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Theorem (Birkhoff, 1946)

Every doubly stochastic matrix is a convex combination of
permutation matrices.

Let D = Ix({1,2,...,n}) with trace 7(xg3) =1/n, 1 < i < n.
The unital positive trace-preserving maps on D are precisely the
linear operators on D given by doubly stochastic n x n matrices.
An automorphism of D is given by a permutation of {1,2,... n}.
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Theorem (Birkhoff, 1946)

Every doubly stochastic matrix is a convex combination of
permutation matrices.

Let D = Ix({1,2,...,n}) with trace 7(xg3) =1/n, 1 < i < n.
The unital positive trace-preserving maps on D are precisely the
linear operators on D given by doubly stochastic n x n matrices.
An automorphism of D is given by a permutation of {1,2,... n}.
~> Quantum Birkhoff Conjecture:

» Kiimmerer (1983): UCPT(2) = conv(Aut(M2(C))).

> For n>3:  UCPT(n) 2 conv(Aut(M,(C)))

Kiimmerer (1986): n = 3, Kiimmerer-Maasen (1987): n > 4,
Landau-Streater (1993): another counterexample for n = 3.
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The asymptotic quantum Birkhoff conjecture

» Gregoratti-Werner (2003): Channels which are convex
combinations of unitarily implemented ones allow for complete
error correction, given suitable feedback of classical information
from the environment.

Conjecture (J. A. Smolin, F. Verstraete, A. Winter, 2005)

Let T € UCPT(n), n> 3. Then T satisfies the following
asymptotic quantum Birkhoff property (AQBP ):
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» MendI-Wolf (2009): 3 T € UCPT(3) such that

T ¢ conv(Aut(Ms5(C))),but T ® T € conv(Aut(Mo(C))).
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Remark: No such examples can occur among Schur channels:
Theorem (Haagerup-M)

Let T be a unital Schur channel on M,(C) and S be a unital
Schur channel on My(C), k,n > 2. Then

dcb<T®5, COHV(AUt(Mnk((C)))> > % dcb(T7 CO"V(AUt(Mn((C))))
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Remark: No such examples can occur among Schur channels:
Theorem (Haagerup-M)

Let T be a unital Schur channel on M,(C) and S be a unital
Schur channel on My(C), k,n > 2. Then

dcb<T®5, COHV(AUt(Mnk((C)))> > % dcb(T7 CO"V(AUt(Mn((C))))

In particular, if T ¢ conv(Aut(M,(C))), then T fails the AQBP.

Example: Let 8 = 1/1/5 and set

1 6 B B B B

g1 B -5 B B

g6 1 B B B
g -8 B 1 B =B
g -8 -8 B 1 B

g B8 -8 -5 B 1

The Schur channel Tg ¢ conv(Aut(M,(C))).
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Definition (Anantharaman-Delaroche, 2005)

A UCPT(n) map T: M,(C) — M,(C) is called factorizable if
3 vN algebra N with n.f. tracial state ¢ and injective unital
k-homs «, 5: Mp(C) = M,(C) ® N such that T = " o av.
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A UCPT(n) map T: M,(C) — M,(C) is called factorizable if
3 vN algebra N with n.f. tracial state ¢ and injective unital
k-homs «, 5: Mp(C) = M,(C) ® N such that T = " o av.

M,(C) T M,(C)

\ %ﬂlcﬂ%wn(cn

M,(C)® N

A\

Problem (Anantharaman-Delaroche)

Is every UCP trace-preserving map factorizable?
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Theorem (Haagerup-M, 2011)

Let T € UCPT(n), n > 3, written in Choi canonical form
Tx =39 | atxa;, x € M,y(C).
Then T is factorizable iff one of the following conditions hold:

1) 3 vN algebra N with nf tracial state Ty and a unitary
ue Mpy(C)® N st

Tx = (idMn((C) X TN)(U*(X & lN)u), X € M,,((C) .
We say that T has an exact factorization through M,(C) @ N.

