Recent progress on the distillability problem

Lin Chen

School of Mathematics and Systems Science, Beihang University, Beijing, China

Email: linchen@buaa.edu.cn

NIMS, Daejeon, Korea, February 16, 2016

The talk is based on two papers:

1. J. Phys. A. 44, 285303 (2011),
2. quant-ph/1602.04416 (2016).

Collaborator:

Dragomir Z Djokovic
Department of Pure Mathematics and Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

Outlines

- The distillability problem and entanglement distillation

Outlines

- The distillability problem and entanglement distillation
- $M \times N$ NPT states of rank $\max \{M, N\}$

Outlines

- The distillability problem and entanglement distillation
- $M \times N$ NPT states of rank $\max \{M, N\}$
- Two-qutrit NPT states of rank four and five

Outlines

- The distillability problem and entanglement distillation
- $M \times N$ NPT states of rank $\max \{M, N\}$
- Two-qutrit NPT states of rank four and five
- Open problems

Entanglement distillation

- Pure entangled states are essential resources in quantum information

Entanglement distillation

- Pure entangled states are essential resources in quantum information
- Pure entangled states become mixed entangled states by noise

Entanglement distillation

- Pure entangled states are essential resources in quantum information
- Pure entangled states become mixed entangled states by noise
- Entanglement distillation. Bennett et al, 1996.

Entanglement distillation

- Pure entangled states are essential resources in quantum information
- Pure entangled states become mixed entangled states by noise
- Entanglement distillation. Bennett et al, 1996.

Definition

We transform N copies of an arbitrary entangled state ρ into a pure entangled state $|\psi\rangle$ asymptotically under local operations and classical communications (LOCC).

Entanglement distillation

- Pure entangled states are essential resources in quantum information
- Pure entangled states become mixed entangled states by noise
- Entanglement distillation. Bennett et al, 1996.

Definition

We transform N copies of an arbitrary entangled state ρ into a pure entangled state $|\psi\rangle$ asymptotically under local operations and classical communications (LOCC).

- i.e.,

$$
\rho^{\otimes N} \rightarrow|\psi\rangle
$$

Entanglement distillation

- Pure entangled states are essential resources in quantum information
- Pure entangled states become mixed entangled states by noise
- Entanglement distillation. Bennett et al, 1996.

Definition

We transform N copies of an arbitrary entangled state ρ into a pure entangled state $|\psi\rangle$ asymptotically under local operations and classical communications (LOCC).

- i.e.,

$$
\rho^{\otimes N} \rightarrow|\psi\rangle
$$

-

$$
\rightarrow\left(\frac{|00\rangle+|11\rangle}{\sqrt{2}}\right)^{\otimes m}
$$

Entanglement distillation

- Hence

Entanglement distillation

- Hence

Definition

If pure entangled states are obtained then ρ is distillable.

Entanglement distillation

- Hence

Definition

If pure entangled states are obtained then ρ is distillable.

- and

Entanglement distillation

- Hence

Definition

If pure entangled states are obtained then ρ is distillable.

- and

Definition

If no pure entangled states can be obtained, then ρ is not distillable, or equivalently ρ is undistillable.

Distillability problem

- The positive-partial-transpose (PPT) states are not distillable.

Distillability problem

- The positive-partial-transpose (PPT) states are not distillable.

Definition

Distillability problem. Is every NPT state distillable?

Distillability problem

- The positive-partial-transpose (PPT) states are not distillable.

Definition

Distillability problem. Is every NPT state distillable?

- General belief: No!

Distillability problem

- The positive-partial-transpose (PPT) states are not distillable.

Definition

Distillability problem. Is every NPT state distillable?

- General belief: No!
- Proof of the existence of undistillable NPT states: No idea yet.

Distillability problem

- The positive-partial-transpose (PPT) states are not distillable.

Definition

Distillability problem. Is every NPT state distillable?

- General belief: No!
- Proof of the existence of undistillable NPT states: No idea yet.
- Proof of the existence 2-undistillable NPT Werner states: Not found yet.

Distillability problem

- The positive-partial-transpose (PPT) states are not distillable.

Definition

Distillability problem. Is every NPT state distillable?

- General belief: No!
- Proof of the existence of undistillable NPT states: No idea yet.
- Proof of the existence 2-undistillable NPT Werner states: Not found yet.
- Attempts for the proof: Yes, there is something...

Attempts to solve the distillability problem

- Any NPT state is convertible to an NPT Werner state, Divincenzo et al, Dur et al 2000

Attempts to solve the distillability problem

- Any NPT state is convertible to an NPT Werner state, Divincenzo et al, Dur et al 2000
- n-undistillable but $(n+1)$-distillable states Watrous, 2004

Attempts to solve the distillability problem

- Any NPT state is convertible to an NPT Werner state, Divincenzo et al, Dur et al 2000
- n-undistillable but $(n+1)$-distillable states Watrous, 2004
- 2-positive map, Clarisse, 2005

Attempts to solve the distillability problem

- Any NPT state is convertible to an NPT Werner state, Divincenzo et al, Dur et al 2000
- n-undistillable but $(n+1)$-distillable states Watrous, 2004
- 2-positive map, Clarisse, 2005
- Numerical test on the 2-distillability of two-qutrit Werner states,
Vianna et al, 2006

Attempts to solve the distillability problem

- Any NPT state is convertible to an NPT Werner state, Divincenzo et al, Dur et al 2000
- n-undistillable but $(n+1)$-distillable states Watrous, 2004
- 2-positive map, Clarisse, 2005
- Numerical test on the 2-distillability of two-qutrit Werner states,
Vianna et al, 2006
- 2-distillability of 4×4 Werner states, Pankowski et al, 2007

Attempts to solve the distillability problem

- Any NPT state is convertible to an NPT Werner state, Divincenzo et al, Dur et al 2000
- n-undistillable but $(n+1)$-distillable states Watrous, 2004
- 2-positive map, Clarisse, 2005
- Numerical test on the 2-distillability of two-qutrit Werner states,
Vianna et al, 2006
- 2-distillability of 4×4 Werner states, Pankowski et al, 2007
- Hiroshima, 2008

Sperling et al, 2009

Attempts to solve the distillability problem

- Any NPT state is convertible to an NPT Werner state, Divincenzo et al, Dur et al 2000
- n-undistillable but $(n+1)$-distillable states

Watrous, 2004

- 2-positive map, Clarisse, 2005
- Numerical test on the 2-distillability of two-qutrit Werner states,
Vianna et al, 2006
- 2-distillability of 4×4 Werner states, Pankowski et al, 2007
- Hiroshima, 2008

Sperling et al, 2009

- ???

PPT and NPT

Definition

The partial transpose of a bipartite quantum state ρ acting on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ is computed in an orthonormal (o .n.) basis $\left\{\left|a_{i}\right\rangle\right\}$ of system A, is defined by $\rho^{\Gamma}:=\sum_{i j}\left|a_{i}\right\rangle\left\langle a_{j}\right| \otimes\left\langle a_{j}\right| \rho\left|a_{i}\right\rangle$.

