Distilling two-qutrit NPT stat

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recent progress on the distillability problem

Lin Chen

School of Mathematics and Systems Science, Beihang University, Beijing, China

Email: linchen@buaa.edu.cn

NIMS, Daejeon, Korea, February 16, 2016

The talk is based on two papers:

- 1. J. Phys. A. 44, 285303 (2011),
- 2. quant-ph/1602.04416 (2016).

Collaborator:

Dragomir Z Djokovic

Department of Pure Mathematics and Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The distillability problem and entanglement distillation	$M \times N$ NPT states of rank $\max\{M, N\}$	Distilling two-qutrit NPT s

• The distillability problem and entanglement distillation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The distillability problem and entanglement distillation	$M \times N$ NPT states of rank $\max\{M, N\}$	Distilling two-qutrit NPT st

• The distillability problem and entanglement distillation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $M \times N$ NPT states of rank $\max\{M, N\}$

The distillability problem and entanglement distillation	$M \times N$ NPT states of rank $\max\{M, N\}$	Distilling two-qutrit NPT st

• The distillability problem and entanglement distillation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $M \times N$ NPT states of rank $\max\{M, N\}$
- Two-qutrit NPT states of rank four and five

The distillability problem and entanglement distillation	$M \times N$ NPT states of rank $\max\{M, N\}$	Distilling two-qutrit NPT st

• The distillability problem and entanglement distillation

• $M \times N$ NPT states of rank $\max\{M, N\}$

• Two-qutrit NPT states of rank four and five

• Open problems

The distillability problem and entanglement distillation $M \times N$ NPT states of rank $\max\{M, N\}$ Distilling two-qutrit NPT states •00000000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Entanglement distillation

• Pure entangled states are essential resources in quantum information

The distillability problem and entanglement distillation $M \times N$ NPT states of rank $\max\{M, N\}$ Distilling two-qutrit NPT states •00000000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Entanglement distillation

- Pure entangled states are essential resources in quantum information
- Pure entangled states become mixed entangled states by noise

The distillability problem and entanglement distillation $M \times N$ NPT states of rank $\max\{M, N\}$ Distilling two-qutrit NPT states of rank $\max\{M, N\}$ •00000000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Entanglement distillation

- Pure entangled states are essential resources in quantum information
- Pure entangled states become mixed entangled states by noise
- Entanglement distillation. Bennett et al, 1996.

Distilling two-qutrit NPT stat

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Entanglement distillation

- Pure entangled states are essential resources in quantum information
- Pure entangled states become mixed entangled states by noise
- Entanglement distillation. Bennett et al, 1996.

Definition

We transform N copies of an arbitrary entangled state ρ into a pure entangled state $|\psi\rangle$ asymptotically under local operations and classical communications (LOCC).

Distilling two-qutrit NPT stat

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Entanglement distillation

- Pure entangled states are essential resources in quantum information
- Pure entangled states become mixed entangled states by noise
- Entanglement distillation. Bennett et al, 1996.

Definition

We transform N copies of an arbitrary entangled state ρ into a pure entangled state $|\psi\rangle$ asymptotically under local operations and classical communications (LOCC).

• i.e..

$$\rho^{\otimes \mathsf{N}} \to |\psi\rangle$$

Distilling two-qutrit NPT stat

Entanglement distillation

- Pure entangled states are essential resources in quantum information
- Pure entangled states become mixed entangled states by noise
- Entanglement distillation. Bennett et al, 1996.

Definition

We transform N copies of an arbitrary entangled state ρ into a pure entangled state $|\psi\rangle$ asymptotically under local operations and classical communications (LOCC).

• i.e..

$$\rho^{\otimes N} \to |\psi\rangle$$

$$\rightarrow \left(\frac{|00\rangle + |11\rangle}{\sqrt{2}}\right)^{\otimes m}$$

Distilling two-qutrit NPT stat

Entanglement distillation

• Hence

Distilling two-qutrit NPT stat

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Entanglement distillation

• Hence

Definition

If pure entangled states are obtained then ρ is distillable.

Distilling two-qutrit NPT stat

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Entanglement distillation

• Hence

Definition

If pure entangled states are obtained then ρ is distillable.

and

Distilling two-qutrit NPT stat

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Entanglement distillation

Hence

Definition

If pure entangled states are obtained then ρ is distillable.

and

Definition

If no pure entangled states can be obtained, then ρ is not distillable, or equivalently ρ is undistillable.

The distillability problem and entanglement distillation $M \times N$ NPT states of rank $\max\{M, N\}$ Distilling two-qutrit NPT states

Distillability problem

Distilling two-qutrit NPT stat

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Distillability problem

• The positive-partial-transpose (PPT) states are not distillable.

Definition

Distillability problem. Is every NPT state distillable?

Distilling two-qutrit NPT stat

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distillability problem

• The positive-partial-transpose (PPT) states are not distillable.

Definition

Distillability problem. Is every NPT state distillable?

General belief: No!

Distilling two-qutrit NPT stat

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distillability problem

- General belief: No!
- Proof of the existence of undistillable NPT states: No idea yet.

Distilling two-qutrit NPT stat

Distillability problem

Definition	
Distillability problem.	Is every NPT state distillable?

- General belief: No!
- Proof of the existence of undistillable NPT states: No idea yet.
- Proof of the existence 2-undistillable NPT Werner states: Not found yet.

Distilling two-qutrit NPT stat

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distillability problem

Definition	
Distillability problem.	Is every NPT state distillable?

- General belief: No!
- Proof of the existence of undistillable NPT states: No idea yet.
- Proof of the existence 2-undistillable NPT Werner states: Not found yet.
- Attempts for the proof: Yes, there is something...

The distillability problem and entanglement distillation $M \times N$ NPT states of rank $\max\{M, N\}$ Distilling two-qutrit NPT states

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Attempts to solve the distillability problem

 Any NPT state is convertible to an NPT Werner state, Divincenzo et al, Dur et al 2000

Distilling two-qutrit NPT stat

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Attempts to solve the distillability problem

- Any NPT state is convertible to an NPT Werner state, Divincenzo et al. Dur et al 2000
- *n*-undistillable but (n + 1)-distillable states Watrous, 2004

Distilling two-qutrit NPT stat

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Attempts to solve the distillability problem

- Any NPT state is convertible to an NPT Werner state, Divincenzo et al. Dur et al 2000
- *n*-undistillable but (n + 1)-distillable states Watrous, 2004
- 2-positive map, Clarisse, 2005

Distilling two-qutrit NPT stat

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Attempts to solve the distillability problem

- Any NPT state is convertible to an NPT Werner state. Divincenzo et al. Dur et al 2000
- *n*-undistillable but (n + 1)-distillable states Watrous, 2004
- 2-positive map. Clarisse, 2005
- Numerical test on the 2-distillability of two-qutrit Werner states.

Vianna et al. 2006

Distilling two-qutrit NPT stat

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Attempts to solve the distillability problem

- Any NPT state is convertible to an NPT Werner state. Divincenzo et al. Dur et al 2000
- *n*-undistillable but (n + 1)-distillable states Watrous, 2004
- 2-positive map. Clarisse, 2005
- Numerical test on the 2-distillability of two-qutrit Werner states.

