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Quantum Entanglement
Consider a bipartite system (system composed of two parts)
and described by a density operator ρ ∈ B(H∞ ⊗H∈).

Strongly Separable

ρ = ρ1 ⊗ ρ2

Weakly Separable

ρ =
∑

i

pi ρ
1
i ⊗ ρ2

i with pi > 0.

States which are not separable are entangled



Quantum algorithms need entanglement

Quantum non-locality is intimately connected with
entanglement



Central Question

To determine whether a given arbitrary (pure or mixed) bipartite
state ρ is entangled or separable.

The problem has a simple solution for the case of pure states.

For mixed states such a characterization is not possible and
only partial solutions are available.



Maps P anc CP

A map ϕ : B(H) −→ B(H) is said to be positive if it maps the
set of positive operators in B(H) (denoted by B(H)+) to itself.

A positive map is said to be completely positive if the extension
1d ⊗ ϕ : B(Cd ⊗H) −→ B(Cd ⊗H) is a positive map for all
d ≥ 1.

CP maps show a remarkably simple representation due to
(Sudarshan, Kraus and Choi), P maps which are not CP are not
easily characterizable.



P (NOT CP) maps as entanglement witnesses
Separable states remain positive when we apply P (NOT
CP) to one of the systems.
Any state which turns into a non-state under the
application of a P (NOT CP) to one of the systems, has to
be entangled.
Such maps act as entanglement witnesses.



NPT vs PPT

Transpose is a P but not CP map
States which are negative under partial transpose are
entangled and called NPT entangled states.
States which are positive under partial transpose are
called PPT states.
PPT states could be separable or entangled.
Entanglement of PPT entangled states is called bound
entanglement.
No PPT entangled states for 2⊗ 2 and 2⊗ 3 systems.



Extremal Extensions of Positive Maps
ϕ : B(H) −→ B(H) to be a positive indecomposable map.
(Not CP)
For any A ∈ Gln(C), we can define a map

A : B(H) −→ B(H)

X 7−→ AXA† For X ∈ B(H)

ϕ ◦ A =ϕA Inner Automorphism

A ◦ ϕ =ϕA Outer Automorphism



Extremality
The set of positive maps is a convex set described by its
‘extremal points’.

A positive map h is said to be extremal, when for any
decomposition h = h1 + h2, where h1 and h2 are positive maps,
hi = λih, where λi ≥ 0 and λ1 + λ2 = 1.

For an extremal ϕ both ϕA and ϕA are extremal.



Theorem

For any positive map ϕ : B(H) 7−→ B(H), and for any full rank
operator A, (such that AA† ≤ I) ϕA is a positive map. Moreover,
if ϕ is not completely positive and extremal, so is the map ϕA.



Theorem

1 For any positive map ϕ : B(H) −→ B(H), and any invertible
operator A, the outer automorphism ϕA is a positive map.

2 Any entangled state ρ detected by ϕA is detected by ϕ and
vice versa.

Thus outer automorphism is useless as far as entanglement
detection is concerned.



Positivity under partial transpose is invariant under inner unitary
automorphism. In other words, for the transpose map T and
any unitary operator U, (I ⊗ T )ρ ≥ 0 implies (I ⊗ TU)ρ ≥ 0 for
any state ρ.



Choi map

ϕC1 : ((xij)) 7−→ 1
2

x11 + x22 −x12 −x13
−x21 x22 + x33 −x23
−x31 −x32 x33 + x11



ϕC2 : ((xij)) 7−→ 1
2

x11 + x33 −x12 −x13
−x21 x22 + x11 −x23
−x31 −x32 x33 + x22





Extensions of Choi map
We are interested in UNITARY INNER AUTOMORPHISMS
of the Choi maps.
ϕC1,2 ◦ U where U ∈ SU(3) is a unitary operator.



TILES Construction

|ψ0〉 =
1√
2
|0〉 (|0〉 − |1〉) , |ψ2〉 =

1√
2
|2〉 (|1〉 − |2〉) ,

|ψ1〉 =
1√
2

(|0〉 − |1〉) |2〉, |ψ3〉 =
1√
2

(|1〉 − |2〉) |0〉,

|ψ4〉 =
1
3

(|0〉+ |1〉+ |2〉) (|0〉+ |1〉+ |2〉) (1)

ρ =
1
4

(
I9 −

4∑
i=0

|ψi〉〈ψi |
)
. (2)

is PPT entangled.

Maps I ⊗ ϕC1,2 applied to this state keep it positive.



Consider a one-parameter family of extremal extensions of the
Choi maps ϕC1,2(θ) = ϕC1,2 ◦ U(θ) with

U(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 .
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The PYRAMID construction

vi = N
(

cos
2πj
5
, sin

2πi
5
,h
)

j = 0, · · · ,4;

where h = 1
2

√
1 +
√

5 and N = 2√
5+
√

5
.

|ψj〉 = |vj〉 ⊗ |v2j mod 5〉, j = 0, · · · ,4.
PPT entangled states can be defined similarly
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Connection between Choi maps

ϕC1 = U
(

3π
2

)
◦ ϕC2 ◦ U

(π
2

)
.



