Desingularizations of moduli spaces of rank 2 sheaves with trivial determinant

Young-Hoon Kiem Seoul National University kiem@math.snu.ac.kr

I. Vector Bundles over Curves II. Higgs Bundles over Curves III. Sheaves on K3 and Abelian Surfaces IV. Questions

I. Vector Bundles over Curves

1. Moduli space of bundles M_0

- $X = \text{smooth proj. curve of genus } g \ge 3$.
- $F \to X$ rank 2 bundle with det $F = \mathcal{O}_X$. F is *polystable* if F is stable or $F \cong L \oplus L^{-1}$ for $L \in \operatorname{Pic}^0(X) =: J$.
- $M_0 := \{ \text{polystable } F \} / \text{isom}$ admits a scheme structure such that for any vector bundle $\mathcal{F} \to S \times X$ with $\mathcal{F}|_{\{s\} \times X}$ semistable for $\forall s \in S$, the obvious map $S \to M_0$ which maps

$$s \mapsto [\operatorname{gr}(\mathcal{F}|_{\{s\} \times X})]$$

is a morphism of schemes.

• M_0 is a projective irreducible normal variety of dimension 3g - 3.

2. Stratification of M_0

- A polystable bundle F ∈ M₀ is one of the following;
 - (a) F stable
 - (b) $F \cong L \oplus L^{-1}$ with $L \ncong L^{-1}$

(c)
$$F \cong L \oplus L$$
 with $L \cong L^{-1}$

- $M_0 = M_0^s \sqcup (J/\mathbb{Z}_2 J_0) \sqcup J_0$: stratification
 - (a) M_0^s = open subset of stable bundles
 - (b) $J/\mathbb{Z}_2 = \{L \oplus L^{-1} | L \in J\}$
 - (c) $J_0 = \mathbb{Z}_2^{2g} = \{L \oplus L \mid L \cong L^{-1}\}$

- **3.** Singularities of M_0
 - (Luna's slice theorem) For polystable F, the analytic type of singularity of $F \in M_0$ is

$$H^1(\mathcal{E}nd_0(F))/\!/\operatorname{Aut}(F))$$

(a) If F is stable, then $Aut(F) = \mathbb{C}^*$ acts trivially on $H^1(\mathcal{E}nd_0(F))$. Hence M_0 is smooth at $F \in M_0$ and

$$T_F M_0 = H^1(X, \mathcal{E}nd_0(F))$$

(b) If $F = L \oplus L^{-1}$ with $L \ncong L^{-1}$, then $\operatorname{Aut}(F)/\mathbb{C}^* = \mathbb{C}^*$ and $H^1(\operatorname{End}_0(F)) \cong H^1(\mathcal{O}_X) \oplus H^1(L^2) \oplus H^1(L^{-2})$ where \mathbb{C}^* acts with weight 0, 2, -2 respectively.

\Downarrow

 M_0 is singular at $F \in M_0$ and the analytic type of the singularity is

$$H^1(L^2) \oplus H^1(L^{-2}) / / \mathbb{C}^*$$

which is the affine cone over $\mathbb{P}\left(H^{1}(L^{2}) \oplus H^{1}(L^{-2})\right) / / \mathbb{C}^{*} = \mathbb{P}^{g-2} \times \mathbb{P}^{g-2}$

 \Downarrow

By blowing up at the vertex we get a desingularization

$$\mathcal{O}_{\mathbb{P}^{g-2} imes \mathbb{P}^{g-2}}(-1,-1)$$

(c) If $F = L \oplus L$ with $L \cong L^{-1}$, then $\operatorname{Aut}(F)/\mathbb{C}^* = \mathbb{P}GL(2)$ and $H^1(\mathcal{E}nd_0(F)) \cong H^1(\mathcal{O}_X) \otimes \mathfrak{sl}(2)$ where $\mathbb{P}GL(2)$ acts by conjugation on $\mathfrak{sl}(2)$.

