Quantum divergences and reversibility

Fumio Hiai

Tohoku University

2016, Feb. (at NIMS, Daejeon)

Joint work with Milan Mosonyi

Plan

- Two different f-divergences
- Standard \boldsymbol{f}-divergences $\boldsymbol{H}_{\boldsymbol{f}}$
- Non-standard \boldsymbol{f}-divergences $\boldsymbol{H}_{\boldsymbol{f}}{ }^{*}$
- Examples
- Reversibility via f-divergences
- Brief history
- Reversibility via $\boldsymbol{H}_{\boldsymbol{f}}$
- Reversibility via \boldsymbol{H}_{f}^{*}
- New Rényi divergences and reversibility
- Sandwiched Rényi divergences and α - z-Rényi divergences
- Reversibility via α - z-Rényi divergences

Usual notations

- \mathcal{H} is a finite-dimensional Hilbert space.
- $\mathcal{B}(\mathcal{H})$ is the algebra of linear operators on \mathcal{H}.
- $\mathcal{B}(\mathcal{H})_{+}:=\{A \in \mathcal{B}(\mathcal{H}): A \geq 0\}$.
- $\mathcal{B}(\mathcal{H})_{++}:=\{A \in \mathcal{B}(\mathcal{H}): A>0$, i.e., positive invertible $\}$.
- For $\boldsymbol{A} \in \mathcal{B}(\mathcal{H})_{+}, \boldsymbol{A}^{-1}$ is the generalized inverse of \boldsymbol{A}, and $\boldsymbol{A}^{\mathbf{0}}$ is the support projection of \boldsymbol{A}.
- Tr is the usual trace functional on $\mathcal{B}(\mathcal{H})$.
- The Hilbert-Schmidt inner product is

$$
\langle X, Y\rangle:=\operatorname{Tr} X^{*} Y, \quad X, Y \in \mathcal{B}(\mathcal{H}) .
$$

- The left and the right multiplications of $\boldsymbol{A} \in \mathcal{B}(\mathcal{H})$ are

$$
L_{A} X:=A X, \quad R_{A} X:=X R, \quad X \in \mathcal{B}(\mathcal{H}) .
$$

If $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{B}(\mathcal{H})_{+}$, then $\boldsymbol{L}_{\boldsymbol{A}}$ and $\boldsymbol{R}_{\boldsymbol{B}}$ are positive operators on $\mathcal{B}(\mathcal{H})$ with $\boldsymbol{L}_{A} \boldsymbol{R}_{B}=\boldsymbol{R}_{B} \boldsymbol{L}_{A}$.

Operator convex function

- Assume that $\boldsymbol{f}:(\mathbf{0}, \infty) \rightarrow \mathbb{R}$ is an operator convex function, i.e.,

$$
f(\lambda A+(1-\lambda) B) \leq \lambda f(A)+(1-\lambda) f(B), \quad 0 \leq \lambda \leq 1
$$

for every $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{B}(\mathcal{H})_{++}$(of any $\left.\mathcal{H}\right)$.

- Set

$$
f(+0):=\lim _{x \searrow 0} f(x), \quad f^{\prime}(\infty):=\lim _{x \rightarrow \infty} f^{\prime}(x)=\lim _{x \rightarrow \infty} \frac{f(x)}{x}
$$

in $(-\infty,+\infty]$.

- The transpose of f is $\widetilde{f}(x):=x f\left(x^{-1}\right), x>0$, which is operator convex on $(\mathbf{0}, \infty)$ again.

Integral expression

The operator convex function f on $(\mathbf{0}, \infty)$ admits the unique integral expression

$$
\begin{aligned}
f(x)=f(1)+ & f^{\prime}(1)(x-1)+c(x-1)^{2} \\
& +\int_{[0, \infty)} \frac{(x-1)^{2}}{x+s} d \mu(s), \quad x \in(0, \infty)
\end{aligned}
$$

with $c \geq 0$ and a positive measure μ on $[0, \infty)$ satisfying $\int_{[0, \infty)}(1+s)^{-1} d \mu(s)<+\infty$.

Standard f-divergences \boldsymbol{H}_{f}

Definition

For $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{B}(\mathcal{H})_{++}$with spectral decompositions $\boldsymbol{A}=\sum_{a \in \mathrm{Sp}(\boldsymbol{A})} \boldsymbol{a} \boldsymbol{P}_{a}$ and $\boldsymbol{B}=\sum_{b \in \mathrm{Sp}(\boldsymbol{B})} \boldsymbol{b} \boldsymbol{Q}_{b}$, the (standard) f-divergence is

$$
H_{f}(A, B):=\left\langle B^{1 / 2}, f\left(L_{A} R_{B^{-1}}\right) B^{1 / 2}\right\rangle=\operatorname{Tr} B^{1 / 2} f\left(L_{A} R_{B^{-1}}\right)\left(B^{1 / 2}\right)
$$

with

$$
f\left(L_{A} R_{B^{-1}}\right)=\sum_{a \in \operatorname{Sp}(A)} \sum_{b \in \operatorname{Sp}(B)} f\left(a b^{-1}\right) L_{P_{a}} R_{Q_{b}},
$$

which can be extended to general $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{B}(\mathcal{H})_{+}$as

$$
H_{f}(A, B):=\lim _{\varepsilon \searrow 0} H_{f}(A+\varepsilon I, B+\varepsilon I) .
$$

The f-divergences are special cases of Petz's quasi-entropy. ${ }^{1}$
${ }^{1}$ D. Petz, Quasi-entropies for finite quantum systems, Rep. Math. Phys. 23 (1986), 57-65.