Vianna et al. 2006

• 2-distillability of 4×4 Werner states, Pankowski et al, 2007

Distilling two-qutrit NPT stat

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Attempts to solve the distillability problem

- Any NPT state is convertible to an NPT Werner state. Divincenzo et al. Dur et al 2000
- *n*-undistillable but (n + 1)-distillable states Watrous, 2004
- 2-positive map. Clarisse, 2005
- Numerical test on the 2-distillability of two-qutrit Werner states.

Vianna et al. 2006

- 2-distillability of 4×4 Werner states, Pankowski et al, 2007
- Hiroshima, 2008 Sperling et al, 2009

Distilling two-qutrit NPT stat

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Attempts to solve the distillability problem

- Any NPT state is convertible to an NPT Werner state. Divincenzo et al. Dur et al 2000
- *n*-undistillable but (n + 1)-distillable states Watrous, 2004
- 2-positive map. Clarisse, 2005
- Numerical test on the 2-distillability of two-qutrit Werner states.

Vianna et al. 2006

- 2-distillability of 4×4 Werner states, Pankowski et al, 2007
- Hiroshima, 2008 Sperling et al, 2009
- ???

Distilling two-qutrit NPT stat

PPT and NPT

Definition

The partial transpose of a bipartite quantum state ρ acting on $\mathcal{H}_A \otimes \mathcal{H}_B$ is computed in an orthonormal (o .n.) basis $\{|a_i\rangle\}$ of system A, is defined by $\rho^{\Gamma} := \sum_{ij} |a_i\rangle\langle a_j| \otimes \langle a_j|\rho|a_i\rangle$.

PPT and NPT

Definition

The partial transpose of a bipartite quantum state ρ acting on $\mathcal{H}_A \otimes \mathcal{H}_B$ is computed in an orthonormal (o .n.) basis $\{|a_i\rangle\}$ of system A, is defined by $\rho^{\Gamma} := \sum_{ii} |a_i\rangle\langle a_i| \otimes \langle a_i|\rho|a_i\rangle$.

Definition

 ρ is PPT if the partial transpose of ρ is positive semidefinite. Otherwise, ρ is NPT.

PPT and NPT

Definition

The partial transpose of a bipartite quantum state ρ acting on $\mathcal{H}_A \otimes \mathcal{H}_B$ is computed in an orthonormal (o .n.) basis $\{|a_i\rangle\}$ of system A, is defined by $\rho^{\Gamma} := \sum_{ii} |a_i\rangle\langle a_i| \otimes \langle a_i|\rho|a_i\rangle$.

Definition

 ρ is PPT if the partial transpose of ρ is positive semidefinite. Otherwise, ρ is NPT.

• For example, all separable states are PPT. All pure entangled states are NPT.

Distilling two-qutrit NPT stat

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

PPT and NPT

• Example. If

$$\rho = \left(\begin{array}{ccc} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{array}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

PPT and NPT

• Example. If

$$\rho = \begin{pmatrix}
M_{11} & M_{12} & M_{13} \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{pmatrix}$$
• then

$$\rho^{\Gamma} = \begin{pmatrix} M_{11} & M_{21} & M_{31} \\ M_{12} & M_{22} & M_{32} \\ M_{13} & M_{23} & M_{33} \end{pmatrix}$$

The distillability problem and entanglement distillation $M \times N$ NPT states of rank $\max\{M, N\}$ Distilling two-qutrit NPT states 000000000000

The mathematical formulation of distillability problem

Horodecki et al, Divincenzo et al, 1999.

The distillability problem and entanglement distillation $M \times N$ NPT states of rank $\max\{M, N\}$ Distilling two-qutrit NPT states 000000000000

The mathematical formulation of distillability problem

Horodecki et al, Divincenzo et al, 1999.

Definition

 ρ is 1-distillable if there exists a pure bipartite state $|\psi\rangle$ of Schmidt rank two such that $\langle \psi | \rho^{\Gamma} | \psi \rangle < 0$.
Distilling two-qutrit NPT stat

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The mathematical formulation of distillability problem

Horodecki et al, Divincenzo et al, 1999.

Definition

 ρ is 1-distillable if there exists a pure bipartite state $|\psi\rangle$ of Schmidt rank two such that $\langle \psi | \rho^{\Gamma} | \psi \rangle < 0$.

• Otherwise, ρ is 1-undistillable.

The mathematical formulation of distillability problem

Horodecki et al, Divincenzo et al, 1999.

Definition

 ρ is 1-distillable if there exists a pure bipartite state $|\psi\rangle$ of Schmidt rank two such that $\langle \psi | \rho^{\Gamma} | \psi \rangle < 0$.

• Otherwise, ρ is 1-undistillable.

Definition

(1) ρ is *n*-distillable if the bipartite state $\rho^{\otimes n}$ is 1-distillable. (2) ρ is distillable if it is *n*-distillable for some $n \ge 1$, i.e.,

 $\langle \psi | (\rho^{\otimes n})^{\mathsf{\Gamma}} | \psi \rangle < 0,$

for a bipartite state $|\psi\rangle$ of Schmidt rank two.

The mathematical formulation of distillability problem

Horodecki et al, Divincenzo et al, 1999.

Definition

 ρ is 1-distillable if there exists a pure bipartite state $|\psi\rangle$ of Schmidt rank two such that $\langle \psi | \rho^{\Gamma} | \psi \rangle < 0$.

• Otherwise, ρ is 1-undistillable.

Definition

(1) ρ is *n*-distillable if the bipartite state $\rho^{\otimes n}$ is 1-distillable. (2) ρ is distillable if it is *n*-distillable for some $n \ge 1$, i.e.,

 $\langle \psi | (\rho^{\otimes n})^{\mathsf{\Gamma}} | \psi \rangle < 0,$

for a bipartite state $|\psi\rangle$ of Schmidt rank two.

• Otherwise, ρ is not distillable.

4 周 ト 4 目 ト 4 目 ト 目 9 4 (0)

The mathematical formulation of distillability problem

Horodecki et al, Divincenzo et al, 1999.

Definition

 ρ is 1-distillable if there exists a pure bipartite state $|\psi\rangle$ of Schmidt rank two such that $\langle \psi | \rho^{\Gamma} | \psi \rangle < 0$.

• Otherwise, ρ is 1-undistillable.

Definition

(1) ρ is *n*-distillable if the bipartite state $\rho^{\otimes n}$ is 1-distillable. (2) ρ is distillable if it is *n*-distillable for some $n \ge 1$, i.e.,

 $\langle \psi | (\rho^{\otimes n})^{\mathsf{\Gamma}} | \psi \rangle < 0,$

for a bipartite state $|\psi\rangle$ of Schmidt rank two.

- Otherwise, ρ is not distillable.
- For example, PPT states are not distillable.

