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THE KIRWAN MAP FOR SINGULAR SYMPLECTIC
QUOTIENTS

YOUNG-HOON KIEM AND JONATHAN WOOLF

Abstract

Let M be a Hamiltonian K-space with proper moment map µ. The symplectic quotient X =
µ−1(0)/K is a singular stratified space with a symplectic structure on the strata. In this paper we
generalise the Kirwan map, which maps the K equivariant cohomology of µ−1(0) to the middle
perversity intersection cohomology of X, to this symplectic setting.

The key technical result which allows us to do this is a decomposition theorem exhibiting the
intersection cohomology of a blowup of X as a direct sum of terms including the intersection
cohomology of X.

Introduction

Intersection cohomology, introduced in [4] and [5], has proven to be a very useful
invariant for singular spaces. However, it is generally difficult to compute, largely
because it is not very functorial. In this paper we demonstrate the existence of a
map, which we dub the Kirwan map, from the equivariant cohomology of the zero
set Z of the moment map of a Hamiltonian action of a compact connected Lie group
K on a symplectic manifold M to the intersection cohomology of the symplectic
reduction Z/K. (Throughout this paper all cohomology groups will be taken with
rational coefficients unless otherwise stated.) This generalises the construction of
such a map for geometric invariant theory quotients in [14].

In the companion paper [11] we use this map to study and compute the inter-
section cohomology of quotients by weakly-balanced actions. Similar techniques are
used in [10] to study quotients by circle actions. The key point in the analyses is
that the Kirwan map is surjective in these cases. In the algebraic setting the Kir-
wan map is always surjective, see [13, 3.10] and [22] for a correction. However this
seems hard to prove in the symplectic setting, again because of the absence of the
Decomposition Theorem, and presently we are confined to dealing with the special
cases treated in [11] and [10].

Our construction of the Kirwan map is closely modelled on that in [14]. The
idea is as follows. When 0 is a regular value of the moment map K acts on Z
with only finite stabilisers. Hence, since we are using rational coefficients, there
is a natural isomorphism H∗

K(Z) ∼= H∗(Z/K). Further Z/K is an orbifold and
so H∗(Z/K) ∼= IH∗(Z/K). The Kirwan map is defined to be the composition
of these isomorphisms. What if 0 is not a regular value? Now Z need not be a
manifold and K may act with infinite stabilisers so that, in general, H∗

K(Z) and
IH∗(Z/K) are no longer isomorphic. The approach we take is to use a resolution
of the singularities of the reduction i.e. a symplectic manifold M̂ equipped with a
Hamiltonian K action such that 0 is a regular value of the moment map and there
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is an equivariant map M̂ → M which maps the zero set Ẑ onto Z. There is then
an induced map Ẑ/K → Z/K between the reductions which partially resolves the
singularities of Z/K. (We use the term ‘partially’ to mean that orbifold singularities
may remain.) Meinrenken and Sjamaar give a procedure for constructing such a
partial desingularisation in [18]. Given this, we obtain a map

H∗
K(Z) → H∗

K(Ẑ) ∼= IH∗(Ẑ/K) (0.1)

by composing the pullback with the Kirwan map already constructed for the regular
reduction of M̂ . In the algebro-geometric setting of [14] the Decomposition Theorem
of [1, §6] tells us that IH∗(Z/K) is a direct summand of IH∗(Ẑ/K). Composing
(0.1) with the projection we obtain the Kirwan map

H∗
K(Z) → H∗

K(Ẑ) ∼= IH∗(Ẑ/K) → IH∗(Z/K).

However, we cannot directly apply the Decomposition Theorem for symplectic quo-
tients, instead we have to construct a projection

IH∗(Ẑ/K) → IH∗(Z/K)

by hand. This involves a careful analysis of the steps involved in the construction
of the partial desingularisation and the inductive application of

Theorem 1 (cf.Theorem 5). Suppose X is a compact stratified space with even
dimensional strata and that B is a closed submanifold of codimension 2m, a neigh-
bourhood UB of which is homeomorphic to a fibre bundle

P ×G C → B

where the fibre C is an affine complex variety cut out by homogeneous equations on
which the structure group G of the principal bundle P acts unitarily. Let π : X̃ → X
be the blow up of X along B formed by replacing UB with a neighbourhood modelled
on the fibre bundle P ×G C̃ where C̃ = Bl(C, 0), the blow up of C at the origin.
Then there is a non-canonical direct sum decomposition

IH∗(X̃) ∼= IH∗(X)⊕
⊕

j∈Z
H∗−(m+j)(B;Lj)

of the intersection cohomology IH∗(X̃) of X̃ where Lj is a locally constant sheaf on
B with stalk

Lj
x
∼=

{
IHm+j−2(C̃) j < 0
IHm+j(C̃) j ≥ 0.

To get a feel for this theorem, suppose X is a manifold and P ×G C → B is (up to
isomorphism) the normal bundle to the submanifold B. It follows that C ∼= Cm so
IH∗(C̃) ∼= H∗(C̃) ∼= H∗(Pm−1) and the Lj are zero or have one dimensional stalks.
In fact the Lj are all constant sheaves in this case and we recover

Theorem (McDuff [16]). Suppose M ⊂ X is a (real) codimension 2m subman-
ifold of a manifold X and that the structure group of the normal bundle to M in
X reduces to the unitary group. Then the cohomology of the blowup X̃ of X along
M fits into a short exact sequence

0 → H∗(X) → H∗(X̃) → F ∗ → 0
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where F ∗ is a free module over H∗(M) with one generator ai ∈ F 2i for i =
1, 2, . . . , m− 1.

Another special case is when B is reduced to a point. Then Theorem 1 follows
from the Decomposition Theorem applied to a blowup and a patching argument.

The structure of the paper is as follows. We begin with some preliminaries about
intersection cohomology and perverse sheaves in §1. The main technical result of
the paper, Theorem 1, is proved in §2. In §2.1 we use the fact that the inclusion of
the exceptional divisor is normally nonsingular to construct a Gysin map

IH∗(X̃) → IH∗+2(X̃).

In fact this map arises at the level of sheaves, more precisely, in the derived category
of constructible sheaves. In §2.2 we apply the Decomposition Theorem locally and
then use a theorem of Deligne’s to prove that this Gysin map induces a decompo-
sition of IH∗(X̃) as in Theorem 1. Again this decomposition arises from one in the
derived category.
§3 shows how Theorem 1 can be applied to prove the existence of a Kirwan map

for singular symplectic quotients. In §3.1 we briefly recall the results of [20] and
[18] on the structure of singular symplectic quotients, in particular the stratification
by orbit and infinitesimal orbit types. The partial desingularisation of a singular
reduction Z/K constructed in [18] is outlined in §3.2. Since this involves a finite
sequence of blow ups we can inductively apply Theorem 1 to obtain a decomposi-
tion of the cohomology of the partial desingularisation with IH∗(Z/K) as a direct
summand.