The distillability problem and entanglement distillation

PPT and NPT

Definition

The partial transpose of a bipartite quantum state ρ acting on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ is computed in an orthonormal (o .n.) basis $\left\{\left|a_{i}\right\rangle\right\}$ of system A, is defined by $\rho^{\Gamma}:=\sum_{i j}\left|a_{i}\right\rangle\left\langle a_{j}\right| \otimes\left\langle a_{j}\right| \rho\left|a_{i}\right\rangle$.

Definition

ρ is PPT if the partial transpose of ρ is positive semidefinite. Otherwise, ρ is NPT.

PPT and NPT

Definition

The partial transpose of a bipartite quantum state ρ acting on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ is computed in an orthonormal (o .n.) basis $\left\{\left|a_{i}\right\rangle\right\}$ of system A, is defined by $\rho^{\Gamma}:=\sum_{i j}\left|a_{i}\right\rangle\left\langle a_{j}\right| \otimes\left\langle a_{j}\right| \rho\left|a_{i}\right\rangle$.

Definition

ρ is PPT if the partial transpose of ρ is positive semidefinite. Otherwise, ρ is NPT.

- For example, all separable states are PPT. All pure entangled states are NPT.

PPT and NPT

- Example. If

$$
\rho=\left(\begin{array}{lll}
M_{11} & M_{12} & M_{13} \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{array}\right)
$$

PPT and NPT

- Example. If

$$
\rho=\left(\begin{array}{lll}
M_{11} & M_{12} & M_{13} \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{array}\right)
$$

- then

$$
\rho=\left(\begin{array}{lll}
M_{11} & M_{21} & M_{31} \\
M_{12} & M_{22} & M_{32} \\
M_{13} & M_{23} & M_{33}
\end{array}\right)
$$

The mathematical formulation of distillability problem

- Horodecki et al, Divincenzo et al, 1999.

The mathematical formulation of distillability problem

- Horodecki et al, Divincenzo et al, 1999.

Definition

ρ is 1-distillable if there exists a pure bipartite state $|\psi\rangle$ of Schmidt rank two such that $\langle\psi| \rho^{\Gamma}|\psi\rangle<0$.

The mathematical formulation of distillability problem

- Horodecki et al, Divincenzo et al, 1999.

Definition

ρ is 1-distillable if there exists a pure bipartite state $|\psi\rangle$ of Schmidt rank two such that $\langle\psi| \rho \Gamma|\psi\rangle<0$.

- Otherwise, ρ is 1 -undistillable.

The mathematical formulation of distillability problem

- Horodecki et al, Divincenzo et al, 1999.

Definition

ρ is 1-distillable if there exists a pure bipartite state $|\psi\rangle$ of Schmidt rank two such that $\langle\psi| \rho \Gamma|\psi\rangle<0$.

- Otherwise, ρ is 1 -undistillable.

Definition

(1) ρ is n-distillable if the bipartite state $\rho^{\otimes n}$ is 1 -distillable.
(2) ρ is distillable if it is n-distillable for some $n \geq 1$, i.e.,

$$
\langle\psi|\left(\rho^{\otimes n}\right)^{\Gamma}|\psi\rangle<0,
$$

for a bipartite state $|\psi\rangle$ of Schmidt rank two.

The mathematical formulation of distillability problem

- Horodecki et al, Divincenzo et al, 1999.

Definition

ρ is 1-distillable if there exists a pure bipartite state $|\psi\rangle$ of Schmidt rank two such that $\langle\psi| \rho \Gamma|\psi\rangle<0$.

- Otherwise, ρ is 1 -undistillable.

Definition

(1) ρ is n-distillable if the bipartite state $\rho^{\otimes n}$ is 1 -distillable.
(2) ρ is distillable if it is n-distillable for some $n \geq 1$, i.e.,

$$
\langle\psi|\left(\rho^{\otimes n}\right)^{\Gamma}|\psi\rangle<0,
$$

for a bipartite state $|\psi\rangle$ of Schmidt rank two.

- Otherwise, ρ is not distillable.

The mathematical formulation of distillability problem

- Horodecki et al, Divincenzo et al, 1999.

Definition

ρ is 1-distillable if there exists a pure bipartite state $|\psi\rangle$ of Schmidt rank two such that $\langle\psi| \rho \Gamma|\psi\rangle<0$.

- Otherwise, ρ is 1 -undistillable.

Definition

(1) ρ is n-distillable if the bipartite state $\rho^{\otimes n}$ is 1 -distillable.
(2) ρ is distillable if it is n-distillable for some $n \geq 1$, i.e.,

$$
\langle\psi|\left(\rho^{\otimes n}\right)^{\Gamma}|\psi\rangle<0,
$$

for a bipartite state $|\psi\rangle$ of Schmidt rank two.

- Otherwise, ρ is not distillable.
- For example, PPT states are not distillable.

The math/mess of many-copy states

- $\rho^{\otimes n}=\rho_{A_{1} B_{1}} \otimes \cdots \otimes \rho_{A_{n} B_{n}}:=\rho_{A_{1} \cdots A_{n}: B_{1} \cdots B_{n}}$.

The math/mess of many-copy states

- $\rho^{\otimes n}=\rho_{A_{1} B_{1}} \otimes \cdots \otimes \rho_{A_{n} B_{n}}:=\rho_{A_{1} \cdots A_{n}: B_{1} \cdots B_{n}}$.
- Example. Consider the "critical" Werner state

$$
\begin{gathered}
\rho_{A_{1} B_{1}}=\sum_{i, j}\left(|i, j\rangle\langle i, j|-\frac{1}{2}|i, j\rangle\langle j, i|\right)_{A_{1} B_{1}} \\
\rho_{A_{2} B_{2}}=\sum_{m, n}\left(|m, n\rangle\langle m, n|-\frac{1}{2}|m, n\rangle\langle n, m|\right)_{A_{2} B_{2}}
\end{gathered}
$$

The math/mess of many-copy states

- $\rho^{\otimes n}=\rho_{A_{1} B_{1}} \otimes \cdots \otimes \rho_{A_{n} B_{n}}:=\rho_{A_{1} \cdots A_{n}: B_{1} \cdots B_{n}}$.
- Example. Consider the "critical" Werner state

$$
\begin{gathered}
\rho_{A_{1} B_{1}}=\sum_{i, j}\left(|i, j\rangle\langle i, j|-\frac{1}{2}|i, j\rangle\langle j, i|\right)_{A_{1} B_{1}} \\
\rho_{A_{2} B_{2}}=\sum_{m, n}\left(|m, n\rangle\langle m, n|-\frac{1}{2}|m, n\rangle\langle n, m|\right)_{A_{2} B_{2}}
\end{gathered}
$$

- Then

$$
\begin{gathered}
\rho^{\otimes 2}=\rho_{A_{1} B_{1}} \otimes \rho_{A_{2} B_{2}} \\
=\sum_{i, j, m, n}\left(|i m, j n\rangle\langle i m, j n|-\frac{1}{2}|i m, j n\rangle\langle j m, i n|\right. \\
\left.-\frac{1}{2}|i m, j n\rangle\langle i n, j m|+\frac{1}{4}|i m, j n\rangle\langle j n, i m|\right)_{A_{1} A_{2}, B_{1} B_{2}}
\end{gathered}
$$

List of 1-distillable NPT states

- We say a bipartite state $\rho_{A B}$ is $M \times N$ if $\operatorname{rank} \rho_{A}=M$ and $\operatorname{rank} \rho_{B}=N$.