2) 3 vN algebra N with nf tracial state Ty and vy ,... ,vqg € N st

u=>Y a®v; € UMa(C)®N), mn(vivj)=0;,1<i,j<d
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Theorem (Haagerup-M, 2011)

Let T € UCPT(n), n > 3, written in Choi canonical form
Tx =39 | atxa;, x € M,y(C).
Then T is factorizable iff one of the following conditions hold:

1) 3 vN algebra N with nf tracial state Ty and a unitary
ue Mpy(C)® N st

Tx = (idMn((C) X TN)(U*(X & lN)u), X € M,,((C) .
We say that T has an exact factorization through M,(C) @ N.

2) 3 vN algebra N with nf tracial state Ty and vy ,... ,vqg € N st

u=>Y a®v; € UMa(C)®N), mn(vivj)=0;,1<i,j<d

Interpretation in Quantum Information Theory (R. Werner):
Factorizable maps are obtained by coupling the input system to a
maximally mixed ancillary one, executing a unitary rotation on the
combined system, and tracing out the ancilla.
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e The set F(M,(C)) of factorizable UCPT(n) maps is convex:

If T,5 € F(Mp(C)), with unitaries u, resp., v € M,(C) ® N, then
tT +(1—t)S € F(M,(C)), 0<t<1,

with unitary @ p+v® (1 —p) € M,(C) ® N ® L*([0, 1]), where
p is a projection of trace t in L*°([0, 1]).
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Factorizable maps and AQBC

e Any ¢ € Aut(M,(C)) exactly factors through M,(C) @ C.

e The set F(M,(C)) of factorizable UCPT(n) maps is convex:

If T,5 € F(Mp(C)), with unitaries u, resp., v € M,(C) ® N, then
tT+(1—-1t)S e F(M,(C)), 0<t<1,

with unitary @ p+v® (1 —p) € M,(C) ® N ® L*([0, 1]), where

p is a projection of trace t in L*°([0, 1]).

Hence conv(Aut(M,(C))) C F(M,(C)).

e F(M,(C)) is closed, hence compact.

» Haagerup-M : T < conv(Aut(M,(C))) iff T has an exact
factorization through M,(C) ® L*°([0,1]).
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Conjecture (J. A. Smolin, F. Verstraete, A. Winter, 2005)

Let T € UCPT(n), n> 3. Then T satisfies the AQBP:
k k
lim dcb(® T,conv(Aut(®/\/In(C)))> =
s i=1 i=1

Theorem (Haagerup-M, 2011)

Let T € UCPT(n), where n > 3. Then, for all k > 1,

oo (é T, F (ém(@))) > d( T, F(My(C))).

» If T is not factorizable, then dp(T , F(M,(C))) > 0. Since
conv(Aut(Ms(C))) € F(Ma(C)),

then any non-factorizable unital channel T fails the AQBP.
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Theorem (Haagerup-M, 2011)

Let T € UCPT(n), n> 3, written in Choi canonical form
Tx = Z:-j:l a;xaj, x € M,y(C).
Then T is factorizable iff the following condition holds:
2) 3 vN algebra N with nf tracial state Ty and vi,... ,vq € N st

u=Y a;®v € U(Mn(C)®N), 7n(vivj)=5;,1<ij<d
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Extreme points and factorizability

Theorem (Haagerup-M, 2011)

Let T € UCPT(n), n> 3, written in Choi canonical form
Tx = Z:'j:1 a;xaj, x € M,y(C).
Then T is factorizable iff the following condition holds:
2) 3 vN algebra N with nf tracial state Ty and vi,... ,vq € N st

u=Y a;®v € U(Mn(C)®N), 7n(vivj)=5;,1<ij<d

Let T € UCPT(n), with canonical form T = 27:1 aixaj. Ifd > 2
and the set

{afaj 11 <i,j < d}
is linearly independent, then T is not factorizable.




Extreme points

Choi (1975): T € 0.(UCP(n)) if and only if {afa; : 1 <i,j < d}
is a linearly independent set.