Properties of \boldsymbol{H}_{f} For every $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{B}(\mathcal{H})_{+}$,

- Explicit formula

$$
\begin{aligned}
H_{f}(A, B)=\sum_{a>0} \sum_{b>0} b f\left(a b^{-1}\right) \operatorname{Tr} P_{a} Q_{b}+ & f(+0) \operatorname{Tr}\left(I-A^{0}\right) B \\
+ & f^{\prime}(\infty) \operatorname{Tr} A\left(I-B^{0}\right) .
\end{aligned}
$$

- Transpose $\boldsymbol{H}_{\overparen{f}}(\boldsymbol{A}, \boldsymbol{B})=\boldsymbol{H}_{\boldsymbol{f}}(\boldsymbol{B}, \boldsymbol{A})$.
- Continuity
- If $f(+\mathbf{0})<+\infty$ or $\boldsymbol{B}^{\mathbf{0}} \not \leq A^{\mathbf{0}}$ or $\boldsymbol{A}^{\mathbf{0}}=\boldsymbol{I}$, then

$$
H_{f}(A, B)=\lim _{0<L \rightarrow 0} H_{f}(A, B+L) .
$$

- If $f^{\prime}(\infty)<+\infty$ or $\boldsymbol{A}^{0} \not \leq \boldsymbol{B}^{\mathbf{0}}$ or $\boldsymbol{B}^{\mathbf{0}}=I$, then

$$
H_{f}(A, B)=\lim _{0<K \rightarrow 0} H_{f}(A+K, B) .
$$

- If $f(+0)<+\infty$ and $f^{\prime}(\infty)<+\infty$, then

$$
H_{f}(A, B)=\lim _{0<K, L \rightarrow 0} H_{f}(A+K, B+L)
$$

Major properties of \boldsymbol{H}_{f} (for details, see ${ }^{2}{ }^{3}$) Joint convexity
For every $\boldsymbol{A}_{i}, \boldsymbol{B}_{i} \in \mathcal{B}(\mathcal{H})_{+}$and $\lambda_{i} \geq \mathbf{0}, \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{k}$,

$$
\boldsymbol{H}_{f}\left(\sum_{i=1}^{k} \lambda_{i} \boldsymbol{A}_{i}, \sum_{i=1}^{k} \lambda_{i} \boldsymbol{B}_{i}\right) \leq \sum_{i=1}^{k} \lambda_{i} \boldsymbol{H}_{f}\left(\boldsymbol{A}_{i}, \boldsymbol{B}_{i}\right) .
$$

Monotonicity or Data-processing inequality
Assume that $\Phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ is a trace-preserving linear map such that the adjoint $\widehat{\Phi}: \mathcal{B}(\mathcal{K}) \rightarrow \mathcal{B}(\mathcal{H})$ satisfies $\widehat{\boldsymbol{\Phi}}\left(\boldsymbol{Y}^{*} \boldsymbol{Y}\right) \geq \widehat{\boldsymbol{\Phi}}\left(\boldsymbol{Y}^{*}\right) \widehat{\boldsymbol{\Phi}}(\boldsymbol{Y}), \boldsymbol{Y} \in \mathcal{B}(\mathcal{K})$. For every $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{B}(\mathcal{H})_{+}$,

$$
\boldsymbol{H}_{f}(\Phi(A), \Phi(B)) \leq H_{f}(A, B) .
$$

${ }^{2}$ A. Lesniewski and M.B. Ruskai, Monotone Riemannian metrics and relative entropy on noncommutative probability spaces, J. Math. Phys. 40 (1999), 5702-5724.
${ }^{3}$ F.H., M. Mosonyi, D. Petz and C. Bény, Quantum f-divergences and error correction, Rev. Math. Phys. 23 (2011), 691-747.

Non-standard \boldsymbol{f}-divergences $\boldsymbol{H}_{f}^{*} 45$

Definition

For $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{B}(\mathcal{H})_{++}$define

$$
H_{f}^{*}(A, B):=\operatorname{Tr} B f\left(B^{-1 / 2} A B^{-1 / 2}\right)=\operatorname{Tr} B^{1 / 2} f\left(B^{-1 / 2} A B^{-1 / 2}\right) B^{1 / 2},
$$

which can be extended to general $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{B}(\mathcal{H})_{+}$as

$$
H_{f}^{*}(A, B):=\lim _{\varepsilon \searrow 0} H_{f}^{*}(A+\varepsilon I, B+\varepsilon I) .
$$

${ }^{4}$ D. Petz and M.B. Ruskai, Contraction of generalized relative entropy under stochastic mappings on matrices, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1 (1998), 83-89.
${ }^{5} \mathrm{~K}$. Matsumoto, A new quantum version of f-divergence, Preprint, 2014; arXiv:1311.4722.