Distilling two-qutrit NPT stat

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The math/mess of many-copy states

•
$$\rho^{\otimes n} = \rho_{A_1B_1} \otimes \cdots \otimes \rho_{A_nB_n} := \rho_{A_1\cdots A_n:B_1\cdots B_n}$$

Distilling two-qutrit NPT stat

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The math/mess of many-copy states

•
$$\rho^{\otimes n} = \rho_{A_1B_1} \otimes \cdots \otimes \rho_{A_nB_n} := \rho_{A_1\cdots A_n:B_1\cdots B_n}.$$

• Example. Consider the "critical" Werner state

$$\rho_{A_1B_1} = \sum_{i,j} (|i,j\rangle\langle i,j| - \frac{1}{2}|i,j\rangle\langle j,i|)_{A_1B_1}$$

$$\rho_{A_2B_2} = \sum_{m,n} (|m,n\rangle\langle m,n| - \frac{1}{2}|m,n\rangle\langle n,m|)_{A_2B_2}$$

The distillability problem and entanglement distillation $M \times N$ NPT states of rank $\max\{M, N\}$ 0000000000000

Distilling two-qutrit NPT stat

The math/mess of many-copy states

•
$$\rho^{\otimes n} = \rho_{A_1B_1} \otimes \cdots \otimes \rho_{A_nB_n} := \rho_{A_1\cdots A_n:B_1\cdots B_n}.$$

• Example. Consider the "critical" Werner state

$$\rho_{A_1B_1} = \sum_{i,j} (|i,j\rangle\langle i,j| - \frac{1}{2}|i,j\rangle\langle j,i|)_{A_1B_1}$$

$$\rho_{A_2B_2} = \sum_{m,n} (|m,n\rangle\langle m,n| - \frac{1}{2}|m,n\rangle\langle n,m|)_{A_2B_2}$$

Then

$$\rho^{\otimes 2} = \rho_{A_1B_1} \otimes \rho_{A_2B_2}$$
$$= \sum_{i,j,m,n} \left(|im, jn\rangle\langle im, jn| - \frac{1}{2} |im, jn\rangle\langle jm, in| - \frac{1}{2} |im, jn\rangle\langle in, jm| + \frac{1}{4} |im, jn\rangle\langle jn, im| \right)_{A_1A_2, B_1B_2}$$

List of 1-distillable NPT states

List of 1-distillable NPT states

• We say a bipartite state ρ_{AB} is $M \times N$ if rank $\rho_A = M$ and $\operatorname{rank} \rho_B = N.$

 Two-qubit states Bennett et al. 1996, Horodecki et al. 1997

List of 1-distillable NPT states

- Two-qubit states Bennett et al, 1996, Horodecki et al, 1997
- $2 \times N$ states

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

List of 1-distillable NPT states

- Two-gubit states Bennett et al. 1996, Horodecki et al. 1997
- $2 \times N$ states
- $M \times N$ states of rank max{M, N} Horodecki et al. 1999 LC and Yi-Xin Chen, 2008 LC and DZ. 2011

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

List of 1-distillable NPT states

- Two-gubit states Bennett et al. 1996, Horodecki et al. 1997
- $2 \times N$ states
- $M \times N$ states of rank $\max\{M, N\}$ Horodecki et al. 1999 LC and Yi-Xin Chen. 2008 LC and DZ. 2011
- Two-gutrit states of rank four LC and DZ, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The strategy of entanglement distillation

• Convert the target state ρ or $\rho^{\otimes n}$ to a distillable state by LOCC.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The strategy of entanglement distillation

- Convert the target state ρ or $\rho^{\otimes n}$ to a distillable state by LOCC.
- Experience: n = 2 is hard!

The strategy of entanglement distillation

- Convert the target state ρ or $\rho^{\otimes n}$ to a distillable state by LOCC.
- Experience: n = 2 is hard!
- The normalization factors of quantum states are often ignored in entanglement distillation because it does not affect the distillability of quantum states.

The strategy of entanglement distillation

- Convert the target state ρ or $\rho^{\otimes n}$ to a distillable state by LOCC.
- Experience: n = 2 is hard!
- The normalization factors of quantum states are often ignored in entanglement distillation because it does not affect the distillability of quantum states.
- Example 1. If

 $P = |1\rangle\langle 1| + |2\rangle\langle 2|,$ $\rho = (|11\rangle + |22\rangle)(\langle 11| + \langle 22|) + |33\rangle\langle 33|,$

The strategy of entanglement distillation

- Convert the target state ρ or $\rho^{\otimes n}$ to a distillable state by LOCC.
- Experience: n = 2 is hard!
- The normalization factors of quantum states are often ignored in entanglement distillation because it does not affect the distillability of quantum states.
- Example 1. If

$$egin{aligned} &P=|1
angle\!\langle1|+|2
angle\!\langle2|,\ &
ho=(|11
angle+|22
angle)(\langle11|+\langle22|)+|33
angle\!\langle33|,\ &
ho=(|11
angle+|22
angle)(\langle11|+|22
angle)(\langle11|+|22
angle)(\langle11|+|22
angle)(\langle12|+|22
angle)(\langle12|+|$$

then

$$(P \otimes I_B)\rho(P \otimes I_B) = (|11\rangle + |22\rangle)(\langle 11| + \langle 22|)$$

is a Bell state

The strategy of entanglement distillation

- Convert the target state ρ or $\rho^{\otimes n}$ to a distillable state by LOCC.
- Experience: n = 2 is hard!
- The normalization factors of quantum states are often ignored in entanglement distillation because it does not affect the distillability of quantum states.
- Example 1. If

$$egin{aligned} &P=|1
angle\!\langle1|+|2
angle\!\langle2|,\ &
ho=(|11
angle+|22
angle)(\langle11|+\langle22|)+|33
angle\!\langle33|,\ &
ho=(|11
angle+|22
angle)(\langle11|+|22
angle)(\langle11|+|22
angle)(\langle11|+|22
angle)(\langle12|+|22
angle)(\langle12|+|$$

then

$$(P \otimes I_B)\rho(P \otimes I_B) = (|11\rangle + |22\rangle)(\langle 11| + \langle 22|)$$

is a Bell state.

• So ρ is 1-distillable.

Distilling two-qutrit NPT stat

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The strategy of entanglement distillation

• Example 2. If $P = |1\rangle\langle 1| + |2\rangle\langle 2|,$ $\rho = (|11\rangle + |22\rangle + |33\rangle)(\langle 11| + \langle 22| + |33\rangle)$ $+(|22\rangle + |33\rangle)(\langle 22| + \langle 33|) + |33\rangle\langle 33|,$

Distilling two-qutrit NPT stat

The strategy of entanglement distillation

• Example 2. If

$$P = |1\rangle\langle 1| + |2\rangle\langle 2|,$$

$$\rho = (|11\rangle + |22\rangle + |33\rangle)(\langle 11| + \langle 22| + |33\rangle) + (|22\rangle + |33\rangle)(\langle 22| + \langle 33|) + |33\rangle\langle 33|,$$

• then

$$(P \otimes I_B)\rho(P \otimes I_B)$$

is a two-qubit mixed entangled state. So ρ is also distillable.

Distilling two-qutrit NPT stat

The difficulty of entanglement distillation

• Finding a good P is hard, although P belongs to LOCC.