Another connection

We consider an extremal positive in-decomposable map
ϕ : B(Cn) −→ B(Cn) and the corresponding bi-quadratic

F
(

X
Y

)
= F

(
x1 · · · xn
y1 · · · yn

)
= 〈Y |ϕ(|X 〉〈X |)Y 〉, where

|X 〉 = (x1, · · · , xn)t , and |Y 〉 = (y1, · · · , yn)t , t denotes the
transpose, and xi , yj are real parameters.

A map ϕ is positive and extremal if and only if the
corresponding real bi-quadratic form is positive and extremal.

Indecomposability of the map implies that the form F can not
be written as a sum of square of quadratic forms.



It can be shown that for any set of n non zero real parameters
a1, · · · ,an; the form

G
(

x1 · · · xn
y1 · · · yn

)
= F

(
a1x1 · · · anxn
y1 · · · yn

)
is also an extremal positive form. Hence the corresponding
map denoted by ϕ(a1,··· ,an) is an extremal indecomposable
positive map.



This extension is useful

(x , t) =
1

4 + 3
t + 4t



1 + t 0 0 0 x 0 0 0 x
0 t 0 x 0 0 0 0 0
0 0 1

t 0 0 0 x 0 0
0 x 0 1

t 0 0 0 0 0
x 0 0 0 1 + t 0 0 0 x
0 0 0 0 0 t 0 x 0
0 0 x 0 0 0 1 0 0
0 0 0 0 0 x 0 1

t 0
x 0 0 0 x 0 0 0 1


where 0 < x < 1 and 0 < t < 1.



Recasting this extension

ϕ(a1,··· ,an) = ϕ ◦ A

where A is an operator given by the diagonal matrix

A = Diag(a1,a2 · · · ,an)

This is clearly a non-unitary inner automorphism and connects
our earlier result with the present formulation.



Local Filters

Local operators represented by L⊗M where L,M are local
invertible operators.

ρf = (L⊗M)ρ(L⊗M)†

If L,M are full rank operators. Then the map
ρ 7→ (L⊗M)ρ(L⊗M)† does not change the Schmidt
number of the state.
The PPT or NPT character of a state is invariant under an
invertible local filtration operation.



Implementation of filters

Singular value decomposition given by L = U1D1V1 and
M = U2D2V2. Here U1,U2,V1,V2 are unitary operators
and D1,D2 are diagonal with real positive definite diagonal
entries.
Unitaries can be implemented by Hamiltonians. We
therefore need to focus on D1 and D2.



Consider the implementation of D1 on HA. Consider a set of n
orthogonal but un-normalized vectors of the form

∣∣uj
〉

=
√

dj |j〉
in the n dim. system Hilbert space. Extend each of these
vectors into a 2n dimensional space∣∣ξj
〉

=
√

dj |j〉+
√

1− dj |j + n〉.

Pj =
∣∣ξj
〉 〈
ξj
∣∣ =

(
ηj δj
δj η′j

)
2n×2n

ηj = dj |j〉 〈j | , η′j =
(
1− dj

)
|j〉 〈j | , δj =

√
dj
(
1− dj

)
|j〉 〈j |

P =
n∑

j=1

Pj =

(
D1 ∆

∆ D′1

)
2n×2n

where D1 = η1 + · · ·+ ηn original operator that we wanted to
implement, D′1 = η′1 + · · ·+ η′n is a complementary operator
obtained from D1 and ∆ = δ1 + · · ·+ δn represents the cross
terms.



Now consider the system to be in an arbitrary state ρA and the
one-qubit ancilla to be in the state |0〉 〈0|. Consider a
measurement of P on this composite system. If the outcome of
the measurement is positive, we retain the state. The state
after such a selection is given by the action of the projection
operator P on the composite state:

P (|0〉 〈0| ⊗ ρA) P

=

(
D1ρAD1 D1ρA∆

∆ρAD1 ∆ρA∆

)



ρ ∈ B (HA ⊗HB)

|0〉 〈0| |0〉 〈0|(V1 ⊗ V2) ρ (V1 ⊗ V2)
†

Discard the ancillas

ρ′ = (L⊗M)ρ (L⊗M)
†

Alice Bob

Ancilla Ancilla

Measure

Measure

Keep if both outcomes “yes”.
Needs Classical Comm.

Keep if both outcomes “yes”.
Needs Classical Comm.

Implement V1 V2

⊗ ⊗

P Q

|0〉 〈0| ⊗ I I ⊗ |0〉 〈0|

U1 U2Implement

Figure : Schematic diagram for performing the local filtration via
measurements.



Cryptography with Bound Entanglement

Can bound entangled states be used?
Teleportation, cryptography
Examples of Key distillable bound entangled states have
been given.
We have shown that by using appropriate filtration
schemes one can turn a non-key distillable bound
entangled state into a state with distillable key.



Conclusions

Considered a method for extremal extension of
entanglement witnesses.
Used the method to produces useful extensions.
Connection with UPBS.
Found a new class of Bound Entangled states.
Local filters as as dual to automorphisms of maps.
Physical implementation of local filters.
Enhancement of distillable key from bound entangled
states.