Properties of \boldsymbol{H}_{f}^{*}

- $\boldsymbol{H}_{f}^{*}(\boldsymbol{A}, \boldsymbol{B})$ is jointly convex in $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{B}(\mathcal{H})_{+}$. More strongly, $(A, B) \in \mathcal{B}(\mathcal{H})_{++} \times \mathcal{B}(\mathcal{H})_{++} \mapsto B^{1 / 2} f\left(B^{-1 / 2} A B^{-1 / 2}\right) B^{1 / 2}$ is jointly operator convex. ${ }^{6}$
- Transpose $\boldsymbol{H}_{\vec{f}}^{*}(\boldsymbol{A}, \boldsymbol{B})=\boldsymbol{H}_{f}^{*}(\boldsymbol{B}, \boldsymbol{A})$.
- Continuity
- If $\boldsymbol{f}(+\mathbf{0})<+\infty$ and $\boldsymbol{B}^{\mathbf{0}}=\boldsymbol{I}$, then

$$
H_{f}^{*}(A, B)=\lim _{0<K \rightarrow 0} H_{f}^{*}(A+K, B) .
$$

- If $f^{\prime}(\infty)<+\infty$ and $A^{0}=I$, then

$$
H_{f}^{*}(A, B)=\lim _{0<L \rightarrow 0} H_{f}^{*}(A, B+L)
$$

- If $\boldsymbol{f}(\mathbf{+ 0})<+\infty$ and $\boldsymbol{f}^{\prime}(\infty)<+\infty$, then

$$
H_{f}^{*}(A, B)=\lim _{0<K, L \rightarrow 0} H_{f}^{*}(A+K, B+L) .
$$

${ }^{6}$ E. Effros and F. Hansen, Non-commutative perspectives, Ann. Funct. Anal. 5 (2014), 74-79; arXiv:1309.7701.

Properties of \boldsymbol{H}_{f}^{*} (cont.)
Monotonicity
For any trace-preserving positive linear map $\Phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ and $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{B}(\mathcal{H})_{+}$,

$$
\boldsymbol{H}_{f}^{*}(\Phi(\boldsymbol{A}), \Phi(B)) \leq \boldsymbol{H}_{f}^{*}(\boldsymbol{A}, \boldsymbol{B}) .
$$

[The proof is essentially in ${ }^{7}$]
${ }^{7}$ F.H. and D. Petz, The proper formula for relative entropy and its asymptotics in quantum probability, Comm. Math. Phys. 143 (1991), 99-114.

Inequality

For every $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{B}(\mathcal{H})_{+}$,

$$
H_{f}(A, B) \leq H_{f}^{*}(A, B) .
$$

[The proof is based on Matsumoto's construction of minimal reverse test. ${ }^{5}$]

Strict inequality
If $f(+\mathbf{0})<+\infty$ and the representing measure $\boldsymbol{\mu}$ for f satisfies $|\operatorname{supp} \mu| \geq \mathbf{2}(\operatorname{dim} \mathcal{H})^{\mathbf{2}}$, then

$$
\boldsymbol{H}_{f}(\boldsymbol{A}, \boldsymbol{B})<\boldsymbol{H}_{f}^{*}(\boldsymbol{A}, \boldsymbol{B})
$$

for every non-commuting $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{B}(\mathcal{H})_{+}$with $\boldsymbol{A}^{\mathbf{0}} \leq \boldsymbol{B}^{\mathbf{0}}$.
[The proof is based on the reversibility theorem below.]

Examples

(1) Quadratic function When $f(x)=x^{2}$,

$$
H_{x^{2}}(A, B)=\operatorname{Tr} A^{2} B^{-1}=H_{x^{2}}^{*}(A, B) .
$$

Hence, when $f(x)=a x^{2}+b x+c$ with $a \geq 0$, $\boldsymbol{H}_{f}(\boldsymbol{A}, \boldsymbol{B})=\boldsymbol{H}_{f}^{*}(\boldsymbol{A}, \boldsymbol{B})$ for all $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{B}(\mathcal{H})_{+}$.
(2) Log function When $f(x)=x \log x$ and $\widetilde{f}(x)=-\log x$,

$$
H_{x \log x}(A, B)=S(A \| B):=\operatorname{Tr} A(\log A-\log B)
$$

is the Umegaki relative entropy, and $\boldsymbol{H}_{-\log x}(\boldsymbol{A}, \boldsymbol{B})=\boldsymbol{S}(\boldsymbol{B} \| \boldsymbol{A})$. For $\boldsymbol{A}^{\mathbf{0}} \leq \boldsymbol{B}^{\mathbf{0}}$,

$$
H_{x \log x}^{*}(A, B)=S_{\mathrm{BS}}(A \| B):=\operatorname{Tr} A \log \left(A^{1 / 2} B^{-1} A^{1 / 2}\right)
$$

is the Belavkin-Staszewski relative entropy.
(3) Power functions For $\boldsymbol{\alpha} \in(\mathbf{0}, \mathbf{1}) \cup(\mathbf{1}, \mathbf{2}]$ consider

$$
f^{(\alpha)}(x):=\frac{x-x^{\alpha}}{\alpha(1-\alpha)}, \quad \widetilde{f}^{(\alpha)}(x)=\frac{1-x^{1-\alpha}}{\alpha(1-\alpha)} .
$$

Note that $f^{(\alpha)}(x) \rightarrow x \log x$ and $\widetilde{f}^{(\alpha)}(x) \rightarrow-\log x$ as $\alpha \rightarrow 1$, and that $\boldsymbol{f}^{(\alpha)}$ and $\widetilde{\boldsymbol{f}}^{(\alpha)}$ cover all of operator convex power functions $\boldsymbol{x}^{\alpha}(-1 \leq \alpha<\mathbf{0}, 1<\alpha \leq 2)$ and $-\boldsymbol{x}^{\alpha}(\mathbf{0}<\alpha<1)$.
We write

$$
\begin{aligned}
H_{f^{(\alpha)}}(A, B) & =\frac{\operatorname{Tr} A-\operatorname{Tr} A^{\alpha} B^{1-\alpha}}{\alpha(1-\alpha)} \\
H_{f^{(\alpha)}}^{*}(A, B) & =\frac{\operatorname{Tr} A-\operatorname{Tr} B^{1 / 2}\left(B^{-1 / 2} A B^{-1 / 2}\right)^{\alpha} B^{1 / 2}}{\alpha(1-\alpha)}
\end{aligned}
$$

