Dajeon, Korea

February 15-19, 2014

Inequalities for quantum channels

Frank Hansen

Institute for Excellence in Higher Education
Tohoku University

Regular operator functions

Let $F: \mathcal{D} \rightarrow B(\mathcal{H})$ be a mapping of k operator variables defined in a domain \mathcal{D} in $B(\mathcal{H}) \times \cdots \times B(\mathcal{H})$. We say that F is regular if
(i) The domain \mathcal{D} is invariant under unitary transformations of \mathcal{H} and

$$
F\left(u^{*} x_{1} u, \ldots, u^{*} x_{k} u\right)=u^{*} F\left(x_{1}, \ldots, x_{k}\right) u
$$

for every $x=\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{D}$ and every unitary u on \mathcal{H}
(ii) For a projection p and a k-tuple $\left(p x_{1} p, \ldots, p x_{k} p\right) \in \mathcal{D}$ we have

$$
F\left(p x_{1} p, \ldots, p x_{k} p\right)=p F\left(p x_{1} p, \ldots, p x_{k} p\right) p
$$

(iii) With suitable interpretations we have

$$
F\left(\left(\begin{array}{cc}
x_{1} & 0 \\
0 & y_{1}
\end{array}\right), \ldots,\left(\begin{array}{cc}
x_{k} & 0 \\
0 & y_{k}
\end{array}\right)\right)=\left(\begin{array}{cc}
F\left(x_{1}, \ldots, x_{k}\right) & 0 \\
0 & F\left(y_{1}, \ldots, y_{k}\right)
\end{array}\right)
$$

Jensen's sub-homogeneous inequality

Consider the domain

$$
\mathcal{D}^{k}(\mathcal{H})=\left\{\left(A_{1}, \ldots, A_{k}\right) \mid A_{1}, \ldots, A_{k} \geq 0\right\}
$$

of k-tuples of positive semi-definite operators acting on an infinite dimensional Hilbert space \mathcal{H}.

Theorem

Let $F: \mathcal{D}^{k}(\mathcal{H}) \rightarrow B(\mathcal{H})_{\text {sa }}$ be a convex regular map with $F(0, \ldots, 0) \leq 0$, and let $C: \mathcal{H} \rightarrow \mathcal{K}$ be a linear contraction. Then the inequality

$$
F\left(C^{*} A_{1} C, \ldots, C^{*} A_{k} C\right) \leq C^{*} F\left(A_{1}, \ldots, A_{k}\right) C
$$

holds for k-tuples $\left(A_{1}, \ldots, A_{k}\right)$ in $\mathcal{D}^{k}(\mathcal{K})$.

Jensen's inequality for regular operator maps

Theorem

Let $F: \mathcal{D}^{k}(\mathcal{H}) \rightarrow B(\mathcal{H})_{\text {sa }}$ be a convex regular map, and let

$$
C_{1}, \ldots, C_{n}: \mathcal{H} \rightarrow \mathcal{K}
$$

be linear maps of \mathcal{H} into a Hilbert space \mathcal{K} such that

$$
C_{1}^{*} C_{1}+\cdots+C_{n}^{*} C_{n}=1_{\mathcal{H}} .
$$

Then the inequality

$$
F\left(\sum_{i=1}^{n} C_{i}^{*} A_{i 1} C_{i}, \ldots, \sum_{i=1}^{n} C_{i}^{*} A_{i k} C_{i}\right) \leq \sum_{i=1}^{n} C_{i}^{*} F\left(A_{i 1}, \ldots, A_{i k}\right) C_{i}
$$

holds for k-tuples $\left(A_{i 1}, \ldots, A_{i k}\right)$ in $\mathcal{D}^{k}(\mathcal{K})$, where $i=1, \ldots, n$.