Distilling two-qutrit NPT stat

The difficulty of entanglement distillation

- Finding a good P is hard, although P belongs to LOCC.
- When is $(P \otimes I_B)\rho(P \otimes I_B)$ entangled?

Distilling two-qutrit NPT stat

(日) (日) (日) (日) (日) (日) (日) (日)

The difficulty of entanglement distillation

- Finding a good P is hard, although P belongs to LOCC.
- When is $(P \otimes I_B)\rho(P \otimes I_B)$ entangled?
- What if $(P \otimes I_B)\rho(P \otimes I_B)$ is PPT?

Distilling two-qutrit NPT stat

The difficulty of entanglement distillation

- Finding a good P is hard, although P belongs to LOCC.
- When is $(P \otimes I_B)\rho(P \otimes I_B)$ entangled?
- What if $(P \otimes I_B)\rho(P \otimes I_B)$ is PPT?
- A popular trick: let $(P \otimes I_B)\rho(P \otimes I_B)$ be a 2 × N state then it has to be PPT, or some entries have to be zero.

Outlines

The distillability problem and entanglement distillation

 $M \times N$ NPT states of rank max{M, N}

Two-gutrit NPT states of rank four and five

Open problems

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

P. Horodecki, J. A. Smolin, B. M. Terhal, and A. V. Thapliyal, 1999.

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

P. Horodecki, J. A. Smolin, B. M. Terhal, and A. V. Thapliyal, 1999.

Lemma

 $M \times N$ NPT states of rank smaller than $\max\{M, N\}$ is 1-distillable.

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

P. Horodecki, J. A. Smolin, B. M. Terhal, and A. V. Thapliyal, 1999.

Lemma

 $M \times N$ NPT states of rank smaller than $\max\{M, N\}$ is 1-distillable.

• LC and DZ. 2011.

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

P. Horodecki, J. A. Smolin, B. M. Terhal, and A. V. Thapliyal, 1999.

Lemma

 $M \times N$ NPT states of rank smaller than $\max\{M, N\}$ is 1-distillable.

• LC and DZ, 2011.

Lemma

 $M \times N$ NPT states of rank equal to $\max\{M, N\}$ is 1-distillable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• LFRP. Let ρ_{AB} be an $M \times N$ NPT states of rank $\max\{M, N\}$. We say ρ_{AB} has left full-rank property (LFRP) if there is some state $|x\rangle$ such that $\langle x|_B \rho_{AB} |x\rangle_B$ is invertible.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• LFRP. Let ρ_{AB} be an $M \times N$ NPT states of rank $\max\{M, N\}$. We say ρ_{AB} has left full-rank property (LFRP) if there is some state $|x\rangle$ such that $\langle x|_B \rho_{AB} |x\rangle_B$ is invertible.

• Example. If

 $\rho_{AB} = (|11\rangle + |22\rangle)(\langle 11| + \langle 22|) + |33\rangle\langle 33|)$ $\sigma_{AB} = (|11\rangle + |22\rangle)(\langle 11| + \langle 22|) + |22\rangle\langle 22| + |33\rangle\langle 33|)$

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• LFRP. Let ρ_{AB} be an $M \times N$ NPT states of rank $\max\{M, N\}$. We say ρ_{AB} has left full-rank property (LFRP) if there is some state $|x\rangle$ such that $\langle x|_B \rho_{AB} |x\rangle_B$ is invertible.

• Example. If

$$\rho_{AB} = (|11\rangle + |22\rangle)(\langle 11| + \langle 22|) + |33\rangle\langle 33|$$

$$\sigma_{AB} = (|11\rangle + |22\rangle)(\langle 11| + \langle 22|) + |22\rangle\langle 22| + |33\rangle\langle 33|$$

then

$$\max_{x} \left(\operatorname{rank}(\langle x |_{B} \rho_{AB} | x \rangle_{B}) \right) = 2 < \operatorname{rank} \rho_{A} = 3.$$
$$\max_{x} \left(\operatorname{rank}(\langle x |_{B} \sigma_{AB} | x \rangle_{B}) \right) = 3 = \operatorname{rank} \rho_{A} = 3.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• So ρ_{AB} has no LFRP, and σ_{AB} has LFRP.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- So ρ_{AB} has no LFRP, and σ_{AB} has LFRP.
- The right full-rank property (RFRP) can be similarly defined.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- So ρ_{AB} has no LFRP, and σ_{AB} has LFRP.
- The right full-rank property (RFRP) can be similarly defined.
- Strategy of proof. Prove that ρ_{AB} is 1-distillable when (1) ρ_{AB} has no LFRP or RFRP, and (2) ρ_{AB} has LFRP and RFRP.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• (1) ρ_{AB} has no LFRP or RFRP.

Using the matrix decomposition of semidefinite positive matrix $\rho = C^{\dagger}C$, where

$$C = (C_1, \ldots, C_i, \ldots, C_M)$$

and each matrix C_i is of size $(\operatorname{rank} \rho) \times N$.
Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• (1) ρ_{AB} has no LFRP or RFRP.

Using the matrix decomposition of semidefinite positive matrix $\rho = C^{\dagger}C$, where

$$C = (C_1, \ldots, C_i, \ldots, C_M)$$

and each matrix C_i is of size $(\operatorname{rank} \rho) \times N$.

• Project ρ to the following state by using the projector $P = |1\rangle\langle 1| + |i\rangle\langle i|$

$$\rho_{1,i} = (P \otimes I_B)\rho(P \otimes I_B)$$
$$= (C_1, C_i)^{\dagger} \cdot (C_1, C_i) = \begin{pmatrix} C_1^{\dagger}C_1 & C_1^{\dagger}C_i \\ C_i^{\dagger}C_1 & C_i^{\dagger}C_i \end{pmatrix}$$

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• We split each C_i into four blocks $C_i = \begin{pmatrix} C_{i1} & C_{i2} \\ C_{i3} & C_{i4} \end{pmatrix}$ with C_{i1} square of size r_1 , where $C_1 = I_{r_1} \oplus 0$ because of ρ has no LFRP or RFRP. We have

$$\rho_{1,i} = \begin{pmatrix} I_{r_1} & 0 & \vdots & C_{i1} & C_{i2} \\ 0 & 0 & \vdots & 0 & 0 \\ \cdots & \cdots & \ddots & \cdots \\ C_{i1}^{\dagger} & 0 & \vdots & * & * \\ C_{i2}^{\dagger} & 0 & \vdots & * & * \end{pmatrix}$$

, where i > 1 and the asterisk stands for an unspecified block.

The distillability problem and entanglement distillation $M \times N$ NPT states of rank $\max\{M, N\}$ Distilling two-qutrit NPT states

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• We split each C_i into four blocks $C_i = \begin{pmatrix} C_{i1} & C_{i2} \\ C_{i3} & C_{i4} \end{pmatrix}$ with C_{i1} square of size r_1 , where $C_1 = I_{r_1} \oplus 0$ because of ρ has no LFRP or RFRP. We have

$$\rho_{1,i} = \begin{pmatrix} I_{r_1} & 0 & \vdots & C_{i1} & C_{i2} \\ 0 & 0 & \vdots & 0 & 0 \\ \cdots & \cdots & \ddots & \cdots \\ C_{i1}^{\dagger} & 0 & \vdots & * & * \\ C_{i2}^{\dagger} & 0 & \vdots & * & * \end{pmatrix}$$

, where i > 1 and the asterisk stands for an unspecified block.

