On quantum correlations.

Wladyslaw Adam Majewski

Instytut Fizyki Teoretycznej i Astrofizyki, UG ul. Wita Stwosza 57, 80-952 Gdańsk, Poland;

IFTiA Gdańsk University – Poland

- PLAN:
- Classical probability; correlations, canonical form of two-points correlation function.
- Quantization definitions: C^* (W^*) case.
- What is lost during the quantization procedure?
- Decomposition theory (\equiv integral representation).
- Coefficient of quantum correlations.
- Entanglement of Formation (\equiv EoF).

- Classical probability theory:
- The pair (Ω, \mathcal{F}) consists of a set Ω and a σ -algebra \mathcal{F} .
- **Definition 1.** A probability space is a triple (Ω, \mathcal{F}, p) where Ω is a space (sample space), \mathcal{F} is a σ -algebra (a family of events), and p is a probability measure on (Ω, \mathcal{F}) .
- Definition 2. A correlation coefficient C(X,Y) is defined as

$$C(X,Y) = \frac{E(XY) - E(X)E(Y)}{(E(X^2) - E(X)^2)^{\frac{1}{2}}(E(Y^2) - E(Y)^2)^{\frac{1}{2}}},$$
 (1)

where $E(X) = \int X dp$, X a stochastic variable.

- Note that C(X,Y) provides a nice classification. Firstly: $C(X,Y) \in [-1,1]$. Secondly, if C(X,Y) is equal to 0 then stochastic variables X and Y are *uncorrelated*. Further, if $C(X,Y) \in (0,1]$, then X, Y are said to be *correlated* and finally when $C(X,Y) \in [-1,0)$, stochastic variables X and Y are said to be *anti correlated*.
- E(X, Y) plays a crucial role in the definition of C(X, Y).
- We will need the notion of Dirac's (point) measure δ_a , where $a \in E$. Such measures are determined by the condition:

$$\delta_a(f) = f(a). \tag{2}$$

• We say that a measure μ has a finite support if it can be written as a linear (finite) combination of δ_a 's.

• The well known fact is, Chapter 3, Section 2, Corollaire 3 in N. Bourbaki Livre VI. Intégration:

Theorem 3. Any positive finite measure μ on E is a limit point, in the vague topology, of a convex hull of positive measures having a finite support contained in the support of μ .

- **Remark 4.** 1. This result will be not valid in the non-commutative setting. It is taken from the (classical) measure theory.
 - 2. A slightly stronger formulation can be find in Meyer. Namely, every probability measure λ in $\mathfrak{M}(\Omega)$ is a weak limit of discrete (with finite support) measures belonging to the collection of probability measures in $\mathfrak{M}(\Omega)$ which have the same barycenter as λ ($\mathfrak{M}(\Omega)$ stands for the collection of Radon measures on Ω).
 - 3. The statement of Theorem 3 can be rephrased by saying that a classical measure has the weak-* Riemann approximation property.

- Classical composite systems
- A composite system is characterized by the triple ($\Gamma \equiv \Gamma_1 \times \Gamma_2, \mu, T_t$), where the probability measure μ is defined on the Cartesian product of two measurable spaces ($\Gamma_1 \times \Gamma_2, \mathcal{F}_1 \times \mathcal{F}_2$), and finally, T_t is a global evolution defined on Γ .
- We recall that there is the identification

$$C(\Gamma_1 \times \Gamma_2) = C(\Gamma_1) \otimes C(\Gamma_2), \tag{3}$$

where on the right hand side of $(3) \otimes$ stands for the tensor product,

• We will identify the function f_1 (defined on Γ_1) with the function $f_1 \otimes \mathbb{1}_{\Gamma_2}$ (defined on $\Gamma_1 \times \Gamma_2$); and analogously for f_2 .

- Quantum correlations
- We wish to study the functionals $\varphi(\cdot)$ given by

$$\varphi(f_1 \otimes f_2) = \varphi(f_1 f_2) \equiv \varphi_\mu(f_1 f_2) \equiv \int_{\Gamma_1 \times \Gamma_2} f_1(\gamma_1) f_2(\gamma_2) d\mu, \quad (4)$$

where $f_i \in C(\Gamma_i)$, i = 1, 2.