Corollary

Let for finite dimensional spaces $\Phi: B(\mathcal{H}) \rightarrow B(\mathcal{K})$ be a completely positive unital linear map, and let F be a convex regular map. Then

$$
F\left(\Phi\left(A_{1}\right), \ldots, \Phi\left(A_{k}\right)\right) \leq \Phi\left(F\left(A_{1}, \ldots, A_{k}\right)\right)
$$

for $A_{1}, \ldots, A_{k} \in \mathcal{D}_{k}(\mathcal{H})$.
Proof: By Choi's decomposition theorem there exist operators C_{1}, \ldots, C_{n} in $B(\mathcal{K}, \mathcal{H})$ with $C_{1}^{*} C_{1}+\cdots+C_{n}^{*} C_{n}=1_{\mathcal{K}}$ such that

$$
\Phi(A)=\sum_{i=1}^{n} C_{i}^{*} A C_{i} \quad \text { for } \quad A \in B(\mathcal{H}) .
$$

The statement now follows by the preceding theorem by choosing

$$
\left(A_{i 1}, \ldots, A_{i k}\right)=\left(A_{1}, \ldots, A_{k}\right)
$$

for $i=1, \ldots, n$.

The perspective of a regular map

We consider for $k=1,2, \ldots$ the convex domain

$$
\mathcal{D}_{+}^{k}(\mathcal{H})=\left\{\left(A_{1}, \ldots, A_{k}\right) \mid A_{1}, \ldots, A_{k}>0\right\}
$$

of positive definite and invertible operators acting on \mathcal{H}.
Let $F: \mathcal{D}_{+}^{k}(\mathcal{H}) \rightarrow B(\mathcal{H})$ be a regular map. The perspective map

$$
\mathcal{P}_{F}: \mathcal{D}_{+}^{k+1}(\mathcal{H}) \rightarrow B(\mathcal{H})
$$

is defined by setting

$$
\mathcal{P}_{F}\left(A_{1}, \ldots, A_{k}, B\right)=B^{1 / 2} F\left(B^{-1 / 2} A_{1} B^{-1 / 2}, \ldots, B^{-1 / 2} A_{k} B^{-1 / 2}\right) B^{1 / 2},
$$

and it is a positively homogeneous regular map.

Theorem

The perspective of a convex regular map is convex

The perspective filtered through a CP map

Theorem

Let $\Phi: B(\mathcal{H}) \rightarrow B(\mathcal{K})$ be a completely positive linear map (\mathcal{H}, \mathcal{K} finite dimensional), and let $F: \mathcal{D}_{+}^{k} \rightarrow B(\mathcal{H})$ be a convex regular map. Then

$$
\mathcal{P}_{F}\left(\Phi\left(A_{1}\right), \ldots, \Phi\left(A_{k+1}\right)\right) \leq \Phi\left(\mathcal{P}_{F}\left(A_{1}, \ldots, A_{k+1}\right)\right)
$$

for $\left(A_{1}, \ldots, A_{k+1}\right)$ in $\mathcal{D}_{+}^{k}(\mathcal{H})$, where \mathcal{P}_{F} is the perspective of F.
Proof: To a fixed positive definite $B \in B(\mathcal{H})$ we set

$$
\Psi(X)=\Phi(B)^{-1 / 2} \Phi\left(B^{1 / 2} X B^{1 / 2}\right) \Phi(B)^{-1 / 2}
$$

and notice that $\Psi: B(\mathcal{H}) \rightarrow B(\mathcal{K})$ is a unital linear map. We realise, by the definition of complete positivity, that also ψ is completely positive.
Since F is convex we thus obtain:

$$
\begin{aligned}
& F\left(\Psi\left(B^{-1 / 2} A_{1} B^{-1 / 2}\right), \ldots, \Psi\left(B^{-1 / 2} A_{k} B^{-1 / 2}\right)\right) \\
& \quad \leq \Psi\left(F\left(B^{-1 / 2} A_{1} B^{-1 / 2}, \ldots, B^{-1 / 2} A_{k} B^{-1 / 2}\right)\right)
\end{aligned}
$$