List of 1-distillable NPT states

- We say a bipartite state $\rho_{A B}$ is $M \times N$ if $\operatorname{rank} \rho_{A}=M$ and $\operatorname{rank} \rho_{B}=N$.
- Two-qubit states

Bennett et al, 1996, Horodecki et al, 1997

List of 1-distillable NPT states

- We say a bipartite state $\rho_{A B}$ is $M \times N$ if $\operatorname{rank} \rho_{A}=M$ and $\operatorname{rank} \rho_{B}=N$.
- Two-qubit states

Bennett et al, 1996, Horodecki et al, 1997

- $2 \times N$ states

List of 1-distillable NPT states

- We say a bipartite state $\rho_{A B}$ is $M \times N$ if $\operatorname{rank} \rho_{A}=M$ and $\operatorname{rank} \rho_{B}=N$.
- Two-qubit states

Bennett et al, 1996, Horodecki et al, 1997

- $2 \times N$ states
- $M \times N$ states of rank $\max \{M, N\}$

Horodecki et al, 1999
LC and Yi-Xin Chen, 2008
LC and DZ, 2011

List of 1-distillable NPT states

- We say a bipartite state $\rho_{A B}$ is $M \times N$ if $\operatorname{rank} \rho_{A}=M$ and $\operatorname{rank} \rho_{B}=N$.
- Two-qubit states

Bennett et al, 1996, Horodecki et al, 1997

- $2 \times N$ states
- $M \times N$ states of rank $\max \{M, N\}$

Horodecki et al, 1999
LC and Yi-Xin Chen, 2008
LC and DZ, 2011

- Two-qutrit states of rank four

LC and DZ, 2016

The strategy of entanglement distillation

- Convert the target state ρ or $\rho^{\otimes n}$ to a distillable state by LOCC.

The strategy of entanglement distillation

- Convert the target state ρ or $\rho^{\otimes n}$ to a distillable state by LOCC.
- Experience: $n=2$ is hard!

The strategy of entanglement distillation

- Convert the target state ρ or $\rho^{\otimes n}$ to a distillable state by LOCC.
- Experience: $n=2$ is hard!
- The normalization factors of quantum states are often ignored in entanglement distillation because it does not affect the distillability of quantum states.

The strategy of entanglement distillation

- Convert the target state ρ or $\rho^{\otimes n}$ to a distillable state by LOCC.
- Experience: $n=2$ is hard!
- The normalization factors of quantum states are often ignored in entanglement distillation because it does not affect the distillability of quantum states.
- Example 1. If

$$
\begin{gathered}
P=|1\rangle\langle 1|+|2\rangle\langle 2|, \\
\rho=(|11\rangle+|22\rangle)(\langle 11|+\langle 22|)+|33\rangle\langle 33|,
\end{gathered}
$$

The strategy of entanglement distillation

- Convert the target state ρ or $\rho^{\otimes n}$ to a distillable state by LOCC.
- Experience: $n=2$ is hard!
- The normalization factors of quantum states are often ignored in entanglement distillation because it does not affect the distillability of quantum states.
- Example 1. If

$$
\begin{gathered}
P=|1\rangle\langle 1|+|2\rangle\langle 2|, \\
\rho=(|11\rangle+|22\rangle)(\langle 11|+\langle 22|)+|33\rangle\langle 33|,
\end{gathered}
$$

- then

$$
\left(P \otimes I_{B}\right) \rho\left(P \otimes I_{B}\right)=(|11\rangle+|22\rangle)(\langle 11|+\langle 22|)
$$

is a Bell state.

The strategy of entanglement distillation

- Convert the target state ρ or $\rho^{\otimes n}$ to a distillable state by LOCC.
- Experience: $n=2$ is hard!
- The normalization factors of quantum states are often ignored in entanglement distillation because it does not affect the distillability of quantum states.
- Example 1. If

$$
\begin{gathered}
P=|1\rangle\langle 1|+|2\rangle\langle 2|, \\
\rho=(|11\rangle+|22\rangle)(\langle 11|+\langle 22|)+|33\rangle\langle 33|,
\end{gathered}
$$

- then

$$
\left(P \otimes I_{B}\right) \rho\left(P \otimes I_{B}\right)=(|11\rangle+|22\rangle)(\langle 11|+\langle 22|)
$$

is a Bell state.

- So ρ is 1-distillable.

The strategy of entanglement distillation

- Example 2. If

$$
\begin{gathered}
P=|1\rangle\langle 1|+|2\rangle\langle 2|, \\
\rho=(|11\rangle+|22\rangle+|33\rangle)(\langle 11|+\langle 22|+|33\rangle) \\
+(|22\rangle+|33\rangle)(\langle 22|+\langle 33|)+|33\rangle\langle 33|,
\end{gathered}
$$

The strategy of entanglement distillation

- Example 2. If

$$
\begin{gathered}
P=|1\rangle\langle 1|+|2\rangle\langle 2|, \\
\rho=(|11\rangle+|22\rangle+|33\rangle)(\langle 11|+\langle 22|+|33\rangle) \\
+(|22\rangle+|33\rangle)(\langle 22|+\langle 33|)+|33\rangle\langle 33|,
\end{gathered}
$$

- then

$$
\left(P \otimes I_{B}\right) \rho\left(P \otimes I_{B}\right)
$$

is a two-qubit mixed entangled state. So ρ is also distillable.

The distillability problem and entanglement distillation
The difficulty of entanglement distillation

- Finding a good P is hard, although P belongs to LOCC.

The difficulty of entanglement distillation

- Finding a good P is hard, although P belongs to LOCC.
- When is $\left(P \otimes I_{B}\right) \rho\left(P \otimes I_{B}\right)$ entangled?

The difficulty of entanglement distillation

- Finding a good P is hard, although P belongs to LOCC.
- When is $\left(P \otimes I_{B}\right) \rho\left(P \otimes I_{B}\right)$ entangled?
- What if $\left(P \otimes I_{B}\right) \rho\left(P \otimes I_{B}\right)$ is PPT?

The difficulty of entanglement distillation

- Finding a good P is hard, although P belongs to LOCC.
- When is $\left(P \otimes I_{B}\right) \rho\left(P \otimes I_{B}\right)$ entangled?
- What if $\left(P \otimes I_{B}\right) \rho\left(P \otimes I_{B}\right)$ is PPT?
- A popular trick: let $\left(P \otimes I_{B}\right) \rho\left(P \otimes I_{B}\right)$ be a $2 \times N$ state then it has to be PPT, or some entries have to be zero.

Outlines

- The distillability problem and entanglement distillation
$M \times N$ NPT states of rank $\max \{M, N\}$

Two-qutrit NPT states of rank four and five

Open problems

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- P. Horodecki, J. A. Smolin, B. M. Terhal, and A. V. Thapliyal, 1999.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- P. Horodecki, J. A. Smolin, B. M. Terhal, and A. V. Thapliyal, 1999.

Lemma

$M \times N N P T$ states of rank smaller than $\max \{M, N\}$ is 1-distillable.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- P. Horodecki, J. A. Smolin, B. M. Terhal, and A. V. Thapliyal, 1999.