By the corollary, if
T € 0¢(UCP(n))NUCPT(n) and Choi-rank(T) > 2

then T is not factorizable, and hence T does not satisfy AQBP.
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Extreme points

Choi (1975): T € 0.(UCP(n)) if and only if {afa; : 1 <i,j < d}
is a linearly independent set.

By the corollary, if
T € 0.(UCP(n)) NUCPT(n) and Choi-rank(T) > 2

then T is not factorizable, and hence T does not satisfy AQBP.

0 0 O 0 01
Withag=L1(0 0 -1 ], &2=%| 0 0 0],
V2 V2
01 0 -1 0 0
0 -1 0
a3 = % 1 0 O | we obtained the first example of a
0 0 O
non-factorizable map. It is the Holevo-Werner channel Wj".
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Theorem (Haagerup-M-Ruskai)
Let n >3 and let S: C" — C" be the cyclic shift.
(1) Let Ui,...,U, €U(n—1) and set
1 (U 0 :
— U ! =l < i< )
a; \/ﬁ5<0 0)5 , 1<i<n

Set Tx =Y 7, afxaj, x € Mp(C). Then T € UCPT(n) and
with probability one (w.r.t. Haar measure on [["_;U(n — 1))

T € 9(UCP(n)) N 8e(CPT(n)).

In particular, T is not factorizable.

(2) Same conclusion holds for

1 i U 0 7 .
=i Y GO =i
vn—1+t? (0 t>

where t >0, t # 1 (fixed).
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Landau and Streater (1993): T € 9.(UCPT(n)) if and only if
{afaj @ aja; :1<i,j <d}

is a linearly independent set.
Hence

de(UCPT(n)) 2 (9e(UCP(n)) U de(CPT(n))) NUCPT(n).
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Extreme points in UCPT(n)

Landau and Streater (1993): T € 9.(UCPT(n)) if and only if
{afaj @ aja; :1<i,j <d}

is a linearly independent set.
Hence

de(UCPT(n)) 2 (9e(UCP(n)) U de(CPT(n))) NUCPT(n).

MendI-Wolf (2009): above inclusion is strict for n = 3.

Ohno (2010): concrete examples for n = 3, n = 4. His examples
are non-factorizable.
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Haagerup-M.-Ruskai (motivated by a question of Farenick):

4
For t € [0,1], let T¢(x) = 2 3 ai(t)*xai(t), x € M3(C), where
i=1

vVt 00 0 0 v1—t
al(t): ( 0 0 1) ,az(t): (0 0 0 ),
0 0 01 0

00 O 0 10
a3(t) = (1 0 0 ) ,a4(t)( 0 0 0).
0 0 Vt 1-t 00

Then, for t ¢ {0,1/2,1},
T: € 9e(UCPT3) \ (9e(UCP3) U 9e(CPT3)) .

Moreover, T; is factorizable, 0 < t < 1, (through M3(C) @ M,(C)).
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W (x) = n+1(Tr(x)1n+X ), x € M,(C).
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Holevo-Werner channels

Let n > 2. Consider the Holevo-Werner channels in dimension n:

1

[(TrO)1, = x*), x € My(C).

1 t
W (x) = n+1(Tr(x)1n+X ), x € M,(C).

» W, W, e UCPT(n).
» Sp=7a(-)1n € conv{ W, , W, }, since

S(x) = 2T, = =Ly 4

+
- - W (x), x € My(C).

2n "

» W; is not factorizable.
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Theorem (Mendl-Wolf, 2009)
(1) Wt € conv(Aut(M,(C))), for all n > 2.
(2) W, € conv(Aut(M,(C))), for all n even.
(3) Fornoddand0 < \<1,
AW+ (1= X)W, € conv(Aut(Ms(C))) < X >1/n.
In particular, W, & conv(Aut(M,(C))).




