Quantum error correction and the Connes embedding problem

Joint work with Uffe Haagerup, and part in collaboration with Mary Beth Ruskai, University of Vermont

> Magdalena Musat University of Copenhagen

Mathematical Aspects in Current Quantum Information Theory Daejeon, Korea, February 15, 2016

Outline

- Quantum error correction and the Asymptotic Quantum Birkhoff Conjecture
- 2 Factorizable maps and the Asymptotic Quantum Birkhoff Conjecture
- 3 Extreme points and factorizability
- 4 The Holevo-Werner channels
- Symptotic properties of factorizable maps and the Connes embedding problem

Theorem (Birkhoff, 1946)

Every doubly stochastic matrix is a convex combination of permutation matrices.

Let $D = I_{\infty}(\{1, 2, \dots, n\})$ with trace $\tau(\chi_{\{i\}}) = 1/n$, $1 \le i \le n$. The unital positive trace-preserving maps on D are precisely the linear operators on D given by doubly stochastic $n \times n$ matrices. An automorphism of D is given by a permutation of $\{1, 2, \dots, n\}$.

- → Quantum Birkhoff Conjecture:
- ▶ Kümmerer (1983): UCPT(2) = conv(Aut($M_2(\mathbb{C})$)).
- ► For $n \ge 3$: UCPT $(n) \supseteq conv(Aut(M_n(\mathbb{C})))$

Kümmerer (1986): n = 3, Kümmerer-Maasen (1987): $n \ge 4$, Landau-Streater (1993): another counterexample for n = 3.

Theorem (Birkhoff, 1946)

Every doubly stochastic matrix is a convex combination of permutation matrices.

Let $D = I_{\infty}(\{1, 2, \dots, n\})$ with trace $\tau(\chi_{\{i\}}) = 1/n$, $1 \le i \le n$. The unital positive trace-preserving maps on D are precisely the linear operators on D given by doubly stochastic $n \times n$ matrices. An automorphism of D is given by a permutation of $\{1, 2, \dots, n\}$.

- **→ Quantum Birkhoff Conjecture**:
- ▶ Kümmerer (1983): UCPT(2) = conv(Aut($M_2(\mathbb{C})$)).
- For $n \ge 3$: UCPT $(n) \supseteq \text{conv}(\text{Aut}(M_n(\mathbb{C})))$ **Kümmerer** (1986): n = 3, **Kümmerer-Maasen** (1987): $n \ge 4$, **Landau-Streater** (1993): another counterexample for n = 3.

Theorem (Birkhoff, 1946)

Every doubly stochastic matrix is a convex combination of permutation matrices.

Let $D = I_{\infty}(\{1, 2, \dots, n\})$ with trace $\tau(\chi_{\{i\}}) = 1/n$, $1 \le i \le n$. The unital positive trace-preserving maps on D are precisely the linear operators on D given by doubly stochastic $n \times n$ matrices. An automorphism of D is given by a permutation of $\{1, 2, \dots, n\}$.

- **→ Quantum Birkhoff Conjecture**:
- ▶ **Kümmerer** (1983): UCPT(2) = conv(Aut($M_2(\mathbb{C})$)).
- For $n \geq 3$: UCPT $(n) \supseteq conv(Aut(M_n(\mathbb{C})))$

Kümmerer (1986): n = 3, **Kümmerer-Maasen** (1987): $n \ge 4$, **Landau-Streater** (1993): another counterexample for n = 3.

The asymptotic quantum Birkhoff conjecture

▶ **Gregoratti-Werner** (2003): Channels which are convex combinations of unitarily implemented ones allow for complete error correction, given suitable feedback of classical information from the environment.

Conjecture (J. A. Smolin, F. Verstraete, A. Winter, 2005)

Let $T \in UCPT(n)$, $n \ge 3$. Then T satisfies the following asymptotic quantum Birkhoff property (AQBP):

$$\lim_{k\to\infty} d_{cb}\left(\bigotimes_{i=1}^k T, conv(Aut(\bigotimes_{i=1}^k M_n(\mathbb{C})))\right) = 0.$$

▶ Mendl-Wolf (2009): $\exists T \in UCPT(3)$ such that

$$T \notin \text{conv}(\text{Aut}(M_3(\mathbb{C}))), \text{but } T \otimes T \in \text{conv}(\text{Aut}(M_9(\mathbb{C})))$$

The asymptotic quantum Birkhoff conjecture

▶ **Gregoratti-Werner** (2003): Channels which are convex combinations of unitarily implemented ones allow for complete error correction, given suitable feedback of classical information from the environment.

Conjecture (J. A. Smolin, F. Verstraete, A. Winter, 2005)

Let $T \in UCPT(n)$, $n \ge 3$. Then T satisfies the following asymptotic quantum Birkhoff property (AQBP):

$$\lim_{k\to\infty} d_{cb}\bigg(\bigotimes_{i=1}^k T, conv(Aut(\bigotimes_{i=1}^k M_n(\mathbb{C})))\bigg) = 0.$$

▶ Mendl-Wolf (2009): $\exists T \in UCPT(3)$ such that

 $T \notin \text{conv}(\text{Aut}(M_3(\mathbb{C}))), \text{but } T \otimes T \in \text{conv}(\text{Aut}(M_9(\mathbb{C})))$

The asymptotic quantum Birkhoff conjecture

▶ **Gregoratti-Werner** (2003): Channels which are convex combinations of unitarily implemented ones allow for complete error correction, given suitable feedback of classical information from the environment.

Conjecture (J. A. Smolin, F. Verstraete, A. Winter, 2005)

Let $T \in UCPT(n)$, $n \ge 3$. Then T satisfies the following asymptotic quantum Birkhoff property (AQBP):

$$\lim_{k\to\infty} d_{cb}\left(\bigotimes_{i=1}^k T, conv(Aut(\bigotimes_{i=1}^k M_n(\mathbb{C})))\right) = 0.$$

▶ Mendl-Wolf (2009): $\exists T \in UCPT(3)$ such that

$$T \notin \text{conv}(\text{Aut}(M_3(\mathbb{C}))), \text{ but } T \otimes T \in \text{conv}(\text{Aut}(M_9(\mathbb{C}))).$$

Remark: No such examples can occur among Schur channels:

Theorem (Haagerup-M)

Let T be a unital Schur channel on $M_n(\mathbb{C})$ and S be a unital Schur channel on $M_k(\mathbb{C})$, $k, n \geq 2$. Then

$$d_{cb}\Big(\, T \otimes S, conv\big(Aut(M_{nk}(\mathbb{C}))\big)\Big) \geq \frac{1}{2} \,\, d_{cb}\Big(\, T, \, conv\big(Aut(M_n(\mathbb{C}))\big)\Big)$$

In particular, if $T \notin conv(Aut(M_n(\mathbb{C})))$, then T fails the AQBP.