When $0<\alpha<1$, we rewrite

$$
H_{f^{(\alpha)}}^{*}(A, B)=\frac{\operatorname{Tr} A-\operatorname{Tr} B \#_{\alpha} A}{\alpha(1-\alpha)} .
$$

Fact

From the strict inequality between \boldsymbol{H}_{f} and \boldsymbol{H}_{f}^{*}, for $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{B}(\boldsymbol{\mathcal { H }})_{+}$ with $\boldsymbol{A}^{\mathbf{0}} \leq \boldsymbol{B}^{\mathbf{0}}$ and $\boldsymbol{A B} \neq \boldsymbol{B} \boldsymbol{A}$,
(1) $\boldsymbol{S}(\boldsymbol{A} \| B)<S_{\mathrm{BS}}(A \| B)$,
(2) $\operatorname{Tr} \boldsymbol{A} \#_{\alpha} B<\operatorname{Tr} \boldsymbol{A}^{1-\alpha} B^{\alpha}$ for $\alpha \in(\mathbf{0}, \mathbf{1})$,
(3) $\operatorname{Tr} \boldsymbol{A}^{\alpha} \boldsymbol{B}^{1-\alpha}<\operatorname{Tr} \boldsymbol{B}^{1 / 2}\left(\boldsymbol{B}^{-1 / 2} \boldsymbol{A} \boldsymbol{B}^{-1 / 2}\right)^{\alpha} \boldsymbol{B}^{1 / 2}$ for $\alpha \in(\mathbf{1 , 2})$.

Note that $\boldsymbol{S}(\boldsymbol{A} \| \boldsymbol{B}) \leq S_{\mathrm{BS}}(\boldsymbol{A} \| \boldsymbol{B})$ was first proved in ${ }^{7}$, $\operatorname{Tr} \boldsymbol{A} \#_{\alpha} \boldsymbol{B} \leq \operatorname{Tr} \boldsymbol{A}^{1-\alpha} \boldsymbol{B}^{\alpha}$ is a consequence of the log-majorization ${ }^{8}$, and (3) seems new.
${ }^{8}$ T. Ando and F.H., Log majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl. 197/198 (1994), 113-131.

Brief history

Reversibility problem Let \boldsymbol{D} be a quantum divergence and $A, \boldsymbol{B} \in \mathcal{B}(\mathcal{H})_{+}$. Let $\boldsymbol{\Phi}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ be a stochastic map (typically, a TPCP map). If $\boldsymbol{D}(\boldsymbol{\Phi}(\boldsymbol{A}), \boldsymbol{\Phi}(\boldsymbol{B}))=\boldsymbol{D}(\boldsymbol{A}, \boldsymbol{B})<+\infty$, then is there a reverse stochastic map $\Psi: \mathcal{B}(\mathcal{K}) \rightarrow \mathcal{B}(\mathcal{H})$ such that $\boldsymbol{\Psi}(\boldsymbol{\Phi}(\boldsymbol{A}))=\boldsymbol{A}$ and $\boldsymbol{\Psi}(\boldsymbol{\Phi}(\boldsymbol{B}))=\boldsymbol{B}$?
The problem treats the case of no contraction of \boldsymbol{D} for given $\boldsymbol{A}, \boldsymbol{B}$, which is considered as complementary to the contraction coefficient problem ${ }^{9}$ treating the maximal contraction

$$
\eta_{D}(\Phi):=\sup _{\rho \neq \gamma} \frac{D(\Phi(\rho), \Phi(\gamma))}{D(\rho, \gamma)}
$$

over invertible density operators ρ, γ in $\mathcal{B}(\mathcal{H})$.
${ }^{9}$ M.B. Ruskai's talk in the workshop.

Previous studies

- Petz $(1986)^{10}$: When \mathcal{N} is a subalgebra of a von Neumann algebra \mathcal{M} and φ, ψ are faithful normal states, \mathcal{N} is sufficient for φ, ψ iff $S\left(\left.\psi\right|_{\mathcal{N}} \|\left.\varphi\right|_{\mathcal{N}}\right)=S(\psi \| \varphi)$.
- Hayden, Jozsa, Petz and Winter (2004) ${ }^{11}$:

A structural characterization of equality case of strong subadditivity, equivalently, equality case of relative entropy in a tripartite system.
${ }^{10}$ D. Petz, Sufficient subalgebras and the relative entropy of states of a von Neumann algebra, Comm. Math. Phys. 105 (1986), 123-131.
${ }^{11}$ P. Hayden, R. Jozsa, D. Petz and A. Winter, Structure of states which satisfy strong subadditivity of quantum entropy with equality, Comm. Math. Phys. 246 (2004), 359-374.

Previous studies (cont.)

