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Abstract. We prove a conjecture of Dürr, Kabanov and Okonek which pro-

vides an algebro-geometric theory of Seiberg-Witten invariants for all smooth
projective surfaces. Our main technique is the cosection localization principle

([KL1]) of virtual cycles.

1. Introduction

Recently there has been a renewed interest in Donaldson invariants and Seiberg-
Witten invariants due to the influx of virtual intersection theory. See [Moc, GNY,
DKO] for instance. The purpose of this paper is to prove a conjecture (Theorem 1.1
below) of Dürr, Kabanov and Okonek in [DKO] which provides a natural algebro-
geometric theory of Seiberg-Witten invariants. Our main technique is the cosection
localization principle in [KL1] that effectively localizes the virtual cycle when there
is a cosection of the obstruction sheaf.

In mid 1980s, Donaldson defined his famous invariants as intersection numbers
on the Uhlenbeck compactification of the space of anti-self-dual (ASD) connections
on a fixed hermitian vector bundle of rank 2 on a compact oriented 4-manifold
X ([Do1]). Because of difficulty in calculating Donaldson invariants, an algebro-
geometric theory of Donaldson invariants was highly anticipated from the begin-
ning. Donaldson proved that when the 4-manifold X is an algebraic surface over
C, there is a diffeomorphism between the space of irreducible ASD connections and
an open subset of the moduli space of Gieseker semistable sheaves of rank 2 and
given Chern classes. In 1991, J. Li ([Li]) and Morgan ([Mor]) extended Donaldson’s
diffeomorphism to a continuous map from the Gieseker moduli space of semistable
sheaves to the Uhlenbeck compactification and proved that Dondalson invariants
are intersection numbers on the Gieseker moduli space. In fact, J. Li furthermore
proved that the Uhlenbeck compactification admits a scheme structure and the
map from the Gieseker moduli space to the Uhlenbeck compactificaiton is an alge-
braic morphism. In 1993, Kronheimer and Mrowka proved the celebrated structure
theorem which expresses all the Donaldson invariants in terms of a finite number
of classes K1, · · · ,Kl ∈ H2(X,Z) and rational numbers α1, · · · , αl ∈ Q if X is of
simple type ([KM]). The condition of being a simple type roughly means that the
point insertions do not provide new information on X. The mystery of the simple
type condition, the basic classes K1, · · · ,Kl and the rational numbers α1, · · · , αl
was elucidated by the advent of Seiberg-Witten theory in 1994.

A Spinc-structure on a 4-manifold X refers to a pair of rank 2 hermitian vector
bundles E± such that detE+

∼= detE− =: L. Taking the first Chern class of
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L provides us with a bijection from the collection of all Spinc-structures on X to
H2(X,Z). Seiberg and Witten stated a pair of equations on a pair (A,ϕ) where A is
a connection on L and ϕ is a section of E+. The collection of all solutions of Seiberg-
Witten equations forms a compact topological space and Seiberg-Witten invariants
are defined as intersection numbers on the solution space. In 1994, Witten in
[Wi] conjectured that every Kähler surface X with a nontrivial holomorphic 2-form
θ ∈ H0(KX) is of simple type and that for any Kähler surface X of simple type,

(1) the basic classes K1, · · · ,Kl of Kronheimer and Mrowka satisfy

Ki · (Ki − kX) = 0 ∀i where kX = c1(T ∗X)

(2) the Seiberg-Witten invariants SW (γ) are zero if γ · (γ − kX) 6= 0;
(3) the rational numbers αi in the structure theorem of Kronheimer and Mrowka

are the Seiberg-Witten invariants SW (Ki) upto a constant which depends
only on b1(X), b±2 (X).