Lemma

$M \times N N P T$ states of rank smaller than $\max \{M, N\}$ is 1-distillable.

- LC and DZ, 2011.

Distilling $M \times N$ NPT states of rank $\max \{M, N\}$

- P. Horodecki, J. A. Smolin, B. M. Terhal, and A. V. Thapliyal, 1999.

Lemma

$M \times N N P T$ states of rank smaller than $\max \{M, N\}$ is 1-distillable.

- LC and DZ, 2011.

Lemma

$M \times N N P T$ states of rank equal to $\max \{M, N\}$ is 1-distillable.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- LFRP. Let $\rho_{A B}$ be an $M \times N$ NPT states of rank $\max \{M, N\}$. We say $\rho_{A B}$ has left full-rank property (LFRP) if there is some state $|x\rangle$ such that $\left\langle\left. x\right|_{B} \rho_{A B} \mid x\right\rangle_{B}$ is invertible.

Distilling $M \times N N P T$ states of $\operatorname{rank} \max \{M, N\}$

- LFRP. Let $\rho_{A B}$ be an $M \times N$ NPT states of rank $\max \{M, N\}$. We say $\rho_{A B}$ has left full-rank property (LFRP) if there is some state $|x\rangle$ such that $\left\langle\left. x\right|_{B} \rho_{A B} \mid x\right\rangle_{B}$ is invertible.
- Example. If

$$
\begin{gathered}
\rho_{A B}=(|11\rangle+|22\rangle)(\langle 11|+\langle 22|)+|33\rangle\langle 33| \\
\sigma_{A B}=(|11\rangle+|22\rangle)(\langle 11|+\langle 22|)+|22\rangle\langle 22|+|33\rangle\langle 33|
\end{gathered}
$$

Distilling $M \times N N P T$ states of rank $\max \{M, N\}$

- LFRP. Let $\rho_{A B}$ be an $M \times N$ NPT states of rank $\max \{M, N\}$. We say $\rho_{A B}$ has left full-rank property (LFRP) if there is some state $|x\rangle$ such that $\left\langle\left. x\right|_{B} \rho_{A B} \mid x\right\rangle_{B}$ is invertible.
- Example. If

$$
\begin{gathered}
\rho_{A B}=(|11\rangle+|22\rangle)(\langle 11|+\langle 22|)+|33\rangle\langle 33| \\
\sigma_{A B}=(|11\rangle+|22\rangle)(\langle 11|+\langle 22|)+|22\rangle\langle 22|+|33\rangle\langle 33|
\end{gathered}
$$

- then

$$
\begin{aligned}
& \max _{x}\left(\operatorname{rank}\left(\left\langle\left. x\right|_{B} \rho_{A B} \mid x\right\rangle_{B}\right)\right)=2<\operatorname{rank} \rho_{A}=3 . \\
& \max _{x}\left(\operatorname{rank}\left(\left\langle\left. x\right|_{B} \sigma_{A B} \mid x\right\rangle_{B}\right)\right)=3=\operatorname{rank} \rho_{A}=3 .
\end{aligned}
$$

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- So $\rho_{A B}$ has no LFRP, and $\sigma_{A B}$ has LFRP.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- So $\rho_{A B}$ has no LFRP, and $\sigma_{A B}$ has LFRP.
- The right full-rank property (RFRP) can be similarly defined.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- So $\rho_{A B}$ has no LFRP, and $\sigma_{A B}$ has LFRP.
- The right full-rank property (RFRP) can be similarly defined.
- Strategy of proof. Prove that $\rho_{A B}$ is 1-distillable when (1) $\rho_{A B}$ has no LFRP or RFRP, and (2) $\rho_{A B}$ has LFRP and RFRP.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- (1) $\rho_{A B}$ has no LFRP or RFRP.

Using the matrix decomposition of semidefinite positive matrix $\rho=C^{\dagger} C$, where

$$
C=\left(C_{1}, \ldots, C_{i}, \ldots, C_{M}\right)
$$

and each matrix C_{i} is of size $(\operatorname{rank} \rho) \times N$.

Distilling $M \times N N P T$ states of rank $\max \{M, N\}$

- (1) $\rho_{A B}$ has no LFRP or RFRP.

Using the matrix decomposition of semidefinite positive matrix $\rho=C^{\dagger} C$, where

$$
C=\left(C_{1}, \ldots, C_{i}, \ldots, C_{M}\right)
$$

and each matrix C_{i} is of size $(\operatorname{rank} \rho) \times N$.

- Project ρ to the following state by using the projector $P=|1\rangle\langle 1|+|i\rangle\langle i|$

$$
\begin{gathered}
\rho_{1, i}=\left(P \otimes I_{B}\right) \rho\left(P \otimes I_{B}\right) \\
=\left(C_{1}, C_{i}\right)^{\dagger} \cdot\left(C_{1}, C_{i}\right)=\left(\begin{array}{cc}
C_{1}^{\dagger} C_{1} & C_{1}^{\dagger} C_{i} \\
C_{i}^{\dagger} C_{1} & C_{i}^{\dagger} C_{i}
\end{array}\right)
\end{gathered}
$$

Distilling $M \times N N P T$ states of rank $\max \{M, N\}$

- We split each C_{i} into four blocks $C_{i}=\left(\begin{array}{cc}C_{i 1} & C_{i 2} \\ C_{i 3} & C_{i 4}\end{array}\right)$ with $C_{i 1}$ square of size r_{1}, where $C_{1}=I_{r_{1}} \oplus 0$ because of ρ has no LFRP or RFRP. We have

$$
\rho_{1, i}=\left(\begin{array}{ccccc}
I_{r_{1}} & 0 & \vdots & C_{i 1} & C_{i 2} \\
0 & 0 & \vdots & 0 & 0 \\
\cdots & \cdots & . & \cdots & \cdots \\
C_{i 1}^{\dagger} & 0 & \vdots & * & * \\
C_{i 2}^{\dagger} & 0 & \vdots & * & *
\end{array}\right)
$$

, where $i>1$ and the asterisk stands for an unspecified block.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- We split each C_{i} into four blocks $C_{i}=\left(\begin{array}{cc}C_{i 1} & C_{i 2} \\ C_{i 3} & C_{i 4}\end{array}\right)$ with $C_{i 1}$ square of size r_{1}, where $C_{1}=I_{r_{1}} \oplus 0$ because of ρ has no LFRP or RFRP. We have

$$
\rho_{1, i}=\left(\begin{array}{ccccc}
I_{r_{1}} & 0 & \vdots & C_{i 1} & C_{i 2} \\
0 & 0 & \vdots & 0 & 0 \\
\cdots & \cdots & . & \cdots & \cdots \\
C_{i 1}^{\dagger} & 0 & \vdots & * & * \\
C_{i 2}^{\dagger} & 0 & \vdots & * & *
\end{array}\right)
$$

, where $i>1$ and the asterisk stands for an unspecified block.

- If some $C_{i 2} \neq 0$, then ρ is 1 -distillable. Thus we may assume that all $C_{i 2}=0$.

