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random matrices and entangled states
I G = (gij)ij, gij is a complex Gaussian random variable with

E(gij) = 0 and E(|gij|
2) = 1, all entries independent

I G a N ×M rectangular complex Gaussian matrix
I complex Wishart matrix Wn = 1

N GG∗ > 0
I assume M/N → c, 0 < c <∞ as M, N →∞
I µN(ω) = N−1(λ1(ω) + · · ·+ λN(ω)) where
λ1(ω) 6 · · · 6 λN(ω) are the eigenvalues of W(ω)
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Marchenko-Pastur law

I µN is a random measure on R which converges as
M, N →∞ to a deterministic measure νc

√
(b−t)(t−a)

2πt dt (plus possibly an atom at 0)
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Block Version
for 1 6 i 6 d1, Gi is a d2 × p Gaussian random matrix as above

W =
1

d1d2

 G1
...

Gd1

( G∗1 · · · G∗d1

)
=

1
d1d2

(GiG∗j )ij

W ∈Md1(C)⊗Md2(C)

W(i, j) = 1
d1d2

GiG∗j = (i, j) block of W
W Γ= transpose blocks but leave blocks intact
WΓ = leave blocks in place but apply transpose inside block
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Aubrun’s example of entanglement (2012)

I showed that W Γand WΓ have limiting eigenvalue
distributions (which are non-random) as p/(d1d2)→ c

√
4 −

(x−c√
c

)2

2π
d
(x − c√

c

)
on [c − 2

√
c, c + 2

√
c]

So W does not have positive partial transpose for 0 < c < 4
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Voiculescu’s freeness (1983)
I F2 = 〈u, v〉 = free group on generators u and v
I A = C[F2] = {

∑
g∈F2

αgg | sum is finite}, ϕ(
∑

g∈F2
αgg) = αe

I x1 = u + u−1, A1 = alg(1, x1) x2 = v + v−1, A2 = alg(1, x2)

if a1, . . . an ∈ A,

I without constant term (i.e. ϕ(ai) = 0), and
I ai ∈ Aji and j1 , j2 , · · · , jn,

then a1 · · · an has no constant term.
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and in general
I (A,ϕ) is a unital algebra and a linear functional ϕ : A→ C

with ϕ(1) = 1
I A1,A2 ⊆ A are free with respect to ϕ if whenever

a1, . . . , an ∈ A

(i) ϕ(ai) = 0 for 1 6 i 6 n,
(ii) ai ∈ Aji and j1 , j2 , · · · , jn,

then ϕ(a1 · · · an) = 0
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Voiculescu’s free world
I Voiculescu produced a parallel universe by finding a free

analogue for a long list of objects in classical probability;
I there is an important wormhole that connects the two

universes;
[Voi91] independent matrices are asymptotically free provided

that one ensemble is unitarily invariant
I in higher order freeness the transpose plays an important

role
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the transpose of the GUE (joint with M. Popa)
I X = 1√

N
(xij) where E(xij) = 0, E(|xij|

2) = 1 and
{xii}i ∪ {Re(xij)}i<j ∪ {Im(xij)}i<j are independent real
Gaussian random variables

I Y1 =
√

2√
N

(
Re(xij)

)
ij Y2 =

√
2√
N

(
i Im(xij)

)
ij

I Y1 and Y2 are real/imaginary and self-adjoint, independent
and asymptotically semi-circular

I X and XT are not independent, but
I X = 1√

2
(Y1 +Y2), XT = 1√

2
(Y1 −Y2) are asymptotically free

thm: unitarily invariant ensembles are asymptotically free from
their transpose
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back to the Wishart case
(joint work with M. Popa (San Antonio, TX)

W =
1

d1d2

 G1
...