 \Downarrow

 M_0 is singular at $F \in M_0$ and the analytic type of the singularity is

 $H^{1}(\mathcal{O}) \otimes \mathfrak{sl}(2) / / \mathbb{P}GL(2) = \mathbb{C}^{g} \otimes \mathfrak{sl}(2) / / SL(2)$

 \Downarrow

Need three blow-ups to desingularize

• Three blow-ups before quotient

$$-W_0 = \mathbb{C}^g \otimes \mathfrak{sl}(2) \cong \operatorname{Hom}(\mathbb{C}^3, \mathbb{C}^g)$$

- W_1 = blow-up of W_0 at 0 line bundle $\mathcal{O}(-1)$ over \mathbb{P} Hom($\mathbb{C}^3, \mathbb{C}^g$)
- W_2 = blow-up of W_1 along the proper transform of Hom₁($\mathbb{C}^3, \mathbb{C}^g$)
- W_3 = blow-up of W_2 along the proper transform Δ of $\mathbb{P}\text{Hom}_2(\mathbb{C}^3, \mathbb{C}^g)$.
- W_3 is a nonsingular quasi-projective variety acted on by SL(2)
- Locus of nontrivial stabilizers in $W_3^{ss} = W_3^s$ is a divisor
- $W_3/\!/SL(2)$ is nonsingular, i.e. $\pi: W_3/\!/SL(2) \rightarrow W_0/\!/SL(2)$ is a desingularization

• π is the composition of three blow-ups $\pi : W_3/\!/SL(2) \to W_2/\!/SL(2) \to$ $\to W_1/\!/SL(2) \to W_0/\!/SL(2)$

- D_i = proper transform of exceptional divisor of i-th blow-up in $W_3/\!/SL(2)$: smooth normal crossing divisors
- $\mathcal{A} \to Gr(2,g)$ tautological rank 2 bundle $\mathcal{B} \to Gr(3,g)$ tautological rank 3 bundle
- D_1 = blow-up of projective bundle $\mathbb{P}(S^2\mathcal{B})$ along the locus of rank 1 conics
- $D_3 = \mathbb{P}^2 \times \mathbb{P}^{g-2}$ bundle over Gr(2,g)
- $D_2 = [\mathbb{P}^{g-2} \times \mathbb{P}^{g-2}$ -bundle over $bl_0 \mathbb{C}^g]/\mathbb{Z}_2$

- normal bundle of D_3 = $\mathcal{O}(-1)$ along \mathbb{P}^2 -direction
- \Rightarrow can blow down along \mathbb{P}^2 -direction of D_3
 - D_1 becomes \mathbb{P}^5 -bundle over Gr(3,g)normal bundle is $\mathcal{O}(-1)$ along \mathbb{P}^5
- \Rightarrow can blow down along the $\mathbb{P}^5\text{-direction}$
 - three desingularizations of $W_0/\!\!/SL(2)$

4. Kirwan's desingularization

- M_0 can be desingularized by 3 blow-ups along
 - i) $J_0 = \mathbb{Z}_2^{2g}$
 - ii) proper transform of J/\mathbb{Z}_2
 - iii) nonsingular subvariety Δ lying in the exceptional divisor of the first blow-up.
- $\pi: \widehat{M} \to M_0$ Kirwan desingularization Explicit description of exceptional divisors
- \widehat{M} can be blown down twice to give us three desingularizations of M_0 :

$$\widehat{M} \xrightarrow{\longrightarrow} \overline{M} \xrightarrow{\longrightarrow} \widetilde{M}$$

5. Applications

- Can compute the cohomology of \overline{M} and \widetilde{M} by using Kirwan's computation of $H^*(\widehat{M})$.
- discrepancy divisor :

$$\widehat{M} \xrightarrow{\mathbb{P}^2} \overline{2D_3} \xrightarrow{\overline{M}} \overline{M} \xrightarrow{\mathbb{P}^5} \widetilde{M} \xrightarrow{\overline{(g-2)D_2}} M_0$$

$$K_{\widetilde{M}} - \pi^* K_{M_0} = 2D_3 + 5D_1 + (g - 2)(D_2 + 3D_1 + 2D_3)$$
$$= (3g - 1)D_1 + (g - 2)D_2 + (2g - 2)D_3$$
Hence M_0 has terminal singularities.