Example: Let $\beta = 1/\sqrt{5}$ and set

$$\mathsf{B} \colon = \left(\begin{array}{cccccc} 1 & \beta & \beta & \beta & \beta & \beta \\ \beta & 1 & \beta & -\beta & -\beta & \beta \\ \beta & \beta & 1 & \beta & -\beta & -\beta \\ \beta & -\beta & \beta & 1 & \beta & -\beta \\ \beta & \beta & -\beta & -\beta & \beta & 1 & \beta \\ \beta & \beta & -\beta & -\beta & \beta & 1 & \beta \end{array}\right)$$

The Schur channel $T_B \notin \text{conv}(\text{Aut}(M_n(\mathbb{C})))$.

Remark: No such examples can occur among Schur channels:

Theorem (Haagerup-M)

Let T be a unital Schur channel on $M_n(\mathbb{C})$ and S be a unital Schur channel on $M_k(\mathbb{C})$, $k, n \geq 2$. Then

$$d_{cb}\Big(\, T \otimes S, conv\big(Aut(M_{nk}(\mathbb{C})) \big) \Big) \geq \frac{1}{2} \,\, d_{cb}\Big(\, T, \, conv\big(Aut(M_n(\mathbb{C})) \big) \Big)$$

In particular, if $T \notin conv(Aut(M_n(\mathbb{C})))$, then T fails the AQBP.

Example: Let $\beta = 1/\sqrt{5}$ and set

$$\mathsf{B} \colon = \left(\begin{array}{cccccc} 1 & \beta & \beta & \beta & \beta & \beta \\ \beta & 1 & \beta & -\beta & -\beta & \beta \\ \beta & \beta & 1 & \beta & -\beta & -\beta \\ \beta & -\beta & \beta & 1 & \beta & -\beta \\ \beta & \beta & -\beta & -\beta & \beta & 1 & \beta \\ \beta & \beta & -\beta & -\beta & \beta & 1 & \beta \end{array}\right)$$

The Schur channel $T_B \notin \text{conv}(\text{Aut}(M_n(\mathbb{C})))$.

Remark: No such examples can occur among Schur channels:

Theorem (Haagerup-M)

Let T be a unital Schur channel on $M_n(\mathbb{C})$ and S be a unital Schur channel on $M_k(\mathbb{C})$, $k, n \geq 2$. Then

$$d_{cb}\Big(\, T \otimes S, conv\big(Aut(M_{nk}(\mathbb{C})) \big) \Big) \geq \frac{1}{2} \,\, d_{cb}\Big(\, T, \, conv\big(Aut(M_n(\mathbb{C})) \big) \Big)$$

In particular, if $T \notin conv(Aut(M_n(\mathbb{C})))$, then T fails the AQBP.

Example: Let $\beta = 1/\sqrt{5}$ and set

$$B \colon = \left(\begin{array}{cccccc} 1 & \beta & \beta & \beta & \beta & \beta \\ \beta & 1 & \beta & -\beta & -\beta & \beta \\ \beta & \beta & 1 & \beta & -\beta & -\beta \\ \beta & -\beta & \beta & 1 & \beta & -\beta \\ \beta & -\beta & -\beta & \beta & 1 & \beta \\ \beta & \beta & -\beta & -\beta & \beta & 1 \end{array}\right)$$

The Schur channel $T_B \notin \text{conv}(\text{Aut}(M_n(\mathbb{C})))$.

Outline

- 1 Quantum error correction and the Asymptotic Quantum Birkhoff Conjecture
- 2 Factorizable maps and the Asymptotic Quantum Birkhoff Conjecture
- 3 Extreme points and factorizability
- 4 The Holevo-Werner channels
- Symptotic properties of factorizable maps and the Connes embedding problem

Factorizable maps

Definition (Anantharaman-Delaroche, 2005)

A UCPT(n) map $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is called *factorizable* if \exists vN algebra N with n.f. tracial state ϕ and injective unital *-homs $\alpha, \beta: M_n(\mathbb{C}) \to M_n(\mathbb{C}) \otimes N$ such that $T = \beta^* \circ \alpha$.

Problem (Anantharaman-Delaroche)

Is every UCP trace-preserving map factorizable?

Factorizable maps

Definition (Anantharaman-Delaroche, 2005)

A UCPT(n) map $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is called *factorizable* if \exists vN algebra N with n.f. tracial state ϕ and injective unital *-homs $\alpha, \beta: M_n(\mathbb{C}) \to M_n(\mathbb{C}) \otimes N$ such that $T = \beta^* \circ \alpha$.

Problem (Anantharaman-Delaroche)

Is every UCP trace-preserving map factorizable?

Factorizable maps

Definition (Anantharaman-Delaroche, 2005)

A UCPT(n) map $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is called *factorizable* if \exists vN algebra N with n.f. tracial state ϕ and injective unital *-homs $\alpha, \beta: M_n(\mathbb{C}) \to M_n(\mathbb{C}) \otimes N$ such that $T = \beta^* \circ \alpha$.

Problem (Anantharaman-Delaroche)

Is every UCP trace-preserving map factorizable?

Theorem (Haagerup-M, 2011)

Let $T \in UCPT(n)$, $n \ge 3$, written in Choi canonical form $Tx = \sum_{i=1}^{d} a_i^* x a_i$, $x \in M_n(\mathbb{C})$.

Then T is factorizable iff one of the following conditions hold:

1) $\exists vN$ algebra N with nf tracial state τ_N and a unitary $u \in M_n(\mathbb{C}) \otimes N$ st

$$Tx = (id_{M_n(\mathbb{C})} \otimes \tau_N)(u^*(x \otimes 1_N)u), \quad x \in M_n(\mathbb{C}).$$

We say that T has an <u>exact factorization</u> through $M_n(\mathbb{C}) \otimes N$.

2) \exists vN algebra N with nf tracial state τ_N and $v_1, \ldots, v_d \in N$ st

$$u = \sum a_i \otimes v_i \in \mathcal{U}(M_n(\mathbb{C}) \otimes N), \quad \tau_N(v_i^* v_j) = \delta_{ij}, 1 \leq i, j \leq d$$

Interpretation in Quantum Information Theory (R. Werner):
Factorizable maps are obtained by coupling the input system to a maximally mixed ancillary one, executing a unitary rotation on the combined system, and tracing out the ancilla.

Theorem (Haagerup-M, 2011)

Let $T \in UCPT(n)$, $n \ge 3$, written in Choi canonical form $Tx = \sum_{i=1}^{d} a_i^* x a_i$, $x \in M_n(\mathbb{C})$.

Then T is factorizable iff one of the following conditions hold:

1) $\exists vN$ algebra N with nf tracial state τ_N and a unitary $u \in M_n(\mathbb{C}) \otimes N$ st

$$Tx = (id_{M_n(\mathbb{C})} \otimes \tau_N)(u^*(x \otimes 1_N)u), \quad x \in M_n(\mathbb{C}).$$

We say that T has an <u>exact factorization</u> through $M_n(\mathbb{C}) \otimes N$.

