of X//G along the reduced ideal of Y//G which
is again a transversal union of smooth varieties Yi//G. The same holds under the
condition (3) of Lemma 2.6 if furthermore Yi are transversal to W.

Proof. Because of the assumption (1), Xss = Xs. If Yss = Yss
1 ∪ · · · ∪ Yss

r is a
transversal union of smooth subvarieties of Xss and if π : X̃ → Xss is the blow-
up along Yss, then X̃s = X̃ss = π−1(Xs) is the composition of smooth blow-ups
along (the proper transforms of) the irreducible components Yss

i by Proposition
2.10 below. For each of the smooth blow-ups, the quotient of the blown-up space
is the blow-up of the quotient along the reduced ideal of the quotient of the center
by Lemma 2.6. Hence X̃//G → X//G is the composition of smooth blow-ups along
irreducible smooth subvarieties which are proper transforms of Yi//G. Hence X̃//G

is the blow-up along the union Y//G of Yi//G by Proposition 2.10 again.
The case (3) of Lemma 2.6 is similar and we omit the detail. ¤
Finally we recall Kirwan’s partial desingularization construction of GIT quo-

tients. Suppose Xss 6= Xs and Xs is nonempty. Kirwan in [14] introduced a system-
atic way of blowing up Xss along a sequence of nonsingular subvarieties to obtain a
variety X̃ with linearized G action such that X̃ss = X̃s and X̃//G has at worst finite
quotient singularities only, as follows:

(1) Find a maximal dimensional connected reductive subgroup R such that the
R-fixed locus Zss

R in Xss is nonempty. Then

GZss
R

∼= G×NR Zss
R

is a nonsingular closed subvariety of Xss where NR denotes the normalizer
of R in G.

(2) Blow up Xss along GZss
R and find the semistable part Xss

1 . Go back to step
1 and repeat this precess until there are no more strictly semistable points.

Kirwan proves that this process stops in finite steps and X̃//G is called the partial
desingularization of X//G. We will drop “partial” if it is nonsingular.

2.3. Blow-up along transversal center. We show that the blow-up along a
center whose irreducible components are transversal smooth varieties is isomorphic
to the result of smooth blow-ups along the irreducible components in any order.
This fact can be directly proved but instead we will see that it is an easy special
case of beautiful results of L. Li in [17].

Definition 2.8. [17, §1] (1) For a nonsingular algebraic variety X, an arrange-
ment of subvarieties S is a finite collection of nonsingular subvarieties such that all
nonempty scheme-theoretic intersections of subvarieties in S are again in S.

(2) For an arrangement S, a subset B ⊂ S is called a building set of S if for any
s ∈ S − B, the minimal elements in {b ∈ B : b ⊃ s} intersect transversally and the
intersection is s.

(3) A set of subvarieties B is called a building set if all the possible intersections
of subvarieties in B form an arrangement S (called the induced arrangement of B)
and B is a building set of S.

The wonderful compactification XB of X0 = X − ∪b∈Bb is defined as the closure
of X0 in

∏
b∈B blbX. Li then proves the following.
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Theorem 2.9. [17, Theorem 1.3] Let X be a nonsingular variety and B = {b1, · · · , bn}

be a nonempty building set of subvarieties of X. Let Ii be the ideal sheaf of bi ∈ B.
(1) The wonderful compactification XB is isomorphic to the blow-up of X along

the ideal sheaf I1I2 · · · In.
(2) If we arrange B = {b1, · · · , bn} in such an order that the first i terms

b1, · · · , bi form a building set for any 1 ≤ i ≤ n, then XB = blb̃n
· · · blb̃2

blb1
X,

where each blow-up is along a nonsingular subvariety b̃i.

Here b̃i is the dominant transform of bi which is obtained by taking the proper
transform when it doesn’t lie in the blow-up center or the inverse image if it lies in
the center, in each blow-up. (See [17, Definition 2.7].)

Let X be a smooth variety and let Y1, · · · , Yn be transversally intersecting smooth
closed subvarieties. Here, transversal intersection means that for any nonempty
S ⊂ {1, · · · , n} the intersection YS := ∩i∈SYi is smooth and the normal bundle
NYS/X in X of YS is the direct sum of the restrictions of the normal bundles NYi/X

in X of Yi, i.e.

NYS/X =
⊕

i∈S

NYi/X|YS
.

If we denote the ideal of Yi by Ii, the ideal of the union ∪n
i=1Yi is the prod-

uct I1I2 · · · In. Moreover for any permutation τ ∈ Sn and 1 ≤ i ≤ n, B =
{Yτ(1), · · · , Yτ(i)} is clearly a building set. By Theorem 2.9 we obtain the following.

Proposition 2.10. Let Y = Y1 ∪ · · · ∪ Yn be a union of transversally intersect-
ing smooth subvarieties of a smooth variety X. Then the blow-up of X along Y is
isomorphic to

blỸτ(n)
· · · blỸτ(2)

blYτ(1)
X

for any permutation τ ∈ Sn where Ỹi denotes the proper transform of Yi.

2.4. Log canonical model. Let X be a normal projective variety and D =
∑

aiDi

be a rational linear combination of prime divisors of X with 0 < ai ≤ 1. A log
resolution of (X,D) is a birational morphism π : Y → X from a smooth projective
variety Y to X such that π−1(Di) and the exceptional divisors Ei of π are simple
normal crossing divisors on Y. Then the discrepancy formula

KY + π−1
∗ (D) ≡ π∗(KX + D) +

∑

Ei:exceptional
a(Ei, X,D)Ei,

defines the discrepancy of (X,D) by

discrep(X, D) := inf{a(E, X,D) : E : exceptional}.

Let (X,D) be a pair where X is a normal projective variety and D =
∑

aiDi be a
rational linear combination of prime divisors with 0 < ai ≤ 1. Suppose that KX +D

is Q-Cartier. A pair (X,D) is log canonical (abbrev. lc) if discrep(X,D) ≥ −1 and
Kawamata log terminal (abbrev. klt) if discrep(X,D) > −1 and bDc ≤ 0.

When X is smooth and D is a normal crossing effective divisor, (X, D) is always
lc and is klt if all ai < 1.

Definition 2.11. For lc pair (X, D), the canonical ring is

R(X, KX + D) := ⊕l≥0H0(X,OX(bl(KX + D)c))
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and the log canonical model is

Proj R(X,KX + D).