In fact life is slightly more complicated since to partially desingularise a singular
reduction we may need to blow up along symplectic orbifolds with a normal struc-
ture which has exceptional fibres at the orbifold points. In §3.3 we prove the small
extensions of Theorem 1 which we require to deal with this. Finally in §3.4 the
projection map associated to this decomposition is used to define the Kirwan map.
The approach is analogous to that in [14] but has the minor technical advantage
that the Kirwan map is shown to arise from a morphism in the derived category.

1. Preliminaries

We review some technical material on derived categories of sheaves on stratified
spaces in order to introduce notation and provide references for any reader who is
unfamiliar with the area.

1.1. Perverse sheaves and intersection cohomology

Suppose X is a connected compact topologically stratified space of dimension 2n
with even dimensional strata {Sα}. Furthermore, suppose the unique open stratum
is orientable. Let D(X) be the bounded derived category of sheaves of rational
vector spaces on X. Let the constructible derived category DS(X) of X be the
full subcategory of (cohomologically) constructible complexes (with respect to the
given stratification). This is a triangulated category with a shift functor which we
denote by E 7→ E [1] — see [6, Ch. 7, 1.6.1]. In §3 we will also use the bounded
below version of this construction which we denote DS

+(X).
The constructible derived category can be built up stratum by stratum. More
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precisely, suppose Y ⊂ X is an open union of strata. Suppose Z is a stratum not
in Y but such that if Z ⊂ Sα then Sα ⊂ Y . Let

Y
ı

↪→ Y ∪ Z
←↩ Z

be the inclusions. These give rise to so-called glueing data i.e. six triangulated
functors

DS(Y )
Rı∗ , ı! // DS(Y ∪ Z)

∗ , !
//

ı∗
oo DS(Z)

∗
oo

obeying certain relations (see [6, Ch. 5, 3.9.1]) which describe how DS(Y ∪ Z) is
built up from DS(Y ) and DS(Z). In particular for any E ∈ DS(Y ∪ Z) there are
distinguished triangles

ı!ı
∗E → E → ∗∗E and ∗!E → E → Rı∗ı∗E .

Since objects of DS(X) are complexes of sheaves the triangulated category DS(X)
has a natural bounded t-structure given by truncation functors τ≤r and τ≥r — see
[6, Ch. 5] for an introduction to triangulated categories and t-structures. We denote
the associated cohomology sheaves by H∗(−) i.e.

Hr(E) = τ≥rτ≤rE .

The heart of this t-structure is the Abelian category of sheaves constructible with
respect to {Sα}. We will say that the shift F [−r] of an object F in the heart of
this t-structure is a sheaf in dimension r.

For any locally compact space X there is a Poincaré–Verdier duality functor
D : D(X)op → D(X) and a natural transformation χ : 1 → D2. One of the most
important properties of the constructible derived category is that D restricts to a
functor

DS(X)op → DS(X)

such that χ becomes an isomorphism, and in particular D becomes an equivalence
(see [6, Ch. 7, 1.6.2]).

Suppose X is a manifold with the trivial stratification with only one stratum.
Then the heart of the natural t-structure is the category of locally constant sheaves
on X. This is preserved by duality in the following sense; if E is a locally constant
sheaf then DE [−2n] is also locally constant with the dual stalks. If the stratification
of X is not trivial then this no longer holds; duality does not preserve constructible
sheaves. To see this consider the effect of dualising on glueing data. There are
canonical isomorphisms of functors

DRı∗ ∼= ı!D , Dı∗ ∼= ı∗D , D∗ ∼= ∗D and D∗ ∼= !D.

Both ı! and ∗ are t-exact in the natural t-structure i.e they commute with the
truncations and so preserve constructible sheaves. However, neither Rı∗ nor ! are
t-exact and it follows that the Poincaré–Verdier dual D cannot be either. This
observation leads to the notion of perverse sheaves.

On a stratified space these are the ‘correct’ generalisation of locally constant
sheaves. They arise as the heart of the perverse t-structure on DS(X).
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Theorem 2 [6, Ch. 7, 1.2.1 and §1.7]. The pair of full subcategories

pDS
≤0(X) = {A˙ | Hi(∗αA˙) = 0 for i > codim (Sα)/2}

and pDS
≥0(X) = {A˙ | Hi(!αA˙) = 0 for i < codim (Sα)/2}

defines a bounded t-structure on DS(X) with truncation functors

pτ≤0:DS(X) → pDS
≤0(X) and pτ≥0:DS(X) → pDS

≥0(X)

respectively right and left adjoint to the inclusions. The heart pDS
≤0(X)∩ pDS

≥0(X)
is the Abelian category Perv(X) of perverse sheaves. The Poincaré–Verdier duality
functor commutes with the perverse truncations and so induces an equivalence of
categories

Perv(X)op −→ Perv(X) : P 7−→ DP[− dim X].

Remark 1. There are several extant indexing conventions for perverse sheaves.
A common one is to shift by [dim X/2] so that a perverse sheaf on a manifold is a
locally constant sheaf in dimension −dim X/2. With this definition the Poincaré–
Verdier dual takes perverse sheaves to perverse sheaves (rather than to shifted
perverse sheaves as with our definition).

We can explicitly construct the perverse truncation functors pτ≤0 and pτ≥0. On
the open strata they are the natural truncations τ≤0 and τ≥0 — perverse sheaves
on a manifold are locally constant sheaves. Consider, as above, the addition of a
stratum Z of codimension 2m to an open union of strata Y . Suppose we have
already constructed the perverse truncation pτ≤0 on DS(Y ). Given E ∈ DS(Y ∪Z)
we can (uniquely up to isomorphism) construct a diagram

∗τ≥m+1
∗E

$$JJJJJJJJJJ

F

99tttttttttt

%%KKKKKKKKKKK G

¸¸

E

99sssssssssss

,,pτ≤0E

<<

88

Rı∗pτ≥1ı
∗E

whose straight(ish) lines are distinguished triangles. This defines the perverse trun-
cation pτ≤0 on DS(Y ∪ Z). Inductively we can construct the perverse truncation
below functor — see [1, p48] for details. Note that applying ı∗ we have

ı∗pτ≤0E ∼= ı∗F ∼= pτ≤0ı
∗E . (1.1)

The perverse truncation above functor is constructed analogously from the dia-
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gram

ı!
pτ≤−1ı

∗E

$$

&&

pτ≥0E

E

%%KKKKKKKKKKK

22

G′

99sssssssssss

$$JJJJJJJJJJ F ′

KK

∗τ≤m+1
!E

::tttttttttt

It follows that

ı∗pτ≥0E ∼= ı∗F ′ ∼= pτ≥0ı
∗E . (1.2)

The perverse cohomology sheaves
pHr(A) = pτ≤r

pτ≥rA,

where pτ≤rA = (pτ≤0(A[r]))[−r] are the cohomology sheaves associated to the
perverse t-structure.

