Operator theoretical approach to quantum error correction

Raymond Nung-Sing Sze The Hong Kong Polytechnic University

February 15, 2016

Mathematical Aspects in Current Quantum Information Theory Daejeon, Korea

Based on a joint work with Zejun Huang (Hunan U) and Shiyu Shi (HK PolyU)

- Quantum Error Correction A very very brief Review
- Bit-flip Quantum Channel
- $\bullet~{\rm The}~[n,k,d]~{\rm Code}$
- Fully Correlated Quantum Channel
- Summary

• The Pauli matrices, also known as the spin matrices, and defined by

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \text{and} \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

 $\bullet\,$ Notice that for two computational basis states $|0\rangle$ and $|1\rangle,$

• In general, for any pure state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$,

$$\begin{aligned} X|\psi\rangle &= X(\alpha|0\rangle + \beta|1\rangle) &= \alpha|1\rangle + \beta|0\rangle \\ Y|\psi\rangle &= Y(\alpha|0\rangle + \beta|1\rangle) &= i\alpha|1\rangle - i\beta|0\rangle \\ Z|\psi\rangle &= Z(\alpha|0\rangle + \beta|1\rangle) &= \alpha|0\rangle - \beta|1\rangle \end{aligned}$$

A quantum channel $\mathcal{E}:M_n\to M_n$ is a completely positive, trace preserving linear map of the form

$$\mathcal{E}:
ho \mapsto \sum_{j=1}^{r} F_j
ho F_j^{\dagger} \quad ext{with} \quad \sum_j F_j^{\dagger} F_j = I. \quad ext{[Choi, LAA 10:285-290 (1975)]}$$

A quantum channel $\mathcal{E}:M_n\to M_n$ is a completely positive, trace preserving linear map of the form

$$\mathcal{E}:
ho\mapsto\sum_{j=1}^{i}F_{j}
ho F_{j}^{\dagger} \quad ext{with} \quad \sum_{j}F_{j}^{\dagger}F_{j}=I. \quad ext{[Choi, LAA 10:285-290 (1975)]}$$

A Textbook Example: Bit-flip channel [Nakahara, Ohmi, CRC press, 2008] Suppose in a noisy 3-qubit quantum channel, each qubit flips independent with a probability p << 1. Further, assume that at most one of qubits can be flipped. Mathematically, the three-qubit bit-flip channel $\mathcal{E}: M_8 \to M_8$ is defined by

$$\mathcal{E}(\rho) = \sum_{j=1}^{4} F_j \rho F_j^{\dagger},$$

with error operators

$$\begin{split} F_1 &= \sqrt{p_1} \ I \otimes I \otimes I, \\ F_2 &= \sqrt{p_2} \ X \otimes I \otimes I, \\ F_3 &= \sqrt{p_3} \ I \otimes X \otimes I, \\ F_4 &= \sqrt{p_4} \ I \otimes I \otimes X. \end{split}$$

where $\sum_{j=1}^{4} p_j = 1$.

A quantum channel $\mathcal{E}:M_n\to M_n$ is a completely positive, trace preserving linear map of the form

$$\mathcal{E}:
ho\mapsto\sum_{j=1}^{r}F_{j}
ho F_{j}^{\dagger} \quad ext{with} \quad \sum_{j}F_{j}^{\dagger}F_{j}=I. \quad ext{[Choi, LAA 10:285-290 (1975)]}$$

A Textbook Example: Bit-flip channel [Nakahara, Ohmi, CRC press, 2008] Suppose in a noisy 3-qubit quantum channel, each qubit flips independent with a probability p << 1. Further, assume that at most one of qubits can be flipped. Mathematically, the three-qubit bit-flip channel $\mathcal{E}: M_8 \to M_8$ is defined by

$$\mathcal{E}(\rho) = \sum_{j=1}^{4} F_j \rho F_j^{\dagger},$$

with error operators

Assume that at most one of qubits can be flipped: $|0\rangle \leftrightarrow |1\rangle$

Assume that at most one of qubits can be flipped: $|0\rangle \leftrightarrow |1\rangle$

Assume that at most one of qubits can be flipped: $|0\rangle \leftrightarrow |1\rangle$

Assume that at most one of qubits can be flipped: $|0\rangle \leftrightarrow |1\rangle$

Assume that at most one of qubits can be flipped: $|0\rangle \leftrightarrow |1\rangle$

Assume that at most one of qubits can be flipped: $|0\rangle \leftrightarrow |1\rangle$

Assume that at most one of qubits can be flipped: $|0\rangle \leftrightarrow |1\rangle$

[Nakahara, Tomita arXiv:1101.0413 (2011)]

Quantum Error Correction Code (QECC)

Quantum Error Correction Code (QECC)

Quantum Error Correction Code [Knill and Laflamme, PRA 55:900-911 (1997)]

A subspace \mathbf{V} of \mathbb{C}^n is a QECC for \mathcal{E} if and only if

$$P_{\mathbf{V}}F_i^{\dagger}F_jP_{\mathbf{V}} = \lambda_{ij}P_{\mathbf{V}}$$
 for all $1 \le i, j \le r$.