In [2], Birkar, Cascini, Hacon and McKernan proved that for any klt pair (X,D),
the canonical ring is finitely generated, so the log canonical model always exists.

3. Moduli of weighted parameterized stable curves

Let X be a smooth projective variety. In this section, we decompose the map

X[n] → Xn

defined by Fulton and MacPherson ([5]) into a symmetric sequence of blow-ups
along transversal centers. A. Mustata and M. Mustata already considered this
problem in their search for intermediate moduli spaces for the stable map spaces
in [19, §1]. Let us recall their construction.

Stage 0: Let F0 = Xn and Γ0 = Xn × X. For a subset S of {1, 2, · · · , n}, we let

ΣS
0 = {(x1, · · · , xn) ∈ Xn | xi = xj if i, j ∈ S}, Σk

0 = ∪|S|=kΣS
0

and let σi
0 ⊂ Γ0 be the graph of the i-th projection Xn → X. Then Σn

0
∼= X is a

smooth subvariety of F0. For each S, fix any iS ∈ S.

Stage 1: Let F1 be the blow-up of F0 along Σn
0 . Let Σn

1 be the exceptional divisor
and ΣS

1 be the proper transform of ΣS
0 for |S| 6= n. Let us define Γ1 as the blow-up

of F1 ×F0
Γ0 along Σn

1 ×F0
σ1

0 so that we have a flat family

Γ1 → F1 ×F0
Γ0 → F1

of varieties over F1. Let σi
1 be the proper transform of σi

0 in Γ1. Note that ΣS
1 for

|S| = n − 1 are all disjoint smooth varieties of same dimension.

Stage 2: Let F2 be the blow-up of F1 along Σn−1
1 =

∑
|S|=n−1 ΣS

1 . Let ΣS
2 be the

exceptional divisor lying over ΣS
1 if |S| = n − 1 and ΣS

2 be the proper transform of
ΣS

1 for |S| 6= n − 1. Let us define Γ2 as the blow-up of F2 ×F1
Γ1 along the disjoint

union of ΣS
2 ×F1

σiS

1 for all S with |S| = n − 1 so that we have a flat family

Γ2 → F2 ×F1
Γ1 → F2

of varieties over F2. Let σi
2 be the proper transform of σi

1 in Γ2. Note that ΣS
2 for

|S| = n − 2 in F2 are all transversal smooth varieties of same dimension. Hence the
blow-up of F2 along their union is smooth by §2.3.

We can continue this way until we reach the last stage.

Stage n − 1: Let Fn−1 be the blow-up of Fn−2 along Σ2
n−2 =

∑
|S|=2 ΣS

n−2. Let
ΣS

n−1 be the exceptional divisor lying over ΣS
n−2 if |S| = 2 and ΣS

n−1 be the proper
transform of ΣS

n−2 for |S| 6= 2. Let us define Γn−1 as the blow-up of Fn−1×Fn−2
Γn−2

along the disjoint union of ΣS
n−1 ×Fn−2

σiS

n−2 for all S with |S| = 2 so that we have
a flat family

Γn−1 → Fn−1 ×Fn−2
Γn−2 → Fn−1

of varieties over Fn−1. Let σi
n−1 be the proper transform of σi

n−2 in Γn−1.

Nonsingularity of the blown-up spaces Fk are guaranteed by the following.
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Lemma 3.1. ΣS
k for |S| ≥ n − k are transversal in Fk i.e. the normal bundle in Fk

of the intersection ∩iΣ
Si

k for distinct Si with |Si| ≥ n − k is the direct sum of the
restriction of the normal bundles in Fk of ΣSi

k .

Proof. This is a special case of the inductive construction of the wonderful com-
pactification in [17]. (See §2.3.) In our situation, the building set is the set of
all diagonals B0 = {ΣS

0 |S ⊂ {1, 2, · · · , n}}. By [17, Proposition 2.8], Bk = {ΣS
k} is

a building set of an arrangement in Fk and hence the desired transversality fol-
lows. ¤

By construction, Fk are all smooth and Γk → Fk are equipped with n sections
σi

k. When dim X = 1, Σ2
n−2 is a divisor and thus Fn−1 = Fn−2. In [19, Proposition

1.8], Mustata and Mustata prove that the varieties Fk are fine moduli spaces for
some moduli functors as follows.

Definition 3.2. [19, Definition 1.7] A family of k-stable parameterized rational
curves over S consists of a flat family of curves π : C → S, a morphism φ : C → S×P1

of degree 1 over each geometric fiber Cs of π and n marked sections σ1, · · · , σn of
π such that for all s ∈ S,

(1) no more than n − k of the marked points σi(s) in Cs coincide;
(2) any ending irreducible curve in Cs, except the parameterized one, contains

more than n − k marked points;
(3) all the marked points are smooth points of the curve Cs;
(4) Cs has finitely many automorphisms preserving the marked points and the

map to P1.

Proposition 3.3. [19, Proposition 1.8] Let X = P1. The smooth variety Fk finely
represents the functor of isomorphism classes of families of k-stable parameterized
rational curves. In particular, Fn−2 = Fn−1 is the Fulton-MacPherson space P1[n].

4. Blow-up construction of moduli of pointed stable curves

In the previous section, we decomposed the natural map P1[n] → (P1)n of the
Fulton-MacPherson space into a sequence

(7) P1[n] Fn−2
ψn−2

// Fn−3
ψn−3

// · · · ψ2 // F1
ψ1 // F0 (P1)n

of blow-ups along transversal centers. By construction the morphisms above are all
equivariant with respect to the action of G = SL(2). For GIT stability, we use the
symmetric linearization L0 = O(1, · · · , 1) for F0. For Fk we use the linearization Lk

inductively defined by Lk = ψ∗kLk−1⊗O(−δkEk) where Ek is the exceptional divisor
of ψk and {δk} is a decreasing sequence of sufficiently small positive numbers. Let
m = bn

2 c. In this section, we prove the following.