2) \exists vN algebra N with nf tracial state τ_N and $v_1, \ldots, v_d \in N$ st

$$u = \sum a_i \otimes v_i \in \mathcal{U}(M_n(\mathbb{C}) \otimes N), \quad \tau_N(v_i^* v_j) = \delta_{ij}, 1 \leq i, j \leq d$$

Interpretation in Quantum Information Theory (R. Werner):

Factorizable maps are obtained by coupling the input system to a maximally mixed ancillary one, executing a unitary rotation on the combined system, and tracing out the ancilla.

- Any $\phi \in \operatorname{Aut}(M_n(\mathbb{C}))$ exactly factors through $M_n(\mathbb{C}) \otimes \mathbb{C}$.
- The set $\mathcal{F}(M_n(\mathbb{C}))$ of factorizable UCPT(n) maps is convex:

$$tT + (1-t)S \in \mathcal{F}(M_n(\mathbb{C})), \quad 0 < t < 1,$$

with unitary $u\otimes p+v\otimes (1-p)\in M_n(\mathbb{C})\otimes N\otimes L^\infty([0,1])$, where p is a projection of trace t in $L^\infty([0,1])$.

- $\mathcal{F}(M_n(\mathbb{C}))$ is <u>closed</u>, hence compact.
- ▶ Haagerup-M : $T \in \text{conv}(\text{Aut}(M_n(\mathbb{C})))$ iff T has an exact factorization through $M_n(\mathbb{C}) \otimes L^{\infty}([0,1])$.

- Any $\phi \in \operatorname{Aut}(M_n(\mathbb{C}))$ exactly factors through $M_n(\mathbb{C}) \otimes \mathbb{C}$.
- The set $\mathcal{F}(M_n(\mathbb{C}))$ of factorizable UCPT(n) maps is convex:

$$tT + (1-t)S \in \mathcal{F}(M_n(\mathbb{C})), \quad 0 < t < 1,$$

with unitary $u \otimes p + v \otimes (1 - p) \in M_n(\mathbb{C}) \otimes N \otimes L^{\infty}([0, 1])$, where p is a projection of trace t in $L^{\infty}([0, 1])$.

- $\mathcal{F}(M_n(\mathbb{C}))$ is <u>closed</u>, hence compact.
- ▶ Haagerup-M : $T \in \text{conv}(\text{Aut}(M_n(\mathbb{C})))$ iff T has an exact factorization through $M_n(\mathbb{C}) \otimes L^{\infty}([0,1])$.

- Any $\phi \in \operatorname{Aut}(M_n(\mathbb{C}))$ exactly factors through $M_n(\mathbb{C}) \otimes \mathbb{C}$.
- The set $\mathcal{F}(M_n(\mathbb{C}))$ of factorizable UCPT(n) maps is convex:

$$tT + (1-t)S \in \mathcal{F}(M_n(\mathbb{C})), \quad 0 < t < 1,$$

with unitary $u \otimes p + v \otimes (1 - p) \in M_n(\mathbb{C}) \otimes N \otimes L^{\infty}([0, 1])$, where p is a projection of trace t in $L^{\infty}([0, 1])$.

- $\mathcal{F}(M_n(\mathbb{C}))$ is <u>closed</u>, hence compact.
- ▶ Haagerup-M : $T \in \text{conv}(\text{Aut}(M_n(\mathbb{C})))$ iff T has an exact factorization through $M_n(\mathbb{C}) \otimes L^{\infty}([0,1])$.

- Any $\phi \in \operatorname{Aut}(M_n(\mathbb{C}))$ exactly factors through $M_n(\mathbb{C}) \otimes \mathbb{C}$.
- The set $\mathcal{F}(M_n(\mathbb{C}))$ of factorizable UCPT(n) maps is convex:

$$tT + (1-t)S \in \mathcal{F}(M_n(\mathbb{C})), \quad 0 < t < 1,$$

with unitary $u \otimes p + v \otimes (1 - p) \in M_n(\mathbb{C}) \otimes N \otimes L^{\infty}([0, 1])$, where p is a projection of trace t in $L^{\infty}([0, 1])$.

- $\mathcal{F}(M_n(\mathbb{C}))$ is <u>closed</u>, hence compact.
- ▶ Haagerup-M : $T \in \text{conv}(\text{Aut}(M_n(\mathbb{C})))$ iff T has an exact factorization through $M_n(\mathbb{C}) \otimes L^{\infty}([0,1])$.

- Any $\phi \in \operatorname{Aut}(M_n(\mathbb{C}))$ exactly factors through $M_n(\mathbb{C}) \otimes \mathbb{C}$.
- The set $\mathcal{F}(M_n(\mathbb{C}))$ of factorizable UCPT(n) maps is convex:

$$tT + (1-t)S \in \mathcal{F}(M_n(\mathbb{C})), \quad 0 < t < 1,$$

with unitary $u \otimes p + v \otimes (1 - p) \in M_n(\mathbb{C}) \otimes N \otimes L^{\infty}([0, 1])$, where p is a projection of trace t in $L^{\infty}([0, 1])$.

- $\mathcal{F}(M_n(\mathbb{C}))$ is <u>closed</u>, hence compact.
- ▶ Haagerup-M : $T \in \text{conv}(\text{Aut}(M_n(\mathbb{C})))$ iff T has an exact factorization through $M_n(\mathbb{C}) \otimes L^{\infty}([0,1])$.

Conjecture (J. A. Smolin, F. Verstraete, A. Winter, 2005)

Let $T \in UCPT(n)$, $n \ge 3$. Then T satisfies the **AQBP**:

$$\lim_{k\to\infty} d_{cb}\bigg(\bigotimes_{i=1}^k T, conv(Aut(\bigotimes_{i=1}^k M_n(\mathbb{C})))\bigg) = 0.$$

Theorem (Haagerup-M, 2011)

Let $T \in UCPT(n)$, where $n \geq 3$. Then, for all $k \geq 1$,

$$d_{cb}\left(\bigotimes_{i=1}^{k} T, \mathcal{F}\left(\bigotimes_{i=1}^{k} M_n(\mathbb{C})\right)\right) \geq d_{cb}(T, \mathcal{F}(M_n(\mathbb{C}))).$$

▶ If T is not factorizable, then $d_{cb}(T, \mathcal{F}(M_n(\mathbb{C}))) > 0$. Since

$$\operatorname{conv}(\operatorname{Aut}(M_n(\mathbb{C}))) \subseteq \mathcal{F}(M_n(\mathbb{C})),$$

then any non-factorizable unital channel T fails the AQBP

Conjecture (J. A. Smolin, F. Verstraete, A. Winter, 2005)

Let $T \in UCPT(n)$, $n \ge 3$. Then T satisfies the **AQBP**:

$$\lim_{k\to\infty} d_{cb}\bigg(\bigotimes_{i=1}^k T\,, {\it conv}({\it Aut}(\bigotimes_{i=1}^k M_n(\mathbb{C})))\bigg) = 0\,.$$

Theorem (Haagerup-M, 2011)

Let $T \in UCPT(n)$, where $n \ge 3$. Then, for all $k \ge 1$,

$$d_{cb}\left(\bigotimes_{i=1}^{k} T, \mathcal{F}\left(\bigotimes_{i=1}^{k} M_n(\mathbb{C})\right)\right) \geq d_{cb}(T, \mathcal{F}(M_n(\mathbb{C}))).$$