The simplest perverse sheaves are described by

Lemma 1. A perverse sheaf E supported on a closed stratum S is the extension
by zero of a locally constant sheaf on S in dimension codim S/2.

Proof. It follows easily from the explicit constructions of the perverse trunca-
tions that when E is supported on a stratum S we have

pτ≥0E ∼= τ≥codim S/2E and pτ≤0E ∼= τ≤codim S/2E .

So E ∼= pH0(E) ∼= Hcodim S/2(E). Since E is in the constructible derived category
the latter is a locally constant sheaf on S in dimension codim S/2.

A more interesting perverse sheaf, playing an analogous role to that of the con-
stant sheaf in the category of locally constant sheaves on a manifold, is the inter-
section cohomology complex IC˙(X).

Theorem 3 [5, §3]. Up to isomorphism in the derived category there is a unique
perverse sheaf IC˙(X) satisfying the conditions

Hi(∗αIC˙(X)) = 0 i ≥ codim (Sα)/2
Hi(!αIC˙(X)) = 0 i ≤ codim (Sα)/2

for all strata of strictly positive codimension, and which is isomorphic to the con-
stant sheaf with rational coefficients QU on the unique open stratum U ⊂ X.

The hypercohomology of IC˙(X) is the intersection cohomology of X, which we
denote IH∗(X). In general intersection cohomology is not a ring. However it is
naturally a module over the cohomology ring H∗(X) and so we can make sense of
multiplication of an intersection cohomology class by a cohomology class.
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Given an orientation QU
∼= DQU [−2n] of the nonsingular part U of X there is a

unique extension to an isomorphism

IC˙(X)
φ−→ DIC˙(X)[−2n]

of perverse sheaves. This induces the generalised Poincaré duality isomorphisms

IHi(X) ∼= IH2n−i(X)

where IH∗ denotes the intersection homology groups.

1.2. The Equivariant Case

If a compact Lie group G acts continuously on X then all of the above con-
structions can be made equivariantly. In the situations we consider the group will
preserve the stratification, but this is not necessary for the constructions — see
[2, p.29]. There is a bounded constructible equivariant derived category DS

G(X).
Equivariant maps induce the standard functors of sheaf theory. DS

G(X) has a nat-
ural t-structure whose heart is the Abelian category of constructible G-equivariant
sheaves and a perverse t-structure whose heart is the Abelian category PervG(X)
of equivariant perverse sheaves. (An important and subtle point is that DS

G(X)
is not, in general, the derived category of the heart of the natural t-structure i.e.
of the constructible G-equivariant sheaves — see [2, 2.5.4].) There is an equivari-
ant Verdier duality functor D : DS

G(X)op → DS
G(X) which is an equivalence and

preserves the equivariant perverse sheaves (up to a shift [− dim X]).
The forgetful functor For : DS

G(X) → DS(X) commutes with the standard sheaf
theory functors, both the natural and perverse t-structures and also with Verdier
duality (see [2, Theorems 3.4.1, 3.5.2 and sections 2.2 and 5.1]). The constant
sheaf QX and the intersection cohomology complex IC˙(X) have natural lifts to
equivariant objects, respectively QX,G and IC Ġ(X), along the forgetful functor.

Suppose {S′β} is a stratification of X/G whose inverse image is a refinement of
the stratification {Sα} of X. Then by [2, §6] the quotient map X → X/G induces
a pushforward functor

Q∗ : DS
G(X) → DS

+(X/G). (1.3)

to the bounded below constructible derived category of X/G. As a rational vector
space the equivariant cohomology H∗

G(X; E) of an object E ∈ DS
G(X) is defined

to be the hypercohomology of H∗(X;Q∗E). This description ignores the fact that
H∗

G(X; E) also has the structure of an H∗
G-module.

The construction of the equivariant derived category is rather subtle. However,
if G is finite, there are significant simplifications. ln this case a G-equivariant sheaf
is nothing but a sheaf together with a G-action compatible with that on X. Such
objects form an Abelian category and the constructible equivariant derived cate-
gory can be described as the full subcategory of constructible objects in the derived
category of this Abelian category. In particular, since QX and IC˙(X) are topologi-
cal invariants, they carry natural G-actions which define the equivariant lifts QX,G

and IC Ġ(X).
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2. Blowups and Decompositions

2.1. The Gysin morphism

Suppose B is a maximal depth stratum in X with codim B = 2m. For simplicity
assume that there are no other strata of codimension 2m, otherwise we deal with
them separately. Further, suppose a neighbourhood UB of B is homeomorphic to a
fibre bundle

P ×G C → B

where the fibre C is an affine complex variety cut out by homogeneous equations
and P is a principal G-bundle, where G acts unitarily on C. Let π : X̃ → X be the
‘blow up’ of X along B formed by replacing UB with a neighbourhood modelled on
the fibre bundle P ×G C̃ where C̃ = Bl(C, 0), the blow up of C at the origin.

The inclusion ε : E = π−1B ↪→ X̃ of the ‘exceptional divisor’ is normally non-
singular of codimension 2. An orientation of the normal bundle to E corresponds
to an isomorphism ε∗Q eX [−2] ∼= ε!Q eX where Q eX is the constant sheaf with rational
coefficients on X̃. Composing with the units of standard adjunctions leads to a
morphism

Q eX [−2] → ε∗ε∗Q eX [−2] ∼= ε∗ε!Q eX → Q eX (2.1)

and hence to a natural transformation [−2] → id given by

E [−2] ∼= Q eX [−2]⊗ E → Q eX ⊗ E ∼= E

for E ∈ DS(X̃).

Remark 2. Since the rational cohomology Hi(X̃) is isomorphic to the mor-
phisms from Q eX to Q eX [i]) in the derived category, this natural transformation
corresponds to a 2-dimensional cohomology class. This class defines an intersection
cohomology class which is the Poincaré dual of the intersection homology class rep-
resented by E (it is easy to check that normal nonsingularity implies the satisfaction
of the allowability conditions for a cycle in intersection homology).