[Li, Nakahara, Poon, S., Tomita, QIC 12:149-158 (2012)]

Decoherence Free Subspace (DFS)

Noiseless Subsystem (NS)

Noiseless Subsystem [Kribs, Laflamme, Poulin, Lesosky, QIC 6:383-399 (2006)]

A subsystem B of $A \otimes B$ is a NS for \mathcal{E} if and only if

$$\begin{split} F_j P_{AB} &= P_{AB} F_j P_{AB} \quad \forall 1 \leq j \leq r \\ P_{kk} F_j P_{\ell\ell} &= \lambda_{jk\ell} P_{k\ell} \quad \forall 1 \leq j \leq r, 1 \leq k, \ell \leq p, \end{split}$$

where $P_{k\ell} = |x_k\rangle \langle x_\ell| \otimes I_B$ for $1 \leq k, \ell \leq p$ and $P_{AB} = \sum_{k=1}^p P_{kk}.$

Operator Quantum Error Correction (OQEC)

Operator Quantum Error Correction (OQEC)

Unitarily Recoverable Subsystem (URS) [Kribs, Spekkens, PRA 74:042329 (2006)]

A subsystem B of $A\otimes B$ is a CS for ${\mathcal E}$ if and only if

$$P_{kk}F_i^*F_jP_{\ell\ell} = \lambda_{ijk\ell}P_{k\ell} \quad \forall 1 \le i, j \le r, 1 \le k, \ell \le p$$

where $P_{k\ell} = |x_k\rangle \langle x_\ell | \otimes I_B$ for $1 \le k, \ell \le p$ and $P_{AB} = \sum_{k=1}^p P_{kk}$.

(QECC)
$$\rho^{A} = |0\rangle\langle 0|$$
 (OQEC)
 $R = U$
 $\sigma^{A} = |0\rangle\langle 0|$
(DFS) $p = \dim A = 1$ (NS)

The Textbook Example: Three Qubit Bit-flip Quantum Channel

$$\mathcal{E}: \rho \mapsto F_1 \rho F_1^{\dagger} + F_2 \rho F_2^{\dagger} + F_3 \rho F_3^{\dagger} + F_4 \rho F_4^{\dagger}$$

where that at

$$\begin{array}{rcl} F_1 &=& \sqrt{q_1} \, I \otimes I \otimes I \\ F_2 &=& \sqrt{q_2} \, X \otimes I \otimes I \\ F_3 &=& \sqrt{q_3} \, I \otimes X \otimes I \end{array}$$

$$F_4 = \sqrt{q_4} I \otimes I \otimes X$$

Assume that at most one of qubits can be flipped!

The Textbook Example: Three Qubit Bit-flip Quantum Channel

[Nakahara, Tomita arXiv:1101.0413 (2011)]

The Textbook Example: Three Qubit Bit-flip Quantum Channel

The Textbook Example: Three Qubit Bit-flip Quantum Channel

The Textbook Example: Three Qubit Bit-flip Quantum Channel

 $\begin{array}{ccc} |000\rangle & \longrightarrow & |000\rangle \\ |001\rangle & \longrightarrow & |111\rangle \end{array}$

The Textbook Example: Three Qubit Bit-flip Quantum Channel

Raymond Nung-Sing Sze

MAQIT 2016, Daejeon, Korea

The Textbook Example: Three Qubit Bit-flip Quantum Channel

Raymond Nung-Sing Sze

MAQIT 2016, Daejeon, Korea

The Textbook Example: Three Qubit Bit-flip Quantum Channel

Rank-k numerical range

In connection to Quantum Error Correction, Choi, et al suggested

Rank-k numerical range [Choi, Kribs, and Zyczkowski LAA 418:828-839 (2006)]

The rank-k numerical range of A on $\mathcal{B}(\mathcal{H})$ is defined by

 $\Lambda_k(A) = \{ \mu \in \mathbb{C} : PAP = \mu P \text{ for some rank-}k \text{ orthogonal projection } \mathsf{P} \}.$

Raymond Nung-Sing Sze

[Choi, Giesinger, Holbrook, Kribs, LAMA 56:53-64 (2008)]
[Choi, Holbrook, Kribs, Zyczkowski, OAM 1:409-426 (2007)]
[Choi, Kribs, Zyczkowski, RMP 58:77-91 (2006)]
[Li, Poon, S., JMAA 348:843-855 (2008)]
[Li, Poon, S., LAMA 57:365-368 (2009)]
[Li, S., PAMS 136:3013-3023 (2008)]
[Woerdeman, LAMA 56:65-67 (2008)]

P.12 / 40

MAQIT 2016, Daejeon, Korea

- E: Error operators
- M_j : Measurement operators

- E: Error operators
- M_j : Measurement operators

- E: Error operators
- M_j : Measurement operators

$$|\psi\rangle - \boxed{\begin{array}{c} \mathsf{Noisy} \\ \mathsf{quantum} \\ \mathsf{channel} \end{array}} = E|\psi\rangle - \boxed{\begin{array}{c} \mathsf{Syndrome} \\ \mathsf{Detection} \end{array}} = \left\langle \psi|E^{\dagger}M_{1}E|\psi\rangle \\ \vdots \\ \langle \psi|E^{\dagger}M_{p}E|\psi\rangle \end{array} = \boxed{\begin{array}{c} \mathsf{Syndrome} \\ \mathsf{Correction} \end{array}} = |\psi\rangle$$
$$Correction = |\psi\rangle$$
$$E_{a} \neq E_{b} \iff \left(\begin{array}{c} \langle \psi|E_{a}^{\dagger}M_{1}E_{a}|\psi\rangle \\ \vdots \\ \langle \psi|E_{a}^{\dagger}M_{p}E_{a}|\psi\rangle \end{array} \right) \neq \left(\begin{array}{c} \langle \psi|E_{b}^{\dagger}M_{1}E_{b}|\psi\rangle \\ \vdots \\ \langle \psi|E_{b}^{\dagger}M_{p}E_{b}|\psi\rangle \end{array} \right)$$