• (Kiem-Li) Stringy E-function :

$$E_{st}(M_0) = \frac{(1-u^2v)^g(1-uv^2)^g - (uv)^{g+1}(1-u)^g(1-v)^g}{(1-uv)(1-(uv)^2)} - \frac{(uv)^{g-1}}{2} \left(\frac{(1-u)^g(1-v)^g}{1-uv} - \frac{(1+u)^g(1+v)^g}{1+uv}\right).$$

- (Kirwan) E-polynomial of $IH^*(M_0)$ $IE(M_0) = \sum_{k,p,q} (-1)^k h^{p,q} (IH^k(M_0)) u^p v^q$ $= \frac{(1-u^2v)^g (1-uv^2)^g - (uv)^{g+1} (1-u)^g (1-v)^g}{(1-uv)(1-(uv)^2)}$ $-\frac{(uv)^{g-1}}{2} (\frac{(1-u)^g (1-v)^g}{1-uv} + (-1)^{g-1} \frac{(1+u)^g (1+v)^g}{1+uv}).$
- The stringy Euler number is

$$\frac{1}{4} \cdot \chi(J_0) = \frac{1}{4} \cdot 2^{2g}$$

6. Seshadri's desingularization

• Fix
$$x_0 \in X$$
.
 $E = \operatorname{rank} 4$ bundle with det $E \cong \mathcal{O}_X$
 $0 \neq s \in E^*|_{x_0}$ quasi-parabolic structure
 $0 < a_1 < a_2 \ll 1$ parabolic weights.

- (Mehta-Seshadri)
 ∃ fine moduli space P of stable parabolic bundles of rank 4;
 P is a smooth projective variety.
- Seshadri's desingularization S is a nonsingular closed subvariety of *P*.

• Proposition (Seshadri)

Let *E* be a semistable rank 4 bundle. (1) $[\exists 0 \neq s \in E^*|_{x_0} \text{ s.t. } (E,s) \text{ is stable}]$ $\Leftrightarrow [\nexists L \in \operatorname{Pic}^0(X) \text{ s.t. } L \oplus L \hookrightarrow E]$ (2) Let $(E_1, s_1), (E_2, s_2) \in P$. Suppose dim $\operatorname{End} E_1 = \dim \operatorname{End} E_2 = 4$. Then $(E_1, s_1) \cong (E_2, s_2) \Leftrightarrow E_1 \cong E_2$

• Corollary $i: M_0^s \hookrightarrow P$ [\because for $F \in M_0^s$, $E = F \oplus F$ does not contain $L \oplus L$ for any $L \in \operatorname{Pic}^0(X)$ and $\operatorname{End}(F) = \mathfrak{gl}(2)$.]

• **Theorem** (Seshadri)

(1) $\mathbf{S} = \overline{\imath(M_0^s)}$ is the locus of (E, s), det $E = \mathcal{O}_X$ and EndE is a specialization of the algebra $M(2) = \mathfrak{gl}(2)$ of 2×2 matrices.

(2) S is a desingularization of M_0 , i.e. S is smooth and \exists morphism $\pi_S : S \to M_0$ such that $\pi_S = i^{-1}$ on M_0^s . ► Theorem (Kiem-Li) (1) \exists birational morphism $\rho_S : \widehat{M} \to \mathbf{S}$ (2) $\mathbf{S} \cong \widetilde{M}$ and ρ_S is the composition of two blow-ups $\widehat{M} \to \overline{M} \to \widetilde{M}$.

► Remark

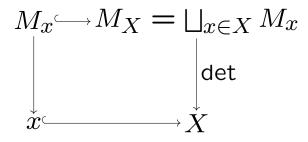
(1) is essential. (2) follows from Zariski's main theorem.

Strategy

Construct a suitable family of rank 4 semistable bundles near each point of \widehat{M} . Then use the universal property of S.

7. Moduli space of Hecke cycles

• $M_x = \{ \text{stable } F \text{ of rank } 2, \det F \cong \mathcal{O}(-x) \} / \text{iso}$



- For $F \in M_0^s$ and $\nu \in \mathbb{P}F^*|_x$, let $F^{\nu} := \ker(F \longrightarrow F|_x \xrightarrow{\nu} \mathbb{C}) \in M_x$ Define $\theta_x : \mathbb{P}F_x^* \hookrightarrow M_x$ by $\theta_x(\nu) = F^{\nu}$ $\mathbb{P}F^* \xrightarrow{\theta} M_X$ $\bigvee \det$
- $\Phi: M_0^s \to \text{Hilb}(M_X), \quad \Phi(F) = \theta(\mathbb{P}F^*)$ is an open immersion with Hilbert polynomial P(n) = (4n+1)(4n-1)(g-1) $\mathcal{O}_{M_X}(1) = K_{\det}^* \otimes (\det)^* K_X$: ample on M_X

▶ Definition (Narasimhan-Ramanan) $N := \overline{\Phi(M_0^s)} = \text{irreducible component of Hilb}(M_X)$ containing $\Phi(M_0^s)$. A cycle in N is called a Hecke cycle and N is called the moduli of Hecke cycles.