Let β be the result of applying the natural transformation to IC˙(X̃) i.e. we have

β : IC˙(X̃)[−2] → IC˙(X̃) (2.2)

Applying Rπ∗ we obtain a Gysin morphism

γ : Rπ∗IC˙(X̃)[−2] → Rπ∗IC˙(X̃). (2.3)

It follows from the definition that γ factors through the restriction to B so that
the restriction of this morphism to any open set which does not meet B is zero.

Remark 3. In the sequel we will abuse notation by using γ to denote not
only the morphism in DS(X) but also its various restrictions and induced maps on
hypercohomology and on cohomology sheaves with respect to both the natural and
perverse t-structures.
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Proposition 1. If we restrict to B there is a distinguished triangle

Rπ∗IC˙(E)[−2]
γ−→ Rπ∗IC˙(E) → ∗Rı∗IC˙(X \B) (2.4)

where  : B ↪→ X and ı : X \ B ↪→ X are the inclusions. Localising further to a
point x ∈ B and taking cohomology we obtain the long exact Gysin sequence

. . . → IH∗−2(C̃)
γ−→ IH∗(C̃) → IH∗(C \ {0}) → . . . (2.5)

The composition γr : IHm−1−r(C̃) → IHm−1+r(C̃), where 2m = codim RB, is an
isomorphism. In particular γ : IH∗−2(C̃) → IH∗(C̃) is injective for ∗ ≤ m and
surjective for ∗ ≥ m.

Proof. There is a commutative diagram

E
ε //

π

²²

X̃

π

²²

X̃ \ E
ıoo

B 
// X X \B.

ı
oo

(2.6)

Identifying X̃ \ E with X \B we have a distinguished triangle

Rε∗ε!IC˙(X̃) → IC˙(X̃) → Rı∗IC˙(X \B)

Applying ε∗ we obtain a second distinguished triangle

ε!IC˙(X̃) → ε∗IC˙(X̃) → ε∗Rı∗IC˙(X \B). (2.7)

Using the orientation of the normal bundle to E and [5, §5.4], we have canonical
isomorphisms

ε∗IC˙(X̃) ∼= IC˙(E) and ε!IC˙(X̃) ∼= IC˙(E)[−2]. (2.8)

Note that these differ from those in [5] by a shift since we are using a different
indexing scheme (see Remark 1). Using these identities we can identify the first
map in the distinguished triangle (2.7) with ε∗β where β is defined in (2.2). It
follows from (2.6) that Rπ∗ε∗ ∼= ∗Rπ∗ (see, for instance, [5, §1.13]) so that after
applying Rπ∗ the first map in the triangle is Rπ∗ε∗β ∼= ∗Rπ∗β ∼= ∗γ and we obtain
(2.4) as required.

Localising to a point x ∈ B and taking cohomology we obtain the Gysin sequence
(2.5). Note that C̃ is isomorphic to the tautological line bundle L on P(C \ {0})
which is anti-ample. There is a stratification preserving retraction

C̃ → P(C \ {0}).
so that IH∗(C̃) ∼= IH∗(P(C \{0})). It follows from (2.5) that we can identify γ with
multiplication by the first Chern class of L. Furthermore, by [1, §6], there is a Hard
Lefschetz Theorem for the intersection cohomology groups of P(C \{0}) which says
that multiplication by a power of the first Chern class of the ample line bundle L−1

induces isomorphisms

IHm−1−i(P(C \ {0})) → IHm−1+i(P(C \ {0}))
for i > 0. Since c1(L) = −c1(L−1) we are done.
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2.2. Decomposing Intersection Cohomology

In this section we show how the Gysin morphism γ can be used to decompose
Rπ∗IC˙(X̃) with IC˙(X) as a direct summand. The key ingredients in our proof
are Proposition 1 and

Theorem 4 (Deligne [3], see also [21]). Let A be a triangulated category with
a bounded t-structure and heart A0. Let H0 : A → A0 denote the associated
cohomology functor and Hi(A) = H0(A[i])[−i].

Suppose A ∈ A and φ : A[−1] → A[1] is such that

H0(φk) : H−k(A)[−k] → Hk(A)[k]

is an isomorphism for k ≥ 0. Then there exists an isomorphism

A ∼=
⊕

k∈Z
H−k(A).

Remark 4. The isomorphism is not canonical; there is no unique choice essen-
tially because the cone on a morphism in a triangulated category is unique up to
isomorphism but not up to unique isomorphism.

We apply this with A = DS(X) equipped with the perverse t-structure so that
A0 = Perv(X). We take the object A = Rπ∗IC˙(X̃) and the morphism φ = γ[1].
We need to show that pH0(γk[k]) is an isomorphism for k ≥ 0. To do this we must
identify the perverse cohomology sheaves of A.

Lemma 2. For i 6= 0 the perverse sheaf pHi(A) in dimension i is supported on
B and is the extension by zero of a locally constant sheaf on B in dimension m+ i.

Proof. Note that the restriction of A to X \ B is isomorphic to the perverse
sheaf IC˙(X \ B) so that pHi(A) is supported on B for i 6= 0. The result follows
from Lemma 1.

Now we study how A is built up by successive extensions by its perverse coho-
mology sheaves. For each j there is a distinguished triangle

pτ≤j−1A → pτ≤jA → pHj(A).

When j 6= 0 we can use the above lemma and the fact that Hk(pτ≤jA) = 0 for
k > m + j to see that there is a long exact sequence

0 EDBC
GF@A

//`̀`̀ Hm+j−1(pτ≤j−1A) // Hm+j−1(pτ≤jA) // 0 EDBC
GF@A

// 0 // Hm+j(pτ≤jA) // pHj(A) EDBC
GF@A

//̀``````````` 0

(2.9)
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We deduce that for j 6= 0 we have

Hk(pτ≤jA) ∼=



Hk(pτ≤j−1A) k < m + j
pHj(A) k = m + j
0 otherwise.

(2.10)

When j = 0 the situation is more complicated. We only know that Hk(pτ≤−1A) = 0
for k ≥ m, so we have a long exact sequence

Hm−2(pH0(A)) EDBC
GF@A

// Hm−1(pτ≤−1A) // Hm−1(pτ≤0A) // Hm−1(pH0(A)) EDBC
GF@A

// 0 // Hm(pτ≤0A) // Hm(pH0(A)) EDBC
GF@A

//`````````` 0

In particular it follows from this and (2.10) with k = m and j = 1, 2, . . . that

Hm(pH0(A)) ∼= Hm(pτ≤0A) (2.11)
∼= Hm(pτ≤1A)
∼= . . .
∼= Hm(A).

Proposition 2. There is a direct sum decomposition
pH0(A) ∼= IC˙(X)⊕Hm(A).

