Desingularizations of moduli

 spaces of rank 2 sheaves with trivial determinantYoung-Hoon Kiem
Seoul National University kiem@math.snu.ac.kr
I. Vector Bundles over Curves
II. Higgs Bundles over Curves
III. Sheaves on K3 and Abelian Surfaces
IV. Questions

I. Vector Bundles over Curves

1. Moduli space of bundles M_{0}

- $X=$ smooth proj. curve of genus $g \geq 3$.
- $F \rightarrow X$ rank 2 bundle with $\operatorname{det} F=\mathcal{O}_{X}$. F is polystable if F is stable or $F \cong L \oplus L^{-1}$ for $L \in \operatorname{Pic}^{0}(X)=: J$.
- $M_{0}:=\{$ polystable $F\} /$ isom admits a scheme structure such that for any vector bundle $\mathcal{F} \rightarrow S \times X$ with $\left.\mathcal{F}\right|_{\{s\} \times X}$ semistable for $\forall s \in S$, the obvious map $S \rightarrow M_{0}$ which maps

$$
s \mapsto\left[\operatorname{gr}\left(\left.\mathcal{F}\right|_{\{s\} \times X}\right)\right]
$$

is a morphism of schemes.

- M_{0} is a projective irreducible normal variety of dimension $3 g-3$.

2. Stratification of M_{0}

- A polystable bundle $F \in M_{0}$ is one of the following;
(a) F stable
(b) $F \cong L \oplus L^{-1}$ with $L \nsubseteq L^{-1}$
(c) $F \cong L \oplus L$ with $L \cong L^{-1}$
- $M_{0}=M_{0}^{s} \sqcup\left(J / \mathbb{Z}_{2}-J_{0}\right) \sqcup J_{0}$: stratification
(a) $M_{0}^{s}=$ open subset of stable bundles
(b) $J / \mathbb{Z}_{2}=\left\{L \oplus L^{-1} \mid L \in J\right\}$
(c) $J_{0}=\mathbb{Z}_{2}^{2 g}=\left\{L \oplus L \mid L \cong L^{-1}\right\}$

3. Singularities of M_{0}

- (Luna's slice theorem) For polystable F, the analytic type of singularity of $F \in M_{0}$ is

$$
H^{1}\left(\mathcal{E} n d_{0}(F)\right) / / \operatorname{Aut}(F)
$$

(a) If F is stable, then $\operatorname{Aut}(F)=\mathbb{C}^{*}$ acts trivially on $H^{1}\left(\mathcal{E} n d_{0}(F)\right)$. Hence M_{0} is smooth at $F \in M_{0}$ and

$$
T_{F} M_{0}=H^{1}\left(X, \mathcal{E} n d_{0}(F)\right)
$$

(b) If $F=L \oplus L^{-1}$ with $L \nsubseteq L^{-1}$, then

$$
\operatorname{Aut}(F) / \mathbb{C}^{*}=\mathbb{C}^{*} \quad \text { and }
$$

$$
H^{1}\left(\mathcal{E} n d_{0}(F)\right) \cong H^{1}\left(\mathcal{O}_{X}\right) \oplus H^{1}\left(L^{2}\right) \oplus H^{1}\left(L^{-2}\right)
$$

where \mathbb{C}^{*} acts with weight $0,2,-2$ respectively.
\Downarrow
M_{0} is singular at $F \in M_{0}$ and the analytic type of the singularity is

$$
H^{1}\left(L^{2}\right) \oplus H^{1}\left(L^{-2}\right) / / \mathbb{C}^{*}
$$

which is the affine cone over

$$
\mathbb{P}\left(H^{1}\left(L^{2}\right) \oplus H^{1}\left(L^{-2}\right)\right) / / \mathbb{C}^{*}=\mathbb{P}^{g-2} \times \mathbb{P}^{g-2}
$$