- Jenčová and Petz (2006) ${ }^{12}$: When $\alpha: \mathcal{N} \rightarrow \boldsymbol{\mathcal { M }}$ is a unital 2-positive map between von Neumann algebras and \mathcal{S} is a set of normal states with $\varphi \in \mathcal{S}$ such that both φ and $\varphi \circ \alpha$ are faithful, α is reversible for \mathcal{S} iff $\boldsymbol{P}(\psi \circ \alpha, \varphi \circ \alpha)=\boldsymbol{P}(\psi, \varphi)$ for all $\psi \in \mathcal{S}$ iff $S(\psi \circ \alpha \| \varphi \circ \alpha)=S(\psi \| \varphi)$ for all $\psi \in \mathcal{S}$.
- Jenčová and Ruskai (2010) ${ }^{13}$ A characterization for equality case in the joint convexity of quasi-entropies; joint convexity is a special case of the monotonicity under partial traces.

[^0]
Reversibility via \boldsymbol{H}_{f}

We assume:

- $f(+\mathbf{0})<+\infty$, so f extends to an operator convex function on $[0, \infty)$.
- $\Phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ is trace-preserving and 2-positive.
- $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{B}(\mathcal{H})_{+}$with $\boldsymbol{B}^{0}=\boldsymbol{I}$.

Set a unital 2-positive map $\Phi_{B}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$ as

$$
\Phi_{B}(X):=\Phi(B)^{-1 / 2} \Phi\left(B^{1 / 2} X B^{1 / 2}\right) \Phi(B)^{-1 / 2}, \quad X \in \mathcal{B}(\mathcal{H}),
$$

whose adjoint $\widehat{\Phi}_{B}: \mathcal{B}(\mathcal{K}) \rightarrow \mathcal{B}(\mathcal{H})$ is

$$
\widehat{\Phi}_{B}(Y)=B^{1 / 2} \widehat{\Phi}\left(\Phi(B)^{-1 / 2} Y \Phi(B)^{-1 / 2}\right) B^{1 / 2}, \quad Y \in \mathcal{B}(\mathcal{K}) .
$$

Note that $\widehat{\boldsymbol{\Phi}}_{\boldsymbol{B}}(\boldsymbol{\Phi}(\boldsymbol{B}))=\boldsymbol{B}$.

Combining our previous paper (2011) ${ }^{3}$ and Jenčová (2012) ${ }^{14}$,

Theorem

The following conditions are equivalent:
(i) $\boldsymbol{\Phi}$ is reversible for $\boldsymbol{A}, \boldsymbol{B}$.
(ii) $\widehat{\Phi}_{B}(\Phi(A))=A$.
(iii) $\boldsymbol{H}_{f}(\boldsymbol{\Phi}(\boldsymbol{A}), \boldsymbol{\Phi}(\boldsymbol{B}))=\boldsymbol{H}_{f}(\boldsymbol{A}, \boldsymbol{B})$ for some \boldsymbol{f} whose representing measure μ satisfies
$|\operatorname{supp} \mu| \geq \mid \mathbf{S p}\left(L_{A} R_{B^{-1}}\right) \cup \operatorname{Sp}\left(L_{\Phi(A)} R_{\left.\Phi(B)^{-1}\right) \mid .}\right.$
(iv) $\boldsymbol{H}_{f}(\boldsymbol{\Phi}(\boldsymbol{A}), \boldsymbol{\Phi}(\boldsymbol{B}))=\boldsymbol{H}_{f}(\boldsymbol{A}, \boldsymbol{B})$ for all \boldsymbol{f}.
(v) $\widehat{\boldsymbol{\Phi}}\left(\boldsymbol{\Phi}(\boldsymbol{B})^{-1 / 2} \Phi(A) \Phi(B)^{-1 / 2}\right)=B^{-1 / 2} A B^{-1 / 2}$.
(vi) $\boldsymbol{B}^{-1 / 2} \boldsymbol{A} \boldsymbol{B}^{-1 / 2} \in \operatorname{ker}\left(\mathbf{i d}-\widehat{\boldsymbol{\Phi}} \circ \boldsymbol{\Phi}_{\boldsymbol{B}}\right.$), the fixed-point subalgebra of $\widehat{\boldsymbol{\Phi}} \circ \boldsymbol{\Phi}_{B}$.
${ }^{14}$ A. Jenčová, Reversibility conditions for quantum operations, Rev. Math. Phys. 24 (2012), 1250016, 26 pp.

Theorem (cont.)
(vii) if $\boldsymbol{\rho}:=\boldsymbol{A} / \operatorname{Tr} \boldsymbol{A}$ and $\gamma:=\boldsymbol{B} / \operatorname{Tr} \boldsymbol{B}$, then

$$
\left\langle\Phi(\rho-\gamma), \boldsymbol{\Omega}_{\Phi(\gamma)}^{\kappa}(\Phi(\rho-\gamma))\right\rangle=\left\langle\rho-\gamma, \boldsymbol{\Omega}_{\gamma}^{\kappa}(\rho-\gamma)\right\rangle
$$

for some monotone Riemannian metric $\left\langle\cdot, \boldsymbol{\Omega}_{\gamma}^{\kappa}(\cdot)\right\rangle$ such that the representing measure v of κ satisfies $|\operatorname{supp} v| \geq \mid \mathbf{S p}\left(L_{\gamma} \boldsymbol{R}_{\gamma^{-1}}\right) \cup \mathbf{S p}\left(L_{\Phi(\gamma)} \boldsymbol{R}_{\left.\boldsymbol{\Phi}(\gamma)^{-1}\right)}\right)$.