Theorem 4.1. (i) The GIT quotient Fn−m+k//G for 1 ≤ k ≤ m− 2 is isomorphic
to Hassett’s moduli space of weighted pointed stable rational curves M0,n·εk

with
weights n · εk = (εk, · · · , εk) where 1

m+1−k < εk ≤ 1
m−k . The induced maps on

quotients
M0,n·εk

= Fn−m+k//G → Fn−m+k−1//G = M0,n·εk−1

are blow-ups along transversal centers for k = 2, · · · ,m − 2.
(ii) If n is odd,

Fm+1//G = · · · = F0//G = (P1)n//G = M0,n·ε0
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and we have a sequence of blow-ups

M0,n = M0,n·εm−2
→ M0,n·εm−3

→ · · · → M0,n·ε1
→ M0,n·ε0

= (P1)n//G

whose centers are transversal unions of equidimensional smooth varieties.
(iii) If n is even, M0,n·ε1

is a desingularization of

(P1)n//G = F0//G = · · · = Fm//G,

obtained by blowing up 1
2

(
n
m

)
singular points so that we have a sequence of blow-ups

M0,n = M0,n·εm−2
→ M0,n·εm−3

→ · · · → M0,n·ε1
→ (P1)n//G.

Remark 4.2. (1) When n is even, M0,n·ε0
is not defined because the sum of

weights does not exceed 2.
(2) When n is even, M0,n·ε1

is Kirwan’s (partial) desingularization of the GIT
quotient (P1)n//G with respect to the symmetric linearization L0 = O(1, · · · , 1).

Let Fss
k (resp. Fs

k) denote the semistable (resp. stable) part of Fk. By (6), we
have

(8) ψk(Fss
k ) ⊂ Fss

k−1, ψ−1
k (Fs

k−1) ⊂ Fs
k.

Also recall from [13] that x = (x1, · · · , xn) ∈ (P1)n is semistable (resp. stable) if
> n

2 (resp. ≥ n
2 ) of xi’s are not allowed to coincide. In particular, when n is odd,

ψ−1
k (Fs

k−1) = Fs
k = Fss

k for all k and

(9) Fs
m+1 = Fs

m = · · · = Fs
0,

because the blow-up centers lie in the unstable part. Therefore we have

(10) Fm+1//G = · · · = F0//G = (P1)n//G.

When n is even, ψk induces a morphism Fss
k → Fss

k−1 and we have

(11) Fss
m = Fss

m−1 = · · · = Fss
0 and Fm//G = · · · = F0//G = (P1)n//G.

Let us consider the case where n is odd first. By forgetting the parameter-
ization of the parameterized component of each member of family (Γm+k+1 →
Fm+k+1, σi

m+k+1), we get a rational map Fm+k+1 99K M0,n·εk
for k = 0, 1, · · · , m−

2. By the definition of the stability in §2.1, a fiber over ξ ∈ Fm+k+1 is not stable
with respect to n · εk = (εk, · · · , εk) if and only if, in each irreducible component
of the curve, the number a of nodes and the number b of marked points satisfy
bεk + a ≤ 2. Obviously this cannot happen on the (GIT) stable part Fs

m+k+1.
Therefore we obtain a morphism Fs

m+k+1 → M0,n·εk
. By construction this mor-

phism is G-invariant and thus induces a morphism

φk : Fm+k+1//G → M0,n·εk
.

Since the stabilizer groups in G of points in Fs
0 are all {±1}, the quotient

ψ̄m+k+1 : Fm+k+1//G → Fm+k//G

of ψm+k+1 is also a blow-up along a center which consists of transversal smooth
varieties by Corollary 2.7.

Since the blow-up center has codimension ≥ 2, the Picard number increases by(
n

m−k+1

)
for k = 1, · · · ,m − 2. Since the character group of SL(2) has no free

part, by the descent result in [3], the Picard number of Fm+1//G = Fs
0/G is the
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same as the Picard number of Fs
0 which equals the Picard number of F0. Therefore

ρ(Fm+1//G) = n and the Picard number of Fm+k+1//G is

n +

k∑

i=1

(
n

m − i + 1

)

which equals the Picard number of M0,n·εk
by Lemma 2.4. Since M0,n·εk

and
Fm+k+1//G are smooth and their Picard numbers coincide, we conclude that φk is
an isomorphism as we desired. So we proved Theorem 4.1 for odd n.

Now let us suppose n is even. For ease of understanding, we divide our proof
into several steps.

Step 1: For k ≥ 1, Fm+k//G are nonsingular and isomorphic to the partial desin-
gularizations F̃m+k//G.

The GIT quotients Fm+k//G may be singular because there are C∗-fixed points
in the semistable part Fss

m+k. So we use Kirwan’s partial desingularization of the
GIT quotients Fm+k//G (§2.2). The following lemma says that the partial desin-
gularization process has no effect on the quotient Fm+k//G for k ≥ 1.

Lemma 4.3. Let F be a smooth projective variety with linearized G = SL(2) action
and let Fss be the semistable part. Fix a maximal torus C∗ in G. Let Z be the set
of C∗-fixed points in Fss. Suppose the stabilizers of all points in the stable part Fs

are {±1} and Y = GZ is the union of all closed orbits in Fss − Fs. Suppose that
the stabilizers of points in Z are precisely C∗. Suppose further that Y = GZ is of
codimension 2. Let F̃ → Fss be the blow-up of Fss along Y and let F̃s be the stable
part in F̃ with respect to a linearization as in §2.2. Finally suppose that for each
y ∈ Z, the weights of the C∗ action on the normal space to Y is ±l for some l > 0.
Then F̃//G = F̃s/G ∼= F//G and F//G is nonsingular.

Proof. Since Ḡ = G/{±1} acts freely on Fs, Fs/G is smooth. By assumption, Y

is the union of all closed orbits in Fss − Fs and hence F//G − Fs/G = Y/G. By
Lemma 2.6 (2), F̃s/G is the blow-up of F//G along the reduced ideal of Y/G. By
our assumption, Z is of codimension 4 and

Y/G = GZ/G ∼= G×NC∗ Z/G ∼= Z/Z2

where NC
∗

is the normalizer of C∗ in G. Since the dimension of F//G is dim F − 3,
the blow-up center Y/G is nonsingular of codimension 1. By Luna’s slice theorem
([18, Appendix 1.D]), the singularity of F//G at any point [Gy] ∈ Y/G is C2//C∗
where the weights are ±l. Obviously this is smooth and hence F//G is smooth along
Y/G. Since the blow-up center is a smooth divisor, the blow-up map F̃s/G → F//G

has to be an isomorphism. ¤
Let Zm+k be the C∗-fixed locus in Fss

m+k and let Ym+k = GZm+k. Then Ym+k

is the disjoint union of

ΣS,Sc

m+k := ΣS
m+k ∩ ΣSc

m+k ∩ Fss
m+k for |S| = m,Sc = {1, · · · , n} − S

which are nonsingular of codimension 2 for k ≥ 1 by Lemma 3.1. For a point

(C, p1, · · · , pn, f : C → P1) ∈ ΣS,Sc

m+k,

the parameterized component of C (i.e. the unique component which is not con-
tracted by f) has two nodes and no marked points. The normal space C2 to ΣS,Sc

m+k
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is given by the smoothing deformations of the two nodes and hence the stabilizer
C∗ acts with weights 2 and −2.