\Downarrow

By blowing up at the vertex we get a desingularization

$$
\mathcal{O}_{\mathbb{P}^{g-2} \times \mathbb{P}^{g-2}}(-1,-1)
$$

(c) If $F=L \oplus L$ with $L \cong L^{-1}$, then

$$
\begin{gathered}
\operatorname{Aut}(F) / \mathbb{C}^{*}=\mathbb{P} G L(2) \quad \text { and } \\
H^{1}\left(\mathcal{E} n d_{0}(F)\right) \cong H^{1}\left(\mathcal{O}_{X}\right) \otimes \mathfrak{s l}(2)
\end{gathered}
$$

where $\mathbb{P} G L(2)$ acts by conjugation on $\mathfrak{s l}(2)$.

M_{0} is singular at $F \in M_{0}$ and the analytic type of the singularity is
$H^{1}(\mathcal{O}) \otimes \mathfrak{s l}(2) / / \mathbb{P} G L(2)=\mathbb{C}^{g} \otimes \mathfrak{s l}(2) / / S L(2)$
\Downarrow

Need three blow-ups to desingularize

- Three blow-ups before quotient
$-W_{0}=\mathbb{C}^{g} \otimes \mathfrak{s l}(2) \cong \operatorname{Hom}\left(\mathbb{C}^{3}, \mathbb{C}^{g}\right)$
- $W_{1}=$ blow-up of W_{0} at 0 line bundle $\mathcal{O}(-1)$ over $\mathbb{P H o m}\left(\mathbb{C}^{3}, \mathbb{C}^{g}\right)$
- W_{2} = blow-up of W_{1} along the proper transform of $\operatorname{Hom}_{1}\left(\mathbb{C}^{3}, \mathbb{C}^{g}\right)$
- $W_{3}=$ blow-up of W_{2} along the proper transform Δ of $\mathbb{P} \operatorname{Hom}_{2}\left(\mathbb{C}^{3}, \mathbb{C}^{g}\right)$.
- W_{3} is a nonsingular quasi-projective variety acted on by $S L(2)$
- Locus of nontrivial stabilizers in $W_{3}^{s s}=W_{3}^{s}$ is a divisor
- $W_{3} / / S L(2)$ is nonsingular, i.e. $\pi: W_{3} / / S L(2) \rightarrow W_{0} / / S L(2)$
is a desingularization
- π is the composition of three blow-ups

$$
\begin{gathered}
\pi: W_{3} / / S L(2) \rightarrow W_{2} / / S L(2) \rightarrow \\
\quad \rightarrow W_{1} / / S L(2) \rightarrow W_{0} / / S L(2)
\end{gathered}
$$

- $D_{i}=$ proper transform of exceptional divisor of i-th blow-up in $W_{3} / / S L(2)$: smooth normal crossing divisors
- $\mathcal{A} \rightarrow \operatorname{Gr}(2, g)$ tautological rank 2 bundle $\mathcal{B} \rightarrow \operatorname{Gr}(3, g)$ tautological rank 3 bundle
- $D_{1}=$ blow-up of projective bundle $\mathbb{P}\left(S^{2} \mathcal{B}\right)$ along the locus of rank 1 conics
- $D_{3}=\mathbb{P}^{2} \times \mathbb{P}^{g-2}$ bundle over $\operatorname{Gr}(2, g)$
- $D_{2}=\left[\mathbb{P}^{g-2} \times \mathbb{P}^{g-2}\right.$-bundle over bl $\left._{0} \mathbb{C}^{g}\right] / \mathbb{Z}_{2}$
- normal bundle of D_{3}
$=\mathcal{O}(-1)$ along \mathbb{P}^{2}-direction
\Rightarrow can blow down along \mathbb{P}^{2}-direction of D_{3}
- D_{1} becomes \mathbb{P}^{5}-bundle over $\operatorname{Gr}(3, g)$ normal bundle is $\mathcal{O}(-1)$ along \mathbb{P}^{5}
\Rightarrow can blow down along the \mathbb{P}^{5}-direction
- three desingularizations of $W_{0} / / S L(2)$