• If some $C_{i2} \neq 0$, then ρ is 1-distillable. Thus we may assume that all $C_{i2} = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• Now $\rho = C^{\dagger}C$ where

$$C = \left[\left(\begin{array}{cc} I_{r_1} & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} C_{21} & 0 \\ C_{23} & C_{24} \end{array} \right), \cdots, \left(\begin{array}{cc} C_{M1} & 0 \\ C_{M3} & C_{M4} \end{array} \right) \right]$$

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• Now $\rho = C^{\dagger}C$ where

$$C = \left[\left(\begin{array}{cc} I_{r_1} & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} C_{21} & 0 \\ C_{23} & C_{24} \end{array} \right), \cdots, \left(\begin{array}{cc} C_{M1} & 0 \\ C_{M3} & C_{M4} \end{array} \right) \right]$$

• Since ρ has no LFRP or RFRP, the linear combination of C_{21}, \cdots, C_{N1} is of deficient rank. We may assume

$$\mathbf{C}_{\mathbf{24}} = \left(\begin{array}{cc} \mathbf{I}_{\mathbf{r}_2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array}\right)$$

and

$$\mathbf{C_{i4}} = \left(\begin{array}{cc} C_{i41} & C_{i42} \\ C_{i43} & C_{i44} \end{array}\right)$$

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• Project ρ to the state $(C')^{\dagger}C'$ where

$$C' = \left[\left(\begin{array}{cc} I_{r_2} & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} C_{341} & C_{342} \\ C_{343} & C_{344} \end{array} \right), \cdots, \left(\begin{array}{cc} C_{M41} & C_{M42} \\ C_{M43} & C_{M44} \end{array} \right) \right]$$

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• Project ρ to the state $(C')^{\dagger}C'$ where

$$C' = \left[\left(\begin{array}{cc} I_{r_2} & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} C_{341} & C_{342} \\ C_{343} & C_{344} \end{array} \right), \cdots, \left(\begin{array}{cc} C_{M41} & C_{M42} \\ C_{M43} & C_{M44} \end{array} \right) \right]$$

 Repeating the above argument one can show the blocks $C_{i42} = 0.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• Project ρ to the state $(C')^{\dagger}C'$ where

$$C' = \left[\left(\begin{array}{cc} I_{r_2} & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} C_{341} & C_{342} \\ C_{343} & C_{344} \end{array} \right), \cdots, \left(\begin{array}{cc} C_{M41} & C_{M42} \\ C_{M43} & C_{M44} \end{array} \right) \right]$$

- Repeating the above argument one can show the blocks $C_{i42} = 0.$
- Then we have $\rho = C^{\dagger}C$ where C is

$$\begin{bmatrix} \begin{pmatrix} I_{r_1} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} C_{21} & 0 & 0 \\ C_{221} & I_{r_2} & 0 \\ C_{223} & 0 & 0 \end{pmatrix}, \begin{pmatrix} C_{31} & 0 & 0 \\ C_{321} & C_{341} & 0 \\ C_{323} & C_{343} & C_{344} \end{pmatrix}$$
$$, \cdots, \begin{pmatrix} C_{M1} & 0 & 0 \\ C_{M21} & C_{M41} & 0 \\ C_{M23} & C_{M43} & C_{M44} \end{pmatrix} \end{bmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• The process continues and the facts $C_{i2} = C_{i42} = \cdots = 0$ implies that ρ has RFRP. It is a contradiction and we obtain that the process must terminate.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• The process continues and the facts $C_{i2} = C_{i42} = \cdots = 0$ implies that ρ has RFRP. It is a contradiction and we obtain that the process must terminate.

• So ρ is distillable when it has no LFRP or RFRP.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• (2) ρ_{AB} has LFRP and RFRP.

$$\rho = (C_1, \ldots, C_{M-1}, I_N)^{\dagger} \cdot (C_1, \ldots, C_{M-1}, I_N)$$

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• (2) ρ_{AB} has LFRP and RFRP.

Using the matrix decomposition of semidefinite positive matrix $\rho = C^{\dagger}C$, we have

$$\rho = (C_1, \ldots, C_{M-1}, I_N)^{\dagger} \cdot (C_1, \ldots, C_{M-1}, I_N)$$

• Project ρ to $(C_i, I_N)^{\dagger} \cdot (C_i, I_N)$ and assume it is PPT.

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• (2) ρ_{AB} has LFRP and RFRP.

$$\rho = (C_1, \ldots, C_{M-1}, I_N)^{\dagger} \cdot (C_1, \ldots, C_{M-1}, I_N)$$

- Project ρ to $(C_i, I_N)^{\dagger} \cdot (C_i, I_N)$ and assume it is PPT.
- So each C_i is a normal matrix by "P. Horodecki, M. Lewenstein, G. Vidal, and I. Cirac, Phys. Rev. A 62, 032310 (2000)."

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• (2) ρ_{AB} has LFRP and RFRP.

$$\rho = (C_1, \ldots, C_{M-1}, I_N)^{\dagger} \cdot (C_1, \ldots, C_{M-1}, I_N)$$

- Project ρ to $(C_i, I_N)^{\dagger} \cdot (C_i, I_N)$ and assume it is PPT.
- So each C_i is a normal matrix by "P. Horodecki, M. Lewenstein, G. Vidal, and I. Cirac, Phys. Rev. A 62, 032310 (2000)."
- Since ρ is NPT, there exist *i*, *j* such that $[C_i, C_i] \neq 0$.

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• (2) ρ_{AB} has LFRP and RFRP.

$$\rho = (C_1, \ldots, C_{M-1}, I_N)^{\dagger} \cdot (C_1, \ldots, C_{M-1}, I_N)$$

- Project ρ to $(C_i, I_N)^{\dagger} \cdot (C_i, I_N)$ and assume it is PPT.
- So each C_i is a normal matrix by "P. Horodecki, M. Lewenstein, G. Vidal, and I. Cirac, Phys. Rev. A 62, 032310 (2000)."
- Since ρ is NPT, there exist i, j such that $[C_i, C_i] \neq 0$.
- One can show that $(xC_i + C_i, I_N)^{\dagger} \cdot (xC_i + C_i, I_N)$ is distillable for some complex number x.

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• Conclusion 1: the LFRP (RFRP) is a key property for the distillation.

- Conclusion 1: the LFRP (RFRP) is a key property for the distillation.
- Conclusion 2: the matrix decomposition $\rho = C^{\dagger}C$ also applies to $M \times N$ NPT states of rank bigger than $\max\{M, N\}$.

