Quantum divergences and reversibility

Fumio Hiai

Tohoku University

2016, Feb. (at NIMS, Daejeon)

Joint work with Milan Mosonyi

Fumio Hiai (Tohoku University)

Quantum divergences and reversibility

▶ ◀ @ ▶ ◀ 볼 ▶ ◀ 볼 ▶ 볼 - 옛 및 ⓒ 2016. Feb. (at NIMS. Daeieon) 1 / 33

Plan

- Two different f-divergences
 - Standard f-divergences H_f
 - Non-standard f-divergences H^{*}_c
 - Examples
- Reversibility via f-divergences
 - Brief history -
 - Reversibility via H_f
 - Reversibility via H*,
- New Rényi divergences and reversibility
 - Sandwiched Rényi divergences and *α-z*-Rényi divergences
 - Reversibility via α -z-Rényi divergences

Usual notations

- \mathcal{H} is a finite-dimensional Hilbert space.
- $\mathcal{B}(\mathcal{H})$ is the algebra of linear operators on \mathcal{H} .
- $\mathcal{B}(\mathcal{H})_+ := \{A \in \mathcal{B}(\mathcal{H}) : A \ge 0\}.$
- $\mathcal{B}(\mathcal{H})_{++} := \{A \in \mathcal{B}(\mathcal{H}) : A > 0, \text{ i.e., positive invertible}\}.$
- For $A \in \mathcal{B}(\mathcal{H})_+$, A^{-1} is the generalized inverse of A, and A^0 is the support projection of A.
- Tr is the usual trace functional on $\mathcal{B}(\mathcal{H})$.
- The Hilbert-Schmidt inner product is

 $\langle X, Y \rangle := \operatorname{Tr} X^* Y, \qquad X, Y \in \mathcal{B}(\mathcal{H}).$

• The left and the right multiplications of $A \in \mathcal{B}(\mathcal{H})$ are

$$L_A X := A X, \quad R_A X := X R, \qquad X \in \mathcal{B}(\mathcal{H}).$$

If $A, B \in \mathcal{B}(\mathcal{H})_+$, then L_A and R_B are positive operators on $\mathcal{B}(\mathcal{H})$ with $L_A R_B = R_B L_A$.

Operator convex function

Assume that *f*: (0,∞) → ℝ is an operator convex function, i.e.,

$$f(\lambda A + (1 - \lambda)B) \le \lambda f(A) + (1 - \lambda)f(B), \qquad 0 \le \lambda \le 1$$

for every $A, B \in \mathcal{B}(\mathcal{H})_{++}$ (of any \mathcal{H}).

Set

$$f(+0) := \lim_{x \searrow 0} f(x), \qquad f'(\infty) := \lim_{x \to \infty} f'(x) = \lim_{x \to \infty} \frac{f(x)}{x}$$

in $(-\infty, +\infty]$.

The transpose of f is f̃(x) := xf(x⁻¹), x > 0, which is operator convex on (0,∞) again.

・ロト ・ 同ト ・ ヨト ・ ヨト …

Integral expression

The operator convex function f on $(0, \infty)$ admits the unique integral expression

$$f(x) = f(1) + f'(1)(x - 1) + c(x - 1)^2 + \int_{[0,\infty)} \frac{(x - 1)^2}{x + s} d\mu(s), \qquad x \in (0,\infty)$$

with $c \ge 0$ and a positive measure μ on $[0, \infty)$ satisfying $\int_{[0,\infty)} (1+s)^{-1} d\mu(s) < +\infty$.

イロト イポト イヨト イヨト 二日

Standard f-divergences H_f

Definition

For $A, B \in \mathcal{B}(\mathcal{H})_{++}$ with spectral decompositions $A = \sum_{a \in \operatorname{Sp}(A)} aP_a$ and $B = \sum_{b \in \operatorname{Sp}(B)} bQ_b$, the (standard) *f*-divergence is

$$H_f(A, B) := \langle B^{1/2}, f(L_A R_{B^{-1}}) B^{1/2} \rangle = \operatorname{Tr} B^{1/2} f(L_A R_{B^{-1}}) (B^{1/2})$$

with
$$f(L_A R_{B^{-1}}) = \sum_{a \in Sp(A)} \sum_{b \in Sp(B)} f(ab^{-1}) L_{P_a} R_{Q_b},$$

which can be extended to general $A, B \in \mathcal{B}(\mathcal{H})_+$ as

$$H_f(A, B) := \lim_{\varepsilon \searrow 0} H_f(A + \varepsilon I, B + \varepsilon I).$$

The f-divergences are special cases of Petz's quasi-entropy.¹

¹D. Petz, Quasi-entropies for finite quantum systems, *Rep. Math. Phys.* **23** (1986), 57–65.

