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Regular operator functions

Let F : D → B(H) be a mapping of k operator variables defined in a
domain D in B(H)× · · · × B(H). We say that F is regular if

(i) The domain D is invariant under unitary transformations of H and

F (u∗x1u, . . . ,u∗xku) = u∗F (x1, . . . , xk )u

for every x = (x1, . . . , xk ) ∈ D and every unitary u on H
(ii) For a projection p and a k -tuple (px1p, . . . ,pxkp) ∈ D we have

F (px1p, . . . ,pxkp) = pF (px1p, . . . ,pxkp)p

(iii) With suitable interpretations we have

F
((

x1 0
0 y1

)
, . . . ,

(
xk 0
0 yk

))
=

(
F (x1, . . . , xk ) 0

0 F (y1, . . . , yk )

)
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Jensen’s sub-homogeneous inequality

Consider the domain

Dk (H) = {(A1, . . . ,Ak ) | A1, . . . ,Ak ≥ 0}

of k -tuples of positive semi-definite operators acting on an infinite
dimensional Hilbert space H.

Theorem
Let F : Dk (H)→ B(H)sa be a convex regular map with F (0, . . . ,0) ≤ 0,
and let C : H → K be a linear contraction. Then the inequality

F (C∗A1C, . . . ,C∗AkC) ≤ C∗F (A1, . . . ,Ak )C

holds for k-tuples (A1, . . . ,Ak ) in Dk (K).
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Jensen’s inequality for regular operator maps

Theorem
Let F : Dk (H)→ B(H)sa be a convex regular map, and let

C1, . . . ,Cn : H → K

be linear maps of H into a Hilbert space K such that

C∗1C1 + · · ·+ C∗nCn = 1H.

Then the inequality

F
( n∑

i=1

C∗i Ai1Ci , . . . ,

n∑
i=1

C∗i AikCi

)
≤

n∑
i=1

C∗i F (Ai1, . . . ,Aik )Ci

holds for k-tuples (Ai1, . . . ,Aik ) in Dk (K), where i = 1, . . . ,n.
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Corollary
Let for finite dimensional spaces Φ: B(H)→ B(K) be a completely
positive unital linear map, and let F be a convex regular map. Then

F
(
Φ(A1), . . . ,Φ(Ak )

)
≤ Φ

(
F (A1, . . . ,Ak )

)
for A1, . . . ,Ak ∈ Dk (H).

Proof: By Choi’s decomposition theorem there exist operators
C1, . . . ,Cn in B(K,H) with C∗1C1 + · · ·+ C∗nCn = 1K such that

Φ(A) =
n∑

i=1

C∗i ACi for A ∈ B(H).

The statement now follows by the preceding theorem by choosing

(Ai1, . . . ,Aik ) = (A1, . . . ,Ak )

for i = 1, . . . ,n.
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The perspective of a regular map

We consider for k = 1,2, . . . the convex domain

Dk
+(H) = {(A1, . . . ,Ak ) | A1, . . . ,Ak > 0}

of positive definite and invertible operators acting on H.

Let F : Dk
+(H)→ B(H) be a regular map. The perspective map

PF : Dk+1
+ (H)→ B(H)

is defined by setting

PF (A1, . . . ,Ak ,B) = B1/2F (B−1/2A1B−1/2, . . . ,B−1/2AkB−1/2)B1/2,

and it is a positively homogeneous regular map.

Theorem

The perspective of a convex regular map is convex
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The perspective filtered through a CP map

Theorem

Let Φ: B(H)→ B(K) be a completely positive linear map (H,K finite
dimensional), and let F : Dk

+ → B(H) be a convex regular map. Then

PF
(
Φ(A1), . . . ,Φ(Ak+1)

)
≤ Φ

(
PF (A1, . . . ,Ak+1)

)
,

for (A1, . . . ,Ak+1) in Dk
+(H), where PF is the perspective of F .

Proof: To a fixed positive definite B ∈ B(H) we set

Ψ(X ) = Φ(B)−1/2Φ(B1/2XB1/2)Φ(B)−1/2

and notice that Ψ: B(H)→ B(K) is a unital linear map. We realise, by
the definition of complete positivity, that also Ψ is completely positive.

Since F is convex we thus obtain:
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F
(
Ψ(B−1/2A1B−1/2), . . . ,Ψ(B−1/2AkB−1/2)

)
≤ Ψ

(
F (B−1/2A1B−1/2, . . . ,B−1/2AkB−1/2)

)
.

Inserting Ψ we obtain the inequality

F
(
Φ(B)−1/2Φ(A1)Φ(B)−1/2, . . . ,Φ(B)−1/2Φ(Ak )Φ(B)−1/2)

≤ Φ(B)−1/2Φ
(
B1/2F (B−1/2A1B−1/2, . . . ,B−1/2AkB−1/2)B1/2)Φ(B)−1/2.