► Theorem (Narasimhan-Ramanan) N is a nonsingular variety and $\exists \pi_N : \mathbf{N} \to M_0$, which is an isomorphism over M_0^s .

▶ Theorem (Choe-Choy-Kiem) (1) \exists birational morphism $\rho_N : \widehat{M} \to \mathbf{N}$ (2) $\mathbf{N} \cong \overline{M}$ and ρ_N is $\widehat{M} \to \overline{M}$.

Strategy

Construct a family of Hecke cycles near each point of \widehat{M} . Then use the universal property of N.

II. Higgs Bundles over Curves

1. Higgs pairs

- $V = \operatorname{rank} 2$ bundle with det $V \cong \mathcal{O}_X$ $\phi \in H^0(\operatorname{End}_0 V \otimes K_X)$ $(V, \phi) = \operatorname{an} SL(2)$ -Higgs bundle
- (V, ϕ) is polystable if stable or $(V, \phi) = (L, \psi) \oplus (L^{-1}, -\psi)$ for $(L, \psi) \in T^*J$
- M = {polystable pairs (V, φ)}/isom admits a structure of irreducible normal quasiprojective variety of dimension 6g - 6
- stratification of M $\mathbf{M} = \mathbf{M}^{s} \sqcup (T^{*}J/\mathbb{Z}_{2} - J_{0}) \sqcup J_{0}$

2. Singularities of ${\rm M}$

- (a) \mathbf{M}^{s} is smooth, equipped with a (holomorphic) symplectic form, i.e. \mathbf{M}^{s} is hyperkähler.
 - (Kiem-Yoo) can compute E(M^s) by carefully working out the subvarieties corresponding to all possible types of V
- (b) (Simpson) Singularities along $T^*J/\mathbb{Z}_2 J_0$ $\mathbb{H}^{g-1} \otimes_{\mathbb{C}} \mathbb{C}^2 / / / \mathbb{C}^*$ where \mathbb{C}^* acts on \mathbb{C}^2 with weights 1, -1
 - desingularized by blowing up at the vertex of the cone:

$$\mathcal{O}(-1) \to \mathbb{P}(T^* \mathbb{P}^{g-2})$$

where $\mathbb{P}(T^*\mathbb{P}^{g-2})$ is \mathbb{P}^{g-3} -bundle on \mathbb{P}^{g-2} ; a holomorphic contact manifold

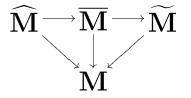
(c) (Simpson) Singularities along J_0 is $\mathbb{H}^g \otimes_{\mathbb{C}} \mathfrak{sl}(2)/\!/\!/SL(2)$

• (O'Grady) desingularized by 3 blow-ups

three exceptional divisors of the desingularization are smooth normal crossing
can describe the divisors and their intersections explicitly

3. Desingularizations of ${\rm M}$

- $\bullet\,\,{\bf M}$ is desingularized by three blow-ups along
 - i) *J*₀
 - ii) proper transform of T^*J/\mathbb{Z}_2
 - iii) nonsingular subvariety lying in the exceptional divisor of the first blow-up
 - \Rightarrow Kirwan desingularization $\pi: \widehat{\mathbf{M}} \rightarrow \mathbf{M}$.
- $\bullet\,$ can blow down $\widehat{\mathbf{M}}$ twice to give three desingularizations of \mathbf{M}



4. Application

• The discrepancy divisor is $(g \ge 3)$

 $K_{\widehat{\mathbf{M}}} = (6g-7)D_1 + (2g-4)D_2 + (4g-6)D_3.$

- Question Does there exist a (holomorphic) symplectic desingularization of \mathbf{M} ?
- <u>Kontsevich's theorem</u>: If there is a crepant (=symplectic) resolution of M, $E_{st}(M)$ is a polynomial with integer coefficients.
- (Kiem-Yoo) can give an explicit formula of E_{st}(M) and prove that it is not a polynomial with integer coefficients for g ≥ 3.
 ⇒ ∄ symplectic desingularization for g ≥ 3
- For g = 2, \exists symplectic desing.