 Now taking into account the weak-* Riemann approximation property, see Theorem 3, one has

$$\varphi(f_1 f_2) = \lim_{n \to \infty} \int_{\Gamma_1 \times \Gamma_2} f_1(\gamma_1) f_2(\gamma_2) d\mu_n$$

$$= \lim_{n \to \infty} \int_{\Gamma_1 \times \Gamma_2} f_1(\gamma_1) f_2(\gamma_2) (\sum_n \lambda_n d\delta^{(n)}_{(a_{1,n}, a_{2,n})}),$$
(5)

where $\delta_{(a,b)}$ stands for the Dirac's measure supported by (a,b), $\lambda_n \ge 0$ and $\sum_n \lambda_n = 1$.

Quantum correlations

• Note, that for a point measure, one has

$$\delta_{(a,b)} = \delta_a \times \delta_b.$$

$$\varphi_{\mu}(f_{1}f_{2}) = \lim_{n \to \infty} \sum_{n} \lambda_{n} \int_{\Gamma_{1}} f_{1}(\gamma_{1}) d\delta_{a_{1,n}}^{(n)}(\gamma_{1}) \int_{\Gamma_{2}} f_{2}(\gamma_{2}) d\delta_{a_{2,n}}^{(n)}(\gamma_{2})$$
$$= \lim_{n \to \infty} \sum_{n} \lambda_{n} \varphi_{\delta_{a_{1,n}}}(f_{1}) \varphi_{\delta_{a_{2,n}}}(f_{2})$$
$$= \lim_{n \to \infty} \sum_{n} \lambda_{n} (\varphi_{\delta_{a_{1,n}}} \otimes \varphi_{\delta_{a_{2,n}}}) (f_{1} \otimes f_{2}),$$
(6)

for any $f_i \in C(\Gamma_i)$, i = 1, 2.

• Consequently

$$\varphi_{\mu}(f_1 \otimes f_2) = \lim_{n \to \infty} \sum_n \lambda_n(\varphi_{\delta_{a_{1,n}}} \otimes \varphi_{\delta_{a_{2,n}}})(f_1 \otimes f_2)$$
(7)

for any $f_i \in C(\Gamma_i)$, i = 1, 2.

- **Corollary 5.** For a classical case, any two point correlation function of bipartite system is given by the limit of a convex combination of product states.
- This is taken as the basic feature of classical correlations.
- Quantization: C^* -algebra approach.

• "quantization" consists in replacing classical coordinate q_k and canonically conjugate momentum p_l by self-adjoint operators satisfying CCR relations:

$$[q_k, q_l] = 0 = [p_k, p_l], \quad [p_k, q_l] = \frac{h}{2\pi i} \delta_{kl}, \tag{8}$$

k, l = 1, ..., n.

- No any finite dimensional realization!
- (v.Neumann, Rellich, Stone, Weyl) under natural requirements (irreducibility, sufficient regularity) CCR relations fix the representation of operators p_k, q_l up to unitary equivalence provided that n is **finite!**

- For Statistical Mechanics, QFT *n* is infinite!
- There are non-equivalent representations.
- typical algebras for infinite systems: factor III.
- (D. Kastler and his school) There is a C^* -algebra carrying some of the main features attached to the concept of Weyl quantization.
- C^* -algebra formalism is appearing.
- Essential point for quantum probability:

• Theorem 6. (Markov-Riesz-Kakutani) If φ is a linear, positive, continuous form on $C_{\mathfrak{K}}(\Gamma)$ (continuous functions with compact support) then there exist a unique positive Borel measure μ on E such that

$$\varphi(f) = \int_E f d\mu \qquad f \in C_{\mathfrak{K}}(\Gamma).$$
(9)

- Let A be an abelian C*-algebra with unit 1. Then, Gelfand-Neimark theorem says that A can be identified with the (abelian) C*-algebra of all complex valued continuous functions on Γ, where Γ is a compact Hausdorff space.
- Quantization of probability calculus: drop abelian!

