

2016 MAQIT@NIMS

Stability theorem of depolarizing channel for output quantum Rényi entropy

Soojoon Lee

Department of Mathematics, Kyung Hee University

Dept. Mathematics

2016 MAQIT@NIMS

KHUQI>

Outline

Introduction

- Definitions
- Maximal output purity
- Stability theorem of depolarizing channel for maximal output purity & its application

💐 Our result

- E. Bae, G. Gour, SL, J. Park & B.C. Sanders, J. Phys. A: Math. Theor. 49 (2016) 115304.
- Applications
 - A polygraph test for pure product states
 - A generalized product test: p-copy product test

INTRODUCTION

Definitions D₁: d-dimensional depolarizing channel with noise rate 1-1 $\equiv D_{\lambda}(\rho) = \lambda \rho + (1 - \lambda) I/d, \quad 0 \le \lambda \le 1$ S_p: quantum Rényi entropy of order p ≥ 0 $S_{p}(\rho) = \log Tr \rho^{p}/(1-p)$ Sp^{min}: minimal output Rényi entropy $\leq S_p^{\min}(D_A^{\otimes n}) = \min_{\rho} S_p(D_A^{\otimes n}(\rho)), \rho$: an n-qudit state Pmax: maximal output purity P^{max}($D_{\Lambda}^{\otimes n}$) = max_pTr($D_{\Lambda}^{\otimes n}(\rho)^{2}$), ρ : an n-qudit state

2016 MAQIT@NIMS

Maximal output purity Pmax: maximal output purity $P^{\max}(D_{\lambda}^{\otimes n}) = \max_{\rho} Tr(D_{\lambda}^{\otimes n}(\rho)^{2}), \rho$: an n-qudit state The maximal output purity is obtained only for pure product states. $\mathbb{P}^{\max}(\mathsf{D}_{\mathsf{A}}^{\otimes n}) = \mathsf{Tr}(\mathsf{D}_{\mathsf{A}}^{\otimes n}(|\varphi \times \varphi|)^2)$ for any n-qudit product state $|\varphi\rangle = |\varphi_1\rangle |\varphi_2\rangle \dots |\varphi_n\rangle$ Its stronger version is called the stability theorem of depolarizing channel for output purity. If $P^{\max}(D_{\lambda}^{\otimes n}) \approx Tr(D_{\lambda}^{\otimes n}(|\psi \times \psi|)^2)$ then $|\psi\rangle \approx |\phi\rangle$ for some product $|\phi\rangle$.

🔊 Dept. Mathematics

2016 MAQIT@NIMS

Stability theorem

Theorem (A. W. Harrow and A. Montanaro (2013))

Given
$$|\psi\rangle \in (\mathbb{C}^d)^{\otimes n}$$
, let $1 - \epsilon = \max\left\{ |\langle \psi | \phi_1, \cdots, \phi_n \rangle|^2 : |\phi_i\rangle \in \mathbb{C}^d \right\}$.
Then $\operatorname{Tr} (\mathcal{D}_{\lambda}^{\otimes n} |\psi\rangle \langle \psi |)^2 \leq$
 $\operatorname{OPP}(\lambda) \left(1 - 4\epsilon(1 - \epsilon) \left(\frac{d\lambda^2(1-\lambda^2)}{(1+(d-1)\lambda^2)^2} \right) + 4\epsilon^{3/2} \left(\frac{(1-\lambda^2)^2 + d^2\lambda^4}{(1+(d-1)\lambda^2)^2} \right)^2 \right)$,
where $\operatorname{OPP}(\lambda) \equiv \operatorname{Tr} (\mathcal{D}_{\lambda}^{\otimes n} |\phi\rangle \langle \phi |)^2$ is called the Output Purity of Product
states for an arbitrary product state $|\phi\rangle = |\phi_1, \cdots, \phi_n\rangle$.
If $OPP(\lambda) = \operatorname{Pmax}(\mathbb{D}_{\lambda}^{\otimes n}) \approx \operatorname{Tr}(\mathbb{D}_{\lambda}^{\otimes n}(|\psi\rangle \langle \psi |)^2)$
then $|\psi\rangle \approx |\phi\rangle$ for some product $|\phi\rangle$.

2016 MAQIT@NIMS Dept. Mathematics KHUQI> Application Figure: Swap test Figure: Product test $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ Η 3 k $|\psi\rangle$ 1 2 $|f\rangle$ 3 $|\psi\rangle$ 1 2 (k). . . swap swap swap swap test test test test A. W. Harrow & A. Montanaro, Journal of the ACM, vol. 60 no. 1 (2013) It was shown that the complexity class QMA(k) has the same complexity as QMA(2)for k>2, by using the 2-copy product test.