Fumio Hiai (Tohoku University)

Properties of H_f For every $A, B \in \mathcal{B}(\mathcal{H})_+$,

• Explicit formula

$$H_f(A, B) = \sum_{a>0} \sum_{b>0} bf(ab^{-1}) \operatorname{Tr} P_a Q_b + f(+0) \operatorname{Tr} (I - A^0) B$$

+ $f'(\infty)$ Tr $A(I - B^0)$.

- Transpose $H_{\tilde{f}}(A, B) = H_f(B, A)$. • Continuity
 - If $f(+0) < +\infty$ or $B^0 \nleq A^0$ or $A^0 = I$, then

$$H_f(A,B) = \lim_{0 < L \to 0} H_f(A,B+L).$$

- If $f'(\infty) < +\infty$ or $A^0 \nleq B^0$ or $B^0 = I$, then

$$H_f(A,B) = \lim_{0 < K \to 0} H_f(A + K,B).$$

- If $f(+0) < +\infty$ and $f'(\infty) < +\infty$, then

$$H_f(A,B) = \lim_{0 < K, L \to 0} H_f(A + K, B + L).$$

イロト イポト イヨト イヨト 三日

Major properties of H_f (for details, see ^{2 3}) Joint convexity

For every $A_i, B_i \in \mathcal{B}(\mathcal{H})_+$ and $\lambda_i \ge 0, 1 \le i \le k$,

 $H_f\left(\sum_{i=1}^k \lambda_i A_i, \sum_{i=1}^k \lambda_i B_i\right) \leq \sum_{i=1}^k \lambda_i H_f(A_i, B_i).$

Monotonicity or Data-processing inequality

Assume that $\Phi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{K})$ is a trace-preserving linear map such that the adjoint $\widehat{\Phi} : \mathcal{B}(\mathcal{K}) \to \mathcal{B}(\mathcal{H})$ satisfies $\widehat{\Phi}(Y^*Y) \ge \widehat{\Phi}(Y^*)\widehat{\Phi}(Y), Y \in \mathcal{B}(\mathcal{K})$. For every $A, B \in \mathcal{B}(\mathcal{H})_+$,

 $H_f(\Phi(A), \Phi(B)) \leq H_f(A, B).$

²A. Lesniewski and M.B. Ruskai, Monotone Riemannian metrics and relative entropy on noncommutative probability spaces, *J. Math. Phys.* **40** (1999), 5702–5724.

³F.H., M. Mosonyi, D. Petz and C. Bény, Quantum *f*-divergences and error correction, *Rev. Math. Phys.* **23** (2011), 691–747.

Fumio Hiai (Tohoku University)

Quantum divergences and reversibility

2016, Feb. (at NIMS, Daejeon) 8 / 33

Non-standard f-divergences H_{ℓ}^{*} 4.5

Definition

For $A, B \in \mathcal{B}(\mathcal{H})_{++}$ define

$$H_f^*(A, B) := \operatorname{Tr} Bf(B^{-1/2}AB^{-1/2}) = \operatorname{Tr} B^{1/2}f(B^{-1/2}AB^{-1/2})B^{1/2},$$

which can be extended to general $A, B \in \mathcal{B}(\mathcal{H})_+$ as

$$H_f^*(A,B) := \lim_{\varepsilon \searrow 0} H_f^*(A + \varepsilon I, B + \varepsilon I).$$

⁴D. Petz and M.B. Ruskai, Contraction of generalized relative entropy under stochastic mappings on matrices, *Infin. Dimens. Anal. Quantum Probab. Relat. Top.* **1** (1998), 83–89.