Distilling $M \times N N P T$ states of $\operatorname{rank} \max \{M, N\}$

- Now $\rho=C^{\dagger} C$ where

$$
C=\left[\left(\begin{array}{cc}
I_{r_{1}} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
C_{21} & 0 \\
C_{23} & C_{24}
\end{array}\right), \cdots,\left(\begin{array}{cc}
C_{M 1} & 0 \\
C_{M 3} & C_{M 4}
\end{array}\right)\right]
$$

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- Now $\rho=C^{\dagger} C$ where

$$
C=\left[\left(\begin{array}{cc}
I_{r_{1}} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
C_{21} & 0 \\
C_{23} & C_{24}
\end{array}\right), \cdots,\left(\begin{array}{cc}
C_{M 1} & 0 \\
C_{M 3} & C_{M 4}
\end{array}\right)\right]
$$

- Since ρ has no LFRP or RFRP, the linear combination of $C_{21}, \cdots, C_{N 1}$ is of deficient rank. We may assume

$$
C_{24}=\left(\begin{array}{cc}
I_{r_{2}} & 0 \\
0 & 0
\end{array}\right)
$$

and

$$
C_{i 4}=\left(\begin{array}{ll}
C_{i 41} & C_{i 42} \\
C_{i 43} & C_{i 44}
\end{array}\right)
$$

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- Project ρ to the state $\left(C^{\prime}\right)^{\dagger} C^{\prime}$ where

$$
C^{\prime}=\left[\left(\begin{array}{cc}
I_{r_{2}} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
C_{341} & C_{342} \\
C_{343} & C_{344}
\end{array}\right), \cdots,\left(\begin{array}{ll}
C_{M 41} & C_{M 42} \\
C_{M 43} & C_{M 44}
\end{array}\right)\right]
$$

Distilling $M \times N N P T$ states of $\operatorname{rank} \max \{M, N\}$

- Project ρ to the state $\left(C^{\prime}\right)^{\dagger} C^{\prime}$ where

$$
C^{\prime}=\left[\left(\begin{array}{cc}
I_{r_{2}} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
C_{341} & C_{342} \\
C_{343} & C_{344}
\end{array}\right), \cdots,\left(\begin{array}{ll}
C_{M 41} & C_{M 42} \\
C_{M 43} & C_{M 44}
\end{array}\right)\right]
$$

- Repeating the above argument one can show the blocks $C_{i 42}=0$.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- Project ρ to the state $\left(C^{\prime}\right)^{\dagger} C^{\prime}$ where

$$
C^{\prime}=\left[\left(\begin{array}{cc}
I_{r_{2}} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
C_{341} & C_{342} \\
C_{343} & C_{344}
\end{array}\right), \cdots,\left(\begin{array}{ll}
C_{M 41} & C_{M 42} \\
C_{M 43} & C_{M 44}
\end{array}\right)\right]
$$

- Repeating the above argument one can show the blocks $C_{i 42}=0$.
- Then we have $\rho=C^{\dagger} C$ where C is

$$
\begin{aligned}
& {\left[\left(\begin{array}{ccc}
I_{r_{1}} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
C_{21} & 0 & 0 \\
C_{221} & I_{r_{2}} & 0 \\
C_{223} & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
C_{31} & 0 & 0 \\
C_{321} & C_{341} & 0 \\
C_{323} & C_{343} & C_{344}
\end{array}\right)\right.} \\
&\left., \cdots,\left(\begin{array}{ccc}
C_{M 1} & 0 & 0 \\
C_{M 21} & C_{M 41} & 0 \\
C_{M 23} & C_{M 43} & C_{M 44}
\end{array}\right)\right]
\end{aligned}
$$

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- The process continues and the facts $C_{i 2}=C_{i 42}=\cdots=0$ implies that ρ has RFRP. It is a contradiction and we obtain that the process must terminate.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- The process continues and the facts $C_{i 2}=C_{i 42}=\cdots=0$ implies that ρ has RFRP. It is a contradiction and we obtain that the process must terminate.
- So ρ is distillable when it has no LFRP or RFRP.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- (2) $\rho_{A B}$ has LFRP and RFRP.

Using the matrix decomposition of semidefinite positive matrix $\rho=C^{\dagger} C$, we have

$$
\rho=\left(C_{1}, \ldots, C_{M-1}, I_{N}\right)^{\dagger} \cdot\left(C_{1}, \ldots, C_{M-1}, I_{N}\right)
$$

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- (2) $\rho_{A B}$ has LFRP and RFRP.

Using the matrix decomposition of semidefinite positive matrix $\rho=C^{\dagger} C$, we have

$$
\rho=\left(C_{1}, \ldots, C_{M-1}, I_{N}\right)^{\dagger} \cdot\left(C_{1}, \ldots, C_{M-1}, I_{N}\right)
$$

- Project ρ to $\left(C_{i}, I_{N}\right)^{\dagger} \cdot\left(C_{i}, I_{N}\right)$ and assume it is PPT.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- (2) $\rho_{A B}$ has LFRP and RFRP.

Using the matrix decomposition of semidefinite positive matrix $\rho=C^{\dagger} C$, we have

$$
\rho=\left(C_{1}, \ldots, C_{M-1}, I_{N}\right)^{\dagger} \cdot\left(C_{1}, \ldots, C_{M-1}, I_{N}\right)
$$

- Project ρ to $\left(C_{i}, I_{N}\right)^{\dagger} \cdot\left(C_{i}, I_{N}\right)$ and assume it is PPT.
- So each C_{i} is a normal matrix by
"P. Horodecki, M. Lewenstein, G. Vidal, and I. Cirac, Phys. Rev. A 62, 032310 (2000)."

Distilling $M \times N N P T$ states of rank $\max \{M, N\}$

- (2) $\rho_{A B}$ has LFRP and RFRP.

Using the matrix decomposition of semidefinite positive matrix $\rho=C^{\dagger} C$, we have

$$
\rho=\left(C_{1}, \ldots, C_{M-1}, I_{N}\right)^{\dagger} \cdot\left(C_{1}, \ldots, C_{M-1}, I_{N}\right)
$$

- Project ρ to $\left(C_{i}, I_{N}\right)^{\dagger} \cdot\left(C_{i}, I_{N}\right)$ and assume it is PPT.
- So each C_{i} is a normal matrix by
"P. Horodecki, M. Lewenstein, G. Vidal, and I. Cirac, Phys. Rev. A 62, 032310 (2000)."
- Since ρ is NPT, there exist i, j such that $\left[C_{i}, C_{j}\right] \neq 0$.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- (2) $\rho_{A B}$ has LFRP and RFRP.

Using the matrix decomposition of semidefinite positive matrix $\rho=C^{\dagger} C$, we have

$$
\rho=\left(C_{1}, \ldots, C_{M-1}, I_{N}\right)^{\dagger} \cdot\left(C_{1}, \ldots, C_{M-1}, I_{N}\right)
$$

- Project ρ to $\left(C_{i}, I_{N}\right)^{\dagger} \cdot\left(C_{i}, I_{N}\right)$ and assume it is PPT.
- So each C_{i} is a normal matrix by
"P. Horodecki, M. Lewenstein, G. Vidal, and I. Cirac, Phys. Rev. A 62, 032310 (2000)."
- Since ρ is NPT, there exist i, j such that $\left[C_{i}, C_{j}\right] \neq 0$.
- One can show that $\left(x C_{i}+C_{j}, I_{N}\right)^{\dagger} \cdot\left(x C_{i}+C_{j}, I_{N}\right)$ is distillable for some complex number x.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- Conclusion 1: the LFRP (RFRP) is a key property for the distillation.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- Conclusion 1: the LFRP (RFRP) is a key property for the distillation.
- Conclusion 2: the matrix decomposition $\rho=C^{\dagger} C$ also applies to $M \times N$ NPT states of rank bigger than $\max \{M, N\}$.