▶ If T is not factorizable, then $d_{cb}(T, \mathcal{F}(M_n(\mathbb{C}))) > 0$. Since

$$\operatorname{conv}(\operatorname{Aut}(M_n(\mathbb{C}))) \subseteq \mathcal{F}(M_n(\mathbb{C}))$$

then any non-factorizable unital channel T fails the AQBP

Conjecture (J. A. Smolin, F. Verstraete, A. Winter, 2005)

Let $T \in UCPT(n)$, $n \ge 3$. Then T satisfies the **AQBP**:

$$\lim_{k\to\infty} d_{cb}\bigg(\bigotimes_{i=1}^k T\,, \text{conv}\big(\text{Aut}(\bigotimes_{i=1}^k M_n(\mathbb{C}))\big)\bigg) = 0\,.$$

Theorem (Haagerup-M, 2011)

Let $T \in UCPT(n)$, where $n \ge 3$. Then, for all $k \ge 1$,

$$d_{cb}\left(\bigotimes_{i=1}^k T, \, \mathcal{F}\left(\bigotimes_{i=1}^k M_n(\mathbb{C})\right)\right) \geq d_{cb}(T, \, \mathcal{F}(M_n(\mathbb{C}))).$$

▶ If T is not factorizable, then $d_{cb}(T, \mathcal{F}(M_n(\mathbb{C}))) > 0$. Since

$$\operatorname{conv}(\operatorname{Aut}(M_n(\mathbb{C}))) \subseteq \mathcal{F}(M_n(\mathbb{C})),$$

then any non-factorizable unital channel T fails the AQBP.

Outline

- Quantum error correction and the Asymptotic Quantum Birkhoff Conjecture
- 2 Factorizable maps and the Asymptotic Quantum Birkhoff Conjecture
- 3 Extreme points and factorizability
- 4 The Holevo-Werner channels
- Symptotic properties of factorizable maps and the Connes embedding problem

Extreme points and factorizability

Theorem (Haagerup-M, 2011)

Let $T \in UCPT(n)$, $n \ge 3$, written in Choi canonical form $Tx = \sum_{i=1}^d a_i^* x a_i$, $x \in M_n(\mathbb{C})$.

Then T is factorizable iff the following condition holds:

2) $\exists vN$ algebra N with f tracial state τ_N and $v_1, \ldots, v_d \in N$ st

$$u = \sum a_i \otimes v_i \in \mathcal{U}(M_n(\mathbb{C}) \otimes N), \quad \tau_N(v_i^* v_j) = \delta_{ij} \,, 1 \leq i, j \leq d$$

Corollary

Let $T \in UCPT(n)$, with canonical form $T = \sum_{i=1}^{d} a_i^* x a_i$. If $d \ge 2$ and the set $\{a_i^* a_i : 1 \le i, j \le d\}$

is linearly independent, then T is not factorizable.

Extreme points and factorizability

Theorem (Haagerup-M, 2011)

Let $T \in UCPT(n)$, $n \ge 3$, written in Choi canonical form $Tx = \sum_{i=1}^{d} a_i^* x a_i$, $x \in M_n(\mathbb{C})$.

Then T is factorizable iff the following condition holds:

2) $\exists vN$ algebra N with f tracial state τ_N and $v_1, \ldots, v_d \in N$ st

$$u = \sum a_i \otimes v_i \in \mathcal{U}(M_n(\mathbb{C}) \otimes N), \quad \tau_N(v_i^* v_j) = \delta_{ij}, 1 \leq i, j \leq d$$

Corollary Corollary

Let $T \in UCPT(n)$, with canonical form $T = \sum_{i=1}^{d} a_i^* x a_i$. If $d \ge 2$ and the set $\{a_i^* a_j : 1 \le i, j \le d\}$

is linearly independent, then T is not factorizable.

Choi (1975): $T \in \partial_e(\mathsf{UCP}(n))$ if and only if $\{a_i^*a_j : 1 \leq i, j \leq d\}$ is a linearly independent set.

By the corollary, if

$$T \in \partial_e(\mathsf{UCP}(n)) \cap \mathsf{UCPT}(n)$$
 and Choi-rank $(T) \ge 2$

then T is <u>not</u> factorizable, and hence T does not satisfy AQBP.

Example

With
$$a_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$
, $a_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$

$$a_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 we obtained the first example of a

non-factorizable map. It is the Holevo-Werner channel W_3^- .

Choi (1975): $T \in \partial_e(\mathsf{UCP}(n))$ if and only if $\{a_i^*a_j : 1 \leq i, j \leq d\}$ is a linearly independent set.

By the corollary, if

$$T \in \partial_e(\mathsf{UCP}(n)) \cap \mathsf{UCPT}(n)$$
 and Choi-rank $(T) \ge 2$

then T is <u>not</u> factorizable, and hence T does not satisfy AQBP.

Example

With
$$a_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$
, $a_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$,

$$a_3=rac{1}{\sqrt{2}}\left(egin{array}{ccc} 0 & -1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 0 \end{array}
ight)$$
 we obtained the first example of a

non-factorizable map. It is the Holevo-Werner channel W_3^- .

Choi (1975): $T \in \partial_e(\mathsf{UCP}(n))$ if and only if $\{a_i^*a_j : 1 \leq i, j \leq d\}$ is a linearly independent set.

By the corollary, if

$$T \in \partial_e(\mathsf{UCP}(n)) \cap \mathsf{UCPT}(n)$$
 and Choi-rank $(T) \ge 2$

then T is <u>not</u> factorizable, and hence T does not satisfy AQBP.

Example

With
$$a_1=rac{1}{\sqrt{2}}egin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$
 , $a_2=rac{1}{\sqrt{2}}egin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$,

$$a_3=rac{1}{\sqrt{2}}egin{pmatrix}0&-1&0\\1&0&0\\0&0&0\end{pmatrix}$$
 we obtained the first example of a

non-factorizable map. It is the Holevo-Werner channel W_3^- .

Theorem (Haagerup-M-Ruskai)

Let $n \geq 3$ and let $S: \mathbb{C}^n \to \mathbb{C}^n$ be the cyclic shift.

(1) Let $U_1, \ldots, U_n \in \mathcal{U}(n-1)$ and set

$$a_i = \frac{1}{\sqrt{n-1}} \, S^i \left(\begin{array}{cc} U_i & 0 \\ 0 & 0 \end{array} \right) S^{-i} \,, \quad 1 \leq i \leq n \,.$$

Set $Tx = \sum_{i=1}^{n} a_i^* x a_i$, $x \in M_n(\mathbb{C})$. Then $T \in UCPT(n)$ and with probability one (w.r.t. Haar measure on $\prod_{i=1}^{n} \mathcal{U}(n-1)$)

 $T \in \partial_{e}(UCP(n)) \cap \partial_{e}(CPT(n))$.

In particular, T is not factorizable.