⁵K. Matsumoto, A new quantum version of *f*-divergence, Preprint, 2014; arXiv:1311.4722.

Fumio Hiai (Tohoku University)

Properties of H_{f}^{*}

- *H*^{*}_f(*A*, *B*) is jointly convex in *A*, *B* ∈ B(H)₊. More strongly,
 (*A*, *B*) ∈ B(H)₊₊ × B(H)₊₊ → B^{1/2}f(B^{-1/2}AB^{-1/2})B^{1/2} is jointly operator convex.⁶
- Transpose $H^*_{\widetilde{f}}(A,B) = H^*_f(B,A).$
- Continuity

- If $f(+0) < +\infty$ and $B^0 = I$, then

$$H_{f}^{*}(A, B) = \lim_{0 < K \to 0} H_{f}^{*}(A + K, B).$$

- If $f'(\infty) < +\infty$ and $A^0 = I$, then

$$H_{f}^{*}(A, B) = \lim_{0 < L \to 0} H_{f}^{*}(A, B + L).$$

- If $f(+0) < +\infty$ and $f'(\infty) < +\infty$, then

$$H_f^*(A, B) = \lim_{0 < K, L \to 0} H_f^*(A + K, B + L).$$

⁶E. Effros and F. Hansen, Non-commutative perspectives, *Ann. Funct. Anal.* **5** (2014), 74–79; arXiv:1309.7701.

Fumio Hiai (Tohoku University)

Properties of H_{f}^{*} (cont.)

Monotonicity

For any trace-preserving positive linear map $\Phi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{K})$ and $A, B \in \mathcal{B}(\mathcal{H})_+$,

$$H_f^*(\Phi(A), \Phi(B)) \le H_f^*(A, B).$$

[The proof is essentially in 7]

⁷F.H. and D. Petz, The proper formula for relative entropy and its asymptotics in quantum probability, *Comm. Math. Phys.* **143** (1991), 99–114.

Fumio Hiai (Tohoku University)

Quantum divergences and reversibility

Inequality

For every $A, B \in \mathcal{B}(\mathcal{H})_+$,

$$H_f(A, B) \le H_f^*(A, B).$$

[The proof is based on Matsumoto's construction of minimal reverse test.⁵]

Strict inequality

If $f(+0) < +\infty$ and the representing measure μ for f satisfies $|\operatorname{supp} \mu| \ge 2(\dim \mathcal{H})^2$, then

$$H_f(A, B) < H_f^*(A, B)$$

for every non-commuting $A, B \in \mathcal{B}(\mathcal{H})_+$ with $A^0 \leq B^0$.

[The proof is based on the reversibility theorem below.]

Fumio Hiai (Tohoku University)

Examples

(1) Quadratic function When $f(x) = x^2$,

$$H_{x^2}(A, B) = \operatorname{Tr} A^2 B^{-1} = H^*_{x^2}(A, B).$$

Hence, when $f(x) = ax^2 + bx + c$ with $a \ge 0$, $H_f(A, B) = H_f^*(A, B)$ for all $A, B \in \mathcal{B}(\mathcal{H})_+$.

(2) Log function When $f(x) = x \log x$ and $\tilde{f}(x) = -\log x$,

$$H_{x\log x}(A, B) = S(A||B) := \operatorname{Tr} A(\log A - \log B)$$

is the Umegaki relative entropy, and $H_{-\log x}(A, B) = S(B||A)$. For $A^0 \leq B^0$,

$$H^*_{x \log x}(A, B) = S_{BS}(A||B) := \text{Tr } A \log(A^{1/2}B^{-1}A^{1/2})$$

is the Belavkin-Staszewski relative entropy.