• Consider the following local operations on an *n*-qubit system

 $E = \sigma_1 \otimes \sigma_2 \otimes \sigma_3 \otimes \cdots \otimes \sigma_n$ with $\sigma_j \in \{I, X, Y, Z\}.$

• Consider the following local operations on an *n*-qubit system

 $E = \sigma_1 \otimes \sigma_2 \otimes \sigma_3 \otimes \cdots \otimes \sigma_n$ with $\sigma_j \in \{I, X, Y, Z\}.$

 The weight of the operator E is defined to be the number of states σ_j which it differs from I, i.e.,

$$w(E) = \#\{j : \sigma_j \neq I\}.$$

For example, in a 5-qubit system,

 $w(X \otimes Y \otimes I \otimes I \otimes I) = 2$ and $w(X \otimes I \otimes I \otimes Y \otimes Y) = 3$.

P.14 / 40

• Consider the following local operations on an *n*-qubit system

 $E = \sigma_1 \otimes \sigma_2 \otimes \sigma_3 \otimes \cdots \otimes \sigma_n$ with $\sigma_j \in \{I, X, Y, Z\}.$

 The weight of the operator E is defined to be the number of states σ_j which it differs from I, i.e.,

$$w(E) = \#\{j : \sigma_j \neq I\}.$$

For example, in a 5-qubit system,

 $w(X \otimes Y \otimes I \otimes I \otimes I) = 2$ and $w(X \otimes I \otimes I \otimes Y \otimes Y) = 3$.

• The distance between two operators E_a and E_b is defined to be

$$d(E_a, E_b) = w(E_a^{\dagger} E_b).$$

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

• Let S be a set of commuting Pauli matrices in the n-qubit system and $\{M_1, M_2, \ldots, M_p\}$ are the generators of the set. Let

$$\mathbf{V} = \{ |\psi\rangle : M |\psi\rangle = |\psi\rangle, \forall M \in S \}.$$

• Let S be a set of commuting Pauli matrices in the n-qubit system and $\{M_1, M_2, \ldots, M_p\}$ are the generators of the set. Let

$$\mathbf{V} = \{ |\psi\rangle : M |\psi\rangle = |\psi\rangle, \forall M \in S \}.$$

• For any error E and $|\psi\rangle \in \mathbf{V}$, if

$$ME|\psi\rangle = -E|\psi\rangle \iff ME = -EM,$$

then M can detect E. Otherwise,

$$ME|\psi\rangle = E|\psi\rangle \iff ME = EM.$$

• Let S be a set of commuting Pauli matrices in the n-qubit system and $\{M_1, M_2, \ldots, M_p\}$ are the generators of the set. Let

$$\mathbf{V} = \{ |\psi\rangle : M |\psi\rangle = |\psi\rangle, \forall M \in S \}.$$

• For any error E and $|\psi\rangle \in \mathbf{V}$, if

$$ME|\psi\rangle = -E|\psi\rangle \iff ME = -EM_{e}$$

then M can detect E. Otherwise,

$$ME|\psi\rangle = E|\psi\rangle \quad \Longleftrightarrow \quad ME = EM.$$

Then

$$\langle \psi | E^{\dagger} M E | \psi \rangle = \begin{cases} 1 & \text{if } M E = EM \\ -1 & \text{if } M E = -EM \end{cases}$$

Set

$$f_M(E) = \begin{cases} 1 & \text{if } ME = EM \\ -1 & \text{if } ME = -EM \end{cases}$$

- The generators $\{M_1, \ldots, M_p\}$ can distinguish E_a and E_b if $\exists M_i \in S$ s.t. $f_{M_i}(E_a) \neq f_{M_i}(E_b)$.
- The subspace ${\bf V}$ of ${{\mathbb C}^2}^n$ with stabilizer S is an [n,k,d] code if
 - $\dim(\mathbf{V}) = 2^k$,
 - $\{M_1, \ldots, M_p\}$ can distinguish E_a and E_b for any $d(E_a, E_b) < d$.

- The generators $\{M_1, \ldots, M_p\}$ can distinguish E_a and E_b if $\exists M_i \in S$ s.t. $f_{M_i}(E_a) \neq f_{M_i}(E_b)$.
- The subspace ${\bf V}$ of \mathbb{C}^{2^n} with stabilizer S is an [n,k,d] code if • $\dim({\bf V})=2^k$,
 - $\{M_1, \ldots, M_p\}$ can distinguish E_a and E_b for any $d(E_a, E_b) < d$.
- $\bullet~ {\rm An}~ [n,k,d]~ {\rm code}~ {\bf V}$ is a QECC for the error pattern E with

$$w(E) < \frac{d}{2}.$$

Calderbank-Shor-Steane [7, 1, 3] code

[Calderbank and Shor, PRA 54:1098 (1996) and Steane PRL 77: 793(1996)]