4. Kirwan's desingularization

- M_{0} can be desingularized by 3 blow-ups along
i) $J_{0}=\mathbb{Z}_{2}^{2 g}$
ii) proper transform of J / \mathbb{Z}_{2}
iii) nonsingular subvariety Δ lying in the exceptional divisor of the first blow-up.
- $\pi: \widehat{M} \rightarrow M_{0}$ Kirwan desingularization Explicit description of exceptional divisors
- \widehat{M} can be blown down twice to give us three desingularizations of M_{0} :

5. Applications

- Can compute the cohomology of \bar{M} and \widetilde{M} by using Kirwan's computation of $H^{*}(\widehat{M})$.
- discrepancy divisor :

$$
\begin{gathered}
\widehat{M} \xrightarrow[2 D_{3}]{\frac{\mathbb{P}^{2}}{M}} \bar{M} \frac{\mathbb{P}^{5}}{5 D_{1}} \widetilde{M} \xrightarrow[(g-2) \widetilde{D}_{2}]{ } M_{0} \\
K_{\widetilde{M}}-\pi^{*} K_{M_{0}}=2 D_{3}+5 D_{1}+ \\
+(g-2)\left(D_{2}+3 D_{1}+2 D_{3}\right) \\
=(3 g-1) D_{1}+(g-2) D_{2}+(2 g-2) D_{3}
\end{gathered}
$$

Hence M_{0} has terminal singularities.

- (Kiem-Li) Stringy E-function :

$$
\begin{gathered}
E_{s t}\left(M_{0}\right)= \\
\frac{\left(1-u^{2} v\right)^{g}\left(1-u v^{2}\right)^{g}-(u v)^{g+1}(1-u)^{g}(1-v)^{g}}{(1-u v)\left(1-(u v)^{2}\right)} \\
-\frac{(u v)^{g-1}}{2}\left(\frac{(1-u)^{g}(1-v)^{g}}{1-u v}-\frac{(1+u)^{g}(1+v)^{g}}{1+u v}\right) .
\end{gathered}
$$

- (Kirwan) E-polynomial of $I H^{*}\left(M_{0}\right)$

$$
\begin{gathered}
I E\left(M_{0}\right)=\sum_{k, p, q}(-1)^{k} h^{p, q}\left(I H^{k}\left(M_{0}\right)\right) u^{p} v^{q} \\
=\frac{\left(1-u^{2} v\right)^{g}\left(1-u v^{2}\right)^{g}-(u v)^{g+1}(1-u)^{g}(1-v)^{g}}{(1-u v)\left(1-(u v)^{2}\right)} \\
-\frac{(u v)^{g-1}}{2}\left(\frac{(1-u)^{g}(1-v)^{g}}{1-u v}+(-1)^{g-1} \frac{(1+u)^{g}(1+v)^{g}}{1+u v}\right) .
\end{gathered}
$$

- The stringy Euler number is

$$
\frac{1}{4} \cdot \chi\left(J_{0}\right)=\frac{1}{4} \cdot 2^{2 g}
$$

6. Seshadri's desingularization

- Fix $x_{0} \in X$.
$E=$ rank 4 bundle with det $E \cong \mathcal{O}_{X}$
$0 \neq\left. s \in E^{*}\right|_{x_{0}}$ quasi-parabolic structure
$0<a_{1}<a_{2} \ll 1$ parabolic weights.
- (Mehta-Seshadri)
\exists fine moduli space P of stable parabolic bundles of rank 4;
P is a smooth projective variety.
- Seshadri's desingularization \mathbf{S} is a nonsingular closed subvariety of P.
- Proposition (Seshadri)

Let E be a semistable rank 4 bundle.
(1) $\left[\exists 0 \neq\left. s \in E^{*}\right|_{x_{0}}\right.$ s.t. (E, s) is stable]
$\Leftrightarrow\left[\nexists L \in \operatorname{Pic}^{0}(X)\right.$ s.t. $\left.L \oplus L \hookrightarrow E\right]$
(2) Let $\left(E_{1}, s_{1}\right),\left(E_{2}, s_{2}\right) \in P$.