(3) Power functions For $\alpha \in (0, 1) \cup (1, 2]$ consider

$$f^{(\alpha)}(x) := \frac{x - x^{\alpha}}{\alpha(1 - \alpha)}, \qquad \widetilde{f}^{(\alpha)}(x) = \frac{1 - x^{1 - \alpha}}{\alpha(1 - \alpha)}.$$

Note that $f^{(\alpha)}(x) \to x \log x$ and $\tilde{f}^{(\alpha)}(x) \to -\log x$ as $\alpha \to 1$, and that $f^{(\alpha)}$ and $\tilde{f}^{(\alpha)}$ cover all of operator convex power functions x^{α} ($-1 \le \alpha < 0$, $1 < \alpha \le 2$) and $-x^{\alpha}$ ($0 < \alpha < 1$). We write

$$H_{f^{(\alpha)}}(A,B) = \frac{\operatorname{Tr} A - \operatorname{Tr} A^{\alpha} B^{1-\alpha}}{\alpha(1-\alpha)},$$

$$H_{f^{(\alpha)}}^{*}(A,B) = \frac{\operatorname{Tr} A - \operatorname{Tr} B^{1/2} (B^{-1/2} A B^{-1/2})^{\alpha} B^{1/2}}{\alpha(1-\alpha)}.$$

When $0 < \alpha < 1$, we rewrite

$$H^*_{f^{(\alpha)}}(A,B) = \frac{\operatorname{Tr} A - \operatorname{Tr} B \#_{\alpha} A}{\alpha(1-\alpha)}.$$

Fact

From the strict inequality between H_f and H_f^* , for $A, B \in \mathcal{B}(\mathcal{H})_+$ with $A^0 \leq B^0$ and $AB \neq BA$,

- (1) $S(A||B) < S_{BS}(A||B)$,
- (2) Tr $A \#_{\alpha} B < \text{Tr } A^{1-\alpha} B^{\alpha}$ for $\alpha \in (0, 1)$,
- (3) Tr $A^{\alpha}B^{1-\alpha}$ < Tr $B^{1/2}(B^{-1/2}AB^{-1/2})^{\alpha}B^{1/2}$ for $\alpha \in (1, 2)$.

Note that $S(A||B) \leq S_{BS}(A||B)$ was first proved in ⁷, Tr $A \#_{\alpha} B \leq \text{Tr } A^{1-\alpha} B^{\alpha}$ is a consequence of the log-majorization ⁸, and (3) seems new.

⁸T. Ando and F.H., Log majorization and complementary Golden-Thompson type inequalities, *Linear Algebra Appl.* **197/198** (1994), 13–131.

Fumio Hiai (Tohoku University)

Brief history

Reversibility problem Let *D* be a quantum divergence and $A, B \in \mathcal{B}(\mathcal{H})_+$. Let $\Phi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{K})$ be a stochastic map (typically, a TPCP map). If $D(\Phi(A), \Phi(B)) = D(A, B) < +\infty$, then is there a reverse stochastic map $\Psi : \mathcal{B}(\mathcal{K}) \to \mathcal{B}(\mathcal{H})$ such that $\Psi(\Phi(A)) = A$ and $\Psi(\Phi(B)) = B$?

The problem treats the case of no contraction of D for given A, B, which is considered as complementary to the contraction coefficient problem ⁹ treating the maximal contraction

$$\eta_D(\Phi) := \sup_{\rho \neq \gamma} \frac{D(\Phi(\rho), \Phi(\gamma))}{D(\rho, \gamma)}$$

over invertible density operators ρ, γ in $\mathcal{B}(\mathcal{H})$.

⁹ M.B. Ruskai's talk in the workshop.		< □ > < @ > < E > < E > E	୬୯୯
Fumio Hiai (Tohoku University)	Quantum divergences and reversibility	2016, Feb. (at NIMS, Daejeon)	16 / 33

Previous studies

- Petz (1986)¹⁰: When \mathcal{N} is a subalgebra of a von Neumann algebra \mathcal{M} and φ, ψ are faithful normal states, \mathcal{N} is sufficient for φ, ψ iff $S(\psi|_{\mathcal{N}}||\varphi|_{\mathcal{N}}) = S(\psi||\varphi)$.
- Hayden, Jozsa, Petz and Winter (2004)¹¹:

A structural characterization of equality case of strong subadditivity, equivalently, equality case of relative entropy in a tripartite system.

¹⁰D. Petz, Sufficient subalgebras and the relative entropy of states of a von Neumann algebra, *Comm. Math. Phys.* **105** (1986), 123–131.