Furthermore, Witten showed by physical means that the calculation of Seiberg-
Witten invariants may be localized to a neighborhood of a canonical divisor when
pg(X) > 0. (See [Wi, p.12], [Do2, p.54])

When X is a Kähler surface with b1(X) = 0, it was observed by Witten ([Wi,
p.18]) that the solution space of Seiberg-Witten equations with fixed γ = c1(L) ∈
H2(X,Z) is a projective space PH0(X,L) and a theorem of Friedman and Morgan
[FM, Theorem 3.1] shows that the Seiberg-Witten invariants in this case are the
integrals of cohomology classes multiplied by the Euler class of a certain vector
bundle. Hence in the special case of b1(X) = 0, we have an algebro-geometric theory
of Seiberg-Witten invariants. Using this, T. Mochizuki in [Moc] proved a formula
that expresses the Donaldson invariants in terms of the Seiberg-Witten invariants
of surfaces with b1(X) = 0. Subsequently in [GNY], Göttsche, Nakajima and
Yoshioka proved that Mochizuki’s formula implies Witten’s conjecture for algebraic
surfaces with b1(X) = 0. However this beautiful story could not be generalized to
the case where b1(X) > 0 because we still lack in an algebro-geometric definition
of Seiberg-Witten invariants. Moreover, the proofs of Mochizuki and Göttsche-
Nakajima-Yoshioka do not seem to explain the localization behavior of Seiberg-
Witten invariants to a canonical divisor.

In 2007, Dürr, Kabanov and Okonek proved in [DKO] that if X is a smooth
projective surface and γ ∈ H2(X,Z), the Hilbert scheme HilbγX of divisors D on
X whose homology classes are γ admits a perfect obstruction theory and thus
we obtain a virtual fundamental class [HilbγX ]vir by [LT1, BF]. By integrating
cohomology classes over [HilbγX ]vir, they defined new invariants of X called the
Poincaré invariants and conjectured that the Poincaré invariants coincide with the
Seiberg-Witten invariants for algebraic surfaces. See §3 for more details. Our main
result in this paper is that the following conjecture of Dürr, Kabanov and Okonek
in [DKO] is true.

Theorem 1.1. The Poincaré invariants are the Seiberg-Witten invariants for all
smooth projective surfaces.

This theorem gives us a completely algebro-geometric definition of Seiberg-
Witten invariants for all smooth projective surfaces and can be thought of as a
natural generalization of [FM, Theorem 3.1]. Since HilbγX parameterizes embed-
ded curves, the Poincaré invariants may be viewed as “algebro-geometric Gromov
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invariants” and Theorem 1.1 may be considered as an algebraic version of Taubes’s
Theorem ([Ta]). In fact, combining Taubes’s theorem Gr = SW and Theorem 1.1,
we obtain the following.

Corollary 1.2. The Poincaré invariants are the Gromov invariants for all smooth
projective surfaces.

So we now have the equivalence of the three invariants:

Poincare ks
Thm1.1 +3

bj

Cor1.2 "*

Seiberg −Witten2:

Taubesrz
Gromov

Perhaps one may be able to give a direct proof of Corollary 1.2 by using the ma-
chinery of comparing algebraic and symplectic virtual fundamental classes. (See
e.g. [LT2, Si].) But it looks very difficult with many technical issues to be handled.
A direct proof of Corollary 1.2, combined with Taubes’s theorem, should give us
an alternative proof of Theorem 1.1 but that seems like a gigantic detour through
hard analysis, compared to our concise purely algebraic proof below.

The authors of [DKO] proved deformation invariance, a blow-up formula and wall
crossing formulas for the Poincaré invariants and reduced the proof of Theorem 1.1
to the following ([DKO, p.286]).

Theorem 1.3. Let X be a minimal surface of general type. If pg(X) > 0,

deg[HilbkXX ]vir = (−1)χ(OX)

where kX is the homology class of a canonical divisor.

The main technique for our proof of Theorem 1.1 and Theorem 1.3 is the cosec-
tion localization principle ([KL1]) which tells us that if there is a cosection

σ : ObM −→ OM
of the obstruction sheaf ObM = h1(E∨) of a perfect obstruction theory φ : E → LM
over a Deligne-Mumford stack M , then the virtual fundamental class of (M,φ)
localizes to the zero locus of σ.

We apply the principle to M = HilbγX . Let θ ∈ H0(X,KX) be a nonzero holo-
morphic 2-form on X whose vanishing locus is denoted by Z. For D ∈ HilbγX , the
obstruction space at D by [DKO] is H1(OD(D)). The connecting homomorphism
H1(OD(D))→ H2(OX) from the short exact sequence

0 −→ OX −→ OX(D) −→ OD(D) −→ 0

gives us a homomorphism

ObHilbγX ,D = H1(OD(D)) −→ H2(OX)
θ−→H2(OX(Z)) ∼= H2(KX) = C.

