Freeness and the Transpose

Jamie Mingo (Queen's University)
based on joint work with M. Popa, E. Redelmeier, and R. Speicher

Mathematical Aspects in Quantum Information Theory
NIMS Daejeon, February 17, 2016

random matrices and entangled states

- $G=\left(g_{i j}\right)_{i j}, g_{i j}$ is a complex Gaussian random variable with $\mathrm{E}\left(g_{i j}\right)=0$ and $\mathrm{E}\left(\left|g_{i j}\right|^{2}\right)=1$, all entries independent
- G a $N \times M$ rectangular complex Gaussian matrix
- complex Wishart matrix $W_{n}=\frac{1}{N} G G^{*} \geqslant 0$
- assume $M / N \rightarrow c, 0<c<\infty$ as $M, N \rightarrow \infty$
- $\mu_{N}(\omega)=N^{-1}\left(\lambda_{1}(\omega)+\cdots+\lambda_{N}(\omega)\right)$ where $\lambda_{1}(\omega) \leqslant \cdots \leqslant \lambda_{N}(\omega)$ are the eigenvalues of $W(\omega)$

Marchenko-Pastur law

- μ_{N} is a random measure on \mathbb{R} which converges as $M, N \rightarrow \infty$ to a deterministic measure v_{c}

Block Version

for $1 \leqslant i \leqslant d_{1}, G_{i}$ is a $d_{2} \times p$ Gaussian random matrix as above

$$
\begin{gathered}
W=\frac{1}{d_{1} d_{2}}\left(\frac{\frac{G_{1}}{\vdots}}{\frac{G_{d_{1}}}{}}\right)\left(G_{1}^{*}|\cdots| G_{d_{1}}^{*}\right)=\frac{1}{d_{1} d_{2}}\left(G_{i} G_{j}^{*}\right)_{i j} \\
W \in M_{d_{1}}(\mathbf{C}) \otimes M_{d_{2}}(\mathbf{C})
\end{gathered}
$$

$W(i, j)=\frac{1}{d_{1} d_{2}} G_{i} G_{j}^{*}=(i, j)$ block of W
$W^{\top}=$ transpose blocks but leave blocks intact
$W^{\Gamma}=$ leave blocks in place but apply transpose inside block

Aubrun's example of entanglement (2012)

- showed that W^{\top} and W^{Γ} have limiting eigenvalue distributions (which are non-random) as $p /\left(d_{1} d_{2}\right) \rightarrow c$

$$
\frac{\sqrt{4-\left(\frac{x-c}{\sqrt{c}}\right)^{2}}}{2 \pi} d\left(\frac{x-c}{\sqrt{c}}\right) \text { on }[c-2 \sqrt{c}, c+2 \sqrt{c}]
$$

So W does not have positive partial transpose for $0<c<4$

Voiculescu's freeness (1983)

- $\mathbb{F}_{2}=\langle u, v\rangle=$ free group on generators u and v
- $\mathcal{A}=\mathbf{C}\left[\mathbb{F}_{2}\right]=\left\{\sum_{g \in \mathbb{F}_{2}} \alpha_{g} g \mid\right.$ sum is finite $\}, \varphi\left(\sum_{g \in \mathbb{F}_{2}} \alpha_{g} g\right)=\alpha_{e}$
- $x_{1}=u+u^{-1}, \mathcal{A}_{1}=\operatorname{alg}\left(1, x_{1}\right) x_{2}=v+v^{-1}, \mathcal{A}_{2}=\operatorname{alg}\left(1, x_{2}\right)$
if $a_{1}, \ldots a_{n} \in \mathcal{A}$,
- without constant term (i.e. $\varphi\left(a_{i}\right)=0$), and
- $a_{i} \in \mathcal{A}_{j_{i}}$ and $j_{1} \neq j_{2} \neq \cdots \neq j_{n}$,
then $a_{1} \cdots a_{n}$ has no constant term.

and in general

- (\mathcal{A}, φ) is a unital algebra and a linear functional $\varphi: \mathcal{A} \rightarrow \mathbf{C}$ with $\varphi(1)=1$
- $\mathcal{A}_{1}, \mathcal{A}_{2} \subseteq \mathcal{A}$ are free with respect to φ if whenever $a_{1}, \ldots, a_{n} \in \mathcal{A}$
(i) $\varphi\left(a_{i}\right)=0$ for $1 \leqslant i \leqslant n$,
(ii) $a_{i} \in \mathcal{A}_{j_{i}}$ and $j_{1} \neq j_{2} \neq \cdots \neq j_{n}$,
then $\varphi\left(a_{1} \cdots a_{n}\right)=0$

