A class of exposed positive maps

Marcin Marciniak
Institute of Theoretical Physics and Astrophysics
University of Gdańsk

Mathematical Aspects in Current Quantum Information Theory
Daejeon, Korea
February 16, 2016

Positive maps

Positive maps

K, H
$B(K), B(H)$
$B(K)^{+}, B(H)^{+}$
$\phi: B(K) \rightarrow B(H)$

Hilbert spaces
algebras of bounded operators on K, H
cones of positive operators on K, H
bounded linear map

Positive maps

K, H
$B(K), B(H)$
$B(K)^{+}, B(H)^{+}$
$\phi: B(K) \rightarrow B(H)$

Hilbert spaces
algebras of bounded operators on K, H
cones of positive operators on K, H
bounded linear map

- ϕ is positive if $\phi\left(B(K)^{+}\right) \subset B(H)^{+}$

Positive maps

K, H
$B(K), B(H)$
$B(K)^{+}, B(H)^{+}$
$\phi: B(K) \rightarrow B(H)$

Hilbert spaces
algebras of bounded operators on K, H
cones of positive operators on K, H
bounded linear map

- ϕ is positive if $\phi\left(B(K)^{+}\right) \subset B(H)^{+}$
- ϕ is k-positive $(k \in \mathbb{N}$) if the map
$M_{k}(B(K)) \ni\left[X_{i j}\right] \mapsto\left[\phi\left(X_{i j}\right)\right] \in M_{k}(B(H))$ is positive.

Positive maps

K, H
$B(K), B(H)$
$B(K)^{+}, B(H)^{+}$
$\phi: B(K) \rightarrow B(H)$

Hilbert spaces
algebras of bounded operators on K, H
cones of positive operators on K, H
bounded linear map

- ϕ is positive if $\phi\left(B(K)^{+}\right) \subset B(H)^{+}$
- ϕ is k-positive $(k \in \mathbb{N})$ if the map $M_{k}(B(K)) \ni\left[X_{i j}\right] \mapsto\left[\phi\left(X_{i j}\right)\right] \in M_{k}(B(H))$ is positive.
- ϕ is completely positive (or CP) if it is k-positive for any $k \in \mathbb{N}$.

Positive maps

K, H
$B(K), B(H)$
$B(K)^{+}, B(H)^{+}$
$\phi: B(K) \rightarrow B(H)$

Hilbert spaces
algebras of bounded operators on K, H
cones of positive operators on K, H
bounded linear map

- ϕ is positive if $\phi\left(B(K)^{+}\right) \subset B(H)^{+}$
- ϕ is k-positive $(k \in \mathbb{N})$ if the map $M_{k}(B(K)) \ni\left[X_{i j}\right] \mapsto\left[\phi\left(X_{i j}\right)\right] \in M_{k}(B(H))$ is positive.
- ϕ is completely positive (or CP) if it is k-positive for any $k \in \mathbb{N}$.
- ϕ is decomposable if $\phi(X)=\phi_{1}(X)+\phi_{2}(X)^{\mathrm{t}}, X \in B(K)$, where ϕ_{1}, ϕ_{2} are CP maps.

Decomposability of positive maps in low dimensions

Decomposability of positive maps in low dimensions

Theorem (Størmer and Woronowicz)

Assume one of the following conditions holds:

1. $\operatorname{dim} K=\operatorname{dim} H=2$,
2. $\operatorname{dim} K=2$ and $\operatorname{dim} H=3$,
3. $\operatorname{dim} K=3$ and $\operatorname{dim} H=2$.

Then every positive map $\phi: B(K) \rightarrow B(H)$ is decomposable.

Decomposability of positive maps in low dimensions

Theorem (Størmer and Woronowicz)

Assume one of the following conditions holds:

1. $\operatorname{dim} K=\operatorname{dim} H=2$,
2. $\operatorname{dim} K=2$ and $\operatorname{dim} H=3$,
3. $\operatorname{dim} K=3$ and $\operatorname{dim} H=2$.

Then every positive map $\phi: B(K) \rightarrow B(H)$ is decomposable.
Choi gave the first example of nondecomposable positive map $\phi: B\left(\mathbb{C}^{3}\right) \rightarrow B\left(\mathbb{C}^{3}\right)$

Decomposability of positive maps in low dimensions

Theorem (Størmer and Woronowicz)

Assume one of the following conditions holds:

1. $\operatorname{dim} K=\operatorname{dim} H=2$,
2. $\operatorname{dim} K=2$ and $\operatorname{dim} H=3$,
3. $\operatorname{dim} K=3$ and $\operatorname{dim} H=2$.

Then every positive map $\phi: B(K) \rightarrow B(H)$ is decomposable.
Choi gave the first example of nondecomposable positive map $\phi: B\left(\mathbb{C}^{3}\right) \rightarrow B\left(\mathbb{C}^{3}\right)$

$$
\phi\left(\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\right)=\left[\begin{array}{ccc}
a_{11}+a_{33} & -a_{12} & -a_{13} \\
-a_{21} & a_{22}+a_{11} & -a_{23} \\
-a_{31} & -a_{32} & a_{33}+a_{22}
\end{array}\right]
$$

Decomposability of positive maps in low dimensions

Theorem (Størmer and Woronowicz)

Assume one of the following conditions holds:

1. $\operatorname{dim} K=\operatorname{dim} H=2$,
2. $\operatorname{dim} K=2$ and $\operatorname{dim} H=3$,
3. $\operatorname{dim} K=3$ and $\operatorname{dim} H=2$.

Then every positive map $\phi: B(K) \rightarrow B(H)$ is decomposable.
Choi gave the first example of nondecomposable positive map $\phi: B\left(\mathbb{C}^{3}\right) \rightarrow B\left(\mathbb{C}^{3}\right)$

$$
\phi\left(\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\right)=\left[\begin{array}{ccc}
a_{11}+a_{33} & -a_{12} & -a_{13} \\
-a_{21} & a_{22}+a_{11} & -a_{23} \\
-a_{31} & -a_{32} & a_{33}+a_{22}
\end{array}\right]
$$

Another examples of non-decomposable maps were given by Woronowicz, Tang, Ha, Osaka, Robertson, Kye and others.

Extremal positive maps

The set $\mathfrak{P}(K, H)$ of all positive maps $\phi: B(K) \rightarrow B(H)$ is a convex cone.