The blow-up F̃m+k of Fss
m+k along Ym+k has no strictly semistable points by [14,

§6]. In fact, the unstable locus in F̃m+k is the proper transform of ΣS
m+k ∪ ΣSc

m+k

and the stabilizers of points in F̃s
m+k are either Z2 = {±1} (for points not in the

exceptional divisor of F̃s
m+k → Fss

m+k) or Z4 = {±1,±i} (for points in the exceptional
divisor). Therefore, by Lemma 4.3 and Lemma 2.6 (3), we have isomorphisms

(12) F̃s
m+k/G ∼= Fm+k//G

and Fm+k//G are nonsingular for k ≥ 1.

Step 2: The partial desingularization F̃m//G is a nonsingular variety obtained by
blowing up the 1

2

(
n
m

)
singular points of Fm//G = (P1)n//G.

Note that Ym in Fss
m is the disjoint union of 1

2

(
n
m

)
orbits ΣS,Sc

m for |S| = m.
By Lemma 2.6 (2), the morphism F̃s

m/G → Fm//G is the blow-up at the 1
2

(
n
m

)

points given by the orbits of the blow-up center. A point in ΣS,Sc

m is represented by
(P1, p1, · · · , pn, id) with pi = pj if i, j ∈ S or i, j ∈ Sc. Without loss of generality,
we may let S = {1, · · · ,m}. The normal space to an orbit ΣS,Sc

m is given by

(Tp1
P1)m−1 × (Tpm+1

P1)m−1 = Cm−1 × Cm−1

and C∗ acts with weights 2 and −2 respectively on the two factors. By Luna’s slice
theorem, étale locally near ΣS,Sc

m , Fss
m is G ×C∗ (Cm−1 × Cm−1) and F̃m is G ×C∗

bl0(Cm−1×Cm−1) while F̃s
m is G×C∗

[
bl0(Cm−1 × Cm−1) − bl0Cm−1 t bl0Cm−1

]
.

By an explicit local calculation, the stabilizers of points on the exceptional divisor
of F̃m are Z4 = {±1,±i} and the stabilizers of points over Fs

m are Z2 = {±1}. Since
the locus of nontrivial stabilizers for the action of Ḡ on F̃s

m is a smooth divisor with
stabilizer Z2, F̃m//G = F̃s

m/G is smooth and hence F̃s
m/G is the desingularization

of Fm//G obtained by blowing up its 1
2

(
n
m

)
singular points.

Step 3: The morphism ψ̄m+k+1 : Fm+k+1//G → Fm+k//G is the blow-up along the
union of transversal smooth subvarieties for k ≥ 1. For k = 0, we have F̃s

m+1 = F̃s
m

and thus

Fm+1//G ∼= F̃s
m+1/G = F̃s

m/G = F̃m//G

is the blow-up along its 1
2

(
n
m

)
singular points.

From Lemma 3.1, we know ΣS
m+k for |S| ≥ m − k are transversal in Fm+k. In

particular, ⋃

|S|=m

ΣS
m+k ∩ ΣSc

m+k

intersects transversely with the blow-up center
⋃

|S ′|=m−k

ΣS ′
m+k
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for ψm+k+1 : Fm+k+1 → Fm+k. Hence, by Proposition 2.10 we have a commutative
diagram

(13) F̃m+k+1
//

²²

F̃m+k

²²

Fss
m+k+1

// Fss
m+k

for k ≥ 1 where the top horizontal arrow is the blow-up along the proper transforms
Σ̃S ′

m+k of ΣS ′
m+k, |S ′| = m − k. By Corollary 2.7, we deduce that for k ≥ 1, ψ̄m+k+1

is the blow-up along the transversal union of smooth subvarieties Σ̃S ′
m+k//G ∼=

ΣS ′
m+k//G.
For k = 0, the morphism F̃m+1 → F̃m is the blow-up along the proper transforms

of ΣS
m and ΣSc

m for |S| = m. But these are unstable in F̃m and hence the morphism
F̃s

m+1 → F̃s
m on the stable part is the identity map. So we obtain F̃s

m+1 = F̃s
m and

F̃s
m+1/G ∼= F̃s

m/G.

Step 4: Calculation of Picard numbers.

The Picard number of Fss
m = Fss

0 ⊂ F0 = (P1)n is n and so the Picard number of
F̃m is n + 1

2

(
n
m

)
. By the descent lemma of [3] as in the odd degree case, the Picard

number of
Fm+1//G ∼= F̃s

m+1/G = F̃s
m/G

equals the Picard number n+ 1
2

(
n
m

)
of F̃s

m. Since the blow-up center of F̃m+k//G →
F̃m+k−1//G has

(
n

m−k+1

)
irreducible components, the Picard number of F̃m+k//G ∼=

Fm+k//G is

(14) n +
1

2

(
n

m

)
+

k∑

i=2

(
n

m − i + 1

)

for k ≥ 2.

Step 5: Completion of the proof.

As in the odd degree case, for k ≥ 1 the universal family πk : Γm+k → Fm+k gives
rise to a family of pointed curves by considering the linear system Kπk

+εk

∑
i σi

m+k.
Over the semistable part Fss

m+k it is straightforward to check that this gives us a
family of n · εk-stable pointed curves. Therefore we obtain an invariant morphism

Fss
m+k → M0,n·εk

which induces a morphism

Fm+k//G → M0,n·εk
.

By Lemma 2.4, the Picard number of M0,n·εk
coincides with that of Fm+k//G given

in (14). Hence the morphism Fm+k//G → M0,n·εk
is an isomorphism as desired.

