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§1. What is a curve?
k = k̄, chark = 0, kn = k× · · · × k.

[1] Curves in kn?
(a) By ideals.

• circle of radius 1 ⇔ x2 + y2 = 1

• line through O, direction (1,2,4) ⇔ y = 2x, z = 4x
But some would say y = 2x, z = 2y,
or others y + z = 6x,8x+ 2y = 3z.

• Reconciliation? Ideal!
They are different sets of generators of the same ideal.



Algebraic variety in kn

= zero set of a finite number of polynomials in k[x1, · · · , xn]

= zero set of an ideal in k[x1, · · · , xn]

Hilbert’s Nullstellensatz says there is a 1-1 correspondence

{algebraic varieties in kn} ⇔ {radical ideals in k[x1, · · · , xn]}

given by V → I(V ) = {f ∈ k[x1, · · · , xn] | f(V ) = 0},
Z(J) = {x ∈ kn | f(x) = 0∀f ∈ J} ← J.

Def: A curve in kn is an algebraic variety of dimension 1.

. tr.degk k[x1, · · · , xn]/I(V ) = 1.



(b) By maps (parameterized curves).

• line through O, direction (1,2,4) ⇔ x = t, y = 2t, z = 4t

• circle of radius 1 ⇔ x = 2t
1+t2

, y = 1−t2
1+t2

But some would say x = cos θ, y = sin θ,

or others x = cos(logu), y = sin(logu).

• Reconciliation? Reparametrization!

A curve should be thought of as an equivalence class of

parameterized curves modulo reparametrization.



Def: A curve in kn is an equivalence class of maps f : k → kn

modulo the automorphism group of the domain Aut(k).

(c) By modules.

J = ideal of a curve ⇒ M = k[x1, · · · , xn]/J is a module over the

ring k[x1, · · · , xn].

Def: A curve in kn is a module M over the ring k[x1, · · · , xn]

whose associated prime ideals have dimension 1 and ...

(d) There are many other ways to define curves.



[2] Curves in Pn?
Pn = kn+1 − {0}/k∗ = {(x0 : · · · : xn) |not all zero}
Pn = ∪ni=0Ui, Ui = {x0

xi
: · · · : xnxi )}

∼= kn.
A projective variety in Pn is the common zero locus of homoge-
neous polynomials.

(a) By ideals : A projective curve in Pn is defined as curves in Ui
which coincide on intersections Ui ∩ Uj, i.e. compatible ideals Ji
for each i, i.e. an ideal sheafJ .

(b) By maps : A projective curve in Pn is defined as an equiva-
lence class of polynomial maps f : C → Pn modulo Aut(C) where
C is an abstract curve.

(c) By modules : A projective curve in Pn is defined as the sheaf
of modules OPn/J .



§2. Curve counting invariants.

Question: How many conics (=degree 2 curves) in P2 pass

through five general points in P2?

Answer: 1

A conic is given by a quadratic polynomial

a0z
2
0 + a1z

2
1 + a2z

2
2 + a3z0z1 + a4z1z2 + a5z0z2 = 0.

{conics in P2} = {(a0 : a1 : a2 : a3 : a4 : a5)} ∼= P5.

{conics through a point (z0 : z1 : z2) ∈ P2} = hyperplane in P5.

{conics passing through five general points in P} = intersection

of five hyperplanes in P5.



How to define a curve counting invariant?

Step 1: Construct the moduli space of all curves of given nu-

merical type

Step 2: Constraints ⇒ cycles in the moduli space

Step 3: Find the intersection numbers of the cycles.

E.g. Step 1: P5.

Step 2: 5 hyperplanes.

Step 3: Intersection number=1.



Delicate issues

(1) The moduli space should be compactified!

Intersection theory is ill behaved if not compact.

(2) Want the invariant to be deformation invariant.

Remain constant under smooth deformation of the target variety.

Expected dimension 6= actual dimesion of the moduli space.

Solution? Use virtual intersection theory!



Compactified moduli spaces of curves

X = fixed smooth projective variety in Pn.

(a) By ideals: Hilbert scheme (Grothendieck 1960s)

Hilbf(X) = {ideal sheaves of OX with Hilb poly f} compact

Virtual int. numbers on Hilbf(X) =: Donaldson-Thomas inv.

(b) By maps: Kontsevich moduli (Kontsevich-Manin 1994)

Mg,n(X, d) = {f : C → X |C nodal genus g curve,

n marked points p1, · · · , pn, f∗[C] = d, |Aut(f)| <∞}/ ∼= compact

(f : C → X) ∼= (f ′ : C′ → X) iff ∃η ∈ Isom(C,C′), f ′ ◦ η = f .

Virtual int. numbers on Mg,n(X, d) =: Gromov-Witten inv.



(c) By modules: Simpson moduli (C.Simpson 1994)

Simpf(X) = {semistable sheaves on X, Hilb poly f}/ ∼ cpt

A pure sheaf F is (semi)stable iff ∀F ′ < F , χ(F ′(m))
r(F ′) < (≤)χ(F (m))

r(F ) .

Virtual intersection theory makes sense when X is CY (∧3TX
∼=

OX) 3-fold and stability=semistability⇒ Donaldson-Thomas inv.

Joyce-Song found a generalization to s 6=ss case.