Extremal positive maps

The set $\mathfrak{P}(K, H)$ of all positive maps $\phi: B(K) \rightarrow B(H)$ is a convex cone.
We say, that a map ϕ is extremal if it generates an extremal ray in that cone, i.e.

$$
\forall \psi \in \mathfrak{P}: \quad \phi-\psi \in \mathfrak{P} \Rightarrow \psi \in \mathbb{R}^{+} \phi
$$

Extremal positive maps

The set $\mathfrak{P}(K, H)$ of all positive maps $\phi: B(K) \rightarrow B(H)$ is a convex cone.
We say, that a map ϕ is extremal if it generates an extremal ray in that cone, i.e.

$$
\forall \psi \in \mathfrak{P}: \quad \phi-\psi \in \mathfrak{P} \Rightarrow \psi \in \mathbb{R}^{+} \phi
$$

Examples:

1. Choi map

Extremal positive maps

The set $\mathfrak{P}(K, H)$ of all positive maps $\phi: B(K) \rightarrow B(H)$ is a convex cone.
We say, that a map ϕ is extremal if it generates an extremal ray in that cone, i.e.

$$
\forall \psi \in \mathfrak{P}: \quad \phi-\psi \in \mathfrak{P} \Rightarrow \psi \in \mathbb{R}^{+} \phi
$$

Examples:

1. Choi map
2. For $A: K \rightarrow H$,

$$
\begin{gathered}
\operatorname{Ad}_{A}: B(K) \ni X \mapsto A X A^{*} \in B(H) \\
\operatorname{Ad}_{A} \circ \mathrm{t}: B(K) \ni X \mapsto A X^{\mathrm{t}} A^{*} \in B(H)
\end{gathered}
$$

Extremal positive maps

The set $\mathfrak{P}(K, H)$ of all positive maps $\phi: B(K) \rightarrow B(H)$ is a convex cone.
We say, that a map ϕ is extremal if it generates an extremal ray in that cone, i.e.

$$
\forall \psi \in \mathfrak{P}: \quad \phi-\psi \in \mathfrak{P} \Rightarrow \psi \in \mathbb{R}^{+} \phi
$$

Examples:

1. Choi map
2. For $A: K \rightarrow H$,

$$
\begin{gathered}
\operatorname{Ad}_{A}: B(K) \ni X \mapsto A X A^{*} \in B(H) \\
\operatorname{Ad}_{A} \circ \mathrm{t}: B(K) \ni X \mapsto A X^{\mathrm{t}} A^{*} \in B(H)
\end{gathered}
$$

A map ϕ is said to be optimal if

$$
\forall \psi \in \mathfrak{C P}: \quad \phi-\psi \in \mathfrak{P} \Rightarrow \psi \in \mathbb{R}^{+} \phi
$$

Duality

Duality

- Let $T^{1}(H)$ denote the space of trace class operators on H.

Duality

- Let $T^{1}(H)$ denote the space of trace class operators on H.
- We consider duality between $B(B(K), B(H))$ and $B(K) \hat{\otimes} T^{1}(H)$ given by

$$
\langle Z, \phi\rangle_{\mathrm{d}}=\sum_{i} \operatorname{Tr}\left(\phi\left(X_{i}\right) Y_{i}^{T}\right)
$$

where $Z=\sum_{i} X_{i} \otimes Y_{i}, X_{i} \in \mathfrak{B}(\mathscr{K}), Y_{i} \in \mathfrak{B}(\mathscr{H})$.

Duality

- Let $T^{1}(H)$ denote the space of trace class operators on H.
- We consider duality between $B(B(K), B(H))$ and $B(K) \hat{\otimes} T^{1}(H)$ given by

$$
\langle Z, \phi\rangle_{\mathrm{d}}=\sum_{i} \operatorname{Tr}\left(\phi\left(X_{i}\right) Y_{i}^{T}\right)
$$

where $Z=\sum_{i} X_{i} \otimes Y_{i}, X_{i} \in \mathfrak{B}(\mathscr{K}), Y_{i} \in \mathfrak{B}(\mathscr{H})$.

- Consider dual cone $\mathfrak{P}^{\circ} \subset B(K) \hat{\otimes} T^{1}(H)$

$$
\mathfrak{P}^{\circ}=\left\{Z \in B(K) \hat{\otimes} T^{1}(H):\langle Z, \phi\rangle_{\mathrm{d}} \geq 0 \text { for all } \phi \in \mathfrak{P}\right\} .
$$

\mathfrak{P}° consist of block-positive matrices, i.e.

$$
Z \in \mathfrak{P}^{\circ} \quad \Leftrightarrow \quad\langle\xi \otimes \eta, Z \xi \otimes \eta\rangle \geq 0, \xi \in K, \eta \in H .
$$

Duality

- Let $T^{1}(H)$ denote the space of trace class operators on H.
- We consider duality between $B\left(B(K), B(H)\right.$) and $B(K) \hat{\otimes} T^{1}(H)$ given by

$$
\langle Z, \phi\rangle_{\mathrm{d}}=\sum_{i} \operatorname{Tr}\left(\phi\left(X_{i}\right) Y_{i}^{T}\right)
$$

where $Z=\sum_{i} X_{i} \otimes Y_{i}, X_{i} \in \mathfrak{B}(\mathscr{K}), Y_{i} \in \mathfrak{B}(\mathscr{H})$.

- Consider dual cone $\mathfrak{P}^{\circ} \subset B(K) \hat{\otimes} T^{1}(H)$

$$
\mathfrak{P}^{\circ}=\left\{Z \in B(K) \hat{\otimes} T^{1}(H):\langle Z, \phi\rangle_{\mathrm{d}} \geq 0 \text { for all } \phi \in \mathfrak{P}\right\} .
$$

\mathfrak{P}° consist of block-positive matrices, i.e.

$$
Z \in \mathfrak{P}^{\circ} \quad \Leftrightarrow \quad\langle\xi \otimes \eta, Z \xi \otimes \eta\rangle \geq 0, \xi \in K, \eta \in H .
$$

- A map $\phi \in \mathscr{P}$ is said to be exposed if there is a block-positive matrix Z_{0} such that

$$
\left\{\psi \in \mathfrak{P}:\left\langle Z_{0}, \psi\right\rangle_{\mathrm{d}}=0\right\}=\mathbb{R}_{+} \phi
$$

Straszewicz's theorem

Let K be a convex set. We denote
Ext K - extremal elements of K, $\operatorname{Exp} K-\operatorname{exposed}$ elements of K.

Straszewicz's theorem

Let K be a convex set. We denote
Ext K - extremal elements of K,
$\operatorname{Exp} K$ - exposed elements of K.
Theorem (Straszewicz, 1935)
If a set $K \subset \mathbb{R}^{n}$ is closed and convex then $\mathrm{cl}(\operatorname{Exp} K)=\operatorname{Ext} K$.

Straszewicz's theorem

Let K be a convex set. We denote Ext K - extremal elements of K, $\operatorname{Exp} K$ - exposed elements of K.

Theorem (Straszewicz, 1935)

If a set $K \subset \mathbb{R}^{n}$ is closed and convex then $\mathrm{cl}(\operatorname{Exp} K)=\operatorname{Ext} K$.

Theorem (Lindenstrauss)

Assume that V is a real locally compact topological vector space with a topology which induced bo some strictly convex norm. If $K \subset V$ is compact and convex then $\operatorname{cl}(\operatorname{Exp} K)=\operatorname{Ext} K$.