By relativizing, we obtain a cosection

σ : ObHilbγX −→ OHilbγX
whose vanishing locus is the closed subscheme HilbγX(Z) ⊂ HilbγX of curves D
contained in Z. Therefore the virtual fundamental class is localized to the locus of
effective divisors contained in Z and the calculation of the Poincaré invariants takes
place within the canonical divisor Z, exactly as Witten told us about localization
of Seiberg-Witten invariants mentioned above.
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When γ = kX , we will see that the vanishing locus of σ, as a scheme, consists
of exactly one reduced point Z. Hence the virtual cycle of HilbkXX is localized
to a neighborhood of the point Z. By using the results of Green and Lazarsfeld
([GL]) on deforming cohomology groups of line bundles, we will find local defining
equations near canonical divisors and show that there is a canonical divisor Z which
is a smooth point of HilbkXX such that dimTZHilb

kX
X has the same parity as χ(OX).

By [KL1, Example 2.9], this implies that the (localized) virtual cycle of HilbkXX is

(−1)χ(OX)[Z] whose degree is precisely (−1)χ(OX). This proves Theorem 1.3.
By Theorem 1.1, Mochizuki’s formula in [Moc, Chapter 7] expresses the Donald-

son invariants in terms of the Seiberg-Witten invariants. Therefore one may be able
to generalize the arguments of [GNY] to answer the following interesting question.

Question 1.4. Does Mochizuki’s formula imply Witten’s conjecture for all smooth
projective surfaces X with pg(X) > 0?

We hope to get back to this question in the future.
Give a sheaf F over a scheme Z, a cosection of F means a homomorphism

of sheaves η : F → OZ . The vanishing locus (also called zero locus), denoted by
zero(η), is the maximal subscheme T ⊂ Z such that η|T : F |T → OT vanishes.
Thus zero(η) is a closed subscheme of Z.

Acknowledgement. We are grateful to Jun Li for many useful discussions. We are
also grateful to the referee for kind suggestions which improved the presentation.

2. Localization of virtual cycles by cosections

In this section we collect necessary materials on the cosection localization prin-
ciple from [KL1].

Definition 2.1. Let M be a Deligne-Mumford stack over C. Let LM denote the
cotangent complex of M . A perfect obstruction theory on M is a morphism φ :
E → LM in the derived category Db(M) of bounded complex of coherent sheaves on
M such that

(1) E is locally isomorphic to a two-term complex of locally free sheaves con-
centrated at [−1, 0];

(2) h−1(φ) is surjective and h0(φ) is an isomorphism.

The obstruction sheaf of (M,φ) is defined as ObM = h1(E∨) where E∨ denotes the
dual of E. A cosection of the obstruction sheaf ObM is a homomorphism ObM →
OM .

By the construction in [BF, LT1], a perfect obstruction theory φ on M gives
rise to a virtual fundamental class [M ]vir and many well-known invariants (such
as Gromov-Witten and Donaldson-Thomas invariants) are defined as intersection
numbers on the virtual fundamental classes of suitable moduli spaces. The cosection
localization principle of [KL1] is a powerful technique of calculating these virtual
intersection numbers.

Theorem 2.2. ([KL1, Theorem 1.1]) Suppose there is a surjective cosection σ :
ObM |U → OU over an open U ⊂ M . Let M(σ) = M − U . Then the virtual
fundamental class localizes to M(σ) in the sense that there exists a localized virtual
fundamental class

[M ]vir
loc ∈ A∗(M(σ))
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which enjoys the usual properties of the virtual fundamental classes and such that

ı∗[M ]vir
loc = [M ]vir ∈ A∗(M) where ı : M(σ) ↪→M.

See [KL1, KL2, KL3] for direct applications of Theorem 2.2 to Gromov-Witten
invariants of surfaces. From the construction of [M ]vir

loc in [KL1], the following
excision property follows immediately.

Proposition 2.3. Let W be an open neighborhood of M(σ) in M . Then we have

[W ]vir
loc = [M ]vir

loc ∈ A∗(M(σ)).

The following special case will be useful.