- $M_1 = I \otimes I \otimes I \otimes X \otimes X \otimes X \otimes X$
- $M_2 = I \otimes X \otimes X \otimes I \otimes I \otimes X \otimes X$
- $M_3 = X \otimes I \otimes X \otimes I \otimes X \otimes I \otimes X$
- $M_4 \quad = \quad I \otimes I \otimes I \otimes Z \otimes Z \otimes Z \otimes Z$
- $M_5 \quad = \quad I \otimes \mathbb{Z} \otimes \mathbb{Z} \otimes I \otimes I \otimes \mathbb{Z} \otimes \mathbb{Z}$
- $M_6 \quad = \quad \underline{Z} \otimes I \otimes \underline{Z} \otimes I \otimes \underline{Z} \otimes I \otimes \underline{Z}$

 $\mathbf{V}=\mathrm{span}\;\{|v_1
angle,|v_2
angle\}$ with

 $|v_1\rangle = \frac{1}{\sqrt{8}} (|000000\rangle + |1111000\rangle + |1100110\rangle + |1010101\rangle$ $+ |0011110\rangle + |0101101\rangle + |0110011\rangle + |1001011\rangle)$

 $|v_{2}\rangle = \frac{1}{\sqrt{8}} (|0000111\rangle + |111111\rangle + |1100001\rangle + |1010010\rangle$ $+ |0011001\rangle + |0101010\rangle + |0110100\rangle + |1001100\rangle)$

			M_1	M_2	M_3	M_4	M_5	M_6
X_1	=	$X\otimes I\otimes I\otimes I\otimes I\otimes I\otimes I\otimes I$	1	1	1	1	1	-1
X_2	=	$I \otimes X \otimes I \otimes I \otimes I \otimes I \otimes I \otimes I$	1	1	1	1	$^{-1}$	1
X_3	=	$I \otimes I \otimes X \otimes I \otimes I \otimes I \otimes I$	1	1	1	1	$^{-1}$	$^{-1}$
X_4	=	$I \otimes I \otimes I \otimes X \otimes I \otimes I \otimes I$	1	1	1	-1	1	1
X_5	=	$I \otimes I \otimes I \otimes I \otimes X \otimes I \otimes I$	1	1	1	-1	1	-1
X_6	=	$I\otimes I\otimes I\otimes I\otimes I\otimes X\otimes I$	1	1	1	-1	-1	1
X_7	=	$I\otimes I\otimes I\otimes I\otimes I\otimes I\otimes X$	1	1	1	-1	-1	$^{-1}$
Z_1	=	$Z\otimes I\otimes I\otimes I\otimes I\otimes I\otimes I\otimes I$	1	1	$^{-1}$	1	1	1
Z_2	=	$I\otimes Z\otimes I\otimes I\otimes I\otimes I\otimes I\otimes I$	1	-1	1	1	1	1
Z_3	=	$I\otimes I\otimes Z\otimes I\otimes I\otimes I\otimes I$	1	-1	-1	1	1	1
Z_4	=	$I\otimes I\otimes I\otimes Z\otimes I\otimes I\otimes I$	-1	1	1	1	1	1
Z_5	=	$I\otimes I\otimes I\otimes I\otimes Z\otimes I\otimes I$	-1	1	-1	1	1	1
Z_6	=	$I\otimes I\otimes I\otimes I\otimes I\otimes Z\otimes I$	-1	-1	1	1	1	1
Z_7	=	$I\otimes I\otimes I\otimes I\otimes I\otimes I\otimes Z$	$^{-1}$	$^{-1}$	$^{-1}$	1	1	1
Y_1	=	$Y\otimes I\otimes I\otimes I\otimes I\otimes I\otimes I$	1	1	-1	1	1	$^{-1}$
Y_2	=	$I\otimes Y\otimes I\otimes I\otimes I\otimes I\otimes I$	1	-1	1	1	-1	1
Y_3	=	$I\otimes I\otimes Y\otimes I\otimes I\otimes I\otimes I$	1	-1	-1	1	-1	-1
Y_4	=	$I\otimes I\otimes I\otimes Y\otimes I\otimes I\otimes I$	-1	1	1	-1	1	1
Y_5	=	$I\otimes I\otimes I\otimes I\otimes Y\otimes I\otimes I$	-1	1	-1	-1	1	-1
Y_6	=	$I\otimes I\otimes I\otimes I\otimes I\otimes Y\otimes I$	-1	-1	1	-1	-1	1
Y_7	=	$I\otimes I\otimes I\otimes I\otimes I\otimes I\otimes Y$	-1	-1	-1	-1	-1	-1

Raymond Nung-Sing Sze

• Shor [9, 1, 3] code [Shor, PRA 52:2493 (1995)]

 $\mathbf{V}=\mathrm{span}\,\left\{ |v_{1}
angle ,|v_{2}
angle
ight\}$ with

$$|v_1\rangle = \frac{1}{\sqrt{8}} (|000\rangle + |111\rangle) \otimes (|000\rangle + |111\rangle) \otimes (|000\rangle + |111\rangle)$$
$$|v_2\rangle = \frac{1}{\sqrt{8}} (|000\rangle - |111\rangle) \otimes (|000\rangle - |111\rangle) \otimes (|000\rangle - |111\rangle)$$

• Shor $\left[9,1,3\right]$ code [Shor, PRA 52:2493 (1995)]