This completes our proof of Theorem 4.1.
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Remark 4.4. Let S ⊂ {1, 2, · · · , n} with |S| = m − k. On M0,n·εk
, the blow-

up center for M0,n·εk+1
→ M0,n·εk

is the union of
(

n
m−k

)
smooth subvarieties

ΣS
n−m+k//G. Each ΣS

n−m+k//G parameterizes weighted pointed stable curves with
m−k colliding marked points si1

, si2
, · · · , sim−k

for ij ∈ S. On the other hand, for
any member of M0,n·εk

, no m−k+1 marked points can collide. So we can replace
m − k marked points sij

with ij ∈ S by a single marked point which cannot collide
with any other marked points. Therefore, an irreducible component ΣS

n−m+k//G of
the blow-up center is isomorphic to the moduli space of weighted pointed rational
curves M0,(1,εk,··· ,εk) with n − m + k + 1 marked points as discovered by Hassett.
(See Proposition 2.3.)

Remark 4.5. For the moduli space of unordered weighted pointed stable curves
M0,n·εk

/Sn, we can simply take quotients by the Sn action of the blow-up process
in Theorem 4.1. In particular, M0,n/Sn is obtained by a sequence of weighted
blow-ups from

(
(P1)n//G

)
/Sn = Pn//G.

5. Log canonical models of M0,n

In this section, we give a relatively elementary and straightforward proof of the
following theorem of M. Simpson by using Theorem 4.1. Let M0,n be the moduli
space of n distinct points in P1 up to Aut(P1).

Theorem 5.1. (M. Simpson [21]) Let α be a rational number satisfying 2
n−1 < α ≤

1 and let D = M0,n − M0,n denote the boundary divisor. Then the log canonical
model

M0,n(α) = Proj


⊕

l≥0

H0(M0,n,O(bl(KM0,n
+ αD)c))




satisfies the following:
(1) If 2

m−k+2 < α ≤ 2
m−k+1 for 1 ≤ k ≤ m − 2, then M0,n(α) ∼= M0,n·εk

.
(2) If 2

n−1 < α ≤ 2
m+1 , then M0,n(α) ∼= (P1)n//G where the quotient is taken

with respect to the symmetric linearization O(1, · · · , 1).

Remark 5.2. Keel and McKernan prove ([12, Lemma 3.6]) that KM0,n
+ D is

ample. Because
M0,n·εm−2

∼= M0,n·εm−1
= M0,n

by definition, we find that (1) above holds for k = m − 1 as well.

For notational convenience, we denote (P1)n//G by M0,n·ε0
for even n as well.

Let ΣS
k denote the subvarieties of Fk defined in §3 for S ⊂ {1, · · · , n}, |S| ≤ m. Let

DS
k = ΣS

n−m+k//G ⊂ Fn−m+k//G ∼= M0,n·εk
.

Then DS
k is a divisor of M0,n·εk

for |S| = 2 or m − k < |S| ≤ m. Let D
j
k =

(∪|S|=jΣ
S
n−m+k)//G and Dk = D2

k+
∑

j>m−k D
j
k. Then Dk is the boundary divisor

of M0,n·εk
, i.e. M0,n·εk

− M0,n = Dk. When k = m − 2 so M0,n·εk
∼= M0,n,

sometimes we will drop the subscript k. Note that if n is even and |S| = m,
DS

k = DSc

k = ΣS,Sc

n−m+k//G.
By Theorem 4.1, there is a sequence of blow-ups

(15) M0,n
∼= M0,n·εm−2

ϕm−2−→ M0,n·εm−3

ϕm−3−→ · · · ϕ2−→ M0,n·ε1

ϕ1−→ M0,n·ε0
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whose centers are transversal unions of smooth subvarieties, except for ϕ1 when n is
even. Note that the irreducible components of the blow-up center of ϕk furthermore
intersect transversely with D

j
k−1 for j > m − k + 1 by Lemma 3.1 and by taking

quotients.

Lemma 5.3. Let 1 ≤ k ≤ m − 2.
(1) ϕ∗k(Dj

k−1) = D
j
k for j > m − k + 1.

(2) ϕ∗k(D2
k−1) = D2

k +
(
m−k+1

2

)
Dm−k+1

k .
(3) ϕk∗(D

j
k) = D

j
k−1 for j > m − k + 1 or j = 2.

(4) ϕk∗(D
j
k) = 0 for j = m − k + 1.

Proof. The push-forward formulas (3) and (4) are obvious. Recall from §4 that
ϕk = ψ̄n−m+k is the quotient of ψn−m+k : Fss

n−m+k → Fss
n−m+k−1. Suppose n is

not even or k is not 1. Since DS
k for |S| > 2 does not contain any component of the

blow-up center, ϕ∗k(DS
k−1) = DS

k. If |S| = 2, DS
k−1 contains a component DS ′

k−1 of
the blow-up center if and only if S ′ ⊃ S. Therefore we have

ϕ∗k(DS
k−1) = DS

k +
∑

S ′⊃S,|S ′|=m−k+1

DS ′
k .

By adding them up for all S such that |S| = 2, we obtain (2).
When n is even and k = 1, we calculate the pull-back before quotient. Let

π : F̃s
m → Fss

m be the map obtained by blowing up ∪|S|=mΣS,Sc

m and removing
unstable points. Recall that F̃s

m/G ∼= Fm+1//G ∼= M0,n·ε1
and the quotient of π is

ϕ1. Then a direct calculation similar to the above gives us π∗Σ2
m = Σ̃2

m + 2
(
m
2

)
Σ̃m

m

where Σ2
m = ∪|S|=2ΣS

m and Σ̃2
m is the proper transform of Σ2

m while Σ̃m
m denotes

the exceptional divisor. Note that by the descent lemma ([3]), the divisor Σ2
m and

Σ̃2
m descend to D2

0 and D2
1. However Σ̃m

m does not descend because the stabilizer
group Z2 in Ḡ = PGL(2) of points in Σ̃m

m acts nontrivially on the normal spaces.
But by the descent lemma again, 2Σ̃m

m descends to Dm
1 . Thus we obtain (2). ¤

Next we calculate the canonical divisors of M0,n·εk
.

Proposition 5.4. [20, Proposition 1] The canonical divisor of M0,n is

KM0,n

∼= −
2

n − 1
D2 +

m∑

j=3

(
−

2

n − 1

(
j

2

)
+ (j − 2)

)
Dj.

Lemma 5.5. (1) The canonical divisor of (P1)n//G is

K(P1)n//G
∼= −

2

n − 1
D2

0.

(2) For 1 ≤ k ≤ m − 2, the canonical divisor of M0,n·εk
is

KM0,n·εk

∼= −
2

n − 1
D2

k +

m∑

j≥m−k+1

(
−

2

n − 1

(
j

2

)
+ (j − 2)

)
D

j
k.