Example 2.4. ([KL1, Example 2.9]) Let M be an n-dimensional smooth scheme
and E be a vector bundle of rank n on M . The zero map 0 : TM → E is a perfect
obstruction theory with obstruction sheaf E. Let σ : E → OM be a cosection such
that the scheme zero(σ) is a simple point p in M . Then [M ]vir

loc = (−1)n[p].

3. Poincaré invariants

In this section, we recall the definition of Poincaré invariants from [DKO] as
virtual intersection numbers on the Hilbert scheme HilbγX of divisors on a smooth
projective surface X with pg(X) > 0. For any nonzero θ ∈ H0(X,KX), we con-
struct a cosection σθ : ObHilbγX → OHilbγX of the obstruction sheaf and show that
the vanishing locus of σ is the locus of divisors D contained in the zero locus Z of
θ.

3.1. Perfect obstruction theory on Hilbert scheme. In this subsection, we
recall the perfect obstruction theory on the Hilbert scheme HilbγX of divisors on X
and the Poincaré invariants from [DKO].

Let X → S be a flat projective morphism of relative dimension 2 and γ ∈
H2(X ,Z). Let HilbγX/S be the relative Hilbert scheme parameterizing Cartier di-

visors D of fibers of X → S with [D] = γ ∈ H2(X ,Z). Let

D �
�

//

%%

HilbγX/S ×S X //

π

��

X

��

HilbγX/S
// S

be the universal family. Let H := HilbγX/S for simplicity. The triple (D,H×SX ,X )

induces a distinguished triangle

TD/(H×SX ) → TD/X → T(H×SX )/X
δ−→TD/H×SX [1]

of the tangent complexes which are by definition the duals of the cotangent com-
plexes. Using T(H×SX )/X ∼= π∗TH/S and TD/H×SX [1] ∼= OD(D) (because D ⊂
H×S X is a divisor), the morphism δ induces

TH/S −→ Rπ∗OD(D).

Take its dual, one obtains

(3.1) φ : (Rπ∗OD(D))∨ −→ LH/S
The following is proved in [DKO, Thm 1.7] and [DKO, Thm 1.11].
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Theorem 3.1. φ is a relative perfect obstruction theory for H = HilbγX/S → S in

the sense of [BF].

When S = SpecC and ı : D ↪→ HilbγX ×X is a Cartier divisor (e.g. when X is
smooth), we have a perfect obstruction theory on HilbγX whose obstruction sheaf
is

ObHilbγX = R1π∗OD(D)

and by [BF, LT1] we obtain a virtual fundamental class [HilbγX ]vir if X is projective.
We will see below if there is a nonzero section θ ∈ H0(KX) for smooth X, there is
a cosection

σθ : ObHilbγX −→ OHilbγX
which enables us to define the localized virtual fundamental class [HilbγX ]vir

loc sup-
ported on the zero locus Z of θ.

Let X be a smooth projective surface. Then it is easy to find that the virtual
dimension of HilbγX is precisely γ · (γ − kX) where kX = c1(KX). The Poincaré
invariants for X are now defined as intersection numbers on [HilbγX ]vir but the
precise definition is not necessary in this paper. See [DKO, §0] for the precise
definition.

It was conjectured in [DKO] that the Poincaré invariants for X coincide with
the Seiberg-Witten invariants. Furthermore, the authors of [DKO, p.286] proved
that the conjecture follows if

deg[HilbkXX ]vir = (−1)χ(OX)

for minimal surfaces of general type with pg > 0 (Theorem 1.3).

3.2. Cosection of the obstruction sheaf. Suppose pg(X) > 0 and fix a nonzero
holomorphic 2-form θ ∈ H0(X,KX) on X whose vanishing locus is denoted by Z
so that OX(Z) ∼= KX .

For D ∈ HilbγX , the obstruction space at D with respect to the perfect obstruc-
tion theory in [DKO] is H1(OD(D)). From the short exact sequence

(3.2) 0 −→ OX −→ OX(D) −→ OD(D) −→ 0

we obtain a connecting homomorphism H1(OD(D))→ H2(OX). Upon composing
with the multiplication by θ, we obtain a homomorphism
(3.3)

σθ : ObHilbγX ,D = H1(OD(D)) −→ H2(OX)
θ−→H2(OX(Z)) = H2(KX) ∼= C.