Proof. For ease of notation write P for the perverse sheaf pH0(A). We know
that X̃ is a compact stratified space of dimension 2n with only even dimensional
strata. Furthermore a choice of orientation of the unique open stratum of X yields
an orientation of the unique open stratum of X̃ and thence a Poincaré–Verdier
duality isomorphism

φ̃ : IC˙(X̃) → D(IC˙(X̃))[−2n].

Since π is proper we obtain an isomorphism A → DA[−2n] by pushing forward
and, by applying pH0(−) and using Theorem 2, an isomorphism

ψ : P → DP[−2n].

Recall that  : B ↪→ X is the inclusion of the unique stratum of codimension 2m
and that all other strata have strictly lower codimension. Since P is perverse we
can check that ∗τ≤m!P is a locally constant sheaf in dimension m supported on
B, and so is itself perverse. Furthermore adjunction and truncation yield a natural
morphism ρ : ∗τ≤m!P → P of perverse sheaves. We claim that the composition
Dρ[−2n] ◦ψ ◦ ρ, which is a morphism of locally constant sheaves (in dimension m)
on B, is an isomorphism. It is sufficient to show that

Hm(∗(Dρ[−2n] ◦ ψ ◦ ρ))
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is an isomorphism. Unwinding the definition this is given by the composition

Hm(!P) → Hm(∗P) → Hm(∗DP[−2n]). (2.12)

where the first map arises from the first morphism in the distinguished triangle

!P → ∗P → ∗Rı∗ı∗P.

and the second from the isomorphism ∗ψ.
Taking cohomology of the above distinguished triangle and localising to x ∈ B

we obtain a long exact sequence

. . . → Hm
x (!P) → IHm(C̃) → IHm(C \ {0}) → . . .

where we have used the fact that ı∗P ∼= IC˙(X\B) and identifiedHm
x (P) ∼= IHm(C̃)

using (2.11). It follows from Proposition 1 that the second map is zero so that
the first is a surjection. Hence (2.12) is the composition of a surjection and an
isomorphism and so is itself a surjection. However since !P is dual to ∗DP[−2n]
the stalks have the same dimension and so it is an isomorphism. In particular the
first map in (2.12) is an isomorphism. Since

Hm(!P) ∼= Hm(∗τ≤m!P) ∼= ∗τ≤m!P and Hm(∗P) ∼= Hm(P)

it follows that ∗τ≤m!P ∼= Hm(P).
By the above ρ is a split injection so there is a split short exact sequence

0 → ∗τ≤m!P → P → Q → 0 (2.13)

of perverse sheaves. Considering the associated long exact sequence of cohomology
sheaves we see that Hk(Q) ∼= 0 for k ≥ m. By applying ! to (2.13) we obtain a
distinguished triangle

τ≤m!P → !P → !Q.

It follows that !Q ∼= τ≥m+1
!P so Hk(!Q) ∼= 0 for k ≤ m. Hence by Theorem 3 we

have Q ∼= IC˙(X) as required.

We can now complete our identification of the perverse cohomology sheaves.

Proposition 3. For j 6= 0 there is an injection of locally constant sheaves in
dimension m + j supported on B

pHj(A) → Hm+j(A).

Furthermore the image of the perverse cohomology sheaf pHj(A) is the image of the
sheaf map

γ : Hm+j−2(A)[−2] → Hm+j(A).

Proof. There are natural maps pHj(A) ← pτ≤jA → A. Applying Hm+j and
using Lemma 2 and the long exact sequence (2.9) we obtain a map of sheaves

pHj(A) ∼= Hm+j(pHj(A)) ∼= Hm+j(pτ≤jA) → Hm+j(A).

For j > 0 it follows from (2.10) that this is an isomorphism. Note that the Gysin
map

γ : Hm+j−2(A)[−2] → Hm+j(A)
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is surjective for j ≥ 0 by Proposition 1. Hence we have the result for j > 0.
Now suppose j < 0. Using the fact that ı∗pτ≤k

∼= pτ≤kı∗ for any k and that
ı∗A ∼= IC˙(X \B) is a perverse sheaf we see there is a diagram

pτ≤−1A //

²²

pτ≤0A //

²²

pH0(A)

²²

Rı∗ı∗pτ≤−1A // Rı∗ı∗pτ≤0A // Rı∗ı∗pH0(A)

0 // Rı∗IC˙(X \B) Rı∗IC˙(X \B)

whose rows are distinguished triangles. When j < 0 it follows from (2.10) that

Hm+j(pτ≤−1A) ∼= pHj(A) and Hm+j(pτ≤0A) ∼= Hm+j(A)

and by Proposition 2 we have

Hm+j(pH0(A)) ∼= Hm+j(IC˙(X)).

Hence taking cohomology we have a diagram

// pHj(A) //

²²

Hm+j(A)

²²

// Hm+j(IC˙(X)) //

²²
// 0 // Hm+j(Rı∗IC˙(X \B)) Hm+j(Rı∗IC˙(X \B)) //

with long exact sequences for rows. Since C has dimension 2m it is a standard
property of intersection cohomology (following directly from the definition in The-
orem 3) that the final vertical arrow is an isomorphism. Proposition 1 says that the
middle vertical arrow is surjective (for j < 0). Hence the upper long exact sequence
breaks up into short exact sequences and pHj(A) is identified with the kernel of

Hm+j(A) → Hm+j(Rı∗IC˙(X \B)).

By comparing with the Gysin sequence (2.5) we can identify pHj(A) with the image
of the Gysin map as required.

Proposition 4. The Gysin morphism γ induces isomorphisms

γk[k] : pH−k(A)[−k] → pHk(A)[k]

for k > 0.

Proof. It follows from Proposition 3 that for k > 0 there is a commutative
diagram

pH−k(A)[−k]

γk[k]

²²

Hm−k(pτ≤−kA)[−k] //

γk[k]

²²

Hm−k(A)[−k]

γk[k]

²²
pHk(A)[k] Hm+k(pτ≤kA)[k] Hm+k(A)[k]

and that the top row is an injection with image the same as that of γ[−k] in
Hm−k(A)[−k]. The result follows from Proposition 1.
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Theorem 5. There is a direct sum decomposition

IH∗(X̃) ∼= IH∗(X)⊕
⊕

j∈Z
H∗(B;Lj)

where Lj is the image of γ : Hm+j−2(A) → Hm+j(A). In particular Lj is a locally
constant sheaf on B in dimension m + j with stalk

Lj
x
∼=

{
IHm+j−2(C̃) j < 0
IHm+j(C̃) j ≥ 0.