(2) Same conclusion holds for

$$a_i = rac{1}{\sqrt{n-1+t^2}} \, S^i \left(egin{array}{cc} U_i & 0 \ 0 & t \end{array}
ight) S^{-i} \,, \quad 1 \leq i \leq n \,,$$

where t > 0, $t \neq 1$ (fixed).

Extreme points in UCPT(n)

Landau and Streater (1993): $T \in \partial_e(\mathsf{UCPT}(n))$ if and only if

$$\{a_i^*a_j\oplus a_ja_i^*:1\leq i,j\leq d\}$$

is a linearly independent set.

Hence

$$\partial_e(\mathsf{UCPT}(n)) \supseteq (\partial_e(\mathsf{UCP}(n)) \cup \partial_e(\mathsf{CPT}(n))) \cap \mathsf{UCPT}(n).$$

Mendl-Wolf (2009): above inclusion is strict for n = 3.

Ohno (2010): concrete examples for n = 3, n = 4. His examples are non-factorizable.

Extreme points in UCPT(n)

Landau and Streater (1993): $T \in \partial_e(UCPT(n))$ if and only if

$$\{a_i^*a_j \oplus a_ja_i^* : 1 \leq i,j \leq d\}$$

is a linearly independent set.

Hence

$$\partial_e(\mathsf{UCPT}(n)) \supseteq (\partial_e(\mathsf{UCP}(n)) \cup \partial_e(\mathsf{CPT}(n))) \cap \mathsf{UCPT}(n).$$

Mendl-Wolf (2009): above inclusion is strict for n = 3.

Ohno (2010): concrete examples for n = 3, n = 4. His examples are non-factorizable.

Extreme points in UCPT(n)

Landau and Streater (1993): $T \in \partial_e(UCPT(n))$ if and only if

$$\{a_i^*a_j\oplus a_ja_i^*:1\leq i,j\leq d\}$$

is a linearly independent set.

Hence

$$\partial_e(\mathsf{UCPT}(n)) \supseteq (\partial_e(\mathsf{UCP}(n)) \cup \partial_e(\mathsf{CPT}(n))) \cap \mathsf{UCPT}(n).$$

Mendl-Wolf (2009): above inclusion is strict for n = 3.

Ohno (2010): concrete examples for n = 3, n = 4. His examples are non-factorizable.

Haagerup-M.-Ruskai (motivated by a question of Farenick):

For $t \in [0,1]$, let $T_t(x) = \frac{1}{2} \sum_{i=1}^4 a_i(t)^* x a_i(t)$, $x \in M_3(\mathbb{C})$, where

$$a_1(t) = \begin{pmatrix} \sqrt{t} & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, a_2(t) = \begin{pmatrix} 0 & 0 & \sqrt{1-t} \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},$$

$$a_3(t) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \sqrt{t} \end{pmatrix}, a_4(t) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ \sqrt{1-t} & 0 & 0 \end{pmatrix}.$$

Then, for $t \notin \{0, 1/2, 1\}$,

$$T_t \in \partial_e(\mathsf{UCPT}_3) \setminus (\partial_e(\mathsf{UCP}_3) \cup \partial_e(\mathsf{CPT}_3))$$
.

Moreover, T_t is factorizable, $0 \le t \le 1$, (through $M_3(\mathbb{C}) \otimes M_2(\mathbb{C})$).

Outline

- Quantum error correction and the Asymptotic Quantum Birkhoff Conjecture
- 2 Factorizable maps and the Asymptotic Quantum Birkhoff Conjecture
- Extreme points and factorizability
- 4 The Holevo-Werner channels
- Symptotic properties of factorizable maps and the Connes embedding problem

Let n > 2. Consider the *Holevo-Werner channels* in dimension n:

$$W_n^-(x) = rac{1}{n-1} (\operatorname{Tr}(x) 1_n - x^t), \quad x \in M_n(\mathbb{C}).$$
 $W_n^+(x) = rac{1}{n+1} (\operatorname{Tr}(x) 1_n + x^t), \quad x \in M_n(\mathbb{C}).$

- $V_n^-, W_n^+ \in UCPT(n).$
- $ightharpoonup S_n = au_n(\cdot)1_n \in \operatorname{conv}\{W_n^-, W_n^+\}, \text{ since }$

$$S_n(x) = \frac{1}{n} \text{Tr}(x) 1_n = \frac{n-1}{2n} W_n^-(x) + \frac{n+1}{2n} W_n^+(x), \ x \in M_n(\mathbb{C}).$$

 $ightharpoonup W_3^-$ is not factorizable.

Let n > 2. Consider the *Holevo-Werner channels* in dimension n:

$$W_n^-(x) = rac{1}{n-1} (\operatorname{Tr}(x) 1_n - x^t), \quad x \in M_n(\mathbb{C}).$$
 $W_n^+(x) = rac{1}{n+1} (\operatorname{Tr}(x) 1_n + x^t), \quad x \in M_n(\mathbb{C}).$

- $ightharpoonup W_n^-, W_n^+ \in \mathsf{UCPT}(n).$
- $ightharpoonup S_n = au_n(\cdot)1_n \in \operatorname{conv}\{W_n^-, W_n^+\}, \text{ since }$

$$S_n(x) = \frac{1}{n} \text{Tr}(x) 1_n = \frac{n-1}{2n} W_n^-(x) + \frac{n+1}{2n} W_n^+(x), \ x \in M_n(\mathbb{C}).$$

 $ightharpoonup W_3^-$ is <u>not</u> factorizable.

Let $n \ge 2$. Consider the *Holevo-Werner channels* in dimension n:

$$W_n^-(x) = rac{1}{n-1} (\operatorname{Tr}(x) 1_n - x^t), \quad x \in M_n(\mathbb{C}).$$
 $W_n^+(x) = rac{1}{n+1} (\operatorname{Tr}(x) 1_n + x^t), \quad x \in M_n(\mathbb{C}).$

- $ightharpoonup W_n^-, W_n^+ \in \mathsf{UCPT}(n).$
- $ightharpoonup S_n = au_n(\cdot)1_n \in \operatorname{conv}\{W_n^-, W_n^+\}$, since

$$S_n(x) = \frac{1}{n} \text{Tr}(x) 1_n = \frac{n-1}{2n} W_n^-(x) + \frac{n+1}{2n} W_n^+(x), \ x \in M_n(\mathbb{C}).$$

 $ightharpoonup W_3^-$ is not factorizable.

Let n > 2. Consider the *Holevo-Werner channels* in dimension n:

$$W_n^-(x) = rac{1}{n-1} (\operatorname{Tr}(x) 1_n - x^t), \quad x \in M_n(\mathbb{C}).$$
 $W_n^+(x) = rac{1}{n+1} (\operatorname{Tr}(x) 1_n + x^t), \quad x \in M_n(\mathbb{C}).$

- $ightharpoonup W_n^-, W_n^+ \in \mathsf{UCPT}(n).$
- $ightharpoonup S_n = au_n(\cdot)1_n \in \operatorname{conv}\{W_n^-, W_n^+\}$, since

$$S_n(x) = \frac{1}{n} \operatorname{Tr}(x) 1_n = \frac{n-1}{2n} W_n^-(x) + \frac{n+1}{2n} W_n^+(x) \,, \ x \in M_n(\mathbb{C}) \,.$$

 $ightharpoonup W_3^-$ is <u>not</u> factorizable.