Voiculescu's free world

- Voiculescu produced a parallel universe by finding a free analogue for a long list of objects in classical probability;
- there is an important wormhole that connects the two universes;
[Voi91] independent matrices are asymptotically free provided that one ensemble is unitarily invariant
- in higher order freeness the transpose plays an important role

the transpose of the GUE (joint with M. Popa)

- $X=\frac{1}{\sqrt{N}}\left(x_{i j}\right)$ where $\mathrm{E}\left(x_{i j}\right)=0, \mathrm{E}\left(\left|x_{i j}\right|^{2}\right)=1$ and $\left\{x_{i j}\right\}_{i} \cup\left\{\operatorname{Re}\left(x_{i j}\right)\right\}_{i<j} \cup\left\{\operatorname{Im}\left(x_{i j}\right)\right\}_{i<j}$ are independent real
Gaussian random variables
- $Y_{1}=\frac{\sqrt{2}}{\sqrt{N}}\left(\operatorname{Re}\left(x_{i j}\right)\right)_{i j} Y_{2}=\frac{\sqrt{2}}{\sqrt{N}}\left(i \operatorname{Im}\left(x_{i j}\right)\right)_{i j}$
- Y_{1} and Y_{2} are real/imaginary and self-adjoint, independent and asymptotically semi-circular
- X and X^{T} are not independent, but
- $X=\frac{1}{\sqrt{2}}\left(Y_{1}+Y_{2}\right), X^{\mathrm{T}}=\frac{1}{\sqrt{2}}\left(Y_{1}-Y_{2}\right)$ are asymptotically free тнм: unitarily invariant ensembles are asymptotically free from their transpose

back to the Wishart case

(joint work with M. Popa (San Antonio, TX)

$$
W=\frac{1}{d_{1} d_{2}}\binom{\frac{G_{1}}{\vdots}}{\frac{G_{d_{1}}}{}}\left(G_{1}^{*}|\cdots| G_{d_{1}}^{*}\right)=\frac{1}{d_{1} d_{2}}\left(G_{i} G_{j}^{*}\right)_{i j}
$$

тнм: the matrices $\left\{W, W^{\top}, W^{\Gamma}, W^{\mathrm{T}}\right\}$ form an asymptotically free family
тнм: we don't need to assume that the entries are Gaussian

Partial Transposes of Unitary Matrices

- let U be a $d_{1} d_{2} \times d_{1} d_{2}$ Haar distributed random unitary matrix. We wish to investigate the joint $*$-distribution of the matrices $\left\{U, U^{\top}, U^{\Gamma}, U^{\mathrm{T}}\right\}$. This amounts to finding the joint distribution of the following eight operators

$$
U, U^{*}, U^{\top},\left(U^{\top}\right)^{*}, U^{\Gamma},\left(U^{\Gamma}\right)^{*}, U^{\mathrm{T}},\left(U^{\mathrm{T}}\right)^{*} .
$$

- ϵ is left partial transpose 'bit', η is the right partial transpose 'bit', θ is the adjoint 'bit'

$$
U^{(\epsilon, \eta, \theta)}= \begin{cases}U & \epsilon=1, \eta=1, \theta=1 \\ U^{*} & \epsilon=1, \eta=1, \theta=-1 \\ U^{\top} & \epsilon=-1, \eta=1, \theta=1 \\ \left(U^{\top}\right)^{*} & \epsilon=-1, \eta=1, \theta=-1 \\ U^{\Gamma} & \epsilon=1, \eta=-1, \theta=1 \\ \left(U^{\Gamma}\right)^{*} & \epsilon=1, \eta=-1, \theta=-1 \\ U^{\mathrm{T}} & \epsilon=-1, \eta=-1, \theta=1 \\ \left(U^{\mathrm{T}}\right)^{*} & \epsilon=-1, \eta=-1, \theta=-1\end{cases}
$$

$\mathrm{E}\left(\operatorname{Tr}\left(U^{\left(\epsilon_{1}, \eta_{1}, \theta_{1}\right)} \cdots U^{\left(\epsilon_{n}, \eta_{n}, \theta_{n}\right)}\right)\right)$

$$
=\sum_{p, q \in \mathcal{P}_{2}^{\theta}(n)} \mathrm{Wg}(p, q) d_{1}^{\#\left(\theta \epsilon \gamma \delta \gamma^{-1} \epsilon \theta \vee \delta q \delta p\right)} d_{2}^{\#\left(\theta \eta \gamma \delta \gamma^{-1} \eta \theta \vee \delta q \delta p\right)}
$$