 $\mathbf{V}=\mathrm{span}\,\left\{ |v_{1}
angle ,|v_{2}
angle
ight\}$ with

$$|v_1\rangle = \frac{1}{\sqrt{8}} (|000\rangle + |111\rangle) \otimes (|000\rangle + |111\rangle) \otimes (|000\rangle + |111\rangle)$$

$$|v_2\rangle = \frac{1}{\sqrt{8}} (|000\rangle - |111\rangle) \otimes (|000\rangle - |111\rangle) \otimes (|000\rangle - |111\rangle)$$

• Calderbank-Shor-Steane [7, 1, 3] code [Calderbank and Shor, PRA 54:1098 (1996)and Steane PRL 77: 793(1996)]

$$\begin{aligned} \mathbf{V} &= \text{span } \{ |v_1\rangle, |v_2\rangle \} \text{ with} \\ &|v_1\rangle &= \frac{1}{\sqrt{8}} \left(|0000000\rangle + |1111000\rangle + |1100110\rangle + |101010\rangle \right. \\ &+ |0011110\rangle + |0101101\rangle + |0110011\rangle + |1001011\rangle \end{aligned}$$

$$|v_2\rangle = \frac{1}{\sqrt{8}} (|0000111\rangle + |111111\rangle + |1100001\rangle + |1010010\rangle + |0011001\rangle + |0101010\rangle + |0110100\rangle + |1001100\rangle)$$

• The [5,1,3] code [DiVincenzo & Shor, PRL 77:3260 (1996)]

 $\mathbf{V}= ext{span}\,\left\{ert v_{1}
ight
angle,ert v_{2}
ight
angle
ight\}$ with

$$\begin{array}{ll} v_1 \rangle &=& \displaystyle \frac{1}{4} \left(|00000\rangle + |10010\rangle + |01001\rangle + |10100\rangle \\ &+ |01010\rangle - |11011\rangle - |00110\rangle - |11000\rangle \\ &- |11101\rangle - |00011\rangle - |11110\rangle - |01111\rangle \\ &- |10001\rangle - |01100\rangle - |10111\rangle + |00101\rangle) \end{array}$$

$$\begin{aligned} |v_2\rangle &= \frac{1}{4} \left(|11111\rangle + |01101\rangle + |10110\rangle + |01011\rangle \\ &+ |10101\rangle - |00100\rangle - |11001\rangle - |00111\rangle \\ &- |00010\rangle - |11100\rangle - |00001\rangle - |10000\rangle \\ &- |01110\rangle - |10011\rangle - |01000\rangle + |11010\rangle \end{aligned}$$

$$\begin{array}{rclcrcl} M_1 & = & Z \otimes X \otimes X \otimes Z \otimes I \\ M_3 & = & Z \otimes I \otimes Z \otimes X \otimes X \end{array} \qquad \begin{array}{rclcrc} M_2 & = & I \otimes Z \otimes X \otimes X \otimes Z \\ M_4 & = & X \otimes Z \otimes I \otimes Z \otimes X \end{array} \end{array}$$

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

- [8,3,3] code [Calderbank et al., PRL 78:405 (1997)]
- $[2^r, 2^r j 2, 3]$ code [Gottesman, PRA 54:1862 (1996)]

•
$$\left[2^r, 2^r - {}_rC_p - 2\sum_{j=0}^p {}_rC_j, 2^p + 2^p + 2^{p-1}\right]$$
 code
[Steane, PRL 77:793 (1996)]

- ((9, 12, 3)) code [Yu, Chen, Lai, Oh, PRL 101:090501 (2008)]
- ((10, 20, 3)) code [Cross, Smith, Smolin, Zeng IEEE TIT 55:433-438 (2009)]
- [16,7,4] code [Looi, Yu, Gheorghiu, Griffiths, PRA 78:042303 (2008)]
- [85, 77, 3] code [Grassl, Shor, Smith, Smolin, Zeng, PRA 79.050306 (2009)]
- • • • •

The $[5, \overline{1}, \overline{3}]$ code

Encoding Operation

Encoding Operation

Clearly, $\langle v_1 | v_2 \rangle = 0$

The [5,1,3] code

Encoding Operation

Clearly, $\langle v_1 | v_2 \rangle = 0$

Also $\langle v_i | E_a^{\dagger} E_b | v_j \rangle = \langle 0000i | U^{\dagger} E_a^{\dagger} E_b U | 0000j \rangle$

for all i, j = 0, 1 and $E_a, E_b \in \{X_i, Y_j, Z_j\}$

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

P. 22 / 40

$X_1 v_0\rangle$	=	$-U 10111\rangle$
$X_2 v_0\rangle$	=	$-U 11101\rangle$
$X_3 v_0\rangle$	=	$U 00111\rangle$
$X_4 v_0\rangle$	=	$U 10011\rangle$
$X_5 v_0\rangle$	=	$U 11111\rangle$

$$\begin{array}{lcl} X_1|v_1\rangle &=& -U|10110\rangle\\ X_2|v_1\rangle &=& -U|11100\rangle\\ X_3|v_1\rangle &=& -U|00110\rangle\\ X_4|v_1\rangle &=& -U|10010\rangle \end{array}$$

$$X_5|v_1\rangle = -U|11110\rangle$$

The [5,1,3] code

$X_1 v_0\rangle$	=	$-U 10111\rangle$
$X_2 v_0\rangle$	=	$-U 11101\rangle$
$X_3 v_0\rangle$	=	$U 00111\rangle$
$X_4 v_0\rangle$	=	$U 10011\rangle$
$X_5 v_0\rangle$	=	$U 11111\rangle$
$Y_1 v_0\rangle$	=	$-U 10101\rangle$
$Y_2 v_0\rangle$	=	$U 01101\rangle$
$Y_3 v_0\rangle$	=	$-U 01001\rangle$
$Y_4 v_0 angle$	=	$-U 01011\rangle$
$Y_5 v_0\rangle$	=	$U 11011\rangle$