Straszewicz's theorem

Let K be a convex set. We denote Ext K - extremal elements of K, $\operatorname{Exp} K$ - exposed elements of K.

Theorem (Straszewicz, 1935)

If a set $K \subset \mathbb{R}^{n}$ is closed and convex then $\mathrm{cl}(\operatorname{Exp} K)=\operatorname{Ext} K$.

Theorem (Lindenstrauss)

Assume that V is a real locally compact topological vector space with a topology which induced bo some strictly convex norm. If $K \subset V$ is compact and convex then $\operatorname{cl}(\operatorname{Exp} K)=\operatorname{Ext} K$.

It follows from the above theorems that the problem of the description of positive maps can be reduced to the problem of characterization of exposed positive maps.

Examples

- (MM'2011) For finite dimensional dimensional K and H and any $A: K \rightarrow H$, the maps

$$
\operatorname{Ad}_{A}: X \mapsto A X A^{*}, \quad \operatorname{Ad}_{A} \circ \mathrm{t}: X \mapsto A X^{\mathrm{t}} A^{*}
$$

are exposed.

Examples

- (MM'2011) For finite dimensional dimensional K and H and any $A: K \rightarrow H$, the maps

$$
\operatorname{Ad}_{A}: X \mapsto A X A^{*}, \quad \operatorname{Ad}_{A} \circ \mathrm{t}: X \mapsto A X^{\mathrm{t}} A^{*}
$$

are exposed.

- Choi map is an extremal nonexposed positive map.

Examples

- (MM'2011) For finite dimensional dimensional K and H and any $A: K \rightarrow H$, the maps

$$
\operatorname{Ad}_{A}: X \mapsto A X A^{*}, \quad \operatorname{Ad}_{A} \circ \mathrm{t}: X \mapsto A X^{\mathrm{t}} A^{*}
$$

are exposed.

- Choi map is an extremal nonexposed positive map.
- Other examples are due to Cruściński and Sarbicki, Ha and Kye, and others..

Strong spanning property

A positive map $\phi: B(K) \rightarrow B(H)$ is said to be irreducible, if

$$
\forall Y \in B(H):([\phi(X), Y]=0, \forall X \in B(K)) \quad \Rightarrow \quad Y \in \mathbb{C}_{H}
$$

Strong spanning property

A positive map $\phi: B(K) \rightarrow B(H)$ is said to be irreducible, if

$$
\forall Y \in B(H):([\phi(X), Y]=0, \forall X \in B(K)) \quad \Rightarrow \quad Y \in \mathbb{C}_{H}
$$

Let

$$
N_{\phi}=\operatorname{span}\left\{X \otimes \eta \in B(K)^{+} \otimes H: \phi(X) \eta=0\right\}
$$

Strong spanning property

A positive map $\phi: B(K) \rightarrow B(H)$ is said to be irreducible, if

$$
\forall Y \in B(H):([\phi(X), Y]=0, \forall X \in B(K)) \quad \Rightarrow \quad Y \in \mathbb{C}_{H}
$$

Let

$$
N_{\phi}=\operatorname{span}\left\{X \otimes \eta \in B(K)^{+} \otimes H: \phi(X) \eta=0\right\}
$$

Theorem (Chruśniński, Sarbicki)

Assume K and H are finite dimensional. Let $\phi: B(K) \rightarrow B(H)$ be a positive map irreducible on its image. If the subspace $N_{\phi} \subset B(K) \otimes H$ satisfies

$$
\operatorname{dim} N_{\phi}=\left(\operatorname{dim}_{K}\right)^{2} \operatorname{dim}_{H}-\operatorname{rank} \phi\left(\square_{K}\right)
$$

then it is exposed.

Example of Miller and Olkiewicz

Miller and Olkiewicz ('14) considered the following example of a bistochastic map.

$$
S: B\left(\mathbb{C}^{3}\right) \rightarrow B\left(\mathbb{C}^{3}\right)
$$

Example of Miller and Olkiewicz

Miller and Olkiewicz ('14) considered the following example of a bistochastic map.

$$
\begin{aligned}
& S: B\left(\mathbb{C}^{3}\right) \rightarrow B\left(\mathbb{C}^{3}\right) \\
& S\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ccc}
x_{11}+x_{22} & 0 & \sqrt{2} x_{13} \\
0 & x_{11}+x_{22} & \sqrt{2} x_{32} \\
\sqrt{2} x_{31} & \sqrt{2} x_{23} & 2 x_{33}
\end{array}\right)
\end{aligned}
$$

Example of Miller and Olkiewicz

Miller and Olkiewicz ('14) considered the following example of a bistochastic map.

$$
\begin{gathered}
S: B\left(\mathbb{C}^{3}\right) \rightarrow B\left(\mathbb{C}^{3}\right) \\
S\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ccc}
x_{11}+x_{22} & 0 & \sqrt{2} x_{13} \\
0 & x_{11}+x_{22} & \sqrt{2} x_{32} \\
\sqrt{2} x_{31} & \sqrt{2} x_{23} & 2 x_{33}
\end{array}\right)
\end{gathered}
$$

Example of Miller and Olkiewicz

Miller and Olkiewicz ('14) considered the following example of a bistochastic map.

$$
\begin{gathered}
S: B\left(\mathbb{C}^{3}\right) \rightarrow B\left(\mathbb{C}^{3}\right) \\
S\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ccc}
x_{11}+x_{22} & 0 & \sqrt{2} x_{13} \\
0 & x_{11}+x_{22} & \sqrt{2} x_{32} \\
\sqrt{2} x_{31} & \sqrt{2} x_{23} & 2 x_{33}
\end{array}\right)
\end{gathered}
$$

Theorem (Miller, Olkiewicz)

S is a bistochastic, exposed and nondecomposable (even atomic) map.

Generalization by Rutkowski et al.

Rutkowski, Sarbicki and Chruściński proposed the following generalization of the map S :

Generalization by Rutkowski et al.

Rutkowski, Sarbicki and Chruściński proposed the following generalization of the map S :

$$
\Lambda_{d}: B\left(\mathbb{C}^{d+1}\right) \rightarrow B\left(\mathbb{C}^{d+1}\right)
$$

Generalization by Rutkowski et al.