Proof. By Theorem 4 and Proposition 4 we have a direct sum decomposition

Rπ∗IC˙(X̃) ∼= A ∼=
⊕

j∈Z

pHj(A).

In Lemma 2 we showed that IC˙(X) is a direct summand of pH0(A) with comple-
mentary summand Hm(A).

Proposition 3 identifies pHj(A) with the image of the Gysin map for j 6= 0.
Finally note that the Gysin map

γ : Hm−2(A) → Hm(A)

is surjective by Proposition 1 and so has image the remaining summand Hm(A).
We can now use Proposition 1 to identify the stalks of the Lj as required.

Remark 5. Suppose a finite group F acts on X fixing the points of B and acting
unitarily on the fibres C of the model P ×G C of a neighbourhood of B. Then the
blowup construction can be made equivariantly so that F acts compatibly on X̃.
Thus we can ask whether Rπ∗IC Ḟ (X̃) can be decomposed in DS

F (X) with IC Ḟ (X)
as a summand?

Mimicking the earlier construction, the F -equivariant inclusion of the exceptional
divisor yields an equivariant Gysin morphism

γF : Rπ∗IC Ḟ (X̃)[−2] → Rπ∗IC Ḟ (X̃).

All we need do is check whether powers of γF induce isomorphisms between perverse
cohomology sheaves and whether the analogue of Proposition 2 holds (again a
matter of checking whether a map of perverse sheaves is an isomorphism). Since F
is finite, we know that DS

F (X) is equivalent to the full subcategory of constructible
objects in the derived category of F -equivariant sheaves. It follows that a morphism
α in DS

F (X) is an isomorphism if, and only if, its image For(α) in DS(X) under
the forgetful functor is an isomorphism. The forgetful functor commutes with the
natural and perverse t-structures and with Verdier duality. Also it follows from
the naturality of the Gysin morphism and [2, Theorem 3.4.1] that For(γF ) = γ.
Hence we deduce from the above results for DS(X) that we have the required
isomorphisms in DS

F (X). In short, we can lift the decomposition along the forgetful
functor.

3. The Kirwan map

One approach to the study of the intersection cohomology of a singular quotient
space is to relate it to the equivariant cohomology of the original space. For geo-
metric invariant theory quotients Kirwan showed in [14] how to construct a map



the kirwan map for singular symplectic quotients 15

(which we call the Kirwan map) exhibiting the intersection cohomology of the quo-
tient space as a quotient of the equivariant cohomology of the original space. We
follow a similar programme for symplectic quotients in this section, but using The-
orem 5 instead of the more powerful Decomposition Theorem of [1, §6] which does
not necessarily apply here.

We do not yet know how to prove the map we construct is surjective so we do not
obtain the intersection cohomology as a quotient of the equivariant cohomology.
The companion paper [11] discusses a class of examples for which we can show
surjectivity and thence compute the intersection cohomology.

3.1. Singular symplectic quotients

Suppose (M, ω) is a Hamiltonian K-space for some compact connected Lie group
K. By this we mean that K acts on M preserving the symplectic form ω in such a
way that there is an equivariant moment map µ : M → k∗ satisfying

〈dµ, a〉 = ıaM
ω

where a ∈ k and aM is the vector field on M arising from the infinitesimal action of
a. We will assume that µ is proper, and in this case call M a proper Hamiltonian
K-space.

If 0 is a regular value of µ then the topological space M0 = µ−1(0)/K can nat-
urally be given the structure of a compact symplectic orbifold. When 0 is not a
regular value Lerman and Sjamaar show in [20] that M0 is a stratified symplec-
tic space. To avoid unnecessary symmetry we will always assume that there is at
least one point of µ−1(0) with zero dimensional stabiliser. We briefly describe the
stratification.

Let Z = µ−1(0). Suppose H is a compact subgroup of K with Lie algebra h. Let
ZH be the subset of points of Z whose stabiliser is precisely H and Z(H) be the
subset whose stabiliser is conjugate to H. The reduced space M0 is topologically
stratified by non-empty connected components of the Z(H)/K, each of which is a
symplectic manifold, with a symplectic structure induced from ω. This stratification
makes M0 into a compact topological stratified space with even dimensional strata,
and in particular we can define DS(M0) and the intersection cohomology complex
IC˙(M0) ∈ DS(M0).

We also need to consider a coarser decomposition (it is not a topological strati-
fication) of M0 into locally closed symplectic orbifolds. This arises by considering
infinitesimal stabilisers; we define

Zh = {z ∈ Z : Lie Stab z = h} and Z(h) = {z ∈ Z : Lie Stab z ∈ (h)}
where (h) is the set of subalgebras of k conjugate to h. The reduced space M0

is decomposed into the non-empty connected components of the Z(h)/K, each of
which is a symplectic orbifold formed from the union of finitely many strata of the
orbit type stratification. These pieces are rational homology manifolds. Just as for
a stratification, the pieces form a poset and we will talk about the depth of a piece
etc.

We give a local description of M0 near one of the pieces of this decomposition.
To do so we need to introduce a choice of compatible K-invariant almost complex
structure J and metric g on M .

Let Ph be a connected component of Z(h)/K. Set H0 = exp(h). Suppose O is an
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orbit in Ph. Choose p ∈ O so that the stabiliser of p is H with Lie H = h i.e. the
connected component of the identity of H is H0. Define

V =
(
TpO ⊕ JTpO

)⊥ ≤ TpM

where ⊥ denotes the orthogonal complement with respect to g, and set

W = (Vh)⊥ ≤ V (3.1)

where Vh is the subspace invariant under the infinitesimal h action. Note that V
and W are, up to isomorphism, independent of the point p and the orbit O.

There is a Hermitian structure on both Vh and W , induced from the triple
(J, g, ω), with respect to which they become Hamiltonian H-spaces, with H acting
via the unitary group. The symplectic reduction can be identified with the geomet-
ric invariant theory quotient by the linear action of the complexified group (see [12]
and [19]).

A neighbourhood of the point [p] ∈ M0 represented by p ∈ O is modelled by the
geometric invariant theory quotient

(Vh ⊕W ) //HC ∼=
[
(Vh ⊕W ) //HC

0

]
/π0H ∼=

[
Vh ⊕

(
W//HC

0

)]
/π0H,

see [18][§3]. This description can be thought of as a chart

Vh ⊕
(
W//HC

0

)
//

²²

[
Vh ⊕

(
W//HC

0

)]
/π0H

²²

Vh
// Vh/π0H

(3.2)

for an orbibundle with fibre W//HC
0 over a neighbourhood of [p] ∈ Ph homeomorphic

to Vh/π0H. These charts patch together to give

Proposition 5. A neighbourhood of Ph in M0 is modelled on a neighbourhood
of the zero section in an orbibundle with general fibre W//HC

0 and whose structure
group acts on the fibre via the unitary group U(W ).