Distilling $M \times N N P T$ states of rank $\max \{M, N\}$

- Conclusion 1: the LFRP (RFRP) is a key property for the distillation.
- Conclusion 2: the matrix decomposition $\rho=C^{\dagger} C$ also applies to $M \times N$ NPT states of rank bigger than $\max \{M, N\}$.
- Since any state lacking LFRP or RFRP is distillable, we have

Distilling $M \times N N P T$ states of rank $\max \{M, N\}$

- Conclusion 1: the LFRP (RFRP) is a key property for the distillation.
- Conclusion 2: the matrix decomposition $\rho=C^{\dagger} C$ also applies to $M \times N$ NPT states of rank bigger than $\max \{M, N\}$.
- Since any state lacking LFRP or RFRP is distillable, we have

Corollary

All non-distillable states, e.g., bipartite PPT states possess LFRP and RFRP.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- Conclusion 1: the LFRP (RFRP) is a key property for the distillation.
- Conclusion 2: the matrix decomposition $\rho=C^{\dagger} C$ also applies to $M \times N$ NPT states of rank bigger than $\max \{M, N\}$.
- Since any state lacking LFRP or RFRP is distillable, we have

Corollary

All non-distillable states, e.g., bipartite PPT states possess LFRP and RFRP.

Corollary

The bipartite state of rank four is separable if and only if it is PPT and its range contains at least one product state.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- Application 1:

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- Application 1:

Lemma

For a tripartite pure state $\rho=|\psi\rangle\langle\psi|$, the bipartite reduced density operators $\rho_{A B}$ and $\rho_{A C}$ are PPT if and only if $|\psi\rangle=\sum_{i}\left|a_{i}\right\rangle|i i\rangle$ up to local unitary operations.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- Application 1:

Lemma

For a tripartite pure state $\rho=|\psi\rangle\langle\psi|$, the bipartite reduced density operators $\rho_{A B}$ and $\rho_{A C}$ are PPT if and only if $|\psi\rangle=\sum_{i}\left|a_{i}\right\rangle|i i\rangle$ up to local unitary operations.

- So

$$
\rho_{A B}=\rho_{A C}=\sum_{i}\left|a_{i}, i\right\rangle\left\langle a_{i}, i\right|
$$

are both separable states.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states $\rho_{A B}$ in the space $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states $\rho_{A B}$ in the space $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$.
(1) Separability.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states $\rho_{A B}$ in the space $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$.
(1) Separability.
(2) PPT condition.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states $\rho_{A B}$ in the space $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$.
(1) Separability.
(2) PPT condition.
(3) Non-distillability.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states $\rho_{A B}$ in the space $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$.
(1) Separability.
(2) PPT condition.
(3) Non-distillability.
(4) Reduction criterion: $\rho_{A} \otimes I_{B} \geq \rho_{A B}$ and $I_{A} \otimes \rho_{B} \geq \rho_{A B}$, Horodecki et al, 1999.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states $\rho_{A B}$ in the space $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$.
(1) Separability.
(2) PPT condition.
(3) Non-distillability.
(4) Reduction criterion: $\rho_{A} \otimes I_{B} \geq \rho_{A B}$ and $I_{A} \otimes \rho_{B} \geq \rho_{A B}$, Horodecki et al, 1999.
(5) Majorization criterion: $\rho_{A} \succ \rho_{A B}$ and $\rho_{B} \succ \rho_{A B}$ Hiroshima, 2003.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states $\rho_{A B}$ in the space $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$.
(1) Separability.
(2) PPT condition.
(3) Non-distillability.
(4) Reduction criterion: $\rho_{A} \otimes I_{B} \geq \rho_{A B}$ and $I_{A} \otimes \rho_{B} \geq \rho_{A B}$, Horodecki et al, 1999.
(5) Majorization criterion: $\rho_{A} \succ \rho_{A B}$ and $\rho_{B} \succ \rho_{A B}$ Hiroshima, 2003.
(6) Conditional entropy criterion: $H_{\rho}(B \mid A)=H\left(\rho_{A B}\right)-H\left(\rho_{A}\right) \geq 0$ and $H_{\rho}(A \mid B)=H\left(\rho_{A B}\right)-H\left(\rho_{B}\right) \geq 0$, where H is the von Neumann entropy.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- Masahito Hayashi and LC, 2011.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- Masahito Hayashi and LC, 2011.

Theorem

For a tripartite state $|\Psi\rangle_{A B C}$ with a non-distillable reduced state $\rho_{B C}$ namely condition (3), then conditions (1)-(6) are equivalent for $\rho_{A B}$.

Distilling $M \times N$ NPT states of $\operatorname{rank} \max \{M, N\}$

- Masahito Hayashi and LC, 2011.

Theorem

For a tripartite state $|\Psi\rangle_{A B C}$ with a non-distillable reduced state $\rho_{B C}$ namely condition (3), then conditions (1)-(6) are equivalent for $\rho_{A B}$.

- It is a way of unifying the six well-known conditions.

Outlines

- The distillability problem and entanglement distillation
$M \times N$ NPT states of rank $\max \{M, N\}$

Two-qutrit NPT states of rank four and five

Open problems

Distilling two-qutrit NPT states of rank four

- Entanglement distillation of $M \times N$ states ρ of rank bigger than $\max \{M, N\}$ turns out to be much harder.

Distilling two-qutrit NPT states of rank four

- Entanglement distillation of $M \times N$ states ρ of rank bigger than $\max \{M, N\}$ turns out to be much harder.
- For example ρ can be the Werner state.

Distilling two-qutrit NPT states of rank four

- Entanglement distillation of $M \times N$ states ρ of rank bigger than $\max \{M, N\}$ turns out to be much harder.
- For example ρ can be the Werner state.
- Facts: $2 \times N$ NPT states are distillable, and $M \times N$ NPT states of rank $\max \{M, N\}$ are distillable.

Distilling two-qutrit NPT states of rank four

- Entanglement distillation of $M \times N$ states ρ of rank bigger than $\max \{M, N\}$ turns out to be much harder.
- For example ρ can be the Werner state.
- Facts: $2 \times N$ NPT states are distillable, and $M \times N$ NPT states of rank $\max \{M, N\}$ are distillable.
- Hence, the first unsolved problem is to distill 3×3 NPT states of rank four.

Distilling two-qutrit NPT states of rank four

- LC and DZ, 2016.

Distilling two-qutrit NPT states of rank four

- LC and DZ, 2016.

Theorem

If ρ is a two-qutrit NPT state and $\rho\ulcorner$ has at least two non-positive eigenvalues counting multiplicities, then ρ is 1-distillable.

Distilling two-qutrit NPT states of rank four

- LC and DZ, 2016.

Theorem

If ρ is a two-qutrit NPT state and $\rho\ulcorner$ has at least two non-positive eigenvalues counting multiplicities, then ρ is 1-distillable.