- Conclusion 1: the LFRP (RFRP) is a key property for the distillation.
- Conclusion 2: the matrix decomposition $\rho = C^{\dagger}C$ also applies to $M \times N$ NPT states of rank bigger than $\max\{M, N\}$.
- Since any state lacking LFRP or RFRP is distillable, we have

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Conclusion 1: the LFRP (RFRP) is a key property for the distillation.
- Conclusion 2: the matrix decomposition $\rho = C^{\dagger}C$ also applies to $M \times N$ NPT states of rank bigger than $\max\{M, N\}$.
- Since any state lacking LFRP or RFRP is distillable, we have

Corollary

All non-distillable states, e.g., bipartite PPT states possess LFRP and RFRP.

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

- Conclusion 1: the LFRP (RFRP) is a key property for the distillation.
- Conclusion 2: the matrix decomposition $\rho = C^{\dagger}C$ also applies to $M \times N$ NPT states of rank bigger than $\max\{M, N\}$.
- Since any state lacking LFRP or RFRP is distillable, we have

Corollary

All non-distillable states, e.g., bipartite PPT states possess LFRP and RFRP.

Corollary

The bipartite state of rank four is separable if and only if it is PPT and its range contains at least one product state.

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• Application 1:

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• Application 1:

Lemma

For a tripartite pure state $\rho = |\psi\rangle\langle\psi|$, the bipartite reduced density operators ρ_{AB} and ρ_{AC} are PPT if and only if $|\psi\rangle = \sum_i |a_i\rangle |ii\rangle$ up to local unitary operations.

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• Application 1:

Lemma

For a tripartite pure state $\rho = |\psi\rangle\langle\psi|$, the bipartite reduced density operators ρ_{AB} and ρ_{AC} are PPT if and only if $|\psi\rangle = \sum_i |a_i\rangle |ii\rangle$ up to local unitary operations.

So

$$\rho_{AB} = \rho_{AC} = \sum_{i} |\mathbf{a}_{i}, i\rangle\langle\mathbf{a}_{i}, i|$$

are both separable states.

00000000000000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states ρ_{AB} in the space $\mathcal{H}_A \otimes \mathcal{H}_B$.

00000000000000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states ρ_{AB} in the space $\mathcal{H}_A \otimes \mathcal{H}_B$.

(1) Separability.

00000000000000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states ρ_{AB} in the space $\mathcal{H}_A \otimes \mathcal{H}_B$.
 - (1) Separability. (2) PPT condition.

00000000000000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states ρ_{AB} in the space $\mathcal{H}_A \otimes \mathcal{H}_B$.
 - (1) Separability.
 - PPT condition.
 - (3) Non-distillability.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states ρ_{AB} in the space $\mathcal{H}_A \otimes \mathcal{H}_B$.
 - (1) Separability.
 - PPT condition.
 - (3) Non-distillability.
 - (4) Reduction criterion: $\rho_A \otimes I_B \ge \rho_{AB}$ and $I_A \otimes \rho_B \geq \rho_{AB}$ Horodecki et al, 1999.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states ρ_{AB} in the space $\mathcal{H}_A \otimes \mathcal{H}_B$.
 - (1) Separability.
 - (2) PPT condition.
 - (3) Non-distillability.
 - (4) Reduction criterion: $\rho_A \otimes I_B \ge \rho_{AB}$ and $I_A \otimes \rho_B \geq \rho_{AB}$ Horodecki et al, 1999.
 - (5) Majorization criterion: $\rho_A \succ \rho_{AB}$ and $\rho_B \succ \rho_{AB}$ Hiroshima, 2003.

<u>Distilling $M \times N$ NPT states of rank max{M, N}</u>

- Application 2: In quantum information, the following six criteria are extensively useful for studying bipartite states ρ_{AB} in the space $\mathcal{H}_A \otimes \mathcal{H}_B$.
 - (1) Separability.
 - (2) PPT condition.
 - (3) Non-distillability.
 - (4) Reduction criterion: $\rho_A \otimes I_B \ge \rho_{AB}$ and $I_A \otimes \rho_B \geq \rho_{AB}$ Horodecki et al. 1999.
 - (5) Majorization criterion: $\rho_A \succ \rho_{AB}$ and $\rho_B \succ \rho_{AB}$ Hiroshima, 2003.
 - (6) Conditional entropy criterion:

 $H_{\rho}(B|A) = H(\rho_{AB}) - H(\rho_A) \geq 0$ and $H_{\rho}(A|B) = H(\rho_{AB}) - H(\rho_{B}) > 0$, where H is the von Neumann entropy.

00000000000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

• Masahito Hayashi and LC, 2011.

00000000000000

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

Masahito Hayashi and LC, 2011.

Theorem

For a tripartite state $|\Psi\rangle_{ABC}$ with a non-distillable reduced state ρ_{BC} namely condition (3), then conditions (1)-(6) are equivalent for ρ_{AB} .

00000000000000

Distilling $M \times N$ NPT states of rank $\max\{M, N\}$

Masahito Hayashi and LC, 2011.

Theorem

For a tripartite state $|\Psi\rangle_{ABC}$ with a non-distillable reduced state ρ_{BC} namely condition (3), then conditions (1)-(6) are equivalent for ρ_{AB} .

It is a way of unifying the six well-known conditions.

Outlines

The distillability problem and entanglement distillation

 $M \times N$ NPT states of rank max{M, N}

Two-gutrit NPT states of rank four and five

Open problems

Distilling two-qutrit NPT stat 000000000

Distilling two-qutrit NPT states of rank four

• Entanglement distillation of $M \times N$ states ρ of rank bigger than $\max\{M, N\}$ turns out to be much harder.

Distilling two-qutrit NPT stat 000000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distilling two-qutrit NPT states of rank four

- Entanglement distillation of $M \times N$ states ρ of rank bigger than $\max\{M, N\}$ turns out to be much harder.
- For example ρ can be the Werner state.
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distilling two-qutrit NPT states of rank four

- Entanglement distillation of $M \times N$ states ρ of rank bigger than $\max\{M, N\}$ turns out to be much harder.
- For example ρ can be the Werner state.
- Facts: $2 \times N$ NPT states are distillable, and $M \times N$ NPT states of rank $\max\{M, N\}$ are distillable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distilling two-qutrit NPT states of rank four

- Entanglement distillation of $M \times N$ states ρ of rank bigger than $\max\{M, N\}$ turns out to be much harder.
- For example ρ can be the Werner state.
- Facts: $2 \times N$ NPT states are distillable, and $M \times N$ NPT states of rank $\max\{M, N\}$ are distillable.
- Hence, the first unsolved problem is to distill 3×3 NPT states of rank four.

Distilling two-qutrit NPT stat 000000000

Distilling two-qutrit NPT states of rank four

• LC and DZ, 2016.

Distilling two-qutrit NPT stat 0000000000

Distilling two-qutrit NPT states of rank four

LC and DZ, 2016.

Theorem

If ρ is a two-qutrit NPT state and ρ^{Γ} has at least two non-positive eigenvalues counting multiplicities, then ρ is 1-distillable.

Distilling two-qutrit NPT states of rank four

LC and DZ, 2016.

Theorem

If ρ is a two-qutrit NPT state and ρ^{Γ} has at least two non-positive eigenvalues counting multiplicities, then ρ is 1-distillable.

Proof.