Proof. This follows from the description of the local model in [18] §3, in par-
ticular Theorem 3.4. (Our situation is slightly simpler since we insist that M is a
manifold and not an orbifold as in [18].)

3.2. Partial desingularisation

Just as for geometric invariant theory quotients (see [13]) we can partially desin-
gularise a singular symplectic quotient (but we cannot necessarily remove orbifold
singularities). As above let Ph be a piece of the decomposition by infinitesimal orbit
types and suppose further that Ph is of maximal depth and hence closed. In [18]
Meinrenken and Sjamaar show that one can blow up along Ph by replacing the fi-
bre W//HC

0 of the local model by its blowup at the origin. This decreases the depth
locally (there may be other disjoint pieces of equal depth) and so, by induction, we
can successively blow up until we have a symplectic orbifold.

These blowups arise as reductions of symplectic blowups of a neighbourhood U of
the zero set Z of the moment map. More precisely, we can choose a neighbourhood
U of Z in M with an equivariant retraction r : U → Z and an invariant symplectic
submanifold Y such that Y ∩ Z = Z(h). We can symplectically blow U up along Y
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to obtain a proper Hamiltonian K-space Ũ with an equivariant map Ũ → U . Let
Z̃ be the zero set of the moment map on Ũ . Let πK be the composition

Z̃ ↪→ Ũ → U
r→ Z

and π : M̃0 → M0 the induced map on quotients. Then π induces a homeomorphism
π−1(M0\Ph) → M0\Ph. Let E = π−1(Ph). A neighbourhood of E in M̃0 is modelled
by the total space of an orbibundle over Ph with fibre

Bl(W//HC
0 , 0) ∼= Bl(W, 0)//HC

0 .

We write W̃ for Bl(W, 0). Alternatively we can think of a neighbourhood of E in
M̃0 as a 2-dimensional vector orbibundle over E with charts of the form

Vh ⊕
(
W̃//HC

0

)
//

²²

[
Vh ⊕

(
W̃//HC

0

)]
/π0H

²²

Vh ⊕
(
PW//HC

0

)
//
[
Vh ⊕

(
PW//HC

0

)]
/π0H

(3.3)

induced by the vector bundle W̃//HC
0 → PW//HC

0 . See [18] for details.

3.3. The decomposition

In this section we explain how to decompose Rπ∗IC˙(M̃0) with IC˙(M0) as a
summand. As in Theorem 5 the object Rπ∗IC˙(M̃0) will decompose as a direct
sum of its cohomology sheaves with respect to a non-standard t-structure. Recall
that the objects in DS(M0) are cohomologically constructible with respect to the
orbit type stratification of M0. However the t-structure on DS(M0) we will use is
associated to the coarser decomposition by infinitesimal orbit types. Let {Pα} be
the set of pieces of this decomposition and

α : Pα ↪→ M0 \ (Pα \ Pα)

be the associated closed inclusions.

Lemma 3. The subcategories
pDS

≤0(M0) = {A˙ | Hi(∗αA˙) = 0 for i > codim (Pα)/2 ∀α}
pDS

≤0(M0) = {A˙ | Hi(!αA˙) = 0 for i < codim (Pα)/2 ∀α}
define a bounded t-structure on DS(M0) with truncation functors

pτ≤0:DS(M0) → pDS
≤0(M0) and pτ≥0:DS(M0) → pDS

≥0(M0)

respectively right and left adjoint to the inclusions.

Proof. The t-structure can be constructed inductively using the glueing data
associated to the inclusion of a stratum just as in §1.1.

We will refer to this as the perverse t-structure on DS(M0). We show that
IC˙(M0), even though it may not be constructible with respect to the infinitesi-
mal orbit type stratification, lies in the heart of this perverse t-structure. This is a
local matter so we work in our local model.

For ease of notation write L for Vh⊕
(
W//HC

0

)
and F for π0H. The quotient of L
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by the finite group F is a model for a neighbourhood in M0 of a point in Ph. Hence
L/F is stratified by the restriction to this neighbourhood of the stratification of
M0 by orbit types and we use this stratification to define the constructible derived
categories DS(L/F ) and DS

+(L/F ).
The inverse image of this stratification under L → L/F is a refinement of the

product stratification of L arising from the stratification of W//HC
0 by orbit types

of HC
0 . We use this product stratification to define the constructibility conditions

for DS
F (L). By §1.2 the quotient map induces a functor

Q∗ : DS
F (L) → DS

+(L/F ).

We also have perverse t-structures: DS
+(L/F ) inherits a perverse t-structure as-

sociated to the decomposition by infinitesimal orbit types and DS
F (L) has a perverse

t-structure associated to the inverse image decomposition. The latter can also be
described as the product decomposition of L arising from the decomposition of
W//HC

0 by infinitesimal orbit types of HC
0 .

It follows from the statement and proof of [2, Theorem 8.7.1] that
(1) Q∗ preserves the natural t-structures i.e. τ≤0Q∗ ∼= Q∗τ≤0 etc,
(2) Q∗ preserves the perverse t-structures i.e. pτ≤0Q∗ ∼= Q∗pτ≤0 etc,
(3) Q∗IC Ḟ (L) ∼= IC˙(L/F ).

In particular it follows from 1) that Q∗ lifts to a functor (which we also denote Q∗)
to the bounded derived category DS(L/F ).

By definition IC Ḟ (L) is in the heart of the perverse t-structure on DS
F (L) if,

and only if, IC˙(L) is in the heart of the perverse t-structure on DS(L). In turn
this holds if, and only if, IC˙(W//HC

0 ) is in the heart of the perverse t-structure on
DS(W//HC

0 ) associated to the decomposition by infinitesimal orbit types. This can
be checked by using the standard cone calculation to verify the conditions at the
vertex and by induction on the depth of the decomposition elsewhere. Thus it now
follows from 2) and 3) that IC˙(M0) is in the heart of the perverse t-structure on
DS(M0) as required.

Let L̃ be the blowup

Vh ⊕
(
W̃//HC

0

)

of L along Vh. Arguing in a similar fashion to above we have a functor

Q̃∗ : DS
F (L̃) → DS(L̃/F )

with Q∗IC Ḟ (L̃) ∼= IC˙(L̃/F ). Furthermore, by [2, 6.12] the commutative square of
spaces

L̃ //

πF

²²

L̃/F

π

²²

L // L/F

gives rise to a commutative square of functors

DS
F (L̃)

eQ∗ //

RπF ∗
²²

DS(L̃/F )

Rπ∗
²²

DS
F (L)

Q∗
// DS(L/F ).
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In particular Q∗RπF ∗IC Ḟ (L̃) ∼= Rπ∗Q̃∗IC Ḟ (L̃) ∼= Rπ∗IC˙(L̃/F ).