Motivation

- A. W. Harrow & A. Montanaro, Journal of the ACM, vol. 60 no. 1 (2013)
- A. W. Harrow & A. Montanaro raised an open question
 - Does a (similar) stability theorem hold for the depolarizing channel with respect to output quantum Rényi entropies?

Sour work

We prove a stability theorem for the depolarizing channel with respect to minimal output p-Rényi entropies for p ≥ 2 (and p = 1).

Furthermore, we discuss two applications.

OUR RESULTS: E. BAE, G. GOUR, SL, J. PARK & B.C. SANDERS

🤊 Dept. Mathematics

Our stability theorem

Theorem (Our stability theorem)

Let
$$p \ge 2$$
, $\epsilon > 0$, $r = \frac{1+(d-1)\lambda}{1-\lambda}$ and $|\psi\rangle \in (\mathbb{C}^d)^{\otimes n}$. Then
1. $S_p\left(\mathcal{D}_{\lambda}^{\otimes n}|\psi\rangle\langle\psi|\right) \le S_p^{\min}\left(\mathcal{D}_{\lambda}^{\otimes n}\right)$

$$+\epsilon \frac{2p(r-1)(r^{p-1}-1)(2r^{p}+dr+d-2)}{(p-1)(r+1)(r^{p}+d-1)^{2}}+O(\epsilon^{3/2})$$

holds only if a pure product state $|\phi\rangle$ exists such that $|\psi\rangle$ satisfies

 $|\langle \psi | \phi \rangle|^2 \ge 1 - \epsilon.$

2. $S_p\left(\mathcal{D}_{\lambda}^{\otimes n}|\psi\rangle\langle\psi|\right) \geq S_p^{\min}\left(\mathcal{D}_{\lambda}^{\otimes n}\right) + \epsilon \frac{p}{p-1} + O(\epsilon^{3/2})$ implies that $|\langle\psi|\phi\rangle|^2 < 1 - \epsilon$

for any product state $|\phi\rangle$.

Dept. Mathematics

Let $p \ge 2$, $\epsilon > 0$, $r = \frac{1+(d-1)\lambda}{1-\lambda}$ and $|\psi\rangle \in (\mathbb{C}^d)^{\otimes n}$. Then 1. $S_p(\mathcal{D}_{\lambda}^{\otimes n}|\psi\rangle\langle\psi|) \le S_p^{\min}(\mathcal{D}_{\lambda}^{\otimes n})$

 $+\epsilon \frac{2p(r-1)(r^{p-1}-1)(2r^{p}+dr+d-2)}{(p-1)(r+1)(r^{p}+d-1)^{2}}+O(\epsilon^{3/2})$

holds only if a pure product state $|\phi\rangle$ exists such that $|\psi\rangle$ satisfies

 $|\langle \psi | \phi \rangle|^2 \ge 1 - \epsilon.$

2. $S_p\left(\mathcal{D}_{\lambda}^{\otimes n}|\psi\rangle\langle\psi|\right) \geq S_p^{\min}\left(\mathcal{D}_{\lambda}^{\otimes n}\right) + \epsilon \frac{p}{p-1} + O(\epsilon^{3/2})$ implies that $|\langle\psi|\phi\rangle|^2 < 1 - \epsilon$

for any product state $|\phi\rangle$.

/KHUQI>

2016 MAQIT@NIMS

Application 1: A polygraph test

- Polygraph test for pure product states
 - Sender Alice transmits an n-qudit state through n-copies of the depolarizing channel to receiver Bob.
 - Bob measures the output states in order to estimate its p-Rényi entropies.
 - Bob wants to know whether or not Alice prepared a state close to a pure product state.

Application 1: A polygraph test

Alice's task

- Prepare an n-qudit state that is close to a product state (within some ε specified by Bob).
- 🖷 Bob's task
 - Test whether Alice's preparation satisfies the requirements. If the first inequality in our stability theorem holds, Bob answers "True". If the second inequality holds in our theorem, Bob answers "False".

Application 1: A polygraph test

There is some gap between the right hand sides of the first and second inequalities, that is, Bob cannot detect Alice's lie for some cases.

- The gap, gap(p), is close to zero when Bob chooses small enough ε.
- When ε is fixed, Bob will get gap(p) < gap(2) for some p > 2.

 \mathbb{I} $\lim_{p\to\infty} gap(p) < gap(2)$

Application 2: a product test A. W. Harrow's comment A generalized product test: p-copy product test If p>2 is a prime then p-copy product test is better than 2-copy product test. Not yet proved.

Conclusion

Stability theorem of depolarizing channel for minimal output p-Rényi entropies $(p \ge 2 \text{ or } p = 1).$ Applications A polygraph test for pure product states A generalized product test: p-copy product test? Future works For 1 < p < 2? Stability theorem of channels satisfying additivity? Other applications?

Thank you for your attention