III. Sheaves on K3 and Abelian Surfaces

1. Moduli space of rank 2 sheaves

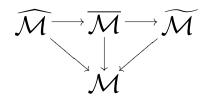
- S = K3 or Abelian surface, generic $\mathcal{O}_S(1)$
- $F = \operatorname{rank} 2$ torsion-free sheaf with $c_1(F) = 0$ and $c_2(F) = 2n$ for $n \ge 2$
- $\mathcal{M} = \mathcal{M}_S(2, 0, 2n) = \{\text{polystable sheaves } F\} / \sim$ admits a structure of irreducible normal projective variety of dimension 8n - 6 (K3) or 8n + 2 (Abelian)
- stratification of \mathcal{M} $\mathcal{M} = \mathcal{M}^{s} \sqcup (\Sigma - \Omega) \sqcup \Omega$ where $\Omega = S^{[n]}, \Sigma = \operatorname{Sym}^{2}(S^{[n]})$ (K3 case) or $\Omega = S^{[n]} \times \hat{S}, \Sigma = \operatorname{Sym}^{2}(S^{[n]} \times \hat{S})$ (Abelian)

2. Singularities of $\ensuremath{\mathcal{M}}$

- (a) (Mukai) \mathcal{M}^s is smooth, equipped with a (holomorphic) symplectic form, i.e. \mathcal{M}^s is hyperkähler.
- (b) (O'Grady) Singularities along $\Sigma \Omega$ $\mathbb{H}^{n-1} \otimes_{\mathbb{C}} \mathbb{C}^2 / / / \mathbb{C}^*$ where \mathbb{C}^* acts on \mathbb{C}^2 with weights 1, -1
- (c) Singularities along Ω is $\mathbb{H}^n \otimes_{\mathbb{C}} \mathfrak{sl}(2)/\!//SL(2)$
 - desingularized by 3 blow-ups
 - three exceptional divisors of the desingularization are smooth normal crossing
 can describe the divisors and their intersections explicitly

3. Desingularizations of $\ensuremath{\mathcal{M}}$

- \mathcal{M} is desingularized by three blow-ups \Rightarrow Kirwan desingularization $\pi : \widehat{\mathcal{M}} \rightarrow \mathcal{M}$.
- can blow down $\widehat{\mathcal{M}}$ twice to give three desingularizations of $\mathcal M$



- (O'Grady) When dim M = 10, M is a symplectic desingularization of M.
 ⇒ 2 new irreducible symplectic manifolds!
- Question (O'Grady) Does there exist a symplectic (or crepant) desingularization of \mathcal{M} when dim $\mathcal{M} > 10$?

- (Choy-Kiem) can give an explicit formula of E_{st}(M) E(M^s) and prove that E_{st}(M) is not a polynomial when dim M > 10.
 ⇒ ∄ symplectic desingularization when dim M > 10 by Kontsevich's theorem.
- Kaledin-Lehn-Sorger proved this nonexistence result by showing \mathbb{Q} -factoriality of \mathcal{M} .

IV. Questions

• Are the desingularizations

 $\overline{\mathbf{M}}, \widetilde{\mathbf{M}} \text{ of } \mathbf{M} \quad \text{ and } \quad \overline{\mathcal{M}}, \widetilde{\mathcal{M}} \text{ of } \mathcal{M}$

moduli spaces of some natural classes of objects as in the curve case?

[Choy proved that $\widetilde{\mathcal{M}}$ is the moduli space analogous to Seshadri's.]

- When does the stringy E-function $E_{st}(Y)$ of a projective (singular) variety Y coincide with the E-polynomial IE(Y) of intersection cohomology $IH^*(Y)$?
- What is the equivariant version $E_{st}(Y,G)$ of stringy E-function when a reductive group G is acting on a (singular) variety Y?

Thank you!!