Proof. It is well known by the descent lemma ([3]) that Pic((P1)n//G) is a free
abelian group of rank n(See §6). The symmetric group Sn acts on (P1)n//G in
the obvious manner, and there is an induced action on its Picard group. Cer-
tainly the canonical bundle K(P1)n//G and D2

0 are Sn-invariant. On the other hand,
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the Sn-invariant part of the rational Picard group is a one dimensional vector
space generated by the quotient D2

0 of O(P1)n(n − 1, · · · , n − 1) and hence we have
K(P1)n//G

∼= cD2
0 for some c ∈ Q.

Suppose n is odd. The contraction morphisms ϕk are all compositions of smooth
blow-ups for k ≥ 1. From the blow-up formula of canonical divisors ([6, II Exe.
8.5]) and Lemma 5.3, we deduce that

KM0,n·εk
= cD2

k +

m∑

j≥m−k+1

(
c

(
j

2

)
+ (j − 2)

)
D

j
k.

Since M0,n
∼= M0,n·εm−2

, we get c = − 2
n−1 from Proposition 5.4.

When n is even, ϕ∗1(K(P1)n//G) = cD2
1 + c

(
m
2

)
Dm

1 by Lemma 5.3. We write
KM0,n·ε1

= cD2
1 + (c

(
m
2

)
+ a)Dm

1 . By the blow-up formula of canonical divisors
([6, II Exe. 8.5]) again, we deduce that

KM0,n·εk
= cD2

k +

m−1∑

j≥m−k+1

(
c

(
j

2

)
+ (j − 2)

)
D

j
k + (c

(
m

2

)
+ a)Dm

k .

From Proposition 5.4 again, we get c = − 2
n−1 and a = m − 2. ¤

We are now ready to prove Theorem 5.1. By [21, Corollary 3.5], the theorem is
a direct consequence of the following proposition.

Proposition 5.6. (1) KM0,n·ε0
+ αD0 is ample if 2

n−1 < α ≤ 2
m+1 .

(2) For 1 ≤ k ≤ m − 2, KM0,n·εk
+ αDk is ample if 2

m−k+2 < α ≤ 2
m−k+1 .

Since any positive linear combination of an ample divisor and a nef divisor is
ample [16, Corollary 1.4.10], it suffices to show the following:

(a) Nefness of KM0,n·εk
+ αDk for α = 2

m−k+1 + s where s is some (small)
positive number;

(b) Ampleness of KM0,n·εk
+αDk for α = 2

m−k+2 +t where t is any sufficiently
small positive number.

We will use Alexeev and Swinarski’s intersection number calculation in [1] to achieve
(a) (See Lemma 5.12.) and then (b) will immediately follow from our Theorem 4.1.

Definition 5.7. ([21]) Let ϕ = ϕn·εm−2,n·εk
: M0,n → M0,n·εk

be the natural
contraction map (§2.1). For k = 0, 1, · · · ,m − 2 and α > 0, define A(k, α) by

A(k, α) := ϕ∗(KM0,n·εk
+ αDk)

=

m−k∑

j=2

(
j

2

)(
α −

2

n − 1

)
Dj +

m∑

j≥m−k+1

(
α −

2

n − 1

(
j

2

)
+ j − 2

)
Dj.

Notice that the last equality is an easy consequence of Lemma 5.3.
By [10], there is a birational morphism π~x : M0,n → (P1)n//~xG for any lineariza-

tion ~x = (x1, · · · , xn) ∈ Qn
+. Since the canonical ample line bundleO(P1)n(x1, · · · , xn)//G

over (P1)n//~xG is ample, its pull-back L~x by π~x is certainly nef.
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Definition 5.8. [1, Definition 2.3] Let x be a rational number such that 1
n−1 ≤

x ≤ 2
n . Set ~x = O(x, · · · , x, 2 − (n − 1)x). Define

V(x, n) :=
1

(n − 1)!

⊗

τ∈Sn

Lτ~x.

Obviously the symmetric group Sn acts on ~x by permuting the components of ~x.

Notice that V(x, n) is nef because it is a positive linear combination of nef line
bundles.

Definition 5.9. [1, Definition 3.5] Let Ca,b,c,d be any vital curve class correspond-
ing to a partition Sa tSb tSc tSd of {1, 2, · · · , n} such that |Sa| = a, · · · , |Sd| = d.
(1) Suppose n = 2m + 1 is odd. Let Ci = C1,1,m−i,m+i−1, for i = 1, 2, · · · ,m − 1.
(2) Suppose n = 2m is even. Let Ci = C1,1,m−i,m+i−2 for i = 1, 2, · · · ,m − 1.

By [12, Corollary 4.4], the following computation is straightforward.

Lemma 5.10. The intersection numbers Ci ·A(k, α) are

Ci ·A(k, α) =





α if i < k(
2 −

(
m−k

2

))
α + m − k − 2 if i = k((

m−k+1
2

)
− 1

)
α − m + k + 1 if i = k + 1

0 if i > k + 1.

This lemma is in fact a slight generalization of [1, Lemma 3.7] where the inter-
section numbers for α = 2

m−k+1 only are calculated.
The Sn-invariant subspace of Neron-Severi vector space of M0,n is generated

by Dj for j = 2, 3, · · · ,m ([12, Theorem 1.3]). Therefore, in order to determine
the linear dependency of Sn-invariant divisors, we find m − 1 linearly independent
curve classes, and calculate the intersection numbers of divisors with these curves
classes. Let U be an (m − 1)× (m − 1) matrix with entries Uij = (Ci · V( 1

m+j , n))

for 1 ≤ i, j ≤ m − 1. Since V( 1
m+j , n)’s are all nef, all entries of U are nonnegative.

Lemma 5.11. [1, §3.2, §3.3] (1) The intersection matrix U is upper triangular and
if i ≤ j, then Uij > 0. In particular, U is invertible.
(2) Let ~a = ((C1 ·A(k, 2

m−k+1 )), · · · , (Cm−1 ·A(k, 2
m−k+1 )))t be the column vector

of intersection numbers. Let ~c = (c1, c2, · · · , cm−1)t be the unique solution of the
system of linear equations U~c = ~a. Then ci > 0 for i ≤ k + 1 and ci = 0 for
i ≥ k + 2.