- $X_2|v_1\rangle = -U|11100\rangle$
- $X_3|v_1\rangle = -U|00110\rangle$

$$X_4|v_1\rangle = -U|10010\rangle$$

$$X_5 |v_1\rangle = -U|11110\rangle$$

$$Y_1|v_1\rangle = U|10100\rangle$$

$$Y_2|v_1\rangle = U|01100\rangle$$

$$Y_3|v_1\rangle = U|01000\rangle$$

$$Y_4|v_1\rangle = U|01010\rangle$$

$$Y_5|v_1\rangle = U|11010\rangle$$

$X_1 v_0\rangle$	=	$-U 10111\rangle$
$X_2 v_0\rangle$	=	$-U 11101\rangle$
$X_3 v_0\rangle$	=	$U 00111\rangle$
$X_4 v_0\rangle$	=	$U 10011\rangle$
$X_5 v_0\rangle$	=	$U 11111\rangle$
$Y_1 v_0\rangle$	=	$-U 10101\rangle$
$Y_2 v_0\rangle$	=	$U 01101\rangle$
$Y_3 v_0\rangle$	=	$-U 01001\rangle$
$Y_4 v_0 angle$	=	$-U 01011\rangle$
$Y_5 v_0 angle$	=	$U 11011\rangle$
$Z_1 v_0\rangle$	=	$U 00010\rangle$
$Z_2 v_0\rangle$	=	$U 10000\rangle$
$Z_3 v_0\rangle$	=	$U 01110\rangle$
$Z_4 v_0\rangle$	=	$U 11000\rangle$
$Z_5 v_0\rangle$	=	$U 00100\rangle$

$X_1 v_1\rangle$	=	$-U 10110\rangle$
$X_2 v_1\rangle$	=	$-U 11100\rangle$
$X_3 v_1\rangle$	=	$-U 00110\rangle$
$X_4 v_1\rangle$	=	$-U 10010\rangle$
$X_5 v_1\rangle$	=	$-U 11110\rangle$
$Y_1 v_1\rangle$	=	$U 10100\rangle$
$Y_2 v_1 angle$	=	$U 01100\rangle$
$Y_3 v_1 angle$	=	$U 01000\rangle$
$Y_4 v_1\rangle$	=	$U 01010\rangle$
$Y_5 v_1 angle$	=	$U 11010\rangle$
$Z_1 v_1\rangle$	=	$-U 00011\rangle$
$Z_2 v_1\rangle$	=	$U 10001\rangle$
$Z_3 v_1\rangle$	=	$U 01111\rangle$
$Z_4 v_1\rangle$	=	$U 11001\rangle$
$Z_5 v_1\rangle$	=	$U 00101\rangle$

Error	Vector	Action
X_1	$U 1011j\rangle$	-X
X_2	$U 1110j\rangle$	-X
X_3	$U 0011j\rangle$	Y
X_4	$U 1001j\rangle$	Y
X_5	$U 1111\frac{j}{\rangle}$	Y
Y_1	$U 1010j\rangle$	Y
Y_2	$U 0110j\rangle$	X
Y_3	$U 0100j\rangle$	Y
Y_4	$U 0101j\rangle$	Y
Y_5	$U 1101j\rangle$	X
Z_1	$U 0001j\rangle$	Z
Z_2	$U 1000j\rangle$	Ι
Z_3	$U 0111j\rangle$	Ι
Z_4	$U 1100j\rangle$	Ι
Z_5	$U 0010j\rangle$	Ι

The [5,1,3] code

Encoding Operation

Construct a recovery operation R such that

 $REU|0000\rangle|j\rangle = U|x_1x_2x_3x_4\rangle|j\rangle \quad \text{for all } i = 0, 1, \text{ and } E \in \{X_i, Y_j, Z_k\}.$

No syndrome detection and correction and no additional ancilla qubit is needed!

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

The [8,3,3] code

Encoding Operation

The [8,3,3] code can be constructed by the following stabilizer code with operators

M_1	=	$X\otimes Z\otimes X\otimes Z\otimes I\otimes I\otimes X\otimes X\otimes Y$
M_2	=	$X\otimes Y\otimes Z\otimes X\otimes Z\otimes I\otimes X\otimes Y\otimes I$
M_3	=	$X\otimes X\otimes Z\otimes I\otimes X\otimes Z\otimes X\otimes I\otimes Y$
M_4	=	$X\otimes X\otimes Z\otimes Z\otimes I\otimes X\otimes I\otimes Y\otimes X$
M_{τ}	_	$Z \otimes Z \otimes Z$

Decoding Operation

Decoding Operation

Raymond Nung-Sing Sze

Three Qubit Fully Correlated Quantum Channel (QECC)

A noisy quantum channel is called fully correlated when all the qubits constituting the codeword are subject to the same error operators.