Inserting Ψ we obtain the inequality

$$
\begin{aligned}
& F\left(\Phi(B)^{-1 / 2} \Phi\left(A_{1}\right) \Phi(B)^{-1 / 2}, \ldots, \Phi(B)^{-1 / 2} \Phi\left(A_{k}\right) \Phi(B)^{-1 / 2}\right) \\
& \leq \Phi(B)^{-1 / 2} \Phi\left(B^{1 / 2} F\left(B^{-1 / 2} A_{1} B^{-1 / 2}, \ldots, B^{-1 / 2} A_{k} B^{-1 / 2}\right) B^{1 / 2}\right) \Phi(B)^{-1 / 2}
\end{aligned}
$$

We multiply from the left and right with $\Phi(B)^{1 / 2}$ and obtain

$$
\begin{aligned}
& \mathcal{P}_{F}\left(\Phi\left(A_{1}\right), \ldots, \Phi\left(A_{k}\right), \Phi(B)\right)=\Phi(B)^{1 / 2} F\left(\Phi(B)^{-1 / 2} \Phi\left(A_{1}\right) \Phi(B)^{-1 / 2}\right. \\
& \left.\quad \ldots, \Phi(B)^{-1 / 2} \Phi\left(A_{k}\right) \Phi(B)^{-1 / 2}\right) \Phi(B)^{1 / 2} \\
& \leq \Phi\left(B^{1 / 2} F\left(B^{-1 / 2} A_{1} B^{-1 / 2}, \ldots, B^{-1 / 2} A_{k} B^{-1 / 2}\right) B^{1 / 2}\right) \\
& =\Phi\left(\mathcal{P}_{F}\left(A_{1}, \ldots, A_{k}, B\right)\right)
\end{aligned}
$$

which is the assertion.

Applications to partial traces

Corollary

Consider a bipartite system $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ of Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2} of finite dimensions, and let $F: \mathcal{D}_{+}^{k}(\mathcal{H}) \rightarrow B(\mathcal{H})$ be a convex regular map. Then

$$
\mathcal{P}_{F}\left(\operatorname{Tr}_{2} A_{1}, \ldots, \operatorname{Tr}_{2} A_{k+1}\right) \leq \operatorname{Tr}_{2} \mathcal{P}_{F}\left(A_{1}, \ldots, A_{k+1}\right)
$$

for operators $\left(A_{1}, \ldots, A_{k+1}\right)$ in $\mathcal{D}_{+}^{k}(\mathcal{H})$, where \mathcal{P}_{F} is the perspective of F and $\operatorname{Tr}_{2} B$ is the partial trace of B on \mathcal{H}_{1}.

Setting $k=1$, the inequality takes the form

$$
\mathcal{P}_{f}\left(\operatorname{Tr}_{2} A, \operatorname{Tr}_{2} B\right) \leq \operatorname{Tr}_{2} \mathcal{P}_{f}(A, B),
$$

where $f:(0, \infty) \rightarrow \mathbf{R}$ is an operator convex function.

Homogeneous and convex regular maps

Consider a regular map

$$
F: \mathcal{D}_{+}^{k+1}(\mathcal{H}) \rightarrow B(\mathcal{H})
$$

for some $k=1,2 \ldots$

Proposition

If F is convex and positively homogeneous, then F is the perspective of its restriction $G: \mathcal{D}_{+}^{k} \rightarrow B(\mathcal{H})$ given by

$$
G\left(A_{1}, \ldots, A_{k}\right)=F\left(A_{1}, \ldots, A_{k}, 1\right)
$$

The perspective \mathcal{P}_{G} of a convex regular map $G: \mathcal{D}_{+}^{k} \rightarrow B(\mathcal{H})$ is thus the unique extension of G to a positively homogeneous convex regular $\operatorname{map} F: \mathcal{D}_{+}^{k+1} \rightarrow B(\mathcal{H})$.