We multiply from the left and right with Φ(B)1/2 and obtain

PF
(
Φ(A1), . . . ,Φ(Ak ),Φ(B)

)
= Φ(B)1/2F

(
Φ(B)−1/2Φ(A1)Φ(B)−1/2,

. . . ,Φ(B)−1/2Φ(Ak )Φ(B)−1/2)Φ(B)1/2

≤ Φ
(
B1/2F (B−1/2A1B−1/2, . . . ,B−1/2AkB−1/2)B1/2)

= Φ
(
PF (A1, . . . ,Ak ,B)

)
,

which is the assertion.
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Applications to partial traces

Corollary
Consider a bipartite system H = H1 ⊗H2 of Hilbert spaces H1 and H2
of finite dimensions, and let F : Dk

+(H)→ B(H) be a convex regular
map. Then

PF (Tr2A1, . . . ,Tr2Ak+1) ≤ Tr2PF (A1, . . . ,Ak+1)

for operators (A1, . . . ,Ak+1) in Dk
+(H), where PF is the perspective of

F and Tr2B is the partial trace of B on H1.

Setting k = 1, the inequality takes the form

Pf (Tr2A,Tr2B) ≤ Tr2Pf (A,B),

where f : (0,∞)→ R is an operator convex function.
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Homogeneous and convex regular maps

Consider a regular map

F : Dk+1
+ (H)→ B(H)

for some k = 1,2 . . . .

Proposition

If F is convex and positively homogeneous, then F is the perspective
of its restriction G : Dk

+ → B(H) given by

G(A1, . . . ,Ak ) = F (A1, . . . ,Ak ,1).

The perspective PG of a convex regular map G : Dk
+ → B(H) is thus

the unique extension of G to a positively homogeneous convex regular
map F : Dk+1

+ → B(H).

9 / 20



Some operator means of several variables

The Karcher mean of k positive definite invertible operators A1, . . . ,Ak
is defined as the unique positive definite solution Λk (A1, . . . ,Ak ) to the
equation

k∑
i=1

log
(
X 1/2AiX 1/2) = 0.

The harmonic mean Hk (A1, . . . ,Ak ) is defined by setting

Hk (A1, . . . ,Ak ) =
k

A−1
1 + · · ·+ A−1

k

for k positive definite invertible operators.

The Karcher mean and the harmonic mean are concave and positively
homogeneous regular operator maps.
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Applications to operator means of several variables

The Karcher mean Λk and the harmonic mean Hk of k operator
variables satisfy the inequalities

Tr2Λk (A1, . . . ,Ak ) ≤ Λk (Tr2A1, . . . ,Tr2Ak )

Tr2Hk (A1, . . . ,Ak ) ≤ Hk (Tr2A1, . . . ,Tr2Ak )

for A1, . . . ,Ak ∈ Dk
+(H) on a bipartite system H = H1 ⊗H2 of Hilbert

spaces of finite dimensions.

For k = 2 we obtain the inequality of Ando

(A#B)1 ≤ A1#B1,

where A1 and B1 are the partial traces of A and B on H1 and

A#B = B1/2(B−1/2AB−1/2)1/2B1/2

is the (canonical) geometric mean of two variables.
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Lieb-Ruskai’s convexity theorem

Lieb and Ruskai proved convexity of the map

L(A,K ) = K ∗A−1K ,

where A is positive definite. If also K is positive definite then

KA−1K = K 1/2(K−1/2AK−1/2)−1K 1/2

is the perspective of the operator convex function t → t−1.

For operators on a bipartite system H = H1 ⊗H2 we have

K ∗1 A−1
1 K1 ≤ (K ∗A−1K )1

for positive definite A and arbitrary K .

For K positive definite this follows from the above theory. The general
case is proved by using convexity and Choi’s decomposition.
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Alternative proof of Lieb-Ruskai’s convexity theorem

There is a way to consider Lieb-Ruskai’s convexity theorem which
points to generalisations to more than two operators.

The geometric mean G1 of one positive definite operator is trivially
given by G1(A) = A. It is a concave regular map and its inverse

A→ G1(A)−1 = A−1

is thus a convex regular map. The perspective

PG−1
1

(A,B) = B1/2G1(B−1/2AB−1/2)−1B1/2 = BA−1B = L(A,B)

is therefore a convex regular map, and it is increasing when filtered
through a partial trace.

