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Research Interests

@ Quantum Entanglement

@ Quantum Nonlocality and quantum contextuality.
@ Weak quantum measurements.

@ Quantum optics and symplectic methods.

@ NMR Quantum Information processing.

@ Design of experiments for padagogy.
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Quantum Entanglement

Consider a bipartite system (system composed of two parts)
and described by a density operator p € B(Hoo ® He).

Strongly Separable

p=p &

Weakly Separable

p=> Pip ®p; with p; >0.
i

States which are not separable are entangled




Quantum algorithms need entanglement )

Quantum non-locality is intimately connected with
entanglement




Central Question

To determine whether a given arbitrary (pure or mixed) bipartite
state p is entangled or separable. l

The problem has a simple solution for the case of pure states. J

For mixed states such a characterization is not possible and
only partial solutions are available.




Maps P anc CP

A map ¢ : B(H) — B(H) is said to be positive if it maps the
set of positive operators in B(*) (denoted by B(H).) to itself.

A positive map is said to be completely positive if the extension
1@ ¢ : B(C?® H) — B(C? @ H) is a positive map for all
d>1.

CP maps show a remarkably simple representation due to
(Sudarshan, Kraus and Choi), P maps which are not CP are not
easily characterizable.




P (NOT CP) maps as entanglement withesses

@ Separable states remain positive when we apply P (NOT
CP) to one of the systems.

@ Any state which turns into a non-state under the
application of a P (NOT CP) to one of the systems, has to
be entangled.

@ Such maps act as entanglement witnesses.




NPT vs PPT

Transpose is a P but not CP map

@ States which are negative under partial transpose are
entangled and called NPT entangled states.

@ States which are positive under partial transpose are
called PPT states.

@ PPT states could be separable or entangled.

@ Entanglement of PPT entangled states is called bound
entanglement.

@ No PPT entangled states for 2 ® 2 and 2 ® 3 systems.




Extremal Extensions of Positive Maps

@ ¢ : B(H) — B(H) to be a positive indecomposable map.
(Not CP)

@ For any A € GIy(C), we can define a map

A:B(H) — B(H)
X — AXAT  For X € B(H)

woA=pp Inner Automorphism

Ao p =" Outer Automorphism




Extremality

The set of positive maps is a convex set described by its
‘extremal points’.

A positive map h is said to be extremal, when for any
decomposition h = hy + ho, where hy and hy are positive maps,
h; = A\jh, where \; > 0and A1 + X = 1.

For an extremal ¢ both 4 and ¢* are extremal.




For any positive map ¢ : B(H) — B(#), and for any full rank
operator A, (such that AAT < |) p, is a positive map. Moreover,
if p is not completely positive and extremal, so is the map ¢a.




@ For any positive map ¢ : B(H) — B(H), and any invertible

operator A, the outer automorphism ©* is a positive map.

Q Any entangled state p detected by ©* is detected by ¢ and
vice versa.

v

Thus outer automorphism is useless as far as entanglement
detection is concerned.

|




Positivity under partial transpose is invariant under inner unitary
automorphism. In other words, for the transpose map T and
any unitary operator U, (/® T)p > 0 implies (/® Ty)p > 0 for
any state p.
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Extensions of Choi map

@ We are interested in UNITARY INNER AUTOMORPHISMS
of the Choi maps.

® ¢¢,, o Uwhere U € SU(3) is a unitary operator.




TILES Construction

1 1
o) = ﬁ\0>(|0>—|1>)a |¢2>:ﬁ|2>(|1>_|2>)’
1 1
1) = ﬁ(!0>—|1>)!2>a |¢3>:ﬁ(|1>_‘2>)|0>’
|tha) = %(|O>+|1>+|2>)(!0>+|1>+|2>) (1)
. 4
=7 </9 - ZW:‘><¢/\> : (@)
i=0

is PPT entangled.

Maps / @ ¢¢, , applied to this state keep it positive.

M




Consider a one-parameter family of extremal extensions of the
Choi maps ¢, ,(0) = ¢, , o U(0) with

cosf O sind
u@) = 0 1 0 :

—singd 0 cosd
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The PYRAMID construction

vi=N (cos —=,sin — ,h) 4,

+

’¢j>:"/j>®’V2j m0d5>7 j:0774
@ PPT entangled states can be defined similarly







Connection between Choi maps

vo=U (5 ) ovaot(3).




Another connection

We consider an extremal positive in-decomposable map
¢ : B(C") — B(C™) and the corresponding bi-quadratic
X Xy e x,,)
F = F = (Y|o(|X)(X]|)Y), where
(%)=, o) = vieixem
IX) = (x4, ,xp)!, and | Y) = (y1,--- , yn)!, t denotes the
transpose, and x;, y; are real parameters.

A map ¢ is positive and extremal if and only if the
corresponding real bi-quadratic form is positive and extremal.

Indecomposability of the map implies that the form F can not
be written as a sum of square of quadratic forms.




It can be shown that for any set of n non zero real parameters
ai, - ,an; the form

G <X1 Xn) _F <31 Xy e aan>
is also an extremal positive form. Hence the corresponding

map denoted by ¢4 ... a,) IS an extremal indecomposable
positive map.
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where0 < x<1and0 < t< 1.




Recasting this extension

P(ay,,an) — P° A
where A is an operator given by the diagonal matrix

A:Diag(a1732"' 7an)

This is clearly a non-unitary inner automorphism and connects
our earlier result with the present formulation.




Local Filters

Local operators represented by L ® M where L,M are local
invertible operators.

pl=(L® M)p(Lo M)f

@ If L, M are full rank operators. Then the map
p (L® M)p(L® M)' does not change the Schmidt
number of the state.

@ The PPT or NPT character of a state is invariant under an
invertible local filtration operation.



Implementation of filters

@ Singular value decomposition given by L = U; D V4 and
M = U,D,V,. Here Uy, Us, V4, Vs are unitary operators
and Dy, D, are diagonal with real positive definite diagonal
entries.

@ Unitaries can be implemented by Hamiltonians. We
therefore need to focus on Dy and D..



Consider the implementation of Dy on H 4. Consider a set of n
orthogonal but un-normalized vectors of the form |u,~> =./dj)
in the n dim. system Hilbert space. Extend each of these
vectors into a 2n dimensional space

&) = VAl + /T —djli+n).

o
= l6) 6l = (Frar)

ni=dli) Ul np=0-d) DUl G=1/d(1-d)l{l

A
P= ZP/Z(A D’)
2nx2n

where Dy = n1 + - - - + np original operator that we wanted to
implement, D} =7} + --- + 1, is a complementary operator
obtained from Dy and A = 64 + - - - + &, represents the cross



Now consider the system to be in an arbitrary state p4 and the
one-qubit ancilla to be in the state |0) (0|. Consider a
measurement of P on this composite system. If the outcome of
the measurement is positive, we retain the state. The state
after such a selection is given by the action of the projection
operator P on the composite state:

P(10) (0] © pa) P

_ < DipaD; | Dipal >
ApaDy | Dpas
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Cryptography with Bound Entanglement

@ Can bound entangled states be used?
@ Teleportation, cryptography

@ Examples of Key distillable bound entangled states have
been given.
@ We have shown that by using appropriate filtration

schemes one can turn a non-key distillable bound
entangled state into a state with distillable key.



Conclusions

@ Considered a method for extremal extension of
entanglement witnesses.

Used the method to produces useful extensions.
Connection with UPBS.

Found a new class of Bound Entangled states.
Local filters as as dual to automorphisms of maps.
Physical implementation of local filters.

Enhancement of distillable key from bound entangled
states.