Rutkowski, Sarbicki and Chruściński proposed the following generalization of the map S :

$$
\begin{gathered}
\Lambda_{d}: B\left(\mathbb{C}^{d+1}\right) \rightarrow B\left(\mathbb{C}^{d+1}\right) \\
\Lambda_{d}(X)=\frac{1}{d}\left(\begin{array}{ccccc}
\sum_{i=1}^{d} x_{i i} & \cdots & 0 & 0 & \sqrt{d} x_{1, d+1} \\
\vdots & & \vdots & \vdots & \vdots \\
0 & \cdots & \sum_{i=1}^{d} x_{i i} & 0 & \sqrt{d} x_{d-1, d+1} \\
0 & \cdots & 0 & \sum_{i=1}^{d} x_{i i} & \sqrt{d} x_{d+1, d} \\
\sqrt{d} x_{d+1,1} & \cdots & \sqrt{d} x_{d+1, d-1} & \sqrt{d} x_{d, d+1} & d x_{d+1, d+1}
\end{array}\right)
\end{gathered}
$$

Generalization by Rutkowski et al.

Rutkowski, Sarbicki and Chruściński proposed the following generalization of the map S :

$$
\begin{gathered}
\Lambda_{d}: B\left(\mathbb{C}^{d+1}\right) \rightarrow B\left(\mathbb{C}^{d+1}\right) \\
\Lambda_{d}(X)=\frac{1}{d}\left(\begin{array}{ccccc}
\sum_{i=1}^{d} x_{i i} & \cdots & 0 & 0 & \sqrt{d} x_{1, d+1} \\
\vdots & & \vdots & \vdots & \vdots \\
0 & \cdots & \sum_{i=1}^{d} x_{i i} & 0 & \sqrt{d} x_{d-1, d+1} \\
0 & \cdots & 0 & \sum_{i=1}^{d} x_{i i} & \sqrt{d} x_{d+1, d} \\
\sqrt{d} x_{d+1,1} & \cdots & \sqrt{d} x_{d+1, d-1} & \sqrt{d} x_{d, d+1} & d x_{d+1, d+1}
\end{array}\right)
\end{gathered}
$$

Theorem (Rutkowski et al.)
Λ_{d} is a bistochastic positive, nondecomposable and optimal map.

Construction

We propose another generalization of the map S.

Construction

We propose another generalization of the map S.

$$
\text { For } V=\left(\begin{array}{ccc}
\sqrt{2} & 0 & 0 \\
0 & \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right) \text {, consider 'denormalization' } \begin{gathered}
\tilde{S}(X)=V S(X) V^{*}
\end{gathered}
$$

Construction

We propose another generalization of the map S.

$$
\text { For } \begin{aligned}
& V=\left(\begin{array}{ccc}
\sqrt{2} & 0 & 0 \\
0 & \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right) \text {, consider 'denormalization' } \\
& \tilde{S}(X)=V S(X) V^{*} \\
& \tilde{S}\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)=\left(\begin{array}{ccc}
x_{11}+x_{22} & 0 & x_{13} \\
0 & x_{11}+x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
\end{aligned}
$$

Construction

We propose another generalization of the map S.
For $V=\left(\begin{array}{ccc}\sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1\end{array}\right)$, consider 'denormalization'

$$
\tilde{S}(X)=V S(X) V^{*}
$$

$$
\tilde{S}\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)=\left(\begin{array}{ccc}
x_{11}+x_{22} & 0 & x_{13} \\
0 & x_{11}+x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

Similarly to S, \tilde{S} is an exposed, atomic map.

Construction

We propose another generalization of the map S.
For $V=\left(\begin{array}{ccc}\sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1\end{array}\right)$, consider 'denormalization'

$$
\begin{gathered}
\tilde{S}(X)=V S(X) V^{*} \\
\tilde{S}\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)=\left(\begin{array}{ccc}
x_{11}+x_{22} & 0 & x_{13} \\
0 & x_{11}+x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
\end{gathered}
$$

Similarly to S, \tilde{S} is an exposed, atomic map.

$$
\tilde{S}=\tilde{S}_{\mathrm{ess}}+\tilde{S}_{\mathrm{diag}}
$$

Construction

We propose another generalization of the map S.
For $V=\left(\begin{array}{ccc}\sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1\end{array}\right)$, consider 'denormalization'

$$
\tilde{S}(X)=V S(X) V^{*}
$$

$$
\tilde{S}\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)=\left(\begin{array}{ccc}
x_{11}+x_{22} & 0 & x_{13} \\
0 & x_{11}+x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

Similarly to S, \tilde{S} is an exposed, atomic map.

$$
\begin{array}{r}
\tilde{S}=\tilde{S}_{\text {ess }}+\tilde{S}_{\text {diag }} \\
\tilde{S}_{\text {ess }}: X \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right),
\end{array}
$$

Construction

We propose another generalization of the map S.
For $V=\left(\begin{array}{ccc}\sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 1\end{array}\right)$, consider 'denormalization'

$$
\tilde{S}(X)=V S(X) V^{*}
$$

$$
\tilde{S}\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)=\left(\begin{array}{ccc}
x_{11}+x_{22} & 0 & x_{13} \\
0 & x_{11}+x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

Similarly to S, \tilde{S} is an exposed, atomic map.

$$
\begin{gathered}
\tilde{S}=\tilde{S}_{\text {ess }}+\tilde{S}_{\text {diag }} \\
\tilde{S}_{\text {ess }}: X \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right), \quad \tilde{S}_{\text {diag }}: X \mapsto\left(\begin{array}{ccc}
x_{22} & 0 & 0 \\
0 & x_{11} & 0 \\
0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Construction contd．－structure of $\tilde{S}_{\text {ess }}$

Construction contd. - structure of $\tilde{S}_{\text {ess }}$

- identity

Construction contd. - structure of $\tilde{S}_{\text {ess }}$

- identity

$$
\tilde{S}_{\mathrm{ess}}:\left(\begin{array}{ccc}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

Construction contd. - structure of $\tilde{S}_{\text {ess }}$

- identity

$$
\tilde{S}_{\text {ess }}:\left(\begin{array}{cc}
x_{11} & x_{13} \\
& \\
x_{31} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ll}
x_{11} & x_{13} \\
x_{31} & \\
x_{33}
\end{array}\right)
$$

Construction contd. - structure of $\tilde{S}_{\text {ess }}$

- identity

$$
\tilde{S}_{\text {ess }}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

Construction contd. - structure of $\tilde{S}_{\text {ess }}$

- identity

$$
\tilde{S}_{\mathrm{ess}}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

- transposition

Construction contd. - structure of $\tilde{S}_{\text {ess }}$

- identity

$$
\tilde{S}_{\text {ess }}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

- transposition

$$
\tilde{S}_{\text {ess }}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

Construction contd. - structure of $\tilde{S}_{\text {ess }}$

- identity

$$
\tilde{S}_{\mathrm{ess}}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

- transposition

$$
\tilde{S}_{\mathrm{ess}}:\left(\begin{array}{ll}
x_{22} & x_{23} \\
x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ll}
x_{22} & x_{32} \\
x_{23} & x_{33}
\end{array}\right)
$$

Construction contd. - structure of $\tilde{S}_{\text {ess }}$

- identity

$$
\tilde{S}_{\text {ess }}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

- transposition

$$
\tilde{S}_{\mathrm{ess}}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

Construction contd. - structure of $\tilde{S}_{\text {ess }}$

- identity

$$
\tilde{S}_{\text {ess }}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

- transposition

$$
\tilde{S}_{\text {ess }}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

- merging of identity and transposition

$$
\tilde{S}_{\text {ess }}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

Construction, contd.