Holevo-Werner channels

Theorem (Mendl-Wolf, 2009)
(1) Wt € conv(Aut(M,(C))), for all n > 2.
(2) W, € conv(Aut(M,(C))), for all n even.
(3) Fornoddand0 < \<1,
AW+ (1= X)W, € conv(Aut(Ms(C))) < X >1/n.
In particular, W, & conv(Aut(M,(C))).

Theorem (Haagerup-M)
(1) den(Ws, F(Ms(C))) = 4/27.
(2) For n odd, n# 3,
W, exactly factors through M,(C) @ M4(C) & L>([0, 1]).

(3) AW + (1 —X)W; € F(M3(C)) < 2/271 <A< 1.
In each such case, A W5" + (1 — X\) W~ has an exact
factorization through M3(C) @ M3(C).
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ForO<A<1,set T: =\ W';r +(1-2X) W;". By MendIl-Wolf:

Ty € conv(Aut(M3(C))) <= A>1/3.
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There exists Ao € (0,1/3) such that for all A > X,

T\ ® Ty € conv(Aut(My(C)).
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Ty € conv(Aut(M3(C))) <= A>1/3.

Theorem (MendI-Wolf, 2009)
There exists Ao € (0,1/3) such that for all A > X,

T\ ® Ty € conv(Aut(My(C)).

Theorem (Haagerup-M)

For every \ € [1/4,1] and every integer k > 2,

T\ € conv(Aut(Ms(C)).




Holevo-Werner channels

ForO<A<1,set T: =\ W';r +(1-2X) W;". By MendIl-Wolf:

Ty € conv(Aut(M3(C))) <= A>1/3.

Theorem (MendI-Wolf, 2009)
There exists Ao € (0,1/3) such that for all A > X,

T\ ® Ty € conv(Aut(My(C)).

Theorem (Haagerup-M)

For every \ € [1/4,1] and every integer k > 2,

T\ € conv(Aut(Ms(C)).

Hence T) satisfies the AQBP, for all X € [1/4,1].
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Holevo-Werner channels

An averaging technique (twirl)

For T € B(M,(C)) set
F(T): = ad(v) T ad(v") du,

where du is the Haar measure on U(n).

Properties:
e If T € UCPT(n) then F(T) € UCPT(n). Moreover,

IF(T)lleo < I Tlleb -
o F(conv(Aut(M,(C)))) C conv(Aut(M,(C))).
o F(F(M,(C))) € F(Ms(C)).



Holevo-Werner channels

Choi (1975): T € B(M,(C)) is CP <= T is positive, where

N R
T: = - ijzl T(e,'_,') X ejj € M, (C) @ Mp(C).

Vollbrecht-Werner (2001): Iﬁ — E(T), where

E(x) = / (u®@u)x(u* @ u*)du, x € My(C)® M,(C),
U(n)

is the trace-preserving cond. expectation of M,(C) ® M,(C) onto
span{P* P~}, where PT P~ are the orthogonal projections onto
(C"® CM)sym and (C" @ C")antisym , respectively.



Holevo-Werner channels

> F(WH) = W7 and F(W;) = W,

n

Theorem (Haagerup-M)
If T € UCPT(n), then

F(T) € con{ W, W, }.

More precisely, if T = Zf’:l ajxa? (Choi canonical form), then
F(T)=c(T)W, +c (T)W,

n >

d d
where ¢t (T) =z 3 llai + af[3, ¢ ( )Z%Zl\\ai—aﬂ@-
=
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Connes embedding

Theorem (Haagerup-M)

Let T € UCPT(n) be factorizable. The following are equivalent:

(1) T has an exact factorization through a finite vN algebra which
embeds into R¥, i.e., I(N,7y) — R¥, 3 u € U(Mn(N)) st

Tx = (idm,c) ® ™) (U (x @ In)u), x € Mp(C).
(2) T admits an approximate factorization through matrix alg.
(3) Jim dcb(T ® Sk, conv(Aut(M,(C) @ Mk(C)))) =0,

where Sy is the completely depolarizing channel:
Sk(y) = 1(y)lk, y € Mi(C).