Suppose $\operatorname{dim} E n d E_{1}=\operatorname{dim} E n d E_{2}=4$. Then $\left(E_{1}, s_{1}\right) \cong\left(E_{2}, s_{2}\right) \Leftrightarrow E_{1} \cong E_{2}$

- Corollary $\quad \imath: M_{0}^{S} \hookrightarrow P$
[\because for $F \in M_{0}^{s}, E=F \oplus F$ does not contain $L \oplus L$ for any $L \in \operatorname{Pic}^{0}(X)$ and $\operatorname{End}(F)=$ $\mathfrak{g l (2) .]}$
- Theorem (Seshadri)
(1) $\mathrm{S}=\overline{\imath\left(M_{0}^{S}\right)}$ is the locus of (E, s), det $E=$ \mathcal{O}_{X} and End E is a specialization of the algebra $M(2)=\mathfrak{g l}(2)$ of 2×2 matrices.
(2) S is a desingularization of M_{0}, i.e. S is smooth and \exists morphism $\pi_{S}: \mathrm{S} \rightarrow M_{0}$ such that $\pi_{S}=\imath^{-1}$ on M_{0}^{s}.
- Theorem (Kiem-Li)
(1) \exists birational morphism $\rho_{S}: \widehat{M} \rightarrow \mathbf{S}$
(2) $\mathrm{S} \cong \widetilde{M}$ and ρ_{S} is the composition of two blow-ups $\widehat{M} \rightarrow \bar{M} \rightarrow \widetilde{M}$.

- Remark

(1) is essential. (2) follows from Zariski's main theorem.

- Strategy

Construct a suitable family of rank 4 semistable bundles near each point of \widehat{M}. Then use the universal property of \mathbf{S}.

7. Moduli space of Hecke cycles

- $M_{x}=\{$ stable F of rank 2, det $F \cong \mathcal{O}(-x)\} /$ iso

- For $F \in M_{0}^{S}$ and $\left.\nu \in \mathbb{P} F^{*}\right|_{x}$, let

$$
F^{\nu}:=\operatorname{ker}\left(\left.F \longrightarrow F\right|_{x} ^{\nu_{>}} \mathbb{C}\right) \in M_{x}
$$

Define $\theta_{x}: \mathbb{P} F_{x}^{*} \hookrightarrow M_{x}$ by $\theta_{x}(\nu)=F^{\nu}$

- $\Phi: M_{0}^{S} \rightarrow \operatorname{Hilb}\left(M_{X}\right), \quad \Phi(F)=\theta\left(\mathbb{P} F^{*}\right)$ is an open immersion with Hilbert polynomial $P(n)=(4 n+1)(4 n-1)(g-1)$ $\mathcal{O}_{M_{X}}(1)=K_{\text {det }}^{*} \otimes(\mathrm{det})^{*} K_{X}:$ ample on M_{X}
- Definition (Narasimhan-Ramanan)
$\mathbf{N}:=\bar{\Phi}\left(M_{0}^{S}\right)=$ irreducible component of $\operatorname{Hilb}\left(M_{X}\right)$ containing $\Phi\left(M_{0}^{S}\right)$. A cycle in N is called a Hecke cycle and \mathbf{N} is called the moduli of Hecke cycles.
- Theorem (Narasimhan-Ramanan) N is a nonsingular variety and $\exists \pi_{N}: \mathbf{N} \rightarrow M_{0}$, which is an isomorphism over M_{0}^{s}.
- Theorem (Choe-Choy-Kiem)
(1) \exists birational morphism $\rho_{N}: \widehat{M} \rightarrow \mathbf{N}$
(2) $\mathrm{N} \cong \bar{M}$ and ρ_{N} is $\widehat{M} \rightarrow \bar{M}$.
- Strategy

Construct a family of Hecke cycles near each point of \widehat{M}. Then use the universal property of N .