- $\mathcal{P}_{2}^{\theta}(n)$ is the set of pairings of $\{1, \ldots, n\}$ that connect a $\theta=1$ to a $\theta=-1$
- Wg is a matrix indexed by pairs of pairings (= inverse of $N^{\#(p \vee q)}$), see the work of Benoît Collins)

conclusion

 (joint with E. Redelmeier)тнм: the families $\left\{U, U^{*}\right\},\left\{U^{\top},\left(U^{\top}\right)^{*}\right\},\left\{U^{\Gamma},\left(U^{\Gamma}\right)^{*}\right\}$, and $\left\{U^{\mathrm{T}},\left(U^{\mathrm{T}}\right)^{*}\right\}$ are asymptotically free
тнм: $U+U^{*}$ is asymptotically arcsine but $\left(U+U^{*}\right)^{7}$ is asymptotically semi-circular

methodology—classical cumulants

- μ is probability measure on \mathbb{R} with Fourier transform $\hat{\mu}$: $\varphi(z)=\int e^{i t z} d t$, we can expand the logarithm as

$$
\log (\varphi(i t))=\sum_{n \geqslant 1} k_{n} \frac{t^{n}}{n!}
$$

(provided the measure has moments of all orders).

- the numbers $\left\{k_{n}\right\}_{n}$ are the cumulants of μ
- if $d \mu(t)=\frac{e^{-t^{2} / 2}}{\sqrt{2 \pi}} d t$ is the normal distribution then $\log (\varphi(i t))=t^{2} / 2$ so $k_{2}=1$ and all other k^{\prime} s are 0 .
- if $X: \Omega \rightarrow \mathbb{R}$ is a random variable and $\mu_{X}(E)=\mathrm{P}\left(X^{-1}(E)\right)$ is the distribution of X, μ_{X} is a probability measure on \mathbb{R} with cumulants $\left\{k_{n}^{(X)}\right\}_{n}$, we call these the cumulants of X
- X_{1} and X_{2} are independent $\Rightarrow k_{n}^{\left(X_{1}+X_{2}\right)}=k_{n}^{\left(X_{1}\right)}+k_{n}^{\left.X_{2}\right)}$ for all n

the R-transform \& free cumulants (Voiculescu, 1982)

- (\mathcal{A}, φ) unital $*$-algebra with state, $a=a^{*} \in \mathcal{A}$;
- $G_{a}(z)=\int(z-t)^{-1} d \mu_{a}(t)=\varphi\left((z-a)^{-1}\right), z \in \mathbf{C}^{+}$.
- $R_{a}(z)=G_{a}^{\langle-1\rangle}(z)-\frac{1}{z}=\sum_{n \geqslant 0} \kappa_{n+1} z^{n}$
is the R-transform of a; and $\left\{\kappa_{n}\right\}_{n}$ are the free cumulants of a.
- a_{1} and a_{2} freely independent $\Rightarrow \kappa_{n}^{\left(a_{1}+a_{2}\right)}=\kappa_{n}^{\left(a_{1}\right)}+\kappa_{n}^{\left(a_{2}\right)}$ for all n
- a_{1} and a_{2} are free $\Leftrightarrow \forall n, \forall i_{1}, \ldots, i_{n}, \kappa_{n}\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)=0$ unless $i_{1}=\cdots=i_{n}$ (vanishing of mixed cumulants—Nica-Speicher)
cumulants for the partial transpose of a Wishart matrix
- $R(z)=c+c z$, so $\kappa_{1}=\kappa_{2}=c$
- $G^{\langle-1\rangle}(z)=\frac{1}{z}+c+c z$
- $G(z)=\sqrt{c} \frac{\left(\frac{z-c}{\sqrt{c}}\right)-\sqrt{\left(\frac{z-c}{\sqrt{c}}\right)^{2}-4}}{2}$
- in the limit, the spectral measure of W^{Γ} is a shifted semi-circle
why do we get semi-circular operators?
- in both the Wishart and Haar unitary case we reduce the calculation of either

$$
\mathrm{E}\left(\operatorname{Tr}\left(W^{\left(\epsilon_{1}, \eta_{1}\right)} \cdots W^{\left(\epsilon_{n}, \eta_{n}\right)}\right)\right)
$$

or

$$
\mathrm{E}\left(\operatorname{Tr}\left(U^{\left(\epsilon_{1}, \eta_{1}, \theta_{1}\right)} \cdots U^{\left(\epsilon_{n}, \eta_{n}, \theta_{n}\right)}\right)\right)
$$

to a sum over permutations (or graphs in the non-Gaussian case)

- the only terms which survive in the limit are the ones which admit planar diagrams