This lemma implies that A(k, 2
m−k+1 ) is a positive linear combination of V( 1

m+j , n)

for j = 1, 2, · · · , k + 1. Note that A(k, 2
m−k+2 ) = A(k − 1, 2

m−(k−1)+1 ) and that for
2

m−k+2 ≤ α ≤ 2
m−k+1 , A(k, α) is a nonnegative linear combination of A(k, 2

m−k+2 )

and A(k, 2
m−k+1 ). Hence by the numerical result in Lemma 5.11 and the convexity

of the nef cone, A(k, α) is nef for 2
m−k+2 ≤ α ≤ 2

m−k+1 . Actually we can slightly
improve this result by using continuity.

Lemma 5.12. For each k = 0, 1, · · · , m− 2, there exists s > 0 such that A(k, α) is
nef for 2

m−k+2 ≤ α ≤ 2
m−k+1 + s. Therefore, KM0,n·εk

+ αDk is nef for 2
m−k+2 ≤

α ≤ 2
m−k+1 + s.
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Proof. Let ~aα = ((C1·A(k, α)), · · · , (Cm−1·A(k, α)))t and let ~cα = (cα
1 , · · · , cα

m−1)t

be the unique solution of equation U~cα = ~aα. Then by continuity, the components
cα

1 , cα
2 , · · · , cα

k+1 remain positive when α is slightly increased. By Lemma 5.10 and
the upper triangularity of U, cα

i for i > k + 1 are all zero. Hence A(k, α) is still nef
for α = 2

m−k+1 + s with sufficiently small s > 0. ¤

With this nefness result, the proof of Proposition 5.6 is obtained as a quick
application of Theorem 4.1.

Proof of Proposition 5.6. We prove that in fact KM0,n·εk
+αDk is ample for 2

m−k+2 <

α < 2
m−k+1 + s where s is the small positive rational number in Lemma 5.12.

Since a positive linear combination of an ample divisor and a nef divisor is ample
by [16, Corollary 1.4.10], it suffices to show that KM0,n·εk

+ αDk is ample when

α = 2
m−k+2 + t for any sufficiently small t > 0 by Lemma 5.12.

We use induction on k. It is certainly true when k = 0 by Lemma 5.5 because
D2

0 is ample as the quotient of O(n − 1, · · · , n − 1). Suppose KM0,n·εk−1
+ αDk−1

is ample for 2
m−k+3 < α < 2

m−k+2 + s ′ where s ′ is the small positive number in
Lemma 5.12 for k − 1. Since ϕk is a blow-up with exceptional divisor Dm−k+1

k ,

ϕ∗k(KM0,n·εk−1
+ αDk−1) − δDm−k+1

k

is ample for any sufficiently small δ > 0 by [6, II 7.10]. A direct computation with
Lemmas 5.3 and 5.5 provides us with

ϕ∗k(KM0,n·εk−1
+ αDk−1) − δDm−k+1

k

= KM0,n·εk
+ αDk +

((
m − k + 1

2

)
α − α − (m − k − 1) − δ

)
Dm−k+1

k .

If α = 2
m−k+2 ,

(
m−k+1

2

)
α − α − (m − k − 1) = 0 and thus we can find α > 2

m−k+2

satisfying
(
m−k+1

2

)
α − α − (m − k − 1) − δ = 0. If δ decreases to 0, the solution

α decreases to 2
m−k+2 . Hence KM0,n·εk

+ αDk is ample when α = 2
m−k+2 + t for

any sufficiently small t > 0 as desired. ¤

Remark 5.13. There are already two different proofs of M. Simpson’s theorem
(Theorem 5.1) given by Fedorchuk–Smyth [4], and by Alexeev–Swinarski [1] without
relying on Fulton’s conjecture. Here we give a brief outline of the two proofs.

In [21, Corollary 3.5], Simpson proves that Theorem 5.1 is an immediate conse-
quence of the ampleness of KM0,n·εk

+αDk for 2
m−k+2 < α ≤ 2

m−k+1 (Proposition
5.6). The differences in the proofs of Theorem 5.1 reside solely in different ways of
proving Proposition 5.6.

The ampleness of KM0,n·εk
+αDk follows if the divisor A(k, α) = ϕ∗(KM0,n·εk

+

αDk) is nef and its linear system contracts only ϕ-exceptional curves. Here, ϕ :

M0,n → M0,n·εk
is the natural contraction map (§2.1). Alexeev and Swinarski

prove Proposition 5.6 in two stages: First the nefness of A(k, α) for suitable ranges is
proved and next they show that the divisors are the pull-backs of ample line bundles
on M0,n·εk

. Lemma 5.12 above is only a negligible improvement of the nefness
result in [1, §3]. In [1, Theorem 4.1], they give a criterion for a line bundle to be
the pull-back of an ample line bundle on M0,n·εk

. After some rather sophisticated
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combinatorial computations, they prove in [1, Proposition 4.2] that A(k, α) satisfies
the desired properties.

On the other hand, Fedorchuk and Smyth show that KM0,n·εk
+ αDk is am-

ple as follows. Firstly, by applying the Grothendieck-Riemann-Roch theorem, they
represent KM0,n·εk

+ αDk as a linear combination of boundary divisors and tau-
tological ψ-classes. Secondly, for such a linear combination of divisor classes and
for a complete curve in M0,n·εk

parameterizing a family of curves with smooth
general member, they perform brilliant computations and get several inequalities
satisfied by their intersection numbers ([4, Proposition 3.2]). Combining these in-
equalities, they prove in particular that KM0,n·εk

+ αDk has positive intersection

with any complete curve on M0,n·εk
with smooth general member ([4, Theorem

4.3]). Thirdly, they prove that if the divisor class intersects positively with any
curve with smooth general member, then it intersects positively with all curves
by an induction argument on the dimension. Thus they establish the fact that
KM0,n·εk

+ αDk has positive intersection with all curves. Lastly, they prove that
the same property holds even if KM0,n·εk

+ αDk is perturbed by any small lin-
ear combination of boundary divisors. Since the boundary divisors generate the
Neron-Severi vector space, KM0,n·εk

+ αDk lies in the interior of the nef cone and
the desired ampleness follows.

6. The Picard groups of M0,n·εk

As a byproduct of our GIT construction of the moduli spaces of weighted pointed
curves, we give a basis of the integral Picard group of M0,n·εk

for 0 ≤ k ≤ m − 2.
Let ei be the i-th standard basis vector of Zn. For notational convenience, set

en+1 = e1. For S ⊂ {1, 2, · · · , n}, let DS
k = ΣS

n−m+k//G ⊂ Fn−m+k//G ∼= M0,n·εk
.