Lemma 4. The inclusion E ↪→ M̃0 induces a Gysin morphism

γ : Rπ∗IC˙(M̃0)[−2] → Rπ∗IC˙(M̃0).

If we restrict to the neighbourhood L/F then γ = Q∗γF where γF is the equiv-
ariant Gysin morphism arising from the F -equivariant, codimension 2, normally
nonsingular inclusion

Vh ⊕
(
PW//HC

0

)
↪→ Vh ⊕

(
W̃//HC

0

)
= L̃.

Proof. Since the fibres of the normal orbibundle to E in M̃0 are finite group
quotients of R2 an orientation of the orbibundle induces the required Gysin mor-
phism just as in §2.1. That γ = Q∗γF follows because on a chart orientations of the
orbibundle correspond to orientations of the normal bundle to the inclusion

Vh ⊕
(
PW//HC

0

)
↪→ Vh ⊕

(
W̃//HC

0

)
= L̃.

Proposition 6. There is a (non-canonical) direct sum decomposition

IH∗(M̃0) ∼= IH∗(M0)⊕
⊕

i∈Z
H∗(S;Li)

where Li is the sheaf in dimension m + i supported on S given by the image of

γ : Hm+i−2(Rπ∗IC˙(M̃0)) → Hm+i(Rπ∗IC˙(M̃0)).

Proof. We follow the same steps as in the proof of Theorem 5. First, we must
show that pHi(γi[i]) is an isomorphism for i = l, 2, . . . where

γ : Rπ∗IC˙(M̃0)[−2] → Rπ∗IC˙(M̃0)

is the Gysin morphism and the perverse cohomology sheaves are computed with
respect to the t-structure on DS(M0) coming from the stratification by infinitesimal
orbit types. This is a local matter. It is trivial for any open subset of M0 not meeting
S so we need only consider a neighbourhood of a point in S homeomorphic to L/G.

By Remark 5 we know that

γF : Rπ∗IC Ḟ (L̃)[−2] → Rπ∗IC Ḟ (L̃)

induces isomorphisms pHi(γi
F [i]) for i = l, 2, . . .. Thus, by the fact that Q∗ preserves

the t-structures and by Lemma 4,

Q∗pHi(γi
F [i]) = pHi(Q∗γi

F [i])
= pHi(γi[i])

is an isomorphism as required.
Second, we need to decompose pH0(Rπ∗IC˙(M̃0)) with IC˙(M0) as a summand.

Once again the argument (in Proposition 2) rests on establishing an isomorphism
of perverse sheaves and so can be checked locally. By Remark 5 a corresponding
isomorphism will hold in DS

F (L) and can be pushed forward using Q∗ to an iso-
morphism in DS(L/F ). Since Q∗IC Ḟ (L) ∼= IC˙(L/F ) and

Q∗pH0(RπF ∗IC Ḟ (L̃)) ∼= pH0(Q∗RπF ∗IC Ḟ (L̃)) ∼= pH0(Rπ∗IC˙(L̃/F ))
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we are done.

3.4. The definition of the Kirwan map

Theorem 6. Let R∗ : DS
K(Z) → DS

+(M0) be the pushforward functor induced
by the quotient map r : Z → Z/K = M0. Then we can define (non-canonically) a
morphism

κ : R∗QZ → IC˙(M0)

where QZ is the natural lift of the constant sheaf to an equivariant object, which
extends the natural isomorphism between the two over the nonsingular part of M0.
This induces a Kirwan map

H∗
K(Z) → IH∗(M0).

Proof. We prove this inductively on the depth of the stratification by infinites-
imal orbit types. The base case is when K acts with only finite stabilisers. [2,
Theorem 9.1 (ii)] tells us that there is an isomorphism R∗QZ

∼= QM0 . The proof is
based on Luna’s slice theorem for geometric quotients but this can be replaced by
the local normal form theorem in [20]. Since M0 is in this case a rational homology
manifold we also have an isomorphism QM0

∼= IC˙(M0). Composing the two yields
the desired map R∗QZ → IC˙(M0).

Now suppose we are in the general case. By performing blow ups we can obtain a
proper Hamiltonian K-space Ũ such that the infinitesimal orbit type decomposition
of the reduction Z̃/K = M̃0 has strictly lesser depth than that of Z/K = M0.
There is an equivariant map πK : Z̃ → Z. Adjunction gives a morphism QZ →
RπK∗π∗KQZ

∼= RπK∗QeZ . Since

Z̃

²²

πK // Z

²²

M̃0 π
// M0

is commutative [2, 6.12] tells us that

R∗QZ → R∗RπK∗QeZ ∼= Rπ∗R∗QeZ .

By induction on the depth of the infinitesimal orbit type decomposition we may
assume that κ̃ : R∗QeZ → IC˙(M̃0) has already been constructed. Furthermore, by
Proposition 6, there is a projection map Rπ∗IC˙(M̃0) → IC˙(M0). Hence we can
define κ to be the composition

R∗QZ → Rπ∗R∗QeZ → Rπ∗IC˙(M̃0) → IC˙(M0).

Remark 6. There are choices involved in the definition of the Kirwan map.
Whenever we apply Proposition 6 we have to choose the isomorphism giving the
decomposition. For every blowup in the partial desingularisation we must make
such a choice.

Since it arises from a morphism in the derived category the Kirwan map is clearly
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natural under restriction i.e. for any open U ⊂ M0 there is a commutative square

H∗
K(Z) //

²²

H∗
K(r−1U)

²²

IH∗(M0) // IH∗(U)

whose vertical maps are Kirwan maps where we make compatible choices of the
decompositions required to define them.

In addition, both H∗
K(Z) and IH∗(M0) are graded H∗(M0)-modules. From the

point of view of the derived category we see this by noting that

Hi(M0) ∼= Hom(QM0 ,QM0 [i]),
Hi

K(Z) ∼= Hom(QM0 , R∗QZ [i]),
and IHi(M0) ∼= Hom(QM0 , IC˙(M0)[i]).

The module structure arises from composition of morphisms. Since composition
on the left and right commute we see that the Kirwan map is a map of graded
H∗(M0)-modules. In particular it is surjective onto the image of the map H∗(M0) →
IH∗(M0) and uniquely defined on the image of the map H∗(M0) → H∗

K(Z).
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