This construction can be lifted to a cosection σ : ObHilbγX → OHilbγX . Let

D �
�

//

$$

HilbγX ×X

π

��

HilbγX

be the universal family and let

(3.4) 0 −→ OHilbγX×X −→ OHilbγX×X(D) −→ OD(D) −→ 0

be the short exact sequence. By (3.1) the obstruction sheaf of HilbγX is

ObHilbγX = R1π∗OD(D).
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From (3.4), we obtain a homomorphism

R1π∗OD(D) −→ R2π∗OHilbγX×X
and by composing it with the multiplication by the pullback p∗Xθ of θ via the
projection pX : HilbγX ×X → X we obtain the cosection

(3.5) σθ : ObHilbγX
∼= R1π∗OD(D) −→ R2π∗OHilbγX×X

p∗Xθ−→R2π∗p
∗
XKX = OHilbγX

Lemma 3.2. The vanishing locus zero(σθ) is the closed subscheme

HilbγX(Z) := {D ∈ HilbγX |D ⊂ Z}.

Proof. Let ϕ : T → HilbγX be any morphism and DT = D×HilbγX T ⊂ T ×X
ρ−→T

be the pullback of the universal family. Let p : T × X → X be the projection.
Fix a nonzero section s ∈ H0(OT×X(DT )) whose vanishing locus is DT . The exact
sequence 0→ OT×X

s−→OT×X(DT )→ ODT (DT )→ 0 induces an exact sequence

R1ρ∗(ODT (DT )) −→ R2ρ∗(OT×X)
s−→R2ρ∗(OT×X(DT )) −→ R2ρ∗(ODT (DT )) = 0.

Then ϕ∗(σθ) : R1ρ∗ODT (DT )
p∗θ−→R2ρ∗p

∗KX = OT vanishes if and only if the
second arrow factors as

p∗θ : R2ρ∗(OT×X)
s−→R2ρ∗(OT×X(DT ))

f−→R2ρ∗p
∗(OX(Z)) = R2ρ∗p

∗KX

for some f. By taking the duals, we find that this is equivalent to saying that
p∗θ : ρ∗OT×X → ρ∗p

∗KX factors as

ρ∗OT×X
f∨−→ ρ∗p

∗KX(−DT )
s−→ ρ∗p

∗KX .

Let s′ ∈ H0(ρ∗p
∗KX(−DT )) be the image of the section 1 by f∨. Then p∗θ = ss′

and thus DT = zero(s) ⊂ zero(p∗θ) = T × Z, i.e. ϕ factors through HilbγX(Z).
Therefore ϕ factors through zero(σθ) if and only if it factors through HilbγX(Z).
This proves the lemma. �

By the cosection localization principle in [KL1] (see §2), we obtain the following.

Proposition 3.3. There exists a localized virtual fundamental class [HilbγX ]vir
loc ∈

A∗(Hilb
γ
X(Z)) such that ı∗[Hilb

γ
X ]vir

loc ∈ A∗(Hilb
γ
X) is the ordinary virtual funda-

mental class [HilbγX ]vir in §3.1. Furthermore, if W is an open neighborhood of Z
in HilbγX , we have [W ]vir

loc = [HilbγX ]vir
loc.

Therefore the calculation of the Poincaré invariants takes place near a canonical
divisor Z. This is consistent with Witten’s claim about localization of Seiberg-
Witten invariants to a canonical divisor ([Wi, Do2]).

Suppose γ = kX := c1(KX) ∈ H2(X,Z). Then the virtual dimension γ · (γ−kX)

of HilbγX is 0. If ϕ : T → HilbkXX (Z) is a morphism, we obtain a diagram

DT �
�

//

##

Z × T �
�

//

��

X × T

yy
T.

Since each D ∈ HilbkXX and Z have the same Hilbert polynomial, DT = Z × T
and hence the morphism T → HilbkXX (Z) factors through the reduced point {Z}.
Hence the scheme HilbkXX (Z) is simply the reduced point {Z}.
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Corollary 3.4. When γ = kX , the zero locus of the cosection σθ is the single re-
duced point {Z}. Hence the localized virtual fundamental class [HilbγX ]vir

loc of HilbγX
is supported at {Z} and the Poincaré invariant of HilbkXX is the degree of [HilbγX ]vir

loc.