- (1) $W_n^+ \in conv(Aut(M_n(\mathbb{C})))$, for all $n \geq 2$.
- (2) $W_n^- \in conv(Aut(M_n(\mathbb{C})))$, for all n <u>even</u>.
- (3) For $n \ \underline{odd} \ and \ 0 \le \lambda \le 1$, $\lambda \ W_n^+ + (1 \lambda) \ W_n^- \in conv \big(Aut(M_n(\mathbb{C})) \big) \iff \lambda \ge 1/n.$ In particular, $W_n^- \notin conv \big(Aut(M_n(\mathbb{C})) \big)$.

Theorem (Haagerup-M)

- (1) $d_{cb}(W_3^-, \mathcal{F}(M_3(\mathbb{C}))) = 4/27.$
- (2) For n odd, $n \neq 3$, W_n^- exactly factors through $M_n(\mathbb{C}) \otimes M_4(\mathbb{C}) \otimes L^\infty([0,1])$.
- (3) $\lambda W_3^+ + (1 \lambda) W_3^- \in \mathcal{F}(M_3(\mathbb{C})) \iff 2/27 \le \lambda \le 1$ In each such case, $\lambda W_3^+ + (1 - \lambda) W_3^-$ has an exact factorization through $M_3(\mathbb{C}) \otimes M_3(\mathbb{C})$.

- (1) $W_n^+ \in conv(Aut(M_n(\mathbb{C})))$, for all $n \geq 2$.
- (2) $W_n^- \in conv(Aut(M_n(\mathbb{C})))$, for all n <u>even</u>.
- (3) For $n \ \underline{odd} \ and \ 0 \le \lambda \le 1$, $\lambda \ W_n^+ + (1 \lambda) \ W_n^- \in conv \big(Aut(M_n(\mathbb{C})) \big) \iff \lambda \ge 1/n.$ In particular, $W_n^- \notin conv \big(Aut(M_n(\mathbb{C})) \big)$.

Theorem (Haagerup-M)

- (1) $d_{cb}(W_3^-, \mathcal{F}(M_3(\mathbb{C}))) = 4/27.$
- (2) For n odd, $n \neq 3$, W_n^- exactly factors through $M_n(\mathbb{C}) \otimes M_4(\mathbb{C}) \otimes L^{\infty}([0,1])$.
- (3) $\lambda W_3^+ + (1 \lambda) W_3^- \in \mathcal{F}(M_3(\mathbb{C})) \iff 2/27 \le \lambda \le 1$. In each such case, $\lambda W_3^+ + (1 - \lambda) W_3^-$ has an exact factorization through $M_3(\mathbb{C}) \otimes M_3(\mathbb{C})$.

For $0 \le \lambda \le 1$, set T_{λ} : $= \lambda W_3^+ + (1 - \lambda) W_3^-$. By **Mendl-Wolf**:

$$T_{\lambda} \in \text{conv}(\text{Aut}(M_3(\mathbb{C}))) \iff \lambda \geq 1/3.$$

Theorem (Mendl-Wolf, 2009)

There exists $\lambda_0 \in (0, 1/3)$ such that for all $\lambda \geq \lambda_0$,

$$T_{\lambda}\otimes T_{\lambda}\in conv(Aut(M_{9}(\mathbb{C})).$$

Theorem (Haagerup-M)

For every $\lambda \in [1/4, 1]$ and every integer $k \geq 2$,

$$T_{\lambda}^{\otimes k} \in conv(Aut(M_{3^k}(\mathbb{C})))$$

For
$$0 \le \lambda \le 1$$
, set T_{λ} : $= \lambda W_3^+ + (1 - \lambda) W_3^-$. By **Mendl-Wolf**:

$$T_{\lambda} \in \text{conv}(\text{Aut}(M_3(\mathbb{C}))) \iff \lambda \geq 1/3.$$

There exists $\lambda_0 \in (0, 1/3)$ such that for all $\lambda \geq \lambda_0$,

$$T_{\lambda} \otimes T_{\lambda} \in conv(Aut(M_9(\mathbb{C})).$$

Theorem (Haagerup-M)

For every $\lambda \in [1/4, 1]$ and every integer $k \geq 2$,

$$T_{\lambda}^{\otimes k} \in conv(Aut(M_{3^k}(\mathbb{C})))$$

For
$$0 \le \lambda \le 1$$
, set T_{λ} : $= \lambda W_3^+ + (1 - \lambda) W_3^-$. By **Mendl-Wolf**:

$$T_{\lambda} \in \text{conv}(\text{Aut}(M_3(\mathbb{C}))) \iff \lambda \geq 1/3.$$

There exists $\lambda_0 \in (0, 1/3)$ such that for all $\lambda \geq \lambda_0$,

$$T_{\lambda} \otimes T_{\lambda} \in conv(Aut(M_9(\mathbb{C})).$$

Theorem (Haagerup-M)

For every $\lambda \in [1/4, 1]$ and every integer $k \geq 2$,

$$T_{\lambda}^{\otimes k} \in conv(Aut(M_{3^k}(\mathbb{C})).$$

For
$$0 \le \lambda \le 1$$
, set T_{λ} : $= \lambda W_3^+ + (1 - \lambda) W_3^-$. By **Mendl-Wolf**:

$$T_{\lambda} \in \text{conv}(\text{Aut}(M_3(\mathbb{C}))) \iff \lambda \geq 1/3.$$

There exists $\lambda_0 \in (0, 1/3)$ such that for all $\lambda \geq \lambda_0$,

$$T_{\lambda} \otimes T_{\lambda} \in conv(Aut(M_9(\mathbb{C})).$$

Theorem (Haagerup-M)

For every $\lambda \in [1/4, 1]$ and every integer $k \geq 2$,

$$T_{\lambda}^{\otimes k} \in conv(Aut(M_{3^k}(\mathbb{C})).$$

An averaging technique (twirl)

For $T \in \mathcal{B}(M_n(\mathbb{C}))$ set

$$F(T)$$
: = $\int_{\mathcal{U}(n)} \operatorname{ad}(u) T \operatorname{ad}(u^t) du$,

where du is the Haar measure on $\mathcal{U}(n)$.

Properties:

• If $T \in UCPT(n)$ then $F(T) \in UCPT(n)$. Moreover,

$$||F(T)||_{cb} \leq ||T||_{cb}$$
.

- $F(\operatorname{conv}(\operatorname{Aut}(M_n(\mathbb{C})))) \subseteq \operatorname{conv}(\operatorname{Aut}(M_n(\mathbb{C}))).$
- $F(\mathcal{F}(M_n(\mathbb{C}))) \subseteq \mathcal{F}(M_n(\mathbb{C})).$

An averaging technique (twirl)

For $T \in \mathcal{B}(M_n(\mathbb{C}))$ set

$$F(T)$$
: = $\int_{\mathcal{U}(n)} \operatorname{ad}(u) T \operatorname{ad}(u^t) du$,

where du is the Haar measure on $\mathcal{U}(n)$.