Note Monotone metrics on $\left\{\gamma \in \mathcal{B}(\mathcal{H})_{++}: \operatorname{Tr} \gamma=1\right\}$ are associated with operator decreasing functions $\kappa:(\mathbf{0}, \infty) \rightarrow(\mathbf{0}, \infty)$ such that $\boldsymbol{x}(x)=\kappa\left(x^{-1}\right), x>0$, and $\kappa(x)=1$, admitting the integral expression

$$
\kappa(x)=c+\int_{[0, \infty)} \frac{1}{x+s} d v(s), \quad x \in(0, \infty)
$$

with a unique positive measure v on $[0, \infty)$.

Reversibility via \boldsymbol{H}_{f}^{*}

- The multiplicative domain of $\boldsymbol{\Phi}_{\boldsymbol{B}}$ is

$$
\begin{aligned}
& \mathcal{M}_{\Phi_{B}}:=\{X \in \mathcal{B}(\mathcal{H}): \Phi_{B}(X Y) \\
&=\Phi_{B}(X) \Phi_{B}(Y), \\
& \Phi_{B}(Y X)= \\
&=\left\{X \in \mathcal{B}(\mathcal{H}): \Phi_{B}(Y) \Phi_{B}(X), Y \in \mathcal{B}(\mathcal{H})\right\} \\
&=\Phi_{B}(X)^{*} \Phi_{B}(X) \\
&\left.\Phi_{B}\left(X X^{*}\right)=\Phi_{B}(X)^{*} \Phi_{B}(X)^{*}\right\}
\end{aligned}
$$

- Associated with an operator monotone function $\boldsymbol{h} \geq \mathbf{0}$ on $(\mathbf{0}, \boldsymbol{\infty})$ with $\boldsymbol{h}(\mathbf{1})=\mathbf{1}$, the operator mean $\boldsymbol{\sigma}_{\boldsymbol{h}}$ (in the Kubo-Ando sense) is

$$
A \sigma_{h} B:=A^{1 / 2} h\left(A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2}, \quad A, B \in \mathcal{B}(\mathcal{H})_{++}
$$

We say that $\sigma_{\boldsymbol{h}}$ is non-linear if \boldsymbol{h} is non-linear.
Note $\boldsymbol{\Phi}(\boldsymbol{A} \sigma \boldsymbol{B}) \leq \boldsymbol{\Phi}(\boldsymbol{A}) \sigma \boldsymbol{\Phi}(\boldsymbol{B})$ holds for any operator mean σ and any general positive map $\boldsymbol{\Phi}$ (essentially due to Ando, 1979).

The next theorem gives equivalent conditions for equality case of \boldsymbol{H}_{f}^{*} under $\boldsymbol{\Phi}$. The implication (a) $\Rightarrow(\mathrm{g})$ was shown by Matsumoto ${ }^{5}$.

Theorem

The following conditions are equivalent:
(a) $\boldsymbol{H}_{f}^{*}(\boldsymbol{\Phi}(\boldsymbol{A}), \boldsymbol{\Phi}(\boldsymbol{B}))=\boldsymbol{H}_{f}^{*}(\boldsymbol{A}, \boldsymbol{B})$ for some non-linear \boldsymbol{f}.
(b) $\boldsymbol{H}_{f}^{*}(\Phi(A), \Phi(B))=\boldsymbol{H}_{f}^{*}(\boldsymbol{A}, \boldsymbol{B})$ for all \boldsymbol{f}.
(c) $\operatorname{Tr} \Phi(A)^{2} \Phi(B)^{-1}=\operatorname{Tr} A^{2} B^{-1}$.
(d) $\boldsymbol{\Phi}(\boldsymbol{A}) \sigma \Phi(\boldsymbol{B})=\boldsymbol{\Phi}(\boldsymbol{A} \sigma \boldsymbol{B})$ for some non-linear operator mean σ.
(e) $\boldsymbol{\Phi}(\boldsymbol{A}) \boldsymbol{\sigma} \boldsymbol{\Phi}(\boldsymbol{B})=\boldsymbol{\Phi}(\boldsymbol{A} \boldsymbol{\sigma} \boldsymbol{B})$ for all operator means σ.
(f) $\boldsymbol{\Phi}(A) \boldsymbol{\Phi}(B)^{-1} \boldsymbol{\Phi}(A)=\boldsymbol{\Phi}\left(A B^{-1} A\right)$.
(g) $\boldsymbol{B}^{-1 / 2} \boldsymbol{A} \boldsymbol{B}^{-1 / 2} \in \mathcal{M}_{\Phi_{\boldsymbol{B}}}$.

Corollary

If $\boldsymbol{\Phi}(\boldsymbol{A})$ and $\boldsymbol{\Phi}(\boldsymbol{B})$ commute, then the conditions of the previous theorem are equivalent to the reversibility of $\boldsymbol{\Phi}$ for $\boldsymbol{A}, \boldsymbol{B}$.

Corollary

If $\boldsymbol{\Phi}(\boldsymbol{B})$ commutes with $\boldsymbol{\Phi}(\boldsymbol{A})$ for all $\boldsymbol{A} \in \mathcal{B}(\mathcal{H})$ (in particular, if $\boldsymbol{\Phi}$ is a quantum-classical channel), then

$$
\operatorname{ker}\left(\mathbf{i d}-\widehat{\Phi} \circ \Phi_{B}\right)=\mathcal{M}_{\Phi_{B}}
$$

Note In particular, if $\boldsymbol{\Phi}$ is a unital channel (trace-preserving) and $\boldsymbol{B}=\boldsymbol{I}($ so $\boldsymbol{\Phi}(\boldsymbol{B})=\boldsymbol{I})$, then $\operatorname{ker}(\mathbf{i d}-\widehat{\boldsymbol{\Phi}} \circ \boldsymbol{\Phi})=\mathcal{M}_{\boldsymbol{\Phi}}$, which is contained in ${ }^{15}$.