Proof.

By the hypothesis, there exist two eigenvectors of ρ^{Γ}, say $|\alpha\rangle$ and $|\beta\rangle$ with matrices A and B, such that $\rho^{\Gamma}|\alpha\rangle=\lambda|\alpha\rangle, \lambda<0$, $\rho^{\Gamma}|\beta\rangle=\mu|\beta\rangle, \mu \leq 0$, and $\langle\alpha \mid \beta\rangle=0$. If A is not invertible, then its rank is 2 and so ρ is 1-distillable.
If $N:=A^{-1} B$ is not nilpotent, then $\operatorname{det}\left(I_{3}+t N\right)$ is a nonconstant polynomial in t and we can choose t so that this determinant is 0 . Thus $A+t B$ is singular, and $|\phi\rangle:=|\alpha\rangle+t|\beta\rangle$ satisfies $\langle\phi| \rho^{\Gamma}|\phi\rangle=\lambda\|\alpha\|^{2}+\mu|t|^{2}\|\beta\|^{2}<0$. Hence ρ is 1-distillable. The case that N is nilpotent is similar.

Distilling two-qutrit NPT states of rank four

- From the theorem we have

Distilling two-qutrit NPT states of rank four

- From the theorem we have

Corollary

If the kernel of a two-qutrit NPT state ρ contains a product state, then ρ is 1-distillable.

Distilling two-qutrit NPT states of rank four

- From the theorem we have

Corollary

If the kernel of a two-qutrit NPT state ρ contains a product state, then ρ is 1-distillable.

Proof.

We can assume that $|0,0\rangle \in \operatorname{ker} \rho$. Consequently, the first diagonal entry of ρ is 0 , and the same is true for ρ^{Γ}. If the first column of $\rho \Gamma$ is not 0 , then ρ is 1 -distillable by projecting to a 2×3 NPT state. Otherwise $|0,0\rangle \in \operatorname{ker} \rho \Gamma$ and ρ is 1-distillable by last Theorem.

Distilling two-qutrit NPT states of rank four

Theorem
Any bipartite NPT state of rank at most four is 1-distillable.

Distilling two-qutrit NPT states of rank four

Theorem

Any bipartite NPT state of rank at most four is 1-distillable.

Corollary

If ρ is a 1-undistillable two-qutrit NPT state, then $\operatorname{ker} \rho$ is a completely entangled space, and $\rho \Gamma$ has exactly one negative and eight positive eigenvalues. Consequently, rank $\rho>4$ and $\operatorname{det} \rho^{\ulcorner } \neq 0$.

Distilling two-qutrit NPT states of rank four

Theorem

Any bipartite NPT state of rank at most four is 1-distillable.

Corollary

If ρ is a 1-undistillable two-qutrit NPT state, then $\operatorname{ker} \rho$ is a completely entangled space, and $\rho \Gamma$ has exactly one negative and eight positive eigenvalues. Consequently, rank $\rho>4$ and $\operatorname{det} \rho^{\Gamma} \neq 0$.

- So the minimum rank of 1-undistillable NPT states is at least five.

Distilling two-qutrit NPT states of rank four

Theorem

Any bipartite NPT state of rank at most four is 1-distillable.

Corollary

If ρ is a 1-undistillable two-qutrit NPT state, then $\operatorname{ker} \rho$ is a completely entangled space, and $\rho \Gamma$ has exactly one negative and eight positive eigenvalues. Consequently, $\operatorname{rank} \rho>4$ and $\operatorname{det} \rho^{\Gamma} \neq 0$.

- So the minimum rank of 1-undistillable NPT states is at least five.
- We construct an example below.

Distilling two-qutrit NPT states of rank four

- The following state σ is an edge PPT entangled state of birank $(5,8)$ constructed by Kye and Osaka, 2012.

$$
\frac{1}{N}\left[\begin{array}{ccccccccc}
2 \cos \theta & 0 & 0 & 0 & -\cos \theta & 0 & 0 & 0 & -\cos \theta \\
0 & \frac{1}{b} & 0 & -e^{-i \theta} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & b & 0 & 0 & 0 & -e^{i \theta} & 0 & 0 \\
0 & -e^{i \theta} & 0 & b & 0 & 0 & 0 & 0 & 0 \\
-\cos \theta & 0 & 0 & 0 & 2 \cos \theta & 0 & 0 & 0 & -\cos \theta \\
0 & 0 & 0 & 0 & 0 & \frac{1}{b} & 0 & -e^{-i \theta} & 0 \\
0 & 0 & -e^{-i \theta} & 0 & 0 & 0 & \frac{1}{b} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -e^{i \theta} & 0 & b & 0 \\
-\cos \theta & 0 & 0 & 0 & -\cos \theta & 0 & 0 & 0 & 2 \cos \theta
\end{array}\right]
$$

Distilling two-qutrit NPT states of rank four

- The following state σ is an edge PPT entangled state of birank $(5,8)$ constructed by Kye and Osaka, 2012.

$$
\frac{1}{N}\left[\begin{array}{ccccccccc}
2 \cos \theta & 0 & 0 & 0 & -\cos \theta & 0 & 0 & 0 & -\cos \theta \\
0 & \frac{1}{b} & 0 & -e^{-i \theta} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & b & 0 & 0 & 0 & -e^{i \theta} & 0 & 0 \\
0 & -e^{i \theta} & 0 & b & 0 & 0 & 0 & 0 & 0 \\
-\cos \theta & 0 & 0 & 0 & 2 \cos \theta & 0 & 0 & 0 & -\cos \theta \\
0 & 0 & 0 & 0 & 0 & \frac{1}{b} & 0 & -e^{-i \theta} & 0 \\
0 & 0 & -e^{-i \theta} & 0 & 0 & 0 & \frac{1}{b} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -e^{i \theta} & 0 & b & 0 \\
-\cos \theta & 0 & 0 & 0 & -\cos \theta & 0 & 0 & 0 & 2 \cos \theta
\end{array}\right]
$$

- where

$$
N=3(2 \cos \theta+b+1 / b),
$$

and the two parameters $b>0$ and $0<|\theta|<\pi / 3$.

Distilling two-qutrit NPT states of rank four

- Since $\operatorname{rank} \sigma=5$ and σ is an edge state, $\mathcal{R}(\sigma)$ contains a product state $|f, g\rangle$ such that $\left|f^{*}, g\right\rangle \notin \mathcal{R}\left(\sigma^{\Gamma}\right)$.

Distilling two-qutrit NPT states of rank four

- Since $\operatorname{rank} \sigma=5$ and σ is an edge state, $\mathcal{R}(\sigma)$ contains a product state $|f, g\rangle$ such that $\left|f^{*}, g\right\rangle \notin \mathcal{R}\left(\sigma^{\Gamma}\right)$.
- For sufficiently small $\epsilon>0$, the matrix

$$
\rho=\frac{1}{1-\epsilon}(\sigma-\epsilon|f, g\rangle\langle f, g|)
$$

is a two-qutrit NPT state of rank five.