Properties:

• If $T \in UCPT(n)$ then $F(T) \in UCPT(n)$. Moreover,

$$||F(T)||_{cb} \leq ||T||_{cb}$$
.

- $F(\operatorname{conv}(\operatorname{Aut}(M_n(\mathbb{C})))) \subseteq \operatorname{conv}(\operatorname{Aut}(M_n(\mathbb{C}))).$
- $F(\mathcal{F}(M_n(\mathbb{C}))) \subseteq \mathcal{F}(M_n(\mathbb{C}))$.

Choi (1975): $T \in \mathcal{B}(M_n(\mathbb{C}))$ is $CP \iff \hat{T}$ is positive, where

$$\hat{T}: = \frac{1}{n} \sum_{i,j=1}^{n} T(e_{ij}) \otimes e_{ij} \in M_n(\mathbb{C}) \otimes M_n(\mathbb{C}).$$

Vollbrecht-Werner (2001): $\widehat{F(T)} = E(\widehat{T})$, where

$$E(x) = \int_{\mathcal{U}(n)} (u \otimes u) x(u^* \otimes u^*) du, \quad x \in M_n(\mathbb{C}) \otimes M_n(\mathbb{C}),$$

is the trace-preserving cond. expectation of $M_n(\mathbb{C}) \otimes M_n(\mathbb{C})$ onto span $\{P^+,P^-\}$, where P^+,P^- are the orthogonal projections onto $(\mathbb{C}^n\otimes\mathbb{C}^n)_{\text{sym}}$ and $(\mathbb{C}^n\otimes\mathbb{C}^n)_{\text{antisym}}$, respectively.

 $ightharpoonup F(W_n^+) = W_n^+ \text{ and } F(W_n^-) = W_n^-.$

Theorem (Haagerup-M)

If $T \in UCPT(n)$, then

$$F(T) \in conv\{W_n^+, W_n^-\}.$$

More precisely, if $T = \sum_{i=1}^{d} a_i x a_i^*$ (Choi canonical form), then

$$F(T) = c^{+}(T)W_{n}^{+} + c^{-}(T)W_{n}^{-},$$

where
$$c^+(T) = \frac{1}{4} \sum_{i=1}^d \|a_i + a_i^t\|_2^2$$
, $c^-(T) = \frac{1}{4} \sum_{i=1}^d \|a_i - a_i^t\|_2^2$.

Outline

- Quantum error correction and the Asymptotic Quantum Birkhoff Conjecture
- 2 Factorizable maps and the Asymptotic Quantum Birkhoff Conjecture
- Extreme points and factorizability
- 4 The Holevo-Werner channels
- 5 Asymptotic properties of factorizable maps and the Connes embedding problem

Let $T \in UCPT(n)$ be factorizable. The following are equivalent:

- (1) T has an exact factorization through a finite vN algebra which embeds into \mathcal{R}^{ω} , i.e., $\exists (N, \tau_N) \hookrightarrow \mathcal{R}^{\omega}$, $\exists u \in \mathcal{U}(M_n(N))$ st $Tx = (id_{M_n(\mathbb{C})} \otimes \tau_N)(u^*(x \otimes 1_N)u), \quad x \in M_n(\mathbb{C}).$
- (2) T admits an approximate factorization through matrix alg.
- (3) $\lim_{k\to\infty} d_{cb}\Big(T\otimes S_k, conv\big(Aut(M_n(\mathbb{C})\otimes M_k(\mathbb{C}))\big)\Big)=0,$ where S_k is the completely depolarizing channel: $S_k(y)=\tau_k(y)1_k, \quad y\in M_k(\mathbb{C}).$
- ▶ $T \otimes S_k \in \text{conv}(\text{Aut}(M_n(\mathbb{C}) \otimes M_k(\mathbb{C})) \text{ iff } T \text{ has a exact factorization through } M_n(\mathbb{C}) \otimes M_k(\mathbb{C}) \otimes L^{\infty}([0,1]).$

Let $T \in UCPT(n)$ be factorizable. The following are equivalent:

- (1) T has an exact factorization through a finite vN algebra which embeds into \mathcal{R}^{ω} , i.e., $\exists (N, \tau_N) \hookrightarrow \mathcal{R}^{\omega}$, $\exists u \in \mathcal{U}(M_n(N))$ st $Tx = (id_{M_n(\mathbb{C})} \otimes \tau_N)(u^*(x \otimes 1_N)u), \quad x \in M_n(\mathbb{C}).$
- (2) T admits an approximate factorization through matrix alg.
- (3) $\lim_{k\to\infty} d_{cb}\Big(T\otimes S_k, conv\big(Aut(M_n(\mathbb{C})\otimes M_k(\mathbb{C}))\big)\Big)=0,$ where S_k is the completely depolarizing channel: $S_k(y)=\tau_k(y)1_k, \quad y\in M_k(\mathbb{C}).$
- ▶ $T \otimes S_k \in \text{conv}(\text{Aut}(M_n(\mathbb{C}) \otimes M_k(\mathbb{C})) \text{ iff } T \text{ has a exact factorization through } M_n(\mathbb{C}) \otimes M_k(\mathbb{C}) \otimes L^{\infty}([0,1]).$

The Connes embedding problem has a positive answer if and only if every factorizable $UCPT_n$ map satisfies one of the equivalent conditions in above theorem, for all $n \ge 3$.

ldea of proof: (⇐) Dykema-Jushenko (2009):

$$\mathcal{F}_n \colon = \overline{\bigcup_{k \geq 1} \Big\{ B = (b_{ij}) \in M_n(\mathbb{C}) : b_{ij} = \tau_k(u_i u_j^*), u_j \in \mathcal{U}(M_k(\mathbb{C})) \Big\}}$$

$$\mathcal{G}_n \colon = \Big\{ B = (b_{ij}) \in M_n(\mathbb{C}) : b_{ij} = \tau_M(u_i u_j^*), u_j \in \mathcal{U}(M), \text{ for some vN algebra } (M, \tau_M) \text{ with n.f. tracial state} \Big\}$$

Kirchberg (1993): The Connes embedding problem has a positive answer iff $\mathcal{F}_n = \mathcal{G}_n$, for all $n \ge 1$.

The Connes embedding problem has a positive answer if and only if every factorizable $UCPT_n$ map satisfies one of the equivalent conditions in above theorem, for all $n \ge 3$.

Idea of proof: (⇐) Dykema-Jushenko (2009):

$$\mathcal{F}_n \colon = \overline{\bigcup_{k \geq 1} \left\{ B = (b_{ij}) \in M_n(\mathbb{C}) : b_{ij} = \tau_k(u_i u_j^*), u_j \in \mathcal{U}(M_k(\mathbb{C})) \right\}}$$

$$\mathcal{G}_n \colon = \left\{ B = (b_{ij}) \in M_n(\mathbb{C}) : b_{ij} = \tau_M(u_i u_j^*), u_j \in \mathcal{U}(M), \text{ for some vN algebra } (M, \tau_M) \text{ with n.f. tracial state} \right\}$$

Kirchberg (1993): The Connes embedding problem has a positive answer iff $\mathcal{F}_n = \mathcal{G}_n$, for all n > 1.