(d) Several other compactifications and invariants by stable quo-

tients (Marian-Oprea-Pandharipande), stable pairs (Pandharipande-

Thomas), log stable maps (Kim-Kresch-Oh) and so on.

• For g = 0, d ≤ 3 and X homogenous, K. Chung will explain (in

this meeting) how the compactified moduli spaces are related by

explicit blow-ups. H. Moon will show us nice birational results

comparing compactied moduli spaces of M0,n.



GW=DT=PT conjecture.

• All these curve counting inv. are expected to be equivalent.

There are precise conjectures comparing these curve counting

invariants: Maulik-Nekrasov-Okounkov-Pandharipande, S. Katz,

Pandharipande-Thomas, ...

Wall crossing in the derived category

= key for recent progress by Toda, Bridgeland, Thomas, ......



§3. Virtual intersection theory.

Perfect obstruction theory ⇒ virtual fund. class ⇒ invariants

A perf obstr th on M refers to a morphism φ : E• → L•M in the

derived category Db(M) of coherent sheaves on M such that

(i) étale locally E• ∼=2-term complex of loc free sheaves

(ii) h0(φ) isom and h−1(φ) surjective.

If M ↪→ Y smooth, the cone of φ∨ : (L•M)∨ → [E0 → E1] equals

TY |M ↪→ NM/Y ⊕ E0 → E1 which induces

C = CM/Y ⊕ E0/TY |M ↪→ NM/Y ⊕ E0/TY |M ↪→ E1.

Virtual fundamental class is defined as [M ]vir = 0!
E1

[C].

Deformation invariant if per ob th extends.



How to calculate virtual intersection numbers?

• Virtual int. number = [cohomology class] ∩[M ]vir

where M is a compactified moduli space

How to calculate virtual fundamental class?

(1) Localization by torus action

(Kontsevich, Givental, Graber-Pandharipande, ...):

If M has a torus action and MT = tMi, then

[M ]vir = ı∗
∑ [Mi]

vir

e(Nvir
i )

.



(2) Quantum Lefschetz and Grothedieck-Riemann-Roch

(Givental, Kim, Lian-Liu-Yau, Coates, ...):

If X ⊂ P4 is a quitic 3-fold, M0,n(X, d) ⊂M0,n(P4, d) is the zero

locus of a section of vector bundle π∗f∗OP4(5) on M0,n(P4, d)

[M0,n(X, d)]vir = [M0,n(P4, d)] ∩ ctop(π∗f∗OP4(5)).

(1)+(2) gave proofs of the Mirror conjecture.

(3) Degeneration formula (J.Li)

If X degenerates to Y1 ∪ Y2,

[Mg,n(X, d)]vir =
∑

(coeff)[Mrel
g1,n1

(Y1, d1)]vir ∗ [Mrel
g2,n2

(Y2, d2)]vir.

Okounkov-Pandharipande calculated all GW invariants for curves

by induction on genus using the degeneration formula.



(4) Behrend function and Milnor numbers (Behrend 2005)

If perf ob th E• → L•M is symmetric (θ : E• ∼= (E•)∨[1], θ∨[1] =

θ), there is a constructible function f on M such that

deg[M ]vir =
∑
k

k · χ(f−1(k)).

(5) Localization by cosection (K.-J.Li, arXiv 1007.3085)

• For a perf obs th [E−1 α−→E0]→ L•M ,

its obstruction sheaf is defined as ObM = coker(E0
α∨−→E1).

• If ObM |U � OU for open U ⊂M ,

[M ]vir is a cycle with support in M − U .



Applications of Localization by Cosection.

(1) GW inv. of general type surfaces (K.-J.Li, Lee-Parker)

For a family of stable maps f : C → X, π : C → M =Mg,n(X, d)

and ω ∈ H0(X,Ω2
X), we have

ObM = coker
(
Ext1π(ΩC/M,OC)→ R1π∗f∗TX

)
R1π∗f∗TX → R1π∗f∗ΩX → R1π∗ΩC/M → R1π∗ωC/M

∼= OM
This induces a cosection ObM → OM.

Reduces the calculation to the curve where ω degenerates.

Proof of Maulik-Pandharipande formula on low deg GW inv.



(2) Proof of Katz-Klemm-Vafa conjecture which counts curves

in K3 (Maulik-Pandharipande-Thomas, 2010)

Localization by cosection enables us to push the counting on

K3 surface to an open CY 3-fold. Then degeneration + toric

calculation prove the formula.

(3) A theory of spin curve counting (H.Chang-J.Li)

M̄
1/2
g = moduli of spin curves (C,L), L2 ∼= ωC.

Perf obs th on π∗L where π : C → M̄
1/2
g and L denote universal

family. At a point ξ = (C,L, s) ∈ π∗L, the obstruction space is

H1(L) and tensoring with s gives a cosection Obξ = H1(L) →
H1(L2) ∼= H1(ωC) = C.



(4) A wall crossing formula without Chern-Simons functional
(K.-J.Li, August 2010)

deg[M+]vir − deg[M−]vir = (−1)χ(A,B)−1 · χ(A,B) · deg[M(A)]vir · deg[M(B)]vir.

(5) A theory of generalized DT invariants via Kirwan blow-

ups (K.-JLi, in progress) : different from Joyce-Song approach;

equipped with perfect obstruction theory; wall crossing formula.

Thank you!