Some operator means of several variables

The Karcher mean of k positive definite invertible operators A_{1}, \ldots, A_{k} is defined as the unique positive definite solution $\Lambda_{k}\left(A_{1}, \ldots, A_{k}\right)$ to the equation

$$
\sum_{i=1}^{k} \log \left(X^{1 / 2} A_{i} X^{1 / 2}\right)=0
$$

The harmonic mean $H_{k}\left(A_{1}, \ldots, A_{k}\right)$ is defined by setting

$$
H_{k}\left(A_{1}, \ldots, A_{k}\right)=\frac{k}{A_{1}^{-1}+\cdots+A_{k}^{-1}}
$$

for k positive definite invertible operators.
The Karcher mean and the harmonic mean are concave and positively homogeneous regular operator maps.

Applications to operator means of several variables

The Karcher mean Λ_{k} and the harmonic mean H_{k} of k operator variables satisfy the inequalities

$$
\begin{aligned}
\operatorname{Tr}_{2} \Lambda_{k}\left(A_{1}, \ldots, A_{k}\right) & \leq \Lambda_{k}\left(\operatorname{Tr}_{2} A_{1}, \ldots, \operatorname{Tr}_{2} A_{k}\right) \\
\operatorname{Tr}_{2} H_{k}\left(A_{1}, \ldots, A_{k}\right) & \leq H_{k}\left(\operatorname{Tr}_{2} A_{1}, \ldots, \operatorname{Tr}_{2} A_{k}\right)
\end{aligned}
$$

for $A_{1}, \ldots, A_{k} \in \mathcal{D}_{+}^{k}(\mathcal{H})$ on a bipartite system $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ of Hilbert spaces of finite dimensions.

For $k=2$ we obtain the inequality of Ando

$$
(A \# B)_{1} \leq A_{1} \# B_{1}
$$

where A_{1} and B_{1} are the partial traces of A and B on \mathcal{H}_{1} and

$$
A \# B=B^{1 / 2}\left(B^{-1 / 2} A B^{-1 / 2}\right)^{1 / 2} B^{1 / 2}
$$

is the (canonical) geometric mean of two variables.

Lieb-Ruskai's convexity theorem

Lieb and Ruskai proved convexity of the map

$$
L(A, K)=K^{*} A^{-1} K,
$$

where A is positive definite. If also K is positive definite then

$$
K A^{-1} K=K^{1 / 2}\left(K^{-1 / 2} A K^{-1 / 2}\right)^{-1} K^{1 / 2}
$$

is the perspective of the operator convex function $t \rightarrow t^{-1}$.
For operators on a bipartite system $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ we have

$$
K_{1}^{*} A_{1}^{-1} K_{1} \leq\left(K^{*} A^{-1} K\right)_{1}
$$

for positive definite A and arbitrary K.
For K positive definite this follows from the above theory. The general case is proved by using convexity and Choi's decomposition.

Alternative proof of Lieb-Ruskai's convexity theorem

There is a way to consider Lieb-Ruskai's convexity theorem which points to generalisations to more than two operators.

The geometric mean G_{1} of one positive definite operator is trivially given by $G_{1}(A)=A$. It is a concave regular map and its inverse

$$
A \rightarrow G_{1}(A)^{-1}=A^{-1}
$$

is thus a convex regular map. The perspective

$$
\mathcal{P}_{G_{1}^{-1}}(A, B)=B^{1 / 2} G_{1}\left(B^{-1 / 2} A B^{-1 / 2}\right)^{-1} B^{1 / 2}=B A^{-1} B=L(A, B)
$$

is therefore a convex regular map, and it is increasing when filtered through a partial trace.

A similar construction may be carried out for any number of operator variables.