The Connes embedding problem has a positive answer if and only if every factorizable $UCPT_n$ map satisfies one of the equivalent conditions in above theorem, for all $n \ge 3$.

Idea of proof: (←) Dykema-Jushenko (2009):

$$\mathcal{F}_n \colon = \overline{\bigcup_{k \geq 1} \left\{ B = (b_{ij}) \in M_n(\mathbb{C}) : b_{ij} = \tau_k(u_i u_j^*), u_j \in \mathcal{U}(M_k(\mathbb{C})) \right\}}$$

$$\mathcal{G}_n \colon = \left\{ B = (b_{ij}) \in M_n(\mathbb{C}) : b_{ij} = \tau_M(u_i u_j^*), u_j \in \mathcal{U}(M), \text{ for some vN algebra } (M, \tau_M) \text{ with n.f. tracial state} \right\}$$

Kirchberg (1993): The Connes embedding problem has a positive answer iff $\mathcal{F}_n = \mathcal{G}_n$, for all $n \ge 1$.

The Connes embedding problem has a positive answer if and only if every factorizable $UCPT_n$ map satisfies one of the equivalent conditions in above theorem, for all $n \ge 3$.

Idea of proof: (⇐) Dykema-Jushenko (2009):

$$\mathcal{F}_n \colon = \overline{\bigcup_{k \geq 1} \Big\{ B = (b_{ij}) \in M_n(\mathbb{C}) : b_{ij} = \tau_k(u_i u_j^*), u_j \in \mathcal{U}(M_k(\mathbb{C})) \Big\}}$$

$$\mathcal{G}_n \colon = \Big\{ B = (b_{ij}) \in M_n(\mathbb{C}) : b_{ij} = \tau_M(u_i u_j^*), u_j \in \mathcal{U}(M), \text{ for some vN algebra } (M, \tau_M) \text{ with n.f. tracial state} \Big\}$$

Kirchberg (1993): The Connes embedding problem has a positive answer iff $\mathcal{F}_n = \mathcal{G}_n$, for all $n \ge 1$.

Idea of proof — continued:

Assume that the Connes embedding problem has a negative answer. Then $\mathcal{G}_n \setminus \mathcal{F}_n \neq \emptyset$, for some $n \geq 1$. Choose

$$B = (b_{ij})_{i,j=1}^n \in \mathcal{G}_n \setminus \mathcal{F}_n$$
.

Then the Schur multiplier T_B has an exact factorization through a finite vN algebra embeddable into \mathcal{R}^{ω} , so $\exists u_1, \ldots, u_n \in \mathcal{U}(\mathcal{R}^{\omega})$ s.t.

$$b_{ij} = \tau_{\mathcal{R}^{\omega}}(u_i^*u_j), \quad 1 \leq i, j \leq n.$$

Approximate each b_{ij} by $\tau_{\mathcal{R}}(v_i^*v_j)$, where $v_i \in \mathcal{U}(\mathcal{R})$, and further by unitary matrices (via Kaplansky). Hence B can be approximated by a sequence B_k s.t. the Schur multiplier T_{B_k} admits an exact factorization through a matrix algebra. This implies $B \in \mathcal{F}_n$ $\frac{1}{4}$.

Idea of proof — continued:

Assume that the Connes embedding problem has a negative answer. Then $\mathcal{G}_n \setminus \mathcal{F}_n \neq \emptyset$, for some $n \geq 1$. Choose

$$B = (b_{ij})_{i,j=1}^n \in \mathcal{G}_n \setminus \mathcal{F}_n$$
.

Then the Schur multiplier T_B has an exact factorization through a finite vN algebra embeddable into \mathcal{R}^{ω} , so $\exists u_1, \ldots, u_n \in \mathcal{U}(\mathcal{R}^{\omega})$ s.t.

$$b_{ij} = \tau_{\mathcal{R}^{\omega}}(u_i^*u_j), \quad 1 \leq i, j \leq n.$$

Approximate each b_{ij} by $\tau_{\mathcal{R}}(v_i^*v_j)$, where $v_i \in \mathcal{U}(\mathcal{R})$, and further by unitary matrices (via Kaplansky). Hence B can be approximated by a sequence B_k s.t. the Schur multiplier T_{B_k} admits an exact factorization through a matrix algebra. This implies $B \in \mathcal{F}_n$ $\frac{1}{2}$.

Let $T \in UCPT(n)$ be factorizable. The following are equivalent:

- (1) T has an exact factorization through a finite vN algebra which embeds into \mathcal{R}^{ω} , i.e., $\exists (N, \tau_N) \hookrightarrow \mathcal{R}^{\omega}$, $\exists u \in \mathcal{U}(M_n(N))$ st $Tx = (id_{M_n(\mathbb{C})} \otimes \tau_N)(u^*(x \otimes 1_N)u), \quad x \in M_n(\mathbb{C}).$
- (2) T admits an approximate factorization through matrix alg.
- (3) $\lim_{k\to\infty} d_{cb}\Big(T\otimes S_k, conv\big(Aut(M_n(\mathbb{C})\otimes M_k(\mathbb{C}))\big)\Big)=0,$ where S_k is the completely depolarizing channel.

Problem

Let $T \in UCPT(n)$ be factorizable satisfying condition (3) above. Is it then true that

$$\min \left\{ d_{cb} \Big(T \otimes S_k, conv \big(Aut(M_n(\mathbb{C}) \otimes M_k(\mathbb{C})) \big) \Big) : k \in \mathbb{N} \right\} = 0$$
?

Let $T \in UCPT(n)$ be factorizable. The following are equivalent:

- (1) T has an exact factorization through a finite vN algebra which embeds into \mathcal{R}^{ω} , i.e., $\exists (N, \tau_N) \hookrightarrow \mathcal{R}^{\omega}$, $\exists u \in \mathcal{U}(M_n(N))$ st $Tx = (id_{M_n(\mathbb{C})} \otimes \tau_N)(u^*(x \otimes 1_N)u), \quad x \in M_n(\mathbb{C}).$
- (2) T admits an approximate factorization through matrix alg.
- (3) $\lim_{k\to\infty} d_{cb}\Big(T\otimes S_k, conv\big(Aut(M_n(\mathbb{C})\otimes M_k(\mathbb{C}))\big)\Big)=0,$ where S_k is the completely depolarizing channel.

Problem

Let $T \in UCPT(n)$ be factorizable satisfying condition (3) above. Is it then true that

$$\min \left\{ d_{cb} \Big(T \otimes S_k \,, conv \big(Aut(M_n(\mathbb{C}) \otimes M_k(\mathbb{C})) \big) \Big) : k \in \mathbb{N} \right\} = 0 \,?$$