Distilling two-qutrit NPT states of rank four

- Since $\operatorname{rank} \sigma=5$ and σ is an edge state, $\mathcal{R}(\sigma)$ contains a product state $|f, g\rangle$ such that $\left|f^{*}, g\right\rangle \notin \mathcal{R}\left(\sigma^{\Gamma}\right)$.
- For sufficiently small $\epsilon>0$, the matrix

$$
\rho=\frac{1}{1-\epsilon}(\sigma-\epsilon|f, g\rangle\langle f, g|)
$$

is a two-qutrit NPT state of rank five.

- The kernel of σ^{Γ} is spanned by the two-qutrit maximally entangled state $|\Psi\rangle$. Let p be the mininum positive eigenvalue of σ^{Γ}.

Distilling two-qutrit NPT states of rank four

- Since $\operatorname{rank} \sigma=5$ and σ is an edge state, $\mathcal{R}(\sigma)$ contains a product state $|f, g\rangle$ such that $\left|f^{*}, g\right\rangle \notin \mathcal{R}\left(\sigma^{\Gamma}\right)$.
- For sufficiently small $\epsilon>0$, the matrix

$$
\rho=\frac{1}{1-\epsilon}(\sigma-\epsilon|f, g\rangle\langle f, g|)
$$

is a two-qutrit NPT state of rank five.

- The kernel of σ^{Γ} is spanned by the two-qutrit maximally entangled state $|\Psi\rangle$. Let p be the mininum positive eigenvalue of σ^{Γ}.
- For any pure state $|\psi\rangle$ of Schmidt rank two, we have

$$
\langle\psi| \rho^{\Gamma}|\psi\rangle \propto\langle\psi|\left(\sigma^{\ulcorner }-\epsilon\left|f^{*}, g\right\rangle\left\langle f^{*}, g\right|\right)|\psi\rangle>p / 3-\epsilon \geq 0 .
$$

Distilling two-qutrit NPT states of rank four

- Since $\operatorname{rank} \sigma=5$ and σ is an edge state, $\mathcal{R}(\sigma)$ contains a product state $|f, g\rangle$ such that $\left|f^{*}, g\right\rangle \notin \mathcal{R}\left(\sigma^{\Gamma}\right)$.
- For sufficiently small $\epsilon>0$, the matrix

$$
\rho=\frac{1}{1-\epsilon}(\sigma-\epsilon|f, g\rangle\langle f, g|)
$$

is a two-qutrit NPT state of rank five.

- The kernel of $\sigma^{\ulcorner }$is spanned by the two-qutrit maximally entangled state $|\Psi\rangle$. Let p be the mininum positive eigenvalue of σ^{Γ}.
- For any pure state $|\psi\rangle$ of Schmidt rank two, we have

$$
\langle\psi| \rho^{\Gamma}|\psi\rangle \propto\langle\psi|\left(\sigma^{\ulcorner }-\epsilon\left|f^{*}, g\right\rangle\left\langle f^{*}, g\right|\right)|\psi\rangle>p / 3-\epsilon \geq 0 .
$$

- Hence ρ is 1-undistillable.

Distilling two-qutrit NPT states of rank four

Distilling two-qutrit NPT states of rank four

Lemma

For any integer n, and sufficiently small $\epsilon=\epsilon(n)>0$, the two-qutrit NPT state $\rho=\frac{1}{1-\epsilon}(\sigma-\epsilon|f, g\rangle\langle f, g|)$ is n-undistillable.

Distilling two-qutrit NPT states of rank four

Lemma

For any integer n, and sufficiently small $\epsilon=\epsilon(n)>0$, the two-qutrit NPT state $\rho=\frac{1}{1-\epsilon}(\sigma-\epsilon|f, g\rangle\langle f, g|)$ is n-undistillable.

Proof.

For any pure state $|\psi\rangle$ of Schmidt rank two, we have

$$
\begin{gathered}
(1-\epsilon)^{n}\langle\psi|\left(\rho^{\ulcorner }\right)^{\otimes n}|\psi\rangle:=\langle\psi|\left(\sigma^{\Gamma}\right)^{\otimes n}|\psi\rangle+\sum_{k=1}^{n} c_{k} \epsilon^{k} \\
\geq p^{n}\langle\psi|\left(I_{9}-|\psi\rangle\langle\Psi|\right)^{\otimes n}|\psi\rangle+\sum_{k=1}^{n} c_{k} \epsilon^{k}
\end{gathered}
$$

where c_{k} are complex numbers and p is the minimum positive eigenvalue of σ^{Γ}. Since the first summand is positive and has nothing to do with ϵ, the assertion holds.

Distilling two-qutrit NPT states of rank four

- The following auxiliary lemma is used in the previous proof.

Distilling two-qutrit NPT states of rank four

- The following auxiliary lemma is used in the previous proof.

Lemma

$$
\min _{\psi \in \mathrm{sr}_{2}}\langle\psi|\left(I_{9}-|\Psi\rangle\langle\Psi|\right)^{\otimes n}|\psi\rangle \geq \frac{1}{3^{n}},
$$

where sr_{2} is the set of bipartite pure states of Schmidt rnak two, and $|\Psi\rangle$ is the two-qutrit maximally entangled state.

Comparing with Werner states

- The comparison between our suspicious two-qutrit NPT states ρ of rank five and the "critical" NPT Werner states
$\rho_{w}=\frac{2}{15}\left(l_{9}-\frac{1}{2} \sum_{i, j=1}^{3}|i j\rangle\langle j i|\right)$.

	ρ	ρ_{w}
rank	5	9
rank of partial transpose	9	9
parameters	b, θ, ϵ, n	n
construction	edge PPT states	$U \otimes U$-invariant

Comparing with Werner states

- The comparison between our suspicious two-qutrit NPT states ρ of rank five and the "critical" NPT Werner states
$\rho_{w}=\frac{2}{15}\left(l_{9}-\frac{1}{2} \sum_{i, j=1}^{3}|i j\rangle\langle j i|\right)$.

	ρ	ρ_{w}
rank	5	9
rank of partial transpose	9	9
parameters	b, θ, ϵ, n	n
construction	edge PPT states	$U \otimes U$-invariant

- Whether there is a "critical" ρ is unknown.

Comparing with Werner states

- The comparison between our suspicious two-qutrit NPT states ρ of rank five and the "critical" NPT Werner states $\rho_{w}=\frac{2}{15}\left(l_{9}-\frac{1}{2} \sum_{i, j=1}^{3}|i j\rangle\langle j i|\right)$.

	ρ	ρ_{w}
rank	5	9
rank of partial transpose	9	9
parameters	b, θ, ϵ, n	n
construction	edge PPT states	$U \otimes U$-invariant

- Whether there is a "critical" ρ is unknown.
- The condition of rank nine prevents the further investigation in both cases.

Open problems

- Can we distill more NPT states satisfying LFRP and RFRP?

Open problems

- Can we distill more NPT states satisfying LFRP and RFRP?
- Distill $3 \times N$ NPT states of rank $N+1$ for $N \geq 4$.

Open problems

- Can we distill more NPT states satisfying LFRP and RFRP?
- Distill $3 \times N$ NPT states of rank $N+1$ for $N \geq 4$.
- Is there an undistillable suspicious two-qutrit NPT state $\rho=\frac{1}{1-\epsilon}(\sigma-\epsilon|f, g\rangle\langle f, g|)$ by a constant $\epsilon>0$?

End

- Thanks for your attention!