4. A proof of Theorem 1.1

In this section we will prove Theorem 1.3 and thus complete a proof of Theorem
1.1. Let X be a minimal projective surface of general type with pg > 0. We

will find local defining equations of HilbkXX near canonical divisors and show that
there is a canonical divisor Z representing a smooth point of the Hilbert scheme
whose dimension at Z has the same parity as χ(OX). Then Theorem 1.3 will follow
directly from Example 2.4.

Let M = HilbkXX denote the Hilbert scheme of divisors D with c1(OX(D)) =
kX = c1(KX) ∈ H2(X,Z). Let P = PickX (X) (resp. P 0 = Pic0(X)) denote the
Picard variety of line bundles L on X with c1(L) = kX (resp. c1(L) = 0). Since a
Cartier divisor defines a line bundle, we have a natural morphism

τ : M → P

whose fiber over an L ∈ P is the complete linear system PH0(X,L). It is easy to see
that M is the fine moduli space of pairs (L, s) where L ∈ P and s ∈ H0(X,L)−{0}
where two such pairs (L, s) and (L′, s′) are isomorphic if there is an isomorphism
L
∼=−→L′ that sends s to s′.

The goal is to show that there is a smooth open subvariety in M whose dimension
has the same parity as χ(OX). Here is the idea of our proof: One picks s ∈ H0(KX)
such that s : H1(OX)→ H1(KX) has maximal rank. Then by semicontinuity, there
is an open neighborhood PU of Z = zero(s) in PH0(X,KX) where the rank of the
homomorphism H1(OX) → H1(KX) is constant so that the kernels form a vector
bundle on U . By using [GL], one can show that there is an analytic neighborhood
of PU in the above vector bundle of kernels which is isomorphic to an analytic
neighborhood of PU in M . This implies the smoothness of M at Z. The parity
follows from the fact that H1(OX)

s−→H1(KX) ∼= H1(OX)∨ is skew-symmetric.
The details are as follows.

Let T be a ball in H1(OX) ∼= Cq. Consider the isomorphism P 0 → P defined
by L 7→ L−1 ⊗ KX and the exponential map H1(OX) → P 0 that sends 0 to the
trivial line bundle OX . Let κ : T → P be the composition of T

⊂−→H1(OX) with
H1(OX)→ P 0 → P . Pulling back the universal family over P ×X by κ, we obtain
a family L → T ×X of line bundles such that L|0×X ∼= KX . Let π, ρ denote the
projections from T ×X to T and X respectively.

Let Hi(OX)T = Hi(OX)⊗OT and let D•T denote the complex

(4.1) 0 −→ H0(OX)T −→ H1(OX)T −→ H2(OX)T −→ 0

where the differentials are λ 7→ λ ∧ t for t ∈ T . The following is a special case of
[GL, Theorem 3.2].

Lemma 4.1. Under the above assumptions, we have isomorphism

(4.2) (Riπ∗(L−1 ⊗ ρ∗KX))0
∼= Hi(D•T )0

where the subscript 0 means stalk at zero.
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In [GL], the authors construct the relative Dolbeault complex A0,•
T on T × X,

which turns out to be a resolution of L−1 ⊗ ρ∗KX ([GL, Lemma 2.2]), so that

Rπ∗(L−1 ⊗ ρ∗KX) is quasi-isomorphic to A0,•
T = π∗A0,•

T . Representing Hi(OX)

by harmonic forms, one has a natural morphism D•T → A0,•
T . Then Green and

Lazarsfeld show that the morphism

(4.3) D•T −→ A0,•
T
∼= Rπ∗(L−1 ⊗ ρ∗KX)

is a quasi-isomorphism over the stalk at 0. Since the sheaves R2π∗(L−1 ⊗ ρ∗KX)
and H2(D•T ) are coherent sheaves over T , we have isomorphisms of stalks

(π∗L)0
∼= (R2π∗(L−1 ⊗ ρ∗KX))∨0

∼= H2(D•T )∨0
∼= (H2(D•T )∨)0

∼= H0(D•∨T )0

where D•∨T is the dual complex

(4.4) 0 −→ H0(KX)T
∧t−→H1(KX)T

∧t−→H2(KX)T −→ 0.