Let $k_{1}, k_{2} \in \mathbb{N}, k=k_{1}+k_{2}+1$. Every matrix $X \in B\left(\mathbb{C}^{k}\right)$ can be represented in the block form

$$
\left(\begin{array}{ccc:ccc:c}
x_{1,1} & \ldots & x_{1, k_{1}} & x_{1, k_{1}+1} & \cdots & x_{1, k_{1}+k_{2}} & x_{1, k} \\
\vdots & & \vdots & \vdots & & \vdots & \vdots \\
x_{k_{1}, 1} & \ldots & x_{k_{1}, k_{1}} & x_{k_{1}, k_{1}+1} & \cdots & x_{k_{1}, k_{1}+k_{2}} & x_{k_{1}, k} \\
\hdashline x_{k_{1}+1,1} & \ldots & x_{k_{1}+1, k_{1}} & x_{k_{1}+1, k_{1}+1} & \cdots & x_{k_{1}+1, k_{1}+k_{2}} & x_{k_{1}+1, k} \\
\vdots & & \vdots & \vdots & & \vdots & \vdots \\
x_{k_{1}+k_{2}, 1} & \cdots & x_{k_{1}+k_{2}, k_{1}} & x_{k_{1}+k_{2}, k_{1}+1} & \cdots & x_{k_{1}+k_{2}, k_{1}+k_{2}} & x_{k_{1}+k_{2}, \underline{k}} \\
\hdashline x_{k, 1} & \ldots & x_{k, k_{1}} & x_{k, k_{1}+1} & \cdots & x_{k, k_{1}+k_{2}} & x_{k, k}
\end{array}\right)
$$

Construction, contd.

Let $k_{1}, k_{2} \in \mathbb{N}, k=k_{1}+k_{2}+1$. Every matrix $X \in B\left(\mathbb{C}^{k}\right)$ can be represented in the block form

$$
\begin{aligned}
& \left(\begin{array}{ccc:ccc:c}
x_{1,1} & \cdots & x_{1, k_{1}} & x_{1, k_{1}+1} & \cdots & x_{1, k_{1}+k_{2}} & x_{1, k} \\
\vdots & & \vdots & \vdots & & \vdots & \vdots \\
x_{k_{1}, 1} & \ldots & x_{k_{1}, k_{1}} & x_{k_{1}, k_{1}+1} & \cdots & x_{k_{1}, k_{1}+k_{2}} & x_{k_{1}, k} \\
\hdashline x_{k_{1}+1,1} & \cdots & x_{k_{1}+1, k_{1}} & x_{k_{1}+1, k_{1}+1} & \cdots & x_{k_{1}+1, k_{1}+k_{2}} & x_{k_{1}+1, k} \\
\vdots & & \vdots & \vdots & & & \vdots \\
x_{k_{1}+k_{2}, 1} & \cdots & x_{k_{1}+k_{2}, k_{1}} & x_{k_{1}+k_{2}, k_{1}+1} & \cdots & x_{k_{1}+k_{2}, k_{1}+k_{2}} & x_{k_{1}+k_{2}, \underline{k}} \\
\hdashline x_{k, 1} & \cdots & x_{k, k_{1}} & x_{k, k_{1}+1} & \cdots & x_{k, k_{1}+k_{2}} & x_{k, k}
\end{array}\right) \\
& \left(\begin{array}{c:c:c}
X_{11} & X_{12} & X_{13} \\
\hdashline \bar{X}_{21} & \bar{X}_{22} & \bar{X}_{23} \\
\hdashline X_{31} & \bar{X}_{32} & \bar{X}_{33}
\end{array}\right), \quad X_{i j} \in B\left(\mathbb{C}^{k_{j}}, \mathbb{C}^{k_{i}}\right), i, j=1,2,3 \\
& k_{3}=1
\end{aligned}
$$

Construction, contd.

$$
\tilde{S}_{\mathrm{ess}}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

Construction, contd.

$$
\tilde{S}_{\mathrm{ess}}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

is generalized to

$$
\phi_{\mathrm{ess}}: B\left(\mathbb{C}^{k_{1}+k_{2}+1}\right) \rightarrow B\left(\mathbb{C}^{k_{1}+k_{2}+1}\right)
$$

Construction, contd.

$$
\tilde{S}_{\mathrm{ess}}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{11} & 0 & x_{13} \\
0 & x_{22} & x_{32} \\
x_{31} & x_{23} & x_{33}
\end{array}\right)
$$

is generalized to

$$
\begin{gathered}
\phi_{\text {ess }}: B\left(\mathbb{C}^{k_{1}+k_{2}+1}\right) \rightarrow B\left(\mathbb{C}^{k_{1}+k_{2}+1}\right) \\
\phi:\left(\begin{array}{c:c:c}
X_{11} & X_{12} & X_{13} \\
\hdashline X_{21} & X_{22} & X_{23} \\
\hdashline X_{31} & X_{32} & X_{33}
\end{array}\right) \mapsto\left(\begin{array}{c:c:c}
X_{11} & 0 & X_{13} \\
\hdashline 0 & X_{22}^{\mathrm{t}} & X_{32}^{\mathrm{t}} \\
\hdashline X_{31} & X_{23}^{\mathrm{t}} & X_{33}
\end{array}\right) \\
X_{i 3} \in B\left(\mathbb{C}, \mathbb{C}^{k_{i}}\right)=\mathbb{C}^{k_{i}}, \quad X_{3 j} \in B\left(\mathbb{C}^{k_{j}}, \mathbb{C}\right)=\left(\mathbb{C}^{k_{j}}\right)^{*}
\end{gathered}
$$

In particular X_{33} is a scalar. Hence $X_{33}^{t}=X_{33}$.

Construction contd.

The diagonal part

$$
\tilde{S}_{\text {diag }}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{22} & 0 & 0 \\
0 & x_{11} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Construction contd.