- Size of the system = \sim a few micrometers
- $\bullet\,$ The wavelength of external disturbance $= \sim$ a few millimeters

$$\rho \mapsto \sum_{j=1}^{4} p_j F_j \rho F_j^{\dagger} \qquad F_j \in \left\{ I^{\otimes n}, X^{\otimes n}, Y^{\otimes n}, Z^{\otimes n} \right\}$$

Three Qubit Fully Correlated Quantum Channel (QECC)

A noisy quantum channel is called fully correlated when all the qubits constituting the codeword are subject to the same error operators.

- Size of the system = \sim a few micrometers
- $\bullet\,$ The wavelength of external disturbance $= \sim$ a few millimeters

[Li, Nakahara, Poon, S., Tomita, PLA 375:3255-3258 (2011)]

л

Four Qubit Fully Correlated Quantum Channel (DFS)

$$\rho \mapsto \sum_{j=1}^{4} p_j F_j \rho F_j^{\dagger} \qquad F_j \in \left\{ I^{\otimes n}, X^{\otimes n}, Y^{\otimes n}, Z^{\otimes n} \right\}$$

Four Qubit Fully Correlated Quantum Channel (DFS)

P. 31 / 40

Four Qubit Fully Correlated Quantum Channel (DFS)

Fully Correlated Channel [Li, Nakahara, Poon, S., Tomita, PLA 375:3255-3258 (2011)]

Odd n: one can encode (n-1)-data qubit states to n-qubit codewords Even n: one can encode (n-2)-data qubit states to n-qubit codewords

> THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

Three Qubit Fully Correlated Quantum Channel (NS)

 The scheme is implemented experimentally by making use of a three-qubit NMR quantum computer with mixed states as ancilla states.

[Kondo, Bagnasco, Nakahara, PRA 88:022314 (2013)]

Three Qubit General Fully Correlated Quantum Channel (NS)

$$\rho\mapsto \sum_{j=1}^r p_jF_j\rho F_j^\dagger \qquad F_j\in \left\{U^{\otimes n}: U \text{ is } 2\times 2 \text{ unitary}\right\}=SU(2)^{\otimes n}$$

Three Qubit General Fully Correlated Quantum Channel (NS)

[Li, Nakahara, Poon, S., Tomita, PRA 84:044301 (2011)]

P. 35 / 40

Three Qubit General Fully Correlated Quantum Channel (NS)

$$\mathcal{E}:\rho\mapsto \sum_{j=1}^r p_jF_j\rho F_j^\dagger \qquad F_j\in \left\{U^{\otimes n}: U \text{ is } 2\times 2 \text{ unitary}\right\}=SU(2)^{\otimes n}.$$

r

$$\mathcal{E}: \rho \mapsto \sum_{j=1}^{\cdot} p_j F_j \rho F_j^{\dagger} \qquad F_j \in \left\{ U^{\otimes n}: U \text{ is } 2 \times 2 \text{ unitary} \right\} = SU(2)^{\otimes n}.$$

Notice that $SU(2)^{\otimes n}$ admits the unique decomposition into irreducible representations up to unitary similarity as

$$\bigotimes_{j=0}^{[n/2]} M_{n_j} \otimes I_{r_j}$$
 with $\sum_{j=0}^{[n/2]} r_j n_j = n$, where

 $(r_0,n_0)=(1,n+1) \quad \text{and} \quad (r_j,n_j)=(\ _nC_j-\ _nC_{j-1},\ n+1-2j)\,, \quad j>0.$ Write

$$SU(2)^{\otimes n} = U_n^{\dagger} (M_{n_k} \otimes I_{n_k} \oplus K) U_n \quad \text{with} \quad K = \bigotimes_{j \neq k} M_{n_j} \otimes I_{r_j}.$$

Then for any $\hat{\rho} \in M_{r_k}$, there is a density matrix $\sigma \in M_{n_k}$ such that $\mathcal{E}\left(U_n\left(|0\rangle\langle 0|\otimes \tilde{\rho}\oplus 0_K\right)U_n^{\dagger}\right) = U_n\left(\sigma\otimes \tilde{\rho}\oplus 0_K\right)U_n^{\dagger}.$

r

$$\mathcal{E}: \rho \mapsto \sum_{j=1}^{\cdot} p_j F_j \rho F_j^{\dagger} \qquad F_j \in \left\{ U^{\otimes n}: U \text{ is } 2 \times 2 \text{ unitary} \right\} = SU(2)^{\otimes n}.$$

Notice that $SU(2)^{\otimes n}$ admits the unique decomposition into irreducible representations up to unitary similarity as

$$\bigotimes_{j=0}^{[n/2]} M_{n_j} \otimes I_{r_j}$$
 with $\sum_{j=0}^{[n/2]} r_j n_j = n$, where

 $(r_0,n_0)=(1,n+1) \quad \text{and} \quad (r_j,n_j)=(\ _nC_j-\ _nC_{j-1},\ n+1-2j)\,, \quad j>0.$ Write

$$SU(2)^{\otimes n} = U_n^{\dagger} (M_{n_k} \otimes I_{n_k} \oplus K) U_n \quad \text{with} \quad K = \bigotimes_{j \neq k} M_{n_j} \otimes I_{r_j}.$$

Then for any $\hat{\rho} \in M_{r_k}$, there is a density matrix $\sigma \in M_{n_k}$ such that $\mathcal{E}\left(U_n\left(|0\rangle\langle 0|\otimes \tilde{\rho}\oplus 0_K\right)U_n^{\dagger}\right) = U_n\left(\sigma\otimes \tilde{\rho}\oplus 0_K\right)U_n^{\dagger}.$

General Fully Correlated Channel Li, Nakahara, Poon, S., Tomita, PRA 84:044301, 2011]

An *n*-qubit general fully correlated quantum channel has a r_k -dimensional NS. Hence, Furthermore, it can encode at most $\lfloor \log_2(r_k) \rfloor$ qubits.