¹¹P. Hayden, R. Jozsa, D. Petz and A. Winter, Structure of states which satisfy strong subadditivity of quantum entropy with equality, *Comm. Math. Phys.* **246** (2004), 359–374.

Previous studies (cont.)

- Jenčová and Petz $(2006)^{12}$: When $\alpha : N \to M$ is a unital 2-positive map between von Neumann algebras and S is a set of normal states with $\varphi \in S$ such that both φ and $\varphi \circ \alpha$ are faithful, α is reversible for S iff $P(\psi \circ \alpha, \varphi \circ \alpha) = P(\psi, \varphi)$ for all $\psi \in S$ iff $S(\psi \circ \alpha || \varphi \circ \alpha) = S(\psi || \varphi)$ for all $\psi \in S$.
- Jenčová and Ruskai (2010)¹³ A characterization for equality case in the joint convexity of quasi-entropies; joint convexity is a special case of the monotonicity under partial traces.

¹³A. Jenčová and M.B. Ruskai, A unified treatment of convexity of relative entropy and related trace functions, with conditions for equality, *Rev. Math. Phys.* **22** (2010), 1099–1121.

¹²A. Jenčová and D. Petz, Sufficiency in quantum statistical inference, *Comm. Math. Phys.* **263** (2006), 259–276.

Reversibility via H_f

We assume:

- *f*(+0) < +∞, so *f* extends to an operator convex function on [0,∞).
- $\Phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ is trace-preserving and 2-positive.
- $A, B \in \mathcal{B}(\mathcal{H})_+$ with $B^0 = I$.

Set a unital 2-positive map $\Phi_B : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{K})$ as

$$\Phi_B(X) := \Phi(B)^{-1/2} \Phi(B^{1/2} X B^{1/2}) \Phi(B)^{-1/2}, \qquad X \in \mathcal{B}(\mathcal{H}),$$

whose adjoint $\widehat{\Phi}_B : \mathcal{B}(\mathcal{K}) \to \mathcal{B}(\mathcal{H})$ is

$$\widehat{\Phi}_B(Y) = B^{1/2} \widehat{\Phi}(\Phi(B)^{-1/2} Y \Phi(B)^{-1/2}) B^{1/2}, \qquad Y \in \mathcal{B}(\mathcal{K}).$$

Note that $\widehat{\Phi}_B(\Phi(B)) = B$.

19/33

Combining our previous paper (2011)³ and Jenčová (2012)¹⁴,

Theorem

The following conditions are equivalent:

- (i) Φ is reversible for A, B.
- (ii) $\widehat{\Phi}_B(\Phi(A)) = A$.
- (iii) $H_f(\Phi(A), \Phi(B)) = H_f(A, B)$ for some f whose representing measure μ satisfies $|\operatorname{supp} \mu| \ge |\operatorname{Sp}(L_A R_{B^{-1}}) \cup \operatorname{Sp}(L_{\Phi(A)} R_{\Phi(B)^{-1}})|.$
- (iv) $H_f(\Phi(A), \Phi(B)) = H_f(A, B)$ for all f.
- (v) $\widehat{\Phi}(\Phi(B)^{-1/2}\Phi(A)\Phi(B)^{-1/2}) = B^{-1/2}AB^{-1/2}.$
- (vi) $B^{-1/2}AB^{-1/2} \in \text{ker}(\text{id} \widehat{\Phi} \circ \Phi_B)$, the fixed-point subalgebra of $\widehat{\Phi} \circ \Phi_B$.

¹⁴A. Jenčová, Reversibility conditions for quantum operations, *Rev. Math. Phys.***24** (2012), 1250016, 26 pp.

Fumio Hiai (Tohoku University)

Quantum divergences and reversibility

2016, Feb. (at NIMS, Daejeon) 20 / 33

Theorem (cont.)