Gd1

( G∗1 · · · G∗d1

)
=

1
d1d2

(GiG∗j )ij

thm: the matrices {W, W Γ, WΓ , WT} form an asymptotically free
family

thm: we don’t need to assume that the entries are Gaussian
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Partial Transposes of Unitary Matrices

I let U be a d1d2 × d1d2 Haar distributed random unitary
matrix. We wish to investigate the joint ∗-distribution of
the matrices {U, U Γ, UΓ , UT}. This amounts to finding the
joint distribution of the following eight operators

U, U∗, U Γ, (U Γ)∗, UΓ , (UΓ )∗, UT, (UT)∗.
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I ε is left partial transpose ‘bit’, η is the right partial
transpose ‘bit’, θ is the adjoint ‘bit’

U(ε,η,θ) =



U ε = 1,η = 1, θ = 1
U∗ ε = 1,η = 1, θ = −1
U Γ ε = −1,η = 1, θ = 1
(U Γ)∗ ε = −1,η = 1, θ = −1
UΓ ε = 1,η = −1, θ = 1
(UΓ )∗ ε = 1,η = −1, θ = −1
UT ε = −1,η = −1, θ = 1
(UT)∗ ε = −1,η = −1, θ = −1
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finding the joint distribution using combinatorics
E(Tr(U(ε1,η1,θ1) · · ·U(εn,ηn,θn)))

=
∑

p,q∈Pθ2 (n)

Wg(p, q)d#(θεγδγ−1εθ∨δqδp)
1 d#(θηγδγ−1ηθ∨δqδp)

2

I Pθ2 (n) is the set of pairings of {1, . . . , n} that connect a θ = 1
to a θ = −1

I Wg is a matrix indexed by pairs of pairings (= inverse of
N#(p∨q)), see the work of Benoı̂t Collins)

p =
1 52 3 4 6

q =
1 42 3 5 6

p ∨ q =
1 42 3 5 6
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conclusion
(joint with E. Redelmeier)

thm: the families {U, U∗}, {U Γ, (U Γ)∗}, {UΓ , (UΓ )∗}, and
{UT, (UT)∗} are asymptotically free

thm: U + U∗ is asymptotically arcsine but (U + U∗) Γis
asymptotically semi-circular

-2 -1 0 1 2
0

0.25

0.5
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methodology—classical cumulants
I µ is probability measure on R with Fourier transform µ̂:
ϕ(z) =

∫
eitz dt, we can expand the logarithm as

log(ϕ(it)) =
∑
n>1

kn
tn

n!

(provided the measure has moments of all orders).
I the numbers {kn}n are the cumulants of µ

I if dµ(t) = e−t2/2
√

2π
dt is the normal distribution then

log(ϕ(it)) = t2/2 so k2 = 1 and all other k’s are 0.
I if X : Ω→ R is a random variable and µX(E) = P(X−1(E))

is the distribution of X, µX is a probability measure on R
with cumulants {k(X)

n }n, we call these the cumulants of X

I X1 and X2 are independent⇒ k(X1+X2)
n = k(X1)

n + kX2)
n for all

n
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the R-transform & free cumulants (Voiculescu, 1982)
I (A,ϕ) unital ∗-algebra with state, a = a∗ ∈ A;
I Ga(z) =

∫
(z − t)−1 dµa(t) = ϕ((z − a)−1), z ∈ C+.

I Ra(z) = G〈−1〉
a (z) −

1
z
=

∑
n>0

κn+1zn

is the R-transform of a; and {κn}n are the free cumulants of a.

I a1 and a2 freely independent⇒ κ
(a1+a2)
n = κ

(a1)
n + κ

(a2)
n for

all n
I a1 and a2 are free⇔ ∀n, ∀i1, . . . , in, κn(ai1 , . . . , ain) = 0 unless

i1 = · · · = in (vanishing of mixed cumulants—Nica-Speicher)
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cumulants for the partial transpose of a Wishart matrix

I R(z) = c + cz, so κ1 = κ2 = c

I G〈−1〉(z) =
1
z
+ c + cz

I G(z) =
√

c

( z−c√
c

)
−
√( z−c√

c

)2
− 4

2
I in the limit, the spectral measure of WΓ is a shifted

semi-circle
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why do we get semi-circular operators?
I in both the Wishart and Haar unitary case we reduce the

calculation of either

E(Tr(W(ε1,η1) · · ·W(εn,ηn)))

or
E(Tr(U(ε1,η1,θ1) · · ·U(εn,ηn,θn)))

to a sum over permutations (or graphs in the non-Gaussian
case)

I the only terms which survive in the limit are the ones
which admit planar diagrams
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