A similar construction may be carried out for any number of operator
variables.
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Generalisations to n + 1 operator variables

Any geometric mean Gn studied in the literature is a positive, concave,
and regular map. The inverse

Gn(A1, · · · ,An)−1 = Gn(A−1, . . . ,A−1
n )

is therefore convex and regular. The perspective

PG−1
n

(A1, . . . ,An,C)

= C1/2Gn
(
C−1/2A1C−1/2, . . . ,C−1/2AnC−1/2)−1C1/2

= C1/2Gn
(
C1/2A−1

1 C1/2, . . . ,C1/2A−1
n C1/2)C1/2

= CGn
(
A−1

1 , . . . ,A−1
n
)
C = CGn(A1, . . . ,An)−1C

= L(A1, . . . ,An,C),

where we used self-duality and congruence invariance of the
geometric mean.
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The map L(A1, . . . ,An,C) of n + 1 operator variables

The operator map

L(A, . . . ,An,C) = CGn(A1, . . . ,An)−1C,

defined in positive definite and invertible operators is thus positively
homogeneous, concave, and regular.

If in addition H = H1 ⊗H2 is a bipartite system of Hilbert spaces H1
and H2 of finite dimensions then

L(Tr2A1, . . . ,Tr2An,Tr2C) ≤ Tr2L(A, . . . ,An,C).

Notice that if A1, . . . ,An commute then

L(A1, . . . ,An,C) = CA−1/n
1 · · ·A−1/n

n C

and in particular L(A, . . . ,A,C) = CA−1C.
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The map L(A,B,C) of 2 + 1 operator variables

The geometric mean of two variables is the unique extension of the
function (t , s)→ t1/2s1/2 to a positively homogeneous, regular and
concave operator map. Therefore,

L(A,B,C) = CB−1/2(B1/2A−1B1/2)1/2B−1/2C

is the only sensible extension of Lieb-Ruskai’s map to 2 + 1 positive
definite and invertible operators with L(A,B,C) = L(B,A,B).

We may also use the weighted geometric mean,

G2(α; A,B) = B1/2(B−1/2AB−1/2)αB1/2 0 ≤ α ≤ 1,

and obtain convexity of the map

L(α; A,B,C) = CB−1/2(B1/2A−1B/12)αB−1/2C.

It reduces to L(α; A,B,C) = CA−αB−(1−α)C for commuting A and B.
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Another approach to the extended Lieb-Ruskai map

Let A be positive definite and invertible. It is a the well-known fact that
a block matrix of the form (

A C
C∗ B

)
is positive semi-definite if and only if B ≥ C∗A−1C.

For n = 2 we put

L(A,B,C) = C∗G2(A,B)−1C,

where C now is arbitrary and A,B are positive definite and invertible.

Take λ ∈ [0,1], arbitrary operators C1,C2 and positive definite and
invertible operators A1,A2 and B1,B2 and set

C = λC1 + (1− λ)C2

T = λC∗1G2(A1,B1)−1C1 + (1− λ)C∗2G2(A2,B2)−1C2.
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Convexity alone without using perspectives

We obtain the equality

X =

(
λG2(A1,B1) + (1− λ)G2(A2,B2) C

C∗ T

)

= λ

(
G2(A1,B1) C1

C∗1 C∗1G2(A1,B1)−1C1

)

+(1− λ)

(
G2(A2,B2) C2

C∗2 C∗2G2(A2,B2)−1C2

)
and observe that the two last block matrices by construction are
positive semi-definite.

The block matrix X is thus positive semi-definite; therefore

T ≥ C∗
(
λG2(A1,B1) + (1− λ)G2(A2,B2)

)−1C.
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We thus obtain

λL(A1,B1,C1) + (1− λ)L(A2,B2,C2)

= λC∗1G2(A1,B1)−1C1 + (1− λ)C∗2G2(A2,B2)−1C2 = T

≥ C∗
(
λG2(A1,B1) + (1− λ)G2(A2,B2)

)−1C

≥ C∗G2(λA1 + (1− λ)A2, λB1 + (1− λ)B2)−1C

= L(λA1 + (1− λ)A2, λB1 + (1− λB2), λC1 + (1− λC2),

where we in the last inequality used concavity of the geometric mean
and operator convexity of the inverse function.

This construction only uses concavity of G2. However, if we want
L(A,B,C) to be positively homogenous and

L(t , s,1) = t1/2s1/2 for positive numbers,

then G2 is the only regular solution.
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Corollary

This way of reasoning extends to any number of variables.

Let Gn be any geometric mean of n positive semi-definite and invertible
operators. The operator function

L(A1, . . . ,An,C) = C∗Gn(A1, . . . ,An)−1C

is convex in arbitrary C and positive definite and invertible A1, . . . ,An.

If in addition H = H1 ⊗H2 is a bipartite system of Hilbert spaces H1
and H2 of finite dimensions then

L(Tr2A1, . . . ,Tr2An,Tr2C) ≤ Tr2L(A, . . . ,An,C),

for arbitrary C and positive definite A1, . . . ,An.

If A1, . . . ,An commute then

L(A1, . . . ,An,C) = C∗A1/n
1 · · ·A1/n

n C.
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