(vii) if $\rho := A/\operatorname{Tr} A$ and $\gamma := B/\operatorname{Tr} B$, then

$$\langle \Phi(\rho-\gamma), \Omega^{\kappa}_{\Phi(\gamma)}(\Phi(\rho-\gamma))\rangle = \langle \rho-\gamma, \Omega^{\kappa}_{\gamma}(\rho-\gamma)\rangle$$

for some monotone Riemannian metric $\langle \cdot, \Omega_{\gamma}^{\kappa}(\cdot) \rangle$ such that the representing measure ν of κ satisfies $|\operatorname{supp} \nu| \geq |\operatorname{Sp}(L_{\gamma}R_{\gamma^{-1}}) \cup \operatorname{Sp}(L_{\Phi(\gamma)}R_{\Phi(\gamma)^{-1}})|.$

Note Monotone metrics on { $\gamma \in \mathcal{B}(\mathcal{H})_{++}$: Tr $\gamma = 1$ } are associated with operator decreasing functions $\kappa : (0, \infty) \to (0, \infty)$ such that $x\kappa(x) = \kappa(x^{-1})$, x > 0, and $\kappa(x) = 1$, admitting the integral expression

$$\kappa(x) = c + \int_{[0,\infty)} \frac{1}{x+s} d\nu(s), \qquad x \in (0,\infty),$$

with a unique positive measure v on $[0, \infty)$.

Fumio Hiai (Tohoku University)

Reversibility via H_{f}^{*}

• The multiplicative domain of Φ_B is

$$\mathcal{M}_{\Phi_B} := \{ X \in \mathcal{B}(\mathcal{H}) : \Phi_B(XY) = \Phi_B(X)\Phi_B(Y), \\ \Phi_B(YX) = \Phi_B(Y)\Phi_B(X), Y \in \mathcal{B}(\mathcal{H}) \} \\ = \{ X \in \mathcal{B}(\mathcal{H}) : \Phi_B(X^*X) = \Phi_B(X)^*\Phi_B(X), \\ \Phi_B(XX^*) = \Phi_B(X)^*\Phi_B(X)^* \}.$$

Associated with an operator monotone function h ≥ 0 on
 (0,∞) with h(1) = 1, the operator mean σ_h (in the Kubo-Ando sense) is

 $A \sigma_h B := A^{1/2} h(A^{-1/2} B A^{-1/2}) A^{1/2}, \quad A, B \in \mathcal{B}(\mathcal{H})_{++}.$

We say that σ_h is non-linear if h is non-linear.

Note $\Phi(A \sigma B) \leq \Phi(A) \sigma \Phi(B)$ holds for any operator mean σ and any general positive map Φ (essentially due to Ando, 1979).

Fumio Hiai (Tohoku University)

22/33

The next theorem gives equivalent conditions for equality case of H_f^* under Φ . The implication (a) \Rightarrow (g) was shown by Matsumoto⁵.

Theorem

The following conditions are equivalent:

(a) $H_{f}^{*}(\Phi(A), \Phi(B)) = H_{f}^{*}(A, B)$ for some non-linear f.

(b)
$$H_{f}^{*}(\Phi(A), \Phi(B)) = H_{f}^{*}(A, B)$$
 for all f .

(c)
$$\operatorname{Tr} \Phi(A)^2 \Phi(B)^{-1} = \operatorname{Tr} A^2 B^{-1}$$
.

- (d) $\Phi(A) \sigma \Phi(B) = \Phi(A \sigma B)$ for some non-linear operator mean σ .
- (e) $\Phi(A) \sigma \Phi(B) = \Phi(A \sigma B)$ for all operator means σ .

(f)
$$\Phi(A)\Phi(B)^{-1}\Phi(A) = \Phi(AB^{-1}A).$$

(g) $B^{-1/2}AB^{-1/2} \in \mathcal{M}_{\Phi_B}$.

・ロト ・同ト ・ヨト ・ヨト

Corollary

If $\Phi(A)$ and $\Phi(B)$ commute, then the conditions of the previous theorem are equivalent to the reversibility of Φ for A, B.

Corollary

If $\Phi(B)$ commutes with $\Phi(A)$ for all $A \in \mathcal{B}(\mathcal{H})$ (in particular, if Φ is a quantum-classical channel), then

$$\ker(\mathrm{id}-\widehat{\Phi}\circ\Phi_B)=\mathcal{M}_{\Phi_B}.$$

Note In particular, if Φ is a unital channel (trace-preserving) and B = I (so $\Phi(B) = I$), then ker(id $-\widehat{\Phi} \circ \Phi$) = \mathcal{M}_{Φ} , which is contained in ¹⁵.