The diagonal part

$$
\tilde{S}_{\text {diag }}:\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
x_{22} & 0 & 0 \\
0 & x_{11} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

is generalized to

Construction

Therefore, we get

$$
\phi: B\left(\mathbb{C}^{k_{1}+k_{2}+1}\right) \rightarrow B\left(\mathbb{C}^{k_{1}+k_{2}+1}\right)
$$

$$
\phi:\left(\begin{array}{c:c:c}
X_{11} & X_{22} & X_{33} \\
\hdashline X_{11} & \bar{X}_{22} & X_{33} \\
\hdashline X_{11}^{-} & X_{22} & X_{33}
\end{array}\right) \mapsto\left(\begin{array}{c:c:c}
X_{11}+\operatorname{Tr}\left(X_{22}\right) \rrbracket_{k_{1}} & 0 & X_{13} \\
\hdashline 0 & \bar{k}_{31} & X_{22}^{\mathrm{t}}+\operatorname{Tr}\left(X_{11}^{-}\right) \\
\hdashline X_{k_{2}} & \bar{X}_{32}^{\mathrm{t}} \\
\hdashline X_{23}^{\mathrm{t}} & X_{33}
\end{array}\right)
$$

Construction

Therefore, we get

$$
\phi: B\left(\mathbb{C}^{k_{1}+k_{2}+1}\right) \rightarrow B\left(\mathbb{C}^{k_{1}+k_{2}+1}\right)
$$

Further,

Construction

Therefore, we get

$$
\phi: B\left(\mathbb{C}^{k_{1}+k_{2}+1}\right) \rightarrow B\left(\mathbb{C}^{k_{1}+k_{2}+1}\right)
$$

Further,

- replace $\mathbb{C}^{k_{i}}$ by some (not necessarily finite dimensional) Hilbert space $K_{i}, i=1,2$,

Construction

Therefore, we get

$$
\phi: B\left(\mathbb{C}^{k_{1}+k_{2}+1}\right) \rightarrow B\left(\mathbb{C}^{k_{1}+k_{2}+1}\right)
$$

$$
\phi:\left(\begin{array}{c:c:c}
X_{11} & X_{22} & X_{33} \\
\hdashline \bar{X}_{11} & \bar{X}_{22} & X_{33} \\
\hdashline X_{11} & \bar{X}_{22} & \bar{X}_{33}
\end{array}\right) \mapsto\left(\begin{array}{c:c:c}
X_{11}+\operatorname{Tr}\left(X_{22}\right) \rrbracket_{k_{1}} & 0 & X_{13} \\
\hdashline 0 & 0 & \left.X_{31}^{\bar{t}}+\operatorname{Tr}\left(\bar{X}_{11}\right)\right]_{k_{2}} \\
\hdashline \bar{X}_{32}^{\mathrm{t}}- \\
\hdashline X_{23}^{-} & X_{33}
\end{array}\right)
$$

Further,

- replace $\mathbb{C}^{k_{i}}$ by some (not necessarily finite dimensional) Hilbert space $K_{i}, i=1,2$,
- consider some Hilbert-Shmidt operators $A_{i}: K_{i} \rightarrow H_{i}$ $\left(\operatorname{Tr}\left(A_{i}^{*} A_{i}\right)<\infty\right)$, where K_{i} are some another Hilbert spaces

Construction

Therefore, we get

$$
\phi: B\left(\mathbb{C}^{k_{1}+k_{2}+1}\right) \rightarrow B\left(\mathbb{C}^{k_{1}+k_{2}+1}\right)
$$

Further,

- replace $\mathbb{C}^{k_{i}}$ by some (not necessarily finite dimensional) Hilbert space $K_{i}, i=1,2$,
- consider some Hilbert-Shmidt operators $A_{i}: K_{i} \rightarrow H_{i}$ $\left(\operatorname{Tr}\left(A_{i}^{*} A_{i}\right)<\infty\right)$, where K_{i} are some another Hilbert spaces
- replace identity and transposition parts by

$$
\begin{aligned}
& B\left(K_{1}\right) \ni X_{11} \mapsto A_{1} X_{11} A_{1}^{*} \in B\left(H_{1}\right) \\
& B\left(K_{2}\right) \ni X_{22} \rightarrow A_{2} X_{22}^{\mathrm{t}} A_{2}^{*} \in B\left(H_{2}\right)
\end{aligned}
$$

Construction

Finally, we arrive at the following generalization

$$
\phi: B\left(K_{1} \oplus K_{2} \oplus \mathbb{C}\right) \rightarrow B\left(H_{1} \oplus H_{2} \oplus \mathbb{C}\right)
$$

Construction

Finally, we arrive at the following generalization

$$
\phi: B\left(K_{1} \oplus K_{2} \oplus \mathbb{C}\right) \rightarrow B\left(H_{1} \oplus H_{2} \oplus \mathbb{C}\right)
$$

$$
\begin{aligned}
& \phi:\left(\begin{array}{c:c:c}
X_{11} & X_{22} & X_{33} \\
\hdashline \bar{X}_{11} & \bar{X}_{22} & \bar{X}_{33} \\
\hdashline \bar{X}_{11} & \bar{X}_{22} & \bar{X}_{33}
\end{array}\right) \mapsto
\end{aligned}
$$

Construction

Finally, we arrive at the following generalization

$$
\phi: B\left(K_{1} \oplus K_{2} \oplus \mathbb{C}\right) \rightarrow B\left(H_{1} \oplus H_{2} \oplus \mathbb{C}\right)
$$

$$
\begin{aligned}
& \phi:\left(\begin{array}{c:c:c}
X_{11} & X_{22} & X_{33} \\
\hdashline X_{11} & \bar{X}_{22} & \bar{X}_{33} \\
\hdashline \bar{X}_{11} & \bar{X}_{22} & X_{33}
\end{array}\right) \mapsto \\
& \left(\begin{array}{c:c:c}
A_{1} X_{11} A_{1}^{*}+\operatorname{Tr}\left(A_{2} X_{22}^{\mathrm{t}} A_{2}^{*}\right) E_{1} & 0 & A_{1} X_{13} \\
\hdashline 0 & \bar{x}^{\mathrm{s}} & \bar{X}^{\mathrm{t}} \bar{A}_{2}^{*}+\operatorname{Tr}\left(A_{1} X_{11} A_{1}^{*}\right) E_{2} \\
\hdashline-A_{2} \bar{X}_{32}^{\mathrm{t}} \\
\hdashline X_{31} \bar{A}_{1}^{*} & & \bar{X}_{23}^{\mathrm{t}} \bar{A}_{2}^{*}
\end{array}\right.
\end{aligned}
$$

where

- $A_{i}: K_{i} \rightarrow H_{i}$ are Hilbert-Schmidt operators, $i=1,2$.
- E_{i} is the projection in $B\left(H_{i}\right)$ onto the range of A_{i} for $i=1,2$.

Properties of ϕ

Theorem (MM,Rutkowski)

ϕ is a positive map. Moreover, it is exposed in the cone of positive maps.