By the hypothesis, there exist two eigenvectors of ρ^{I} , say $|\alpha\rangle$ and $|\beta\rangle$ with matrices A and B, such that $\rho^{\Gamma}|\alpha\rangle = \lambda |\alpha\rangle$, $\lambda < 0$, $\rho^{\Gamma}|\beta\rangle = \mu|\beta\rangle, \ \mu < 0, \ \text{and} \ \langle \alpha|\beta\rangle = 0.$ If A is not invertible, then its rank is 2 and so ρ is 1-distillable. If $N := A^{-1}B$ is not nilpotent, then det $(I_3 + tN)$ is a nonconstant polynomial in t and we can choose t so that this determinant is 0. Thus A + tB is singular, and $|\phi\rangle := |\alpha\rangle + t|\beta\rangle$ satisfies $\langle \phi | \rho^{\mathsf{\Gamma}} | \phi \rangle = \lambda \| \alpha \|^2 + \mu |t|^2 \| \beta \|^2 < 0$. Hence ρ is 1-distillable. The case that N is nilpotent is similar.

Distilling two-qutrit NPT stat 000000000

Distilling two-qutrit NPT states of rank four

From the theorem we have

Distilling two-qutrit NPT stat 0000000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Distilling two-qutrit NPT states of rank four

From the theorem we have

Corollary

If the kernel of a two-qutrit NPT state ρ contains a product state, then ρ is 1-distillable.

Distilling two-qutrit NPT states of rank four

From the theorem we have

Corollary

If the kernel of a two-qutrit NPT state ρ contains a product state, then ρ is 1-distillable.

Proof.

We can assume that $|0,0\rangle \in \ker \rho$. Consequently, the first diagonal entry of ρ is 0, and the same is true for ρ^{Γ} . If the first column of ρ^{Γ} is not 0, then ρ is 1-distillable by projecting to a 2 \times 3 NPT state. Otherwise $|0,0\rangle \in \ker \rho^{\Gamma}$ and ρ is 1-distillable by last Theorem.

Distilling two-qutrit NPT stat 0000000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Distilling two-qutrit NPT states of rank four

Theorem

Any bipartite NPT state of rank at most four is 1-distillable.

Distilling two-qutrit NPT states of rank four

Theorem

Any bipartite NPT state of rank at most four is 1-distillable.

Corollary

If ρ is a 1-undistillable two-qutrit NPT state, then ker ρ is a completely entangled space, and ρ^{Γ} has exactly one negative and eight positive eigenvalues. Consequently, rank $\rho > 4$ and det $\rho^{\Gamma} \neq 0$.

Distilling two-qutrit NPT states of rank four

Theorem

Any bipartite NPT state of rank at most four is 1-distillable.

Corollary

If ρ is a 1-undistillable two-qutrit NPT state, then ker ρ is a completely entangled space, and ρ^{Γ} has exactly one negative and eight positive eigenvalues. Consequently, rank $\rho > 4$ and det $\rho^{\Gamma} \neq 0$.

 So the minimum rank of 1-undistillable NPT states is at least five.

Distilling two-qutrit NPT states of rank four

Theorem

Any bipartite NPT state of rank at most four is 1-distillable.

Corollary

If ρ is a 1-undistillable two-qutrit NPT state, then ker ρ is a completely entangled space, and ρ^{Γ} has exactly one negative and eight positive eigenvalues. Consequently, rank $\rho > 4$ and det $\rho^{\Gamma} \neq 0$.

- So the minimum rank of 1-undistillable NPT states is at least five.
- We construct an example below.

The distillability problem and entanglement distillation $M \times N$ NPT states of rank $\max\{M, N\}$

,

Distilling two-qutrit NPT stat 0000000000

Distilling two-qutrit NPT states of rank four

• The following state σ is an edge PPT entangled state of birank (5,8) constructed by Kye and Osaka, 2012.

The distillability problem and entanglement distillation $M \times N$ NPT states of rank $\max\{M, N\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distilling two-qutrit NPT states of rank four

• The following state σ is an edge PPT entangled state of birank (5,8) constructed by Kye and Osaka, 2012.

1	$2\cos\theta$	0	0	0	$-\cos\theta$	0	0	0	$-\cos\theta$	
$\frac{1}{N}$	0	$\frac{1}{b}$	0	$-e^{-i\theta}$	0	0	0	0	0	
	0	õ	Ь	0	0	0	$-e^{i\theta}$	0	0	
	0	$-e^{i\theta}$	0	Ь	0	0	0	0	0	
	$-\cos\theta$	0	0	0	$2\cos\theta$	0	0	0	$-\cos\theta$	Ι,
	0	0	0	0	0	$\frac{1}{b}$	0	$-e^{-i\theta}$	0	
	0	0	$-e^{-i\theta}$	0	0	Õ	$\frac{1}{b}$	0	0	
	0	0	0	0	0	$-e^{i\theta}$	õ	Ь	0	
	$-\cos\theta$	0	0	0	$-\cos\theta$	0	0	0	$2\cos\theta$	

where

$$N = 3(2\cos\theta + b + 1/b),$$

and the two parameters b > 0 and $0 < |\theta| < \pi/3$.

The distillability problem and entanglement distillation $M \times N$ NPT states of rank $\max\{M, N\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distilling two-qutrit NPT states of rank four

• Since rank $\sigma = 5$ and σ is an edge state, $\mathcal{R}(\sigma)$ contains a product state $|f,g\rangle$ such that $|f^*,g\rangle \notin \mathcal{R}(\sigma^{\Gamma})$.

The distillability problem and entanglement distillation $M \times N$ NPT states of rank $\max\{M, N\}$

Distilling two-qutrit NPT states of rank four

- Since rank $\sigma = 5$ and σ is an edge state, $\mathcal{R}(\sigma)$ contains a product state $|f,g\rangle$ such that $|f^*,g\rangle \notin \mathcal{R}(\sigma^{\Gamma})$.
- For sufficiently small $\epsilon > 0$, the matrix

$$\sigma = rac{1}{1-\epsilon}(\sigma-\epsilon|f,g
angle\!\langle f,g|)$$

is a two-qutrit NPT state of rank five.

The distillability problem and entanglement distillation $M \times N$ NPT states of rank $\max\{M, N\}$

Distilling two-qutrit NPT states of rank four

- Since rank $\sigma = 5$ and σ is an edge state, $\mathcal{R}(\sigma)$ contains a product state $|f,g\rangle$ such that $|f^*,g\rangle \notin \mathcal{R}(\sigma^{\Gamma})$.
- For sufficiently small $\epsilon > 0$, the matrix

$$oldsymbol{
ho} = rac{1}{1-\epsilon} (\sigma-\epsilon|f,g
angle\!\langle f,g|)$$

is a two-gutrit NPT state of rank five.

• The kernel of σ^{I} is spanned by the two-gutrit maximally entangled state $|\Psi\rangle$. Let p be the mininum positive eigenvalue of σ^{Γ} .