IVERSITY

Total	Dimension	Data	Total	Dimension	Data
Qubit	of NS	Qubit	Qubit	of NS	Qubit
2	1	0	19	16796	14
3	2	1	20	16796	14
4	2	1	21	58786	15
5	5	2	22	58786	15
6	5	2	23	208012	17
7	14	3	24	208012	17
8	14	3	25	742900	19
9	42	5	26	742900	19
10	42	5	27	2674440	21
11	132	7	28	2674440	21
12	132	7	29	9694845	23
13	429	8	30	9694845	23
14	429	8	31	35357670	25
15	1430	10	32	35357670	25
16	1430	10	33	129644790	26
17	4862	12	34	129644790	26
18	4862	12	35	477638700	28

Summary

- Quantum error correction is one of the strategies to flight against decoherence in quantum system. There are different error correction models including decoherence-free subspace, noiseless subsystem, quantum error correction code, and operator quantum error correction.
- These schemes are applied to fully correlated noise. Encoding and decoding circuits of these schemes are constructed too.
- Implementation for the [5,1,3] code and [8,3,3] code is presented. It will be of interested to investigate the encoding and decoding circuits for [n,k,3] code and even in general [n,k,d] code.
- Currently, we are working on [10, 4, 3] code and [11, 1, 5] code. Difficulty:
 - [10, 4, 3] code: 16 dimension QECC.
 - [11, 1, 5] code: 529 different error operators E_j .

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

Quantum Gate

• A NOT gate acting on one qubit:

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$|0\rangle - X - |1\rangle - X - |0\rangle$$

• A controlled-NOT (CNOT) gate acting on 2 qubits:

$$U_{\text{CNOT}} = |0\rangle \langle 0| \otimes I + |1\rangle \langle 1| \otimes X \qquad |x_1\rangle \longrightarrow |x_1\rangle \\ = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad |x_2\rangle \longrightarrow |x_2 \oplus x_1\rangle \\ |x_1 \oplus x_2 \oplus x_1\rangle \\ |x_2 \oplus x_1\rangle \\ |x_2 \oplus x_1\rangle \\ |x_2 \oplus x_1\rangle \\ |x_1 \oplus x_2 \oplus x_1\rangle \\ |x_2 \oplus x_1\rangle \\ |x_1 \oplus x_2 \oplus x_1 \oplus x_2 \oplus x_1 \oplus x_1 \oplus x_1 \oplus x_2 \oplus x_1 \oplus x$$

Quantum Gate

• An negative controlled-NOT (CNOT) gate acting on 2 qubits:

$$U = |0\rangle\langle 0| \otimes X + |1\rangle\langle 1| \otimes I \qquad |x_1\rangle \longrightarrow |x_1\rangle$$

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$|0\rangle \longrightarrow |0\rangle \qquad |1\rangle \longrightarrow |1\rangle$$

$$|0\rangle \longrightarrow |0\rangle \qquad |1\rangle \longrightarrow |0\rangle$$

$$|0\rangle \longrightarrow |0\rangle \qquad |1\rangle \longrightarrow |1\rangle$$

$$|0\rangle \longrightarrow |1\rangle \longrightarrow |1\rangle$$

$$|1\rangle \longrightarrow |1\rangle$$

$$|1\rangle \longrightarrow |1\rangle$$

$$|1\rangle \longrightarrow |1\rangle$$

The corresponding unitary operators are

$$U_1 = |0\rangle \langle 0| \otimes I_2 \otimes I_2 + |1\rangle \langle 1| \otimes \sigma_x \otimes I_2$$
$$U_2 = |0\rangle \langle 0| \otimes I_2 \otimes I_2 + |1\rangle \langle 1| \otimes I_2 \otimes \sigma_x.$$

In general,

Raymond Nung-Sing Sze

MAQIT 2016, Daejeon, Korea

HONG KONG

• An controlled controlled-NOT (CCNOT) (Toffolie) gate acting on 3 qubits:

$$\begin{array}{rcl} U_{\text{CCNOT}} & = & (|00\rangle\langle00| + |01\rangle\langle01| + |10\rangle\langle10|) \otimes I + |11\rangle\langle11| \otimes X \\ & = & \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{array}{c} |x_1\rangle & |x_1\rangle \\ |x_2\rangle & |x_2\rangle \\ |x_3\rangle & |x_3 \oplus x_1x_2\rangle \end{array}$$

• A controlled-Unitary gate acting on 2 qubits:

$$U = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes W = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & w_{11} & w_{12}\\ 0 & 0 & w_{21} & w_{22} \end{bmatrix}$$
with unitary $W = \begin{bmatrix} w_{11} & w_{12}\\ w_{21} & w_{22} \end{bmatrix}$.