Proposition

Assume $\operatorname{dim} K_{i}<\infty, \operatorname{dim} H_{i}<\infty$. The map ϕ does not satisfy the strong spanning property, unless one of the following conditions is satisfied:

1. $K_{2}=H_{2}=\{0\}$ and $\operatorname{rank} A_{1}=\operatorname{dim} K_{1}$,
2. $K_{1}=H_{1}=\{0\}$ and $\operatorname{rank} A_{2}=\operatorname{dim} K_{2}$,

Main idea of the proof

- $K=K_{1} \oplus K_{2} \oplus \mathbb{C}, H=H_{1} \oplus H_{2} \oplus \mathbb{C}$
- $\mathcal{Z}=\left\{(\xi, \eta) \in K \times H:\left\langle\eta, \phi\left(\xi \xi^{*}\right) \eta\right\rangle=0\right.$

Main idea of the proof

- $K=K_{1} \oplus K_{2} \oplus \mathbb{C}, H=H_{1} \oplus H_{2} \oplus \mathbb{C}$
- $\mathcal{Z}=\left\{(\xi, \eta) \in K \times H:\left\langle\eta, \phi\left(\xi \xi^{*}\right) \eta\right\rangle=0\right.$
- By Kye's characterization of exposed faces, $\phi: B(K) \rightarrow B(H)$ is exposed iff $\forall \psi \in \mathfrak{P}:\left(\forall(\xi, \eta) \in \mathcal{Z}:\left\langle\eta, \psi\left(\xi \xi^{*}\right) \eta\right\rangle=0\right) \quad \Rightarrow \quad \psi \in \mathbb{R}^{+} \phi$.

Main idea of the proof

- $K=K_{1} \oplus K_{2} \oplus \mathbb{C}, H=H_{1} \oplus H_{2} \oplus \mathbb{C}$
- $\mathcal{Z}=\left\{(\xi, \eta) \in K \times H:\left\langle\eta, \phi\left(\xi \xi^{*}\right) \eta\right\rangle=0\right.$
- By Kye's characterization of exposed faces, $\phi: B(K) \rightarrow B(H)$ is exposed iff $\forall \psi \in \mathfrak{P}:\left(\forall(\xi, \eta) \in \mathcal{Z}:\left\langle\eta, \psi\left(\xi \xi^{*}\right) \eta\right\rangle=0\right) \quad \Rightarrow \quad \psi \in \mathbb{R}^{+} \phi$.
- $\left\langle\eta, \phi\left(\xi \xi^{*}\right) \eta\right\rangle$ is equal to

$$
\left\|A_{1} \xi_{1}\right\|^{2}\left\|E_{2} \eta_{2}\right\|^{2}+\left\|A_{2} \overline{\xi_{2}}\right\|^{2}\left\|E_{1} \eta_{1}\right\|^{2}+\left|\left\langle\eta_{1}, A_{1} \xi_{1}\right\rangle\right|^{2}+\left|\left\langle\eta_{2}, A_{2} \overline{\xi_{2}}\right\rangle\right|^{2}
$$

if $\alpha=0$, and

$$
\begin{array}{r}
|\alpha|^{-2}\left(\left.| | \alpha\right|^{2} \bar{\beta}+\bar{\alpha}\left\langle\eta_{1}, A_{1} \xi_{1}\right\rangle+\left.\alpha\left\langle\eta_{2}, A_{2} \overline{\xi_{2}}\right\rangle\right|^{2}\right. \\
\left.+\left\|\alpha E_{1} \eta_{1} \otimes A_{2} \overline{\xi_{2}}-\bar{\alpha} A_{1} \xi_{1} \otimes E_{2} \eta_{2}\right\|^{2}\right),
\end{array}
$$

if $\alpha \neq 0$.

Sketch of the proof

- Thus $(\xi, \eta) \in \mathcal{Z}$ iff one of the following conditions holds

$$
\begin{aligned}
& \alpha=0, A_{1} \xi_{1}=0, A_{2} \overline{\xi_{2}}=0 \\
& \alpha=0, A_{1} \xi_{1} \neq 0, A_{2} \overline{\bar{\xi}_{2}}=0 \quad \text { and } \eta_{1} \perp A_{1} \xi_{1}, E_{2} \eta_{2}=0 \\
& \alpha=0, A_{1} \xi_{1}=0, A_{2} \overline{\xi_{2}} \neq 0 \quad \text { and } E_{1} \eta_{1}=0, \eta_{2} \perp A_{2} \overline{\xi_{2}} \\
& \alpha=0, A_{1} \xi_{1} \neq 0, A_{2} \overline{\xi_{2}} \neq 0 \quad \text { and } E_{1} \eta_{1}=0, E_{2} \eta_{2}=0 \\
& \alpha \neq 0, A_{1} \xi_{1}=0, A_{2} \overline{\xi_{2}}=0 \quad \text { and } \beta=0 \\
& \alpha \neq 0, A_{1} \xi_{1} \neq 0, A_{2} \overline{\xi_{2}}=0 \quad \text { and }\left\langle A_{1} \xi_{1}, \eta_{1}\right\rangle=-\bar{\alpha} \beta, E_{2} \eta_{2}=0 \\
& \alpha \neq 0, A_{1} \xi_{1}=0, A_{2} \overline{\xi_{2}} \neq 0 \quad \text { and } E_{1} \eta_{1}=0,\left\langle A_{2} \overline{\xi_{2}}, \eta_{2}\right\rangle=-\alpha \beta \\
& \alpha \neq 0, A_{1} \xi_{1} \neq 0, A_{2} \overline{\xi_{2} \neq 0} \text { and }\left\{\begin{array}{l}
E \eta_{1}=-\frac{\bar{\alpha} \beta}{\left\|A_{1} \xi_{1}\right\|^{2}+\left\|A_{2} \overline{\xi_{2}}\right\|^{2}} A_{1} \xi_{1}, \\
E \eta_{2}=-\frac{\alpha \beta}{\left\|A_{1} \xi_{1}\right\|^{2}+\left\|A_{2} \overline{\xi_{2}}\right\|^{2}} A_{2} \overline{\xi_{2}}
\end{array}\right.
\end{aligned}
$$

Sketch of the proof

- Now, assume $\left\langle\eta, \psi\left(\xi \xi^{*}\right) \eta\right\rangle=0$ for all $(\xi, \eta) \in \mathcal{Z}$.

Sketch of the proof

- Now, assume $\left\langle\eta, \psi\left(\xi \xi^{*}\right) \eta\right\rangle=0$ for all $(\xi, \eta) \in \mathcal{Z}$.
- One shows that there are sesquilinear vector valued forms

$$
\Psi_{k l}:\left(K_{1} \oplus K_{2}\right) \times\left(K_{1} \oplus K_{2}\right) \rightarrow B\left(H_{l}, H_{k}\right), \quad k, l=1,2
$$

and linear maps $R_{k}, Q_{k}: K_{1} \oplus K_{2} \rightarrow H_{k}$ for $k=1,2$ such that $\psi\left(\xi \xi^{*}\right)$ is equal to
$\left(\begin{array}{ccc}\Psi_{11}\left(\xi_{0}, \xi_{0}\right) & \Psi_{12}\left(\xi_{0}, \xi_{0}\right) & \bar{\alpha} R_{1} \xi_{0}+\alpha Q_{1} \overline{\xi_{0}} \\ \Psi_{21}\left(\xi_{0}, \xi_{0}\right) & \Psi_{22}\left(\xi_{0}, \xi_{0}\right) & \bar{\alpha} R_{2} \xi_{0}+\alpha Q_{2} \xi_{0} \\ \alpha\left(R_{1} \xi_{0}\right)^{*}+\bar{\alpha}\left(Q_{1} \overline{\xi_{0}}\right)^{*} & \alpha\left(R_{2} \xi_{0}\right)^{*}+\bar{\alpha}\left(Q_{2} \overline{\xi_{0}}\right)^{*} & \lambda|\alpha|^{2}\end{array}\right)$
for any $\xi \in K$ where $\xi=\xi_{0}+\alpha e$ for a unique $\xi_{0}=\xi_{1}+\xi_{2} \in K_{1} \oplus K_{2}$ and $\alpha \in \mathbb{C}$.