[^1]Qubit case

- If f is not of the form $a x^{2}+b x+c$ with $a \geq 0$, then

$$
H_{f}(A, B)<H_{f}^{*}(A, B)
$$

for every non-commuting $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{B}\left(\mathbb{C}^{\mathbf{2}}\right)_{+}$with $\boldsymbol{B}>\boldsymbol{0}$.

- If $\boldsymbol{\Phi}$ is a unital qubit channel, then the conditions of the previous theorem are equivalent to the reversibility of $\boldsymbol{\Phi}$ for any $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{B}\left(\mathbb{C}^{2}\right)_{+}$with $\boldsymbol{B}>\mathbf{0}$.
But, this is not true for some unital qutrit channel.

Sandwiched Rényi divergences and α-z-Rényi divergences

Definition For $\alpha, z>0$ with $\alpha \neq 1$,

- The (old) Rényi divergence is

$$
D_{\alpha}(A \| B):=\frac{1}{\alpha-1} \log \frac{\operatorname{Tr} A^{\alpha} B^{1-\alpha}}{\operatorname{Tr} A} .
$$

- The (new) sandwiched Rényi divergence ${ }^{16}$ is

$$
D_{\alpha}^{*}(A \| B):=\frac{1}{\alpha-1} \log \frac{\operatorname{Tr}\left(B^{\frac{1-\alpha}{2 \alpha}} A B^{\frac{1-\alpha}{2 \alpha}}\right)^{\alpha}}{\operatorname{Tr} A} .
$$

[^2]- The α - z-Rényi divergence ${ }^{17}{ }^{18}$ is

$$
D_{\alpha, z}(A \| B):=\frac{1}{\alpha-1} \log \frac{\operatorname{Tr}\left(B^{\frac{1-\alpha}{2 z}} A^{\frac{\alpha}{z}} B^{\frac{1-\alpha}{2 z}}\right)^{z}}{\operatorname{Tr} A}
$$

Note $\quad \boldsymbol{D}_{\alpha}=\boldsymbol{D}_{\alpha, 1}, \boldsymbol{D}_{\alpha}^{*}=\boldsymbol{D}_{\alpha, \alpha}$ and

$$
\begin{aligned}
D_{1 / 2}^{*}(A \| B) & =-2 \log F(A, B) \text { where } F(A, B):=\operatorname{Tr}\left|A^{1 / 2} B^{1 / 2}\right|, \\
\lim _{\alpha \rightarrow 1} D_{\alpha}^{*}(A \| B) & =S(A \| B):=\operatorname{Tr} A(\log A-\log B), \\
\lim _{\alpha \rightarrow \infty} D_{\alpha}^{*}(A \| B) & =D_{\max }(A \| B):=\inf \left\{\gamma: A \leq e^{\gamma} B\right\} .
\end{aligned}
$$

${ }^{17}$ V. Jaksic, Y. Ogata, Y. Pautrat and C.-A. Pillet, Entropic fluctuations in quantum statistical mechanics. An Introduction, in: Quantum Theory from Small to Large Scales, August 2010, in: Lecture Notes of the Les Houches Summer School, vol. 95, Oxford University Press, 2012.
${ }^{18}$ K.M.R. Audenaert and N. Datta, $\alpha-z$-Rényi relative entropies, J. Math. Phys. 56 (2015), 022202.

Monotonicity or Data-processing inequality
In each of the following cases, $\operatorname{Tr}\left(\boldsymbol{B}^{\frac{1-\alpha}{2 z}} \boldsymbol{A}^{\frac{\alpha}{z}} \boldsymbol{B}^{\frac{1-\alpha}{2 z}}\right)^{z}$ is jointly concave for $\alpha<\mathbf{1}$ and jointly convex for $\alpha>\mathbf{1}$, and the monotonicity

$$
D_{\alpha, z}(\Phi(A) \| \Phi(B)) \leq D_{\alpha, z}(A \| B)
$$

holds for any TPCP map $\boldsymbol{\Phi}$.
Moreover, the monotonicity of D_{α}^{*} for $\alpha \geq \mathbf{1}$ is known for any trace-preserving positive map $\boldsymbol{\Phi}$ (due to Beigi).

Monotonicity or Data-processing inequality (cont.)

- $\mathbf{0}<\alpha \leq 1$ and $z \geq \max \{\alpha, \mathbf{1}-\alpha\}$ (F.H., 2013); hence $1 / 2 \leq \alpha \leq 1$ if $z=\alpha$,
- $\mathbf{1} \leq \alpha \leq 2$ and $z=\mathbf{1}$ (Ando, 1979),
- $\alpha \geq 1$ and $z=\alpha$ (Müller-Lennert et al. ${ }^{16}$, Frank and Lieb ${ }^{\text {a }}$, Beigi ${ }^{\text {b }}$, Wilde, Winter and Yang ${ }^{c}$)
- $\mathbf{1} \leq \alpha \leq 2$ and $z=\alpha / 2$ (Carlen, Frank and Lieb ${ }^{d}$).