Let ιS : S → T be a morphism of analytic schemes sending a closed point s ∈ S
to 0 ∈ T and let LS be the pullback of L by ιs × idX . Let πS : S ×X → S be the
projection. Then the pullback A0,•

S of A0,•
T to S×X is a resolution of the pullback

of L−1 ⊗ ρ∗KX because L and A0,i
T are all flat over T . By repeating the same

argument, we obtain an isomorphism of stalks

(πS∗LS)s ∼= H0(D•∨S )s

where D•∨S is (4.4) with T replaced by S. In particular, for each n, we have an
isomorphism

(4.5) πTn∗LTn ∼= H0(D•∨T |Tn)

where Tn = SpecC[t1, · · · , tq]/(t1, · · · , tq)n is the nth infinitesimal neighborhood of
0 in T .

Let M̃ be the moduli functor which assigns to any ιS : S → T the set Γ(S ×
X,LS) where LS is the pullback of L by ιS × idX . By the relative Hilbert scheme

construction for L → T ×X → T , M̃ is represented by a quasi-projective scheme
over T with central fiber M̃ |0 = H0(KX). On the other hand, if we let M̃ ′ be the
moduli functor which assigns to any ιS : S → T the set Γ(S,H0(D•∨S )), then it is

easy to see that M̃ ′ is represented by the fiber product

M̃ ′ //

��

H0(KX)× T

��

T // H1(KX)× T

where the right vertical arrow is (s, t) 7→ (s ∧ t, t) and the bottom horizontal is

t 7→ (0, t). In other words, M̃ ′ is the isomorphic to

{(s, t) ∈ H0(KX)× T | s ∧ t = 0} ⊂ H0(KX)×H1(OX).

By (4.5), we find that the formal completion of M̃ along the central fiber H0(KX)

is isomorphic to the formal completion of M̃ ′ along the central fiber H0(KX).

Note that, by the definition of M̃ , M is the projectivilization of M̃ over T , i.e.
M |T = M ×P T = PM̃ .

Let us consider the map

η : H0(KX)×H1(OX) −→ H1(KX), η(s, t) = s ∧ t.
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By lower semicontinuity of rank, there is a C∗-invariant open set U of H0(KX)−{0}
where the rank of the homomorphism

ηs : H1(OX) −→ H1(KX), ηs(t) = s ∧ t
is maximal for all s ∈ U . Hence the kernel of η gives us a vector bundle over U
whose fiber of s ∈ U is ker(ηs). This implies that M̃ ′ near U × {0} is smooth of
complex dimension

dimU + dimH1(OX)− r = pg + q − r
where r is the rank of ηs for any s ∈ U . Therefore we conclude that M is smooth of
complex dimension pg+q−r−1 near the open set PU of the central fiber PH0(KX).

By Serre duality, H1(KX) ∼= H1(OX)∨ and it is easy to check that the homo-
morphism

ηs : H1(OX)
s−→H1(KX) ∼= H1(OX)∨

is skew-symmetric. Hence its rank r is even, so the parity of pg + q − r − 1 equals
that of χ(OX) = 1− q + pg. In summary we proved the following.

Proposition 4.2. Let X be a smooth minimal projective surface of general type
with pg > 0. Then there is a canonical divisor Z in X which represents a smooth

point in the Hilbert scheme HilbkXX . Furthermore, the dimension of HilbkXX at Z
has the same parity as χ(OX).

By the cosection localization in §3, the virtual cycle of HilbkXX is localized to
any open neighborhood of Z. Since Z is a smooth point, we can excise the singular
part of HilbkXX and may assume that HilbkXX is a smooth variety whose dimension
has the same parity as χ(OX). Since the virtual dimension is zero, the obstruction

sheaf is a locally free sheaf E whose rank equals the dimension of HilbkXX . Since

M = HilbkXX is smooth, 0 : TM → E is a perfect obstruction theory. Now Theorem
1.3 follows immediately from Example 2.4 and Corollary 3.4. This completes our
proof of Theorem 1.1.
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