Generalisations to $n+1$ operator variables

Any geometric mean G_{n} studied in the literature is a positive, concave, and regular map. The inverse

$$
G_{n}\left(A_{1}, \cdots, A_{n}\right)^{-1}=G_{n}\left(A^{-1}, \ldots, A_{n}^{-1}\right)
$$

is therefore convex and regular. The perspective

$$
\begin{aligned}
& \mathcal{P}_{G_{n}^{-1}}\left(A_{1}, \ldots, A_{n}, C\right) \\
& =C^{1 / 2} G_{n}\left(C^{-1 / 2} A_{1} C^{-1 / 2}, \ldots, C^{-1 / 2} A_{n} C^{-1 / 2}\right)^{-1} C^{1 / 2} \\
& =C^{1 / 2} G_{n}\left(C^{1 / 2} A_{1}^{-1} C^{1 / 2}, \ldots, C^{1 / 2} A_{n}^{-1} C^{1 / 2}\right) C^{1 / 2} \\
& =C G_{n}\left(A_{1}^{-1}, \ldots, A_{n}^{-1}\right) C=C G_{n}\left(A_{1}, \ldots, A_{n}\right)^{-1} C \\
& =L\left(A_{1}, \ldots, A_{n}, C\right),
\end{aligned}
$$

where we used self-duality and congruence invariance of the geometric mean.

The map $L\left(A_{1}, \ldots, A_{n}, C\right)$ of $n+1$ operator variables

The operator map

$$
L\left(A, \ldots, A_{n}, C\right)=C G_{n}\left(A_{1}, \ldots, A_{n}\right)^{-1} C
$$

defined in positive definite and invertible operators is thus positively homogeneous, concave, and regular.

If in addition $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ is a bipartite system of Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2} of finite dimensions then

$$
L\left(\operatorname{Tr}_{2} A_{1}, \ldots, \operatorname{Tr}_{2} A_{n}, \operatorname{Tr}_{2} C\right) \leq \operatorname{Tr}_{2} L\left(A, \ldots, A_{n}, C\right)
$$

Notice that if A_{1}, \ldots, A_{n} commute then

$$
L\left(A_{1}, \ldots, A_{n}, C\right)=C A_{1}^{-1 / n} \cdots A_{n}^{-1 / n} C
$$

and in particular $L(A, \ldots, A, C)=C A^{-1} C$.

The map $L(A, B, C)$ of $2+1$ operator variables

The geometric mean of two variables is the unique extension of the function $(t, s) \rightarrow t^{1 / 2} s^{1 / 2}$ to a positively homogeneous, regular and concave operator map. Therefore,

$$
L(A, B, C)=C B^{-1 / 2}\left(B^{1 / 2} A^{-1} B^{1 / 2}\right)^{1 / 2} B^{-1 / 2} C
$$

is the only sensible extension of Lieb-Ruskai's map to $2+1$ positive definite and invertible operators with $L(A, B, C)=L(B, A, B)$.
We may also use the weighted geometric mean,

$$
G_{2}(\alpha ; A, B)=B^{1 / 2}\left(B^{-1 / 2} A B^{-1 / 2}\right)^{\alpha} B^{1 / 2} \quad 0 \leq \alpha \leq 1
$$

and obtain convexity of the map

$$
L(\alpha ; A, B, C)=C B^{-1 / 2}\left(B^{1 / 2} A^{-1} B^{/ 12}\right)^{\alpha} B^{-1 / 2} C
$$

It reduces to $L(\alpha ; A, B, C)=C A^{-\alpha} B^{-(1-\alpha)} C$ for commuting A and B.

Another approach to the extended Lieb-Ruskai map

Let A be positive definite and invertible. It is a the well-known fact that a block matrix of the form

$$
\left(\begin{array}{cc}
A & C \\
C^{*} & B
\end{array}\right)
$$

is positive semi-definite if and only if $B \geq C^{*} A^{-1} C$.
For $n=2$ we put

$$
L(A, B, C)=C^{*} G_{2}(A, B)^{-1} C,
$$

where C now is arbitrary and A, B are positive definite and invertible.
Take $\lambda \in[0,1]$, arbitrary operators C_{1}, C_{2} and positive definite and invertible operators A_{1}, A_{2} and B_{1}, B_{2} and set

$$
\begin{aligned}
C & =\lambda C_{1}+(1-\lambda) C_{2} \\
T & =\lambda C_{1}^{*} G_{2}\left(A_{1}, B_{1}\right)^{-1} C_{1}+(1-\lambda) C_{2}^{*} G_{2}\left(A_{2}, B_{2}\right)^{-1} C_{2} .
\end{aligned}
$$