II. Higgs Bundles over Curves

1. Higgs pairs

- $V=$ rank 2 bundle with $\operatorname{det} V \cong \mathcal{O}_{X}$ $\phi \in H^{0}\left(\right.$ End $\left._{0} V \otimes K_{X}\right)$
(V, ϕ) $=$ an $S L(2)$-Higgs bundle
- (V, ϕ) is polystable if stable or $(V, \phi)=(L, \psi) \oplus\left(L^{-1},-\psi\right)$ for $(L, \psi) \in T^{*} J$
- $\mathbf{M}=\{$ polystable pairs $(V, \phi)\} /$ isom admits a structure of irreducible normal quasiprojective variety of dimension $6 g-6$
- stratification of M
$\mathbf{M}=\mathbf{M}^{s} \sqcup\left(T^{*} J / \mathbb{Z}_{2}-J_{0}\right) \sqcup J_{0}$

2. Singularities of M

(a) M^{s} is smooth, equipped with a (holomorphic) symplectic form, i.e. \mathbf{M}^{s} is hyperkähler.

- (Kiem-Yoo) can compute $E\left(\mathrm{M}^{s}\right)$ by carefully working out the subvarieties corresponding to all possible types of V
(b) (Simpson) Singularities along $T^{*} J / \mathbb{Z}_{2}-J_{0}$

$$
\mathbb{H}^{g-1} \otimes_{\mathbb{C}} \mathbb{C}^{2} / / / \mathbb{C}^{*}
$$

where \mathbb{C}^{*} acts on \mathbb{C}^{2} with weights $1,-1$

- desingularized by blowing up at the vertex of the cone:

$$
\mathcal{O}(-1) \rightarrow \mathbb{P}\left(T^{*} \mathbb{P}^{g-2}\right)
$$

where $\mathbb{P}\left(T^{*} \mathbb{P}^{g-2}\right)$ is \mathbb{P}^{g-3}-bundle on \mathbb{P}^{g-2};
a holomorphic contact manifold
(c) (Simpson) Singularities along J_{0} is

$$
\mathbb{H}^{g} \otimes_{\mathbb{C}} \mathfrak{s l}(2) / / / S L(2)
$$

- (O'Grady) desingularized by 3 blow-ups
- three exceptional divisors of the desingularization are smooth normal crossing
- can describe the divisors and their intersections explicitly

3. Desingularizations of M

- M is desingularized by three blow-ups along
i) J_{0}
ii) proper transform of $T^{*} J / \mathbb{Z}_{2}$
iii) nonsingular subvariety lying in the exceptional divisor of the first blow-up
\Rightarrow Kirwan desingularization $\pi: \widehat{\mathrm{M}} \rightarrow \mathrm{M}$.
- can blow down \widehat{M} twice to give three desingularizations of M

4. Application

- The discrepancy divisor is $(g \geq 3)$

$$
K_{\widehat{\mathbf{M}}}=(6 g-7) D_{1}+(2 g-4) D_{2}+(4 g-6) D_{3}
$$

- Question

Does there exist a (holomorphic) symplectic desingularization of \mathbf{M} ?

- Kontsevich's theorem: If there is a crepant (=symplectic) resolution of $\mathbf{M}, E_{s t}(\mathbf{M})$ is a polynomial with integer coefficients.
- (Kiem-Yoo) can give an explicit formula of $E_{s t}(\mathbf{M})$ and prove that it is not a polynomial with integer coefficients for $g \geq 3$.
$\Rightarrow \nexists$ symplectic desingularization for $g \geq 3$
- For $g=2, \exists$ symplectic desing.