¹⁵M.-D. Choi, N. Johnston and D.W. Kribs, The multiplicative domain in quantum error correction, *J. Phys. A: Math. Theor.* **42** (2009), 245303, **1**5 pp. ⊸ <

Fumio Hiai (Tohoku University)

Quantum divergences and reversibility

2016, Feb. (at NIMS, Daejeon) 24 / 33

Qubit case

• If f is not of the form $ax^2 + bx + c$ with $a \ge 0$, then

 $H_f(A, B) < H_f^*(A, B)$

for every non-commuting $A, B \in \mathcal{B}(\mathbb{C}^2)_+$ with B > 0.

If Φ is a unital qubit channel, then the conditions of the previous theorem are equivalent to the reversibility of Φ for any A, B ∈ B(C²)₊ with B > 0.

But, this is not true for some unital qutrit channel.

イロト イポト イラト イラト 一日

Sandwiched Rényi divergences and *α-z*-Rényi divergences

- Definition For $\alpha, z > 0$ with $\alpha \neq 1$,
 - The (old) Rényi divergence is

$$D_{\alpha}(A||B) := \frac{1}{\alpha - 1} \log \frac{\operatorname{Tr} A^{\alpha} B^{1 - \alpha}}{\operatorname{Tr} A}.$$

• The (new) sandwiched Rényi divergence¹⁶ is

$$D^*_{\alpha}(A||B) := \frac{1}{\alpha - 1} \log \frac{\operatorname{Tr} (B^{\frac{1 - \alpha}{2\alpha}} A B^{\frac{1 - \alpha}{2\alpha}})^{\alpha}}{\operatorname{Tr} A}.$$

¹⁶M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr and M. Tomamichel, On quantum Rényi entropies: A new generalization and some properties, *J. Math. Phys.* **54** (2013), 122203.

Fumio Hiai (Tohoku University)

• The α -z-Rényi divergence¹⁷ ¹⁸ is

$$D_{\alpha,z}(A||B) := \frac{1}{\alpha - 1} \log \frac{\operatorname{Tr} (B^{\frac{1-\alpha}{2z}} A^{\frac{\alpha}{z}} B^{\frac{1-\alpha}{2z}})^z}{\operatorname{Tr} A}.$$

Note $D_{\alpha} = D_{\alpha,1}, D_{\alpha}^* = D_{\alpha,\alpha}$ and

 $D_{1/2}^{*}(A||B) = -2\log F(A, B) \text{ where } F(A, B) := \operatorname{Tr} |A^{1/2}B^{1/2}|,$ $\lim_{\alpha \to 1} D_{\alpha}^{*}(A||B) = S(A||B) := \operatorname{Tr} A(\log A - \log B),$ $\lim_{\alpha \to \infty} D_{\alpha}^{*}(A||B) = D_{\max}(A||B) := \inf\{\gamma : A \le e^{\gamma}B\}.$

¹⁷V. Jaksic, Y. Ogata, Y. Pautrat and C.-A. Pillet, Entropic fluctuations in quantum statistical mechanics. An Introduction, in: Quantum Theory from Small to Large Scales, August 2010, in: Lecture Notes of the Les Houches Summer School, vol. 95, Oxford University Press, 2012.

 ¹⁸K.M.R. Audenaert and N. Datta, α-z-Rényi relative entropies, J. Math. Phys.

 56 (2015), 022202.

Monotonicity or Data-processing inequality

In each of the following cases, $\text{Tr} (B^{\frac{1-\alpha}{2z}}A^{\frac{\alpha}{z}}B^{\frac{1-\alpha}{2z}})^z$ is jointly concave for $\alpha < 1$ and jointly convex for $\alpha > 1$, and the monotonicity

$D_{\alpha,z}(\Phi(A) \| \Phi(B)) \leq D_{\alpha,z}(A \| B)$

holds for any TPCP map Φ .