Sketch of the proof

- Now, assume $\left\langle\eta, \psi\left(\xi \xi^{*}\right) \eta\right\rangle=0$ for all $(\xi, \eta) \in \mathcal{Z}$.
- One shows that there are sesquilinear vector valued forms

$$
\Psi_{k l}:\left(K_{1} \oplus K_{2}\right) \times\left(K_{1} \oplus K_{2}\right) \rightarrow B\left(H_{l}, H_{k}\right), \quad k, l=1,2
$$

and linear maps $R_{k}, Q_{k}: K_{1} \oplus K_{2} \rightarrow H_{k}$ for $k=1,2$ such that $\psi\left(\xi \xi^{*}\right)$ is equal to
$\left(\begin{array}{ccc}\Psi_{11}\left(\xi_{0}, \xi_{0}\right) & \Psi_{12}\left(\xi_{0}, \xi_{0}\right) & \bar{\alpha} R_{1} \xi_{0}+\alpha Q_{1} \overline{\xi_{0}} \\ \Psi_{21}\left(\xi_{0}, \xi_{0}\right) & \Psi_{22}\left(\xi_{0}, \xi_{0}\right) & \bar{\alpha} R_{2} \xi_{0}+\alpha Q_{2} \xi_{0} \\ \alpha\left(R_{1} \xi_{0}\right)^{*}+\bar{\alpha}\left(Q_{1} \overline{\xi_{0}}\right)^{*} & \alpha\left(R_{2} \xi_{0}\right)^{*}+\bar{\alpha}\left(Q_{2} \overline{\xi_{0}}\right)^{*} & \lambda|\alpha|^{2}\end{array}\right)$
for any $\xi \in K$ where $\xi=\xi_{0}+\alpha e$ for a unique $\xi_{0}=\xi_{1}+\xi_{2} \in K_{1} \oplus K_{2}$ and $\alpha \in \mathbb{C}$.

- Finally, by a sequence of reasonings using linearity-antilinearity interplay, one that all ingredients are multiples by λ of respective terms of ϕ.

Further properties of maps

- Obviously, ϕ is nondecomposable and even atomic.
- ϕ is not locally completely positive.
- For $K_{i}=H_{i}=\mathbb{C}^{k_{i}}$ (finite dimensional) and $A_{i}=$ id one can normalize map ϕ to obtain a unital map

$$
X \mapsto\left(\begin{array}{c:c:c}
\frac{1}{1+k_{2}}\left(X_{11}+\operatorname{Tr}\left(X_{22}\right) \rrbracket_{k_{1}}\right) & 0 & \frac{1}{\sqrt{1+k_{2}}} X_{13} \\
\hdashline 0 & \frac{1}{1+k_{1}}\left(X_{22}^{\mathrm{t}}+\operatorname{Tr}\left(\bar{X}_{11}^{-}\right) \overline{\mathrm{n}}_{k_{2}}\right) & \frac{1}{\sqrt{1+k_{1}}} \mathrm{X}_{32}^{\mathrm{t}^{\mathrm{t}}} \\
\hdashline \frac{1}{\sqrt{1+k_{2}}} \bar{X}_{31} & & \frac{1}{\sqrt{1+k_{1}}} \bar{X}_{23}^{\mathrm{t}}
\end{array}\right.
$$

which becomes bistochastic if $k_{1}=k_{2}$.

Further generalizations

- Consider two positive maps $\phi_{i}: B\left(K_{i}\right) \rightarrow B\left(H_{i}\right), i=1,2$.

Further generalizations

- Consider two positive maps $\phi_{i}: B\left(K_{i}\right) \rightarrow B\left(H_{i}\right), i=1,2$.
- Let $C_{k}, D_{k}: K_{k} \rightarrow H_{k}, k=1,2$, be linear maps.

Further generalizations

- Consider two positive maps $\phi_{i}: B\left(K_{i}\right) \rightarrow B\left(H_{i}\right), i=1,2$.
- Let $C_{k}, D_{k}: K_{k} \rightarrow H_{k}, k=1,2$, be linear maps.
- Define merging of the maps ϕ_{1} and ϕ_{2} by operators C_{k}, D_{k} as a linear map

$$
\phi: B\left(K_{1} \oplus K_{2} \oplus \mathbb{C}\right) \rightarrow B\left(H_{1} \oplus H_{2} \oplus \mathbb{C}\right)
$$

which to X assigns
$\left(\begin{array}{c:c:c}\phi_{1}\left(X_{11}\right)+\operatorname{Tr}\left(\phi_{2}\left(X_{22}\right)\right) E_{1} & 0 & C_{1} X_{13}+D_{1} X_{31}^{\mathrm{t}} \\ \hdashline 0 & \bar{\phi}_{2}\left(\bar{X}_{22}\right)+\operatorname{Tr}\left(\bar{\phi}_{1}\left(\bar{X}_{11}\right)\right) E_{2} & C_{2} X_{23}+D_{2} \bar{X}_{32}^{\mathrm{t}} \\ \hdashline X_{31} C_{1}^{*}+\bar{X}_{13}^{\mathrm{t}} \bar{D}_{1}^{*} & X_{32} C_{2}^{*}+\bar{X}_{23}^{\mathrm{t}} \bar{D}_{2}^{*} & \bar{X}_{33}^{-}\end{array}\right)$
where E_{k} is support projection of $\phi_{k}\left(\square_{k}\right)$.

Further generalizations

Theorem

If ϕ_{1} is 2-positive and ϕ_{2} is 2-copositive, then there are operators C_{k}, D_{k} such that merging of ϕ_{1} and ϕ_{2} by C_{k}, D_{k} is a positive nondecomposable map.

References

- M. Marciniak, Ekstremal positive maps between type I factors, Banach Center Publ., vol. 89 (2010), pp. 201-221
围 M. Marciniak, Rank properties of exposed positive maps, Lin. Multilin. Alg. 61 (2013), 970-975.
囯 M. Marciniak, A. Rutkowski, A family of exposed positive maps, in preparation.