The distillability problem and entanglement distillation $M \times N$ NPT states of rank $\max\{M, N\}$

Distilling two-qutrit NPT states of rank four

- Since rank $\sigma = 5$ and σ is an edge state, $\mathcal{R}(\sigma)$ contains a product state $|f,g\rangle$ such that $|f^*,g\rangle \notin \mathcal{R}(\sigma^{\Gamma})$.
- For sufficiently small $\epsilon > 0$, the matrix

$$oldsymbol{
ho} = rac{1}{1-\epsilon} (\sigma-\epsilon|f,g
angle\!\langle f,g|)$$

is a two-gutrit NPT state of rank five.

- The kernel of σ^{I} is spanned by the two-gutrit maximally entangled state $|\Psi\rangle$. Let p be the mininum positive eigenvalue of σ^{Γ} .
- For any pure state $|\psi\rangle$ of Schmidt rank two, we have

$$\langle \psi | \rho^{\mathsf{\Gamma}} | \psi
angle \propto \langle \psi | (\sigma^{\mathsf{\Gamma}} - \epsilon | f^*, g \rangle \langle f^*, g |) | \psi
angle > p/3 - \epsilon \geq 0.$$

The distillability problem and entanglement distillation $M \times N$ NPT states of rank $\max\{M, N\}$

Distilling two-qutrit NPT states of rank four

- Since rank $\sigma = 5$ and σ is an edge state, $\mathcal{R}(\sigma)$ contains a product state $|f,g\rangle$ such that $|f^*,g\rangle \notin \mathcal{R}(\sigma^{\Gamma})$.
- For sufficiently small $\epsilon > 0$, the matrix

$$oldsymbol{
ho} = rac{1}{1-\epsilon} (\sigma-\epsilon|f,g
angle\!\langle f,g|)$$

is a two-gutrit NPT state of rank five.

- The kernel of σ^{Γ} is spanned by the two-gutrit maximally entangled state $|\Psi\rangle$. Let p be the mininum positive eigenvalue of σ^{Γ}
- For any pure state $|\psi\rangle$ of Schmidt rank two, we have

$$\langle \psi |
ho^{\mathsf{\Gamma}} | \psi
angle \propto \langle \psi | (\sigma^{\mathsf{\Gamma}} - \epsilon | f^*, g \rangle \langle f^*, g |) | \psi
angle > p/3 - \epsilon \geq 0.$$

• Hence ρ is 1-undistillable.

Distilling two-qutrit NPT stat 0000000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Distilling two-qutrit NPT states of rank four

Distilling two-qutrit NPT stat 00000000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Distilling two-qutrit NPT states of rank four

Lemma

For any integer n, and sufficiently small $\epsilon = \epsilon(n) > 0$, the two-qutrit NPT state $\rho = \frac{1}{1-\epsilon} (\sigma - \epsilon |f, g\rangle \langle f, g|)$ is n-undistillable.

Distilling two-qutrit NPT states of rank four

Lemma

For any integer n, and sufficiently small $\epsilon = \epsilon(n) > 0$, the two-qutrit NPT state $\rho = \frac{1}{1-\epsilon} (\sigma - \epsilon |f, g\rangle \langle f, g|)$ is n-undistillable.

Proof.

For any pure state $|\psi\rangle$ of Schmidt rank two, we have

$$(1-\epsilon)^n \langle \psi | (
ho^{\Gamma})^{\otimes n} | \psi
angle := \langle \psi | (\sigma^{\Gamma})^{\otimes n} | \psi
angle + \sum_{k=1}^n c_k \epsilon^k$$

$$\geq p^n \langle \psi | (I_9 - |\Psi
angle \langle \Psi |)^{\otimes n} | \psi
angle + \sum_{k=1}^n c_k \epsilon^k$$

where c_k are complex numbers and p is the minimum positive eigenvalue of σ^{Γ} . Since the first summand is positive and has nothing to do with ϵ , the assertion holds.

Distilling two-qutrit NPT stat 0000000000

Distilling two-qutrit NPT states of rank four

• The following auxiliary lemma is used in the previous proof.

Distilling two-qutrit NPT stat 0000000000

Distilling two-qutrit NPT states of rank four

• The following auxiliary lemma is used in the previous proof.

Lemma

$$\min_{\psi \in \mathrm{sr}_2} \langle \psi | (I_9 - |\Psi\rangle \langle \Psi|)^{\otimes n} | \psi \rangle \geq rac{1}{3^n},$$

where sr₂ is the set of bipartite pure states of Schmidt rnak two, and $|\Psi\rangle$ is the two-qutrit maximally entangled state.

Distilling two-qutrit NPT stat 000000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Comparing with Werner states

• The comparison between our suspicious two-qutrit NPT states ρ of rank five and the "critical" NPT Werner states $\rho_w = \frac{2}{15} (I_9 - \frac{1}{2} \sum_{i,i=1}^3 |ij\rangle\langle ji|).$

	ρ	$ ho_w$
rank	5	9
rank of partial transpose	9	9
parameters	$b, heta, \epsilon, n$	n
construction	edge PPT states	$U\otimes U$ -invariant

Distilling two-qutrit NPT stat 000000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Comparing with Werner states

 The comparison between our suspicious two-qutrit NPT states ρ of rank five and the "critical" NPT Werner states $\rho_w = \frac{2}{15} (I_9 - \frac{1}{2} \sum_{i,i=1}^3 |ij\rangle\langle ji|).$

	ρ	$ ho_w$
rank	5	9
rank of partial transpose	9	9
parameters	$m{b}, m{ heta}, m{\epsilon}, m{n}$	п
construction	edge PPT states	$U\otimes U$ -invariant

• Whether there is a "critical" ρ is unknown.

Distilling two-qutrit NPT stat 000000000

Comparing with Werner states

 The comparison between our suspicious two-qutrit NPT states ρ of rank five and the "critical" NPT Werner states $\rho_w = \frac{2}{15} (I_9 - \frac{1}{2} \sum_{i=1}^3 |ij\rangle\langle ji|).$

	ρ	$ ho_w$
rank	5	9
rank of partial transpose	9	9
parameters	$m{b}, m{ heta}, m{\epsilon}, m{n}$	п
construction	edge PPT states	$U\otimes U$ -invariant

- Whether there is a "critical" ρ is unknown.
- The condition of rank nine prevents the further investigation in both cases.

Distilling two-qutrit NPT stat

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Open problems

• Can we distill more NPT states satisfying LFRP and RFRP?

The distillability problem and entanglement distillation $M \times N$ NPT states of rank $\max\{M, N\}$ Distilling two-qutrit NPT states of rank $\max\{M, N\}$

Open problems

- Can we distill more NPT states satisfying LFRP and RFRP?
- Distill $3 \times N$ NPT states of rank N + 1 for $N \ge 4$.

Distilling two-qutrit NPT stat

Open problems

- Can we distill more NPT states satisfying LFRP and RFRP?
- Distill $3 \times N$ NPT states of rank N + 1 for $N \ge 4$.
- Is there an undistillable suspicious two-qutrit NPT state $\rho = \frac{1}{1-\epsilon} (\sigma - \epsilon | f, g \rangle \langle f, g |)$ by a constant $\epsilon > 0$?

The distillability proble	m and	entanglement	distillation	М

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Thanks for your attention!