[^3]
Reversibility via α - z-Rényi divergences

Theorem

Assume: $\boldsymbol{\Phi}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ is 2-positive bistochastic map and

$$
D_{\alpha, z}(\Phi(A) \| \Phi(B))=D_{\alpha, z}(A \| B)
$$

Then $\boldsymbol{\Phi}$ is reversible for $\boldsymbol{A}, \boldsymbol{B}$ if each of the following is satisfied:

- $\alpha \leq z \leq 1, \Phi(B)=B$ and $A^{0} \leq B^{0}$ (without 2-positivity),
- $\alpha<z \leq 1, \Phi(B)=B$ and $B^{0} \leq A^{0}$,
- $0<1-\alpha \leq z \leq \mathbf{1}, \Phi(A)=A$ and $B^{0} \leq A^{0}$ (without 2-positivity),
- $0<1-\alpha<z \leq 1, \Phi(A)=A$ and $A^{0} \leq B^{0}$,
- $\alpha \geq z \geq \max \{1, \alpha / 2\}, \Phi(B)=B$ and $A^{0} \leq B^{0}$ (without 2-positivity),
- $\alpha>1, z \geq 1, z>\alpha-1, \Phi(A)=A$ and $B^{0}=I$.

Corollary
Assume: $\boldsymbol{\Phi}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ is 2-positive bistochastic map and

$$
D_{\alpha}^{*}(\Phi(A) \| \Phi(B))=D_{\alpha}^{*}(A \| B) .
$$

Then $\boldsymbol{\Phi}$ is reversible for $\boldsymbol{A}, \boldsymbol{B}$ if each of the following is satisfied:

- $\boldsymbol{\Phi}(\boldsymbol{B})=\boldsymbol{B}$ and $\boldsymbol{A}^{0} \leq \boldsymbol{B}^{\mathbf{0}}$ (for arbitrary $\alpha \in(\mathbf{0}, \infty) \backslash\{\mathbf{1}\}$ without 2-positivity),
- $\mathbf{1 / 2} \leq \alpha<1, \Phi(A)=A$ and $B^{0} \leq A^{0}$ (without 2-positivity),
$-\mathbf{1} / \mathbf{2}<\alpha<\mathbf{1}, \boldsymbol{\Phi}(A)=A$ and $A^{0} \leq B^{0}$.

Notes

- If $D_{2}^{*}(\Phi(A) \| \Phi(B))=D_{2}^{*}(A \| B)$, then $\boldsymbol{\Phi}$ is reversible for $\boldsymbol{A}, \boldsymbol{B}$ in the general setting.
- When $\alpha \in(\mathbf{0}, \mathbf{2}) \backslash\{\mathbf{1}\}$, if $D_{\alpha}(\Phi(A) \| \Phi(B))=D_{\alpha}(A \| B)$, then Φ is reversible for $\boldsymbol{A}, \boldsymbol{B}$ (the case of f-divergence for $f(\boldsymbol{x})=\boldsymbol{x}^{\alpha}$).
- When $\alpha=z=\mathbf{1 / 2}$ (the case of fidelity), $\boldsymbol{F}(\boldsymbol{\Phi}(\boldsymbol{A}), \boldsymbol{\Phi}(\boldsymbol{B}))=\boldsymbol{F}(\boldsymbol{A}, \boldsymbol{B})$ implies the reversibility of $\boldsymbol{\Phi}$ for $\boldsymbol{A}, \boldsymbol{B}$ when $\boldsymbol{\Phi}(\boldsymbol{B})=\boldsymbol{B}$ and $\boldsymbol{A}^{0} \leq \boldsymbol{B}^{0}\left(\right.$ or $\boldsymbol{\Phi}(\boldsymbol{A})=\boldsymbol{A}$ and $\left.\boldsymbol{B}^{0} \leq \boldsymbol{A}^{0}\right)$.
- The reversibility via $\boldsymbol{D}_{\text {max }}$ does not hold even when $\boldsymbol{\Phi}(\boldsymbol{B})=\boldsymbol{B}$ and $\boldsymbol{A}^{\mathbf{0}}=\boldsymbol{B}^{\mathbf{0}}$.

Thank you for your attention.

[^0]: ${ }^{12}$ A. Jenčová and D. Petz, Sufficiency in quantum statistical inference, Comm. Math. Phys. 263 (2006), 259-276.
 ${ }^{13}$ A. Jenčová and M.B. Ruskai, A unified treatment of convexity of relative entropy and related trace functions, with conditions for equality, Rev. Math. Phys. 22 (2010), 1099-1121.

[^1]: ${ }^{15}$ M.-D. Choi, N. Johnston and D.W. Kribs, The multiplicative domain in quantum error correction, J. Phys. A: Math. Theor. 42 (2009), 245303, 15 pp.

[^2]: ${ }^{16}$ M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr and M. Tomamichel, On quantum Rényi entropies: A new generalization and some properties, J. Math. Phys. 54 (2013), 122203.

[^3]: ${ }^{\text {ap.L. Frank and E.H. Lieb, Monotonicity of a relative Rényi entropy, J. }}$ Math. Phys. 54 (2013), 122201.
 ${ }^{\text {b }}$ S. Beigi, Sandwiched Rényi divergence satisfies data processing inequality, J. Math. Phys. 54 (2013), 122202.
 ${ }^{\text {c M.M. Wilde, A. Winter and D. Yang, Strong converse for the classical }}$ capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy, Comm. Math. Phys. 331 (2014), 593-622.
 ${ }^{d}$ E.A. Carlen, R.L. Frank and E.H. Lieb, Some operator and trace function convexity theorems, Linear Algebra Appl. 490 (2016), 174-185.