- Noncommutative case
- C^* -algebra case: $(\mathfrak{A}_1 \otimes \mathfrak{A}_2, \mathfrak{S})$, where \mathfrak{S} stands for the set of states.
- W^* -algebra case: to take in account normal states one has (Sakai; Effros, Ruan)

Theorem 7. Let $\mathfrak{M} \subseteq B(\mathcal{H})$ and $\mathfrak{N} \subseteq B(\mathcal{K})$ be two von Neumann algebras. Denote by \mathfrak{M}_* the predual of \mathfrak{M} , i.e. such Banach space that $(\mathfrak{M}_*)^*$ is isomorphic to \mathfrak{M} , i.e. $(\mathfrak{M}_*)^* \cong \mathfrak{M}$. There is an isometry

$$(\mathfrak{M}\otimes\mathfrak{N})_*=\mathfrak{M}_*\otimes_{\pi}\mathfrak{N}_*,\qquad(10)$$

where the von Neumann algebra $\mathfrak{M} \otimes \mathfrak{N}$ is the weak closure of the set $\{A \otimes B; A \in \mathfrak{M}, B \in \mathfrak{N}\}$. In particular,

$$B(\mathcal{H} \otimes \mathcal{K})_* = B(\mathcal{H})_* \otimes_\pi B(\mathcal{K})_*.$$
(11)

- \otimes_{π} stands for the operator space projective tensor product:
- (1) a matrix norm $\|\cdot\|$ on a linear space V is an assignment of a norm $\|\cdot\|$ on the matrices $M_n(V)$ for $\forall_{n \in \mathbb{N}}$.
- (2) an operator space is a linear space V together with a matrix norm $\|\cdot\|$ for which: $\|v \oplus w\|_{n+m} = max\{\|v\|_m, \|w\|_n\}$ and $\|\alpha v\beta\|_n \leq \|\alpha\|\|v\|_m\|\beta\|$ where $v \in M_n(V)$, $w \in M_n(V)$, $\alpha \in M_{n,m}$, $\beta \in M_{n,m}$.
- (3) given an element $u \in M_n(V \otimes W)$ define

 $||u||_{\pi} = \inf\{||\alpha|| ||v|| ||w|| ||\beta||; u = \alpha(v \otimes w)\beta\}$

where $v \in M_p(V)$, $w \in M_q(W)$, $\alpha \in M_{n,p \times q}$, and $\beta \in M_{p \times q,n}$.

- Lack of the weak* Riemann approximation property (for products!).
- Namely, one has (see Exercise 11.5.11 in Kadison, Ringrose)

Example 8. Let $\mathfrak{A}_1 = B(\mathcal{H})$ and $\mathfrak{A}_2 = B(\mathcal{K})$ where \mathcal{H} and \mathcal{K} are 2-dimensional Hilbert spaces. Consider the vector state $\omega_x(\cdot) = (x, \cdot x)$ with $x = \frac{1}{\sqrt{2}}(e_1 \otimes f_1 + e_2 \otimes f_2)$ where $\{e_1, e_2\}$ and $\{f_1, f_2\}$ are orthonormal bases in \mathcal{H} and \mathcal{K} respectively. Let ρ be any state in the norm closure of the convex hull of product states, i.e. $\rho \in \overline{conv}(\mathfrak{S}_1 \otimes \mathfrak{S}_2)$. Then, one can show that

$$\|\omega_x - \rho\| \ge \frac{1}{4}.\tag{12}$$

 Remark 9. One should note that ω_x can always be approximated by a finite linear combination of simple tensors. However, here we wish to approximate ω_x by a convex combination of positive (normalized) functionals (cf Theorem 3) and this makes the difference.

- Consequently, contrary to the classical case (see Corollary 5) even in the simplest non-commutative case, the space of all states of 𝔅₁ ⊗ 𝔅₂ is not norm closure of conv(𝔅₁ ⊗ 𝔅₂).
- It means, in mathematical terms, that for non-commutative case, for product structures, the weak* Riemann approximation property of a (classical) measure does not hold.
- Thus, we are in position to give the following definitions:

Definition 10. $- C^*$ -algebra case.

Let \mathfrak{A}_i , i = 1, 2 be a C^* -algebra, \mathfrak{S} the set of all states on $\mathfrak{A} \equiv \mathfrak{A}_1 \otimes \mathfrak{A}_1$, i.e. the set of all normalized positive forms on \mathfrak{A} . The subset $\overline{conv}(\mathfrak{S}_1 \otimes \mathfrak{S}_2)$ in \mathfrak{S} will be called the set of separable states and will be denoted by \mathfrak{S}_{sep} . The closure is taken with respect to the norm of \mathfrak{A}^* . The subset $\mathfrak{S} \setminus \mathfrak{S}_{sep} \subset \mathfrak{S}$ is called the subset of entangled states.

W*-algebra case, (cf. Theorem 7.) Let M_i, i = 1, 2 be a W*-algebra, M = M₁⊗M₂ be the spacial tensor product of M₁ and M₂, S the set of