Convexity alone without using perspectives

We obtain the equality

$$
\begin{aligned}
& X=\left(\begin{array}{cc}
\lambda G_{2}\left(A_{1}, B_{1}\right)+(1-\lambda) G_{2}\left(A_{2}, B_{2}\right) & C \\
C^{*} & T
\end{array}\right) \\
& =\lambda\left(\begin{array}{cc}
G_{2}\left(A_{1}, B_{1}\right) & C_{1} \\
C_{1}^{*} & \left.C_{1}^{*} G_{2}\left(A_{1}, B_{1}\right)^{-1} C_{1}\right)
\end{array}\right. \\
& \quad+(1-\lambda)\left(\begin{array}{cc}
G_{2}\left(A_{2}, B_{2}\right) & C_{2} \\
C_{2}^{*} & C_{2}^{*} G_{2}\left(A_{2}, B_{2}\right)^{-1} C_{2}
\end{array}\right)
\end{aligned}
$$

and observe that the two last block matrices by construction are positive semi-definite.

The block matrix X is thus positive semi-definite; therefore

$$
T \geq C^{*}\left(\lambda G_{2}\left(A_{1}, B_{1}\right)+(1-\lambda) G_{2}\left(A_{2}, B_{2}\right)\right)^{-1} C .
$$

We thus obtain

$$
\begin{aligned}
& \lambda L\left(A_{1}, B_{1}, C_{1}\right)+(1-\lambda) L\left(A_{2}, B_{2}, C_{2}\right) \\
& =\lambda C_{1}^{*} G_{2}\left(A_{1}, B_{1}\right)^{-1} C_{1}+(1-\lambda) C_{2}^{*} G_{2}\left(A_{2}, B_{2}\right)^{-1} C_{2}=T \\
& \geq C^{*}\left(\lambda G_{2}\left(A_{1}, B_{1}\right)+(1-\lambda) G_{2}\left(A_{2}, B_{2}\right)\right)^{-1} C \\
& \geq C^{*} G_{2}\left(\lambda A_{1}+(1-\lambda) A_{2}, \lambda B_{1}+(1-\lambda) B_{2}\right)^{-1} C \\
& =L\left(\lambda A_{1}+(1-\lambda) A_{2}, \lambda B_{1}+\left(1-\lambda B_{2}\right), \lambda C_{1}+\left(1-\lambda C_{2}\right)\right.
\end{aligned}
$$

where we in the last inequality used concavity of the geometric mean and operator convexity of the inverse function.

This construction only uses concavity of G_{2}. However, if we want $L(A, B, C)$ to be positively homogenous and

$$
L(t, s, 1)=t^{1 / 2} s^{1 / 2} \quad \text { for positive numbers, }
$$

then G_{2} is the only regular solution.

Corollary

This way of reasoning extends to any number of variables.
Let G_{n} be any geometric mean of n positive semi-definite and invertible operators. The operator function

$$
L\left(A_{1}, \ldots, A_{n}, C\right)=C^{*} G_{n}\left(A_{1}, \ldots, A_{n}\right)^{-1} C
$$

is convex in arbitrary C and positive definite and invertible A_{1}, \ldots, A_{n}.
If in addition $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ is a bipartite system of Hilbert spaces \mathcal{H}_{1} and \mathcal{H}_{2} of finite dimensions then

$$
L\left(\operatorname{Tr}_{2} A_{1}, \ldots, \operatorname{Tr}_{2} A_{n}, \operatorname{Tr}_{2} C\right) \leq \operatorname{Tr}_{2} L\left(A, \ldots, A_{n}, C\right),
$$

for arbitrary C and positive definite A_{1}, \ldots, A_{n}.
If A_{1}, \ldots, A_{n} commute then

$$
L\left(A_{1}, \ldots, A_{n}, C\right)=C^{*} A_{1}^{1 / n} \cdots A_{n}^{1 / n} C .
$$