Connes embedding

Theorem (Haagerup-M)

Let T € UCPT(n) be factorizable. The following are equivalent:

(1) T has an exact factorization through a finite vN algebra which
embeds into R¥, i.e., I(N,7y) — R¥, 3 u € U(Mn(N)) st

Tx = (idm,c) ® ™) (U (x @ In)u), x € Mp(C).
(2) T admits an approximate factorization through matrix alg.
(3) Jim dcb<T ® Sk, conv(Aut(M,(C) @ Mk(C)))) =0,

where Sy is the completely depolarizing channel:
Sk(y) = 1(y)lk, y € Mi(C).

» T ® Sk € conv(Aut(Mn(C) @ My(C)) iff T has a exact
factorization through M,(C) ® My (C) ® L*°([0, 1]).
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if every factorizable UCPT, map satisfies one of the equivalent
conditions in above theorem, for all n > 3.
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Connes embedding

Theorem (Haagerup-M)

The Connes embedding problem has a positive answer if and only
if every factorizable UCPT, map satisfies one of the equivalent
conditions in above theorem, for all n > 3.

Idea of proof: (<) Dykema-Jushenko (2009):

Far = U {B=(by) € Ma(C) : by = m(uiu) , uj € UMK(C)) |
k>1

Gn: = {B = (by) € Mn(C) : by = Tm(u;u}) , up € U(M), for

some vN algebra (M, 7p) with n.f. tracial state}

Kirchberg (1993): The Connes embedding problem has a positive
answer iff 7, = G,, for all n > 1.

Note: G, = {B € M,(C) : Schur multiplier Tpg is factorizable}.



Connes embedding

Idea of proof — continued:

Assume that the Connes embedding problem has a negative
answer. Then G, \ F, # 0, for some n > 1. Choose

Then the Schur multiplier Tg has an exact factorization through a
finite vN algebra embeddable into R¥, so Ju, ..., u, € U(RY) s.t.

bj = tre(uju;), 1<i,j<n.



Connes embedding

Idea of proof — continued:

Assume that the Connes embedding problem has a negative
answer. Then G, \ F, # 0, for some n > 1. Choose

Then the Schur multiplier Tg has an exact factorization through a
finite vN algebra embeddable into R¥, so Ju, ..., u, € U(RY) s.t.

bj = tre(uju;), 1<i,j<n.

Approximate each bj; by 7z (v;v;), where v; € U(R), and further
by unitary matrices (via Kaplansky). Hence B can be approximated
by a sequence By s.t. the Schur multiplier Tg, admits an exact
factorization through a matrix algebra. This implies B € F,, /.



Connes embedding

Theorem (Haagerup-M)

Let T € UCPT(n) be factorizable. The following are equivalent:

(1) T has an exact factorization through a finite vN algebra which
embeds into R¥, i.e., I(N,7y) — R¥, 3 u € U(M,(N)) st

Tx = (idy,c) @ ™) (U (x @ In)u), x € Mp(C).
(2) T admits an approximate factorization through matrix alg.
(3) fim dcb<T @ Sy, conv(Aut(Mn(C) @ Mk((C)))) —0,
— 00

where Sy is the completely depolarizing channel.




Connes embedding

Theorem (Haagerup-M)

Let T € UCPT(n) be factorizable. The following are equivalent:

(1) T has an exact factorization through a finite vN algebra which
embeds into R¥, i.e., I(N,7y) — R¥, 3 u € U(M,(N)) st

Tx = (idy,c) @ ™) (U (x @ In)u), x € Mp(C).
(2) T admits an approximate factorization through matrix alg.
(3) fim dcb<T @ Sy, conv(Aut(Mn(C) @ Mk((C)))) —0,
— 00

where Sy is the completely depolarizing channel.

Problem

Let T € UCPT(n) be factorizable satisfying condition (3) above.
Is it then true that

min {dcb(T ® Sk, conv(Aut(Mn(C) @ Mk((C)))) ke N} =07
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