Moreover, the monotonicity of D^*_{α} for $\alpha \ge 1$ is known for any trace-preserving positive map Φ (due to Beigi).

Monotonicity or Data-processing inequality (cont.)

- $0 < \alpha \le 1$ and $z \ge \max{\alpha, 1 \alpha}$ (F.H., 2013); hence $1/2 \le \alpha \le 1$ if $z = \alpha$,
- $1 \le \alpha \le 2$ and z = 1 (Ando, 1979),
- $\alpha \ge 1$ and $z = \alpha$ (Müller-Lennert et al.¹⁶, Frank and Lieb^a, Beigi^b, Wilde, Winter and Yang^c)
- $1 \le \alpha \le 2$ and $z = \alpha/2$ (Carlen, Frank and Lieb^d).

^aR.L. Frank and E.H. Lieb, Monotonicity of a relative Rényi entropy, *J. Math. Phys.* **54** (2013), 122201.

^bS. Beigi, Sandwiched Rényi divergence satisfies data processing inequality, *J. Math. Phys.* **54** (2013), 122202.

^cM.M. Wilde, A. Winter and D. Yang, Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy, *Comm. Math. Phys.* **331** (2014), 593–622.

^dE.A. Carlen, R.L. Frank and E.H. Lieb, Some operator and trace function convexity theorems, *Linear Algebra Appl.* **490** (2016), 174–185.

Reversibility via α -z-Rényi divergences

Theorem

Assume: $\Phi : \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ is 2-positive bistochastic map and

 $D_{\alpha,z}(\Phi(A) \| \Phi(B)) = D_{\alpha,z}(A \| B).$

Then Φ is reversible for A, B if each of the following is satisfied:

- $\alpha \leq z \leq 1$, $\Phi(B) = B$ and $A^0 \leq B^0$ (without 2-positivity),

$$-\alpha < z \le 1, \, \Phi(B) = B \text{ and } B^0 \le A^0,$$

-
$$0 < 1 - \alpha \le z \le 1$$
, $\Phi(A) = A$ and $B^0 \le A^0$ (without 2-positivity),

- $0 < 1 \alpha < z \le 1$, $\Phi(A) = A$ and $A^0 \le B^0$,
- $\alpha \ge z \ge \max\{1, \alpha/2\}, \Phi(B) = B \text{ and } A^0 \le B^0$ (without 2-positivity),

$$-\alpha > 1, z \ge 1, z > \alpha - 1, \Phi(A) = A \text{ and } B^0 = I.$$

Corollary

Assume: $\Phi : \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ is 2-positive bistochastic map and

 $D^*_{\alpha}(\Phi(A)||\Phi(B)) = D^*_{\alpha}(A||B).$

Then Φ is reversible for A, B if each of the following is satisfied:

- $\Phi(B) = B$ and $A^0 \le B^0$ (for arbitrary $\alpha \in (0, \infty) \setminus \{1\}$ without 2-positivity),
- $1/2 \le \alpha < 1$, $\Phi(A) = A$ and $B^0 \le A^0$ (without 2-positivity),
- $1/2 < \alpha < 1$, $\Phi(A) = A$ and $A^0 \le B^0$.

イロト (得) (ヨ) (ヨ) - ヨ

Notes

- If $D_2^*(\Phi(A)||\Phi(B)) = D_2^*(A||B)$, then Φ is reversible for A, B in the general setting.
- When $\alpha \in (0, 2) \setminus \{1\}$, if $D_{\alpha}(\Phi(A) || \Phi(B)) = D_{\alpha}(A || B)$, then Φ is reversible for A, B (the case of *f*-divergence for $f(x) = x^{\alpha}$).
- When $\alpha = z = 1/2$ (the case of fidelity), $F(\Phi(A), \Phi(B)) = F(A, B)$ implies the reversibility of Φ for A, Bwhen $\Phi(B) = B$ and $A^0 \le B^0$ (or $\Phi(A) = A$ and $B^0 \le A^0$).
- The reversibility via D_{max} does not hold even when $\Phi(B) = B$ and $A^0 = B^0$.

イロト イポト イヨト イヨト 二日

Thank you for your attention.

イロト イボト イヨト イヨト

33 / 33

э