Note that if m − k < |S| ≤ m or |S| = 2, DS
k is a divisor of M0,n·εk

.

Theorem 6.1. (1) If n is odd, then the Picard group of M0,n·εk
is

Pic(M0,n·εk
) ∼=

⊕

m−k<|S|≤m

ZDS
k ⊕

n⊕

i=1

ZD
{i,i+1}
k

for 0 ≤ k ≤ m − 2.
(2) If n is even, then the Picard group of M0,n·εk

is

Pic(M0,n·εk
) ∼=

⊕

m−k<|S|<m

ZDS
k ⊕

⊕

1∈S,|S|=m

ZDS
k ⊕

n−1⊕

i=1

ZD
{i,i+1}
k ⊕ ZD

{1,n−1}
k .

for 1 ≤ k ≤ m − 2.

Proof. Since the codimensions of unstable strata in (P1)n are greater than 1,

Pic(((P1)n)ss) = Pic((P1)n) ∼= ⊕1≤i≤nZO(ei).

For all x ∈ ((P1)n)s, Gx
∼= {±1}. If n is even and x is strictly semistable point

with closed orbit, then Gx
∼= C∗. Since G is connected, G acts on the discrete

set Pic((P1)n) trivially. By Kempf’s descent lemma ([3, theorem 2.3]) and by
checking the actions of the stabilizers on the fibers of line bundles, we deduce that
O(a1, a2, · · · , an) descends to ((P1)n)ss//G if and only if 2 divides

∑
ai.

Consider the case when n is odd first. It is elementary to check that the subgroup
{(a1, · · · , an) ∈ Zn|

∑
ai ∈ 2Z} is free abelian of rank n and {ei+ei+1} for 1 ≤ i ≤ n
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form a basis of this group. Furthermore, for S = {i, j} with i 6= j, the big diagonal
(ΣS

m+1)s = (ΣS
0)s satisfies O((ΣS

0)s) ∼= OFs
0
(ei + ej). Hence in Fm+1//G = F0//G,

O(ΣS
0//G) ∼= O(ei + ej). Therefore we have

Pic(M0,n·ε0
) = Pic(Fm+1//G) =

n⊕

i=1

ZD
{i,i+1}
0 .

By Theorem 4.1, the contraction morphism ϕk : M0,n·εk
→ M0,n·εk−1

is the
blow-up along the union of transversally intersecting smooth subvarieties. By §2.3,
this is a composition of smooth blow-ups. In M0,n·εk

, the exceptional divisors are
DS

k for |S| = m − k + 1. So the Picard group of M0,n·εk
is

Pic(M0,n·εk
) ∼= ϕ∗kPic(M0,n·εk−1

)⊕
⊕

|S|=m−k+1

ZDS
k.

by [6, II Exe. 8.5]. For any S with |S| = 2, DS
k−1 contains the blow-up center

DS ′
k−1 if S ⊂ S ′. So ϕ∗k(DS

k−1) is the sum of DS
k and a linear combination of DS ′

k for
S ′ ⊃ S, |S ′| = m−k+1. If |S| > 2, then ϕ∗kDS

k−1 = DS
k since it does not contain any

blow-up centers. After obvious basis change, we get the desired result by induction.
Now suppose that n is even. Still the group {(a1, · · · , an) ∈ Zn|

∑
ai ∈ 2Z}

is free abelian of rank n and {ei + ei+1}1≤i≤n−1 ∪ {e1 + en−1} form a basis. In
Fm//G = F0//G, O(ΣS

m//G) ∼= O(ei + ej) when S = {i, j} with i 6= j. Hence

Pic(Fm//G) =

n−1⊕

i=1

ZD
{i,i+1}
0 ⊕ ZD

{1,n−1}
0 .

In F̃m, the unstable loci have codimension two. Therefore we have

Pic(F̃s
m) = Pic(F̃m) = π∗mPic(Fss

m)⊕
⊕

1∈S,|S|=m

ZΣ̃S
m,

where πm : F̃m → Fss
m is the blow-up morphism, and Σ̃S

m = π−1
m (ΣS

m ∩ ΣSc

m ) for
|S| = m.

By Kempf’s descent lemma, Pic(Fm+k//G) is a subgroup of Pic(Fss
m+k) and

Pic(F̃s
m+k) for 0 ≤ k ≤ m − 2. From our blow-up description, all arrows except

possibly ψ̄∗m+1 in following commutative diagram

Pic(F̃s
m+1) Pic(F̃s

m)
ψ̃∗m+1

Pic(Fss
m+1)

π∗m+1

OO

Pic(Fss
m)

ψ∗m+1
oo

π∗m

OO

Pic(Fm+1//G)

OO

Pic(Fm//G)
ψ̄∗m+1
oo

OO

are injective, and thus the bottom arrow ψ̄∗m+1 is also injective. Hence Pic(Fm+1//G)
contains the pull-back of Pic(Fm//G) as a subgroup. Also, for the quotient map
p : F̃s

m+1 → Fm+1//G, p∗DS
1 = Σ̃S

m+1 for |S| = m. Let H be the subgroup of
Pic(F̃s

m+1) generated by the images of ψ̄∗m+1Pic(Fm//G) and the divisors DS
1 with

|S| = m. By definition, the image of Pic(Fm+1//G) contains H. Now by checking
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the action of stabilizers on the fibers of line bundles, it is easy to see that no line
bundles in Pic(F̃s

m+1) − H descend to Fm+1//G. Hence we have

(16) Pic(M0,n·ε1
) = Pic(Fm+1//G) = ψ̄∗m+1Pic(Fm//G)⊕

⊕

1∈S,|S|=m

ZDS
1 .

For an S with |S| = 2, ΣS
m//G contains the blow-up center ΣS ′

m ∩ΣS ′c
m //G if S ⊂ S ′

or S ⊂ S ′c. So ψ̄∗m+1(DS
0) is the sum of DS

1 and a linear combination of divisors
DS ′

1 for S ′ ⊃ S or S ′c ⊃ S with |S ′| = m. From this and (16), we get the following
by an obvious basis change:

Pic(M0,n·ε1
) =

⊕

1∈S,|S|=m

ZDS
1 ⊕

n−1⊕

i=1

ZD
{i,i+1}
1 ⊕ ZD

{1,n−1}
1 .

The rest of the proof is identical to the odd n case and so we omit it. ¤
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