III. Sheaves on K3 and Abelian Surfaces

1. Moduli space of rank 2 sheaves

- $S=$ K3 or Abelian surface, generic $\mathcal{O}_{S}(1)$
- $F=$ rank 2 torsion-free sheaf with
$c_{1}(F)=0$ and $c_{2}(F)=2 n$ for $n \geq 2$
- $\mathcal{M}=\mathcal{M}_{S}(2,0,2 n)=\{$ polystable sheaves $F\} / \sim$ admits a structure of irreducible normal projective variety of dimension $8 n-6$ (K3) or $8 n+2$ (Abelian)
- stratification of \mathcal{M}
$\mathcal{M}=\mathcal{M}^{s} \sqcup(\Sigma-\Omega) \sqcup \Omega$
where $\Omega=S^{[n]}, \Sigma=\operatorname{Sym}^{2}\left(S^{[n]}\right)$ (K3 case)
or $\Omega=S^{[n]} \times \widehat{S}, \Sigma=\operatorname{Sym}^{2}\left(S^{[n]} \times \widehat{S}\right)$ (Abelian)

2. Singularities of \mathcal{M}
(a) (Mukai) \mathcal{M}^{s} is smooth, equipped with a (holomorphic) symplectic form, i.e.
\mathcal{M}^{s} is hyperkähler.
(b) (O^{\prime} Grady) Singularities along $\Sigma-\Omega$

$$
\mathbb{H}^{n-1} \otimes_{\mathbb{C}} \mathbb{C}^{2} / / / \mathbb{C}^{*}
$$

where \mathbb{C}^{*} acts on \mathbb{C}^{2} with weights $1,-1$
(c) Singularities along Ω is

$$
\mathbb{H}^{n} \otimes_{\mathbb{C}} \mathfrak{s l}(2) / / / S L(2)
$$

- desingularized by 3 blow-ups
- - three exceptional divisors of the desingularization are smooth normal crossing
- can describe the divisors and their intersections explicitly

3. Desingularizations of \mathcal{M}

- \mathcal{M} is desingularized by three blow-ups \Rightarrow Kirwan desingularization $\pi: \widehat{\mathcal{M}} \rightarrow \mathcal{M}$.
- can blow down $\widehat{\mathcal{M}}$ twice to give three desingularizations of \mathcal{M}

- (O'Grady) When $\operatorname{dim} \mathcal{M}=10, \widetilde{\mathcal{M}}$ is a symplectic desingularization of \mathcal{M}.
$\Rightarrow 2$ new irreducible symplectic manifolds!
- Question (O'Grady)

Does there exist a symplectic (or crepant) desingularization of \mathcal{M} when $\operatorname{dim} \mathcal{M}>10$?

- (Choy-Kiem) can give an explicit formula of $E_{s t}(\mathcal{M})-E\left(\mathcal{M}^{s}\right)$ and prove that $E_{s t}(\mathcal{M})$ is not a polynomial when $\operatorname{dim} \mathcal{M}>10$.
$\Rightarrow \nexists$ symplectic desingularization when $\operatorname{dim} \mathcal{M}>10$ by Kontsevich's theorem.
- Kaledin-Lehn-Sorger proved this nonexistence result by showing \mathbb{Q}-factoriality of \mathcal{M}.

IV. Questions

- Are the desingularizations

$\overline{\mathrm{M}}, \widetilde{\mathrm{M}}$ of $\mathrm{M} \quad$ and $\quad \overline{\mathcal{M}}, \widetilde{\mathcal{M}}$ of \mathcal{M}

moduli spaces of some natural classes of objects as in the curve case?
[Choy proved that $\widetilde{\mathcal{M}}$ is the moduli space analogous to Seshadri's.]

- When does the stringy E-function $E_{s t}(Y)$ of a projective (singular) variety Y coincide with the E-polynomial $I E(Y)$ of intersection cohomology $I H^{*}(Y)$?
- What is the equivariant version $E_{s t}(Y, G)$ of stringy E-function when a reductive group G is acting on a (singular) variety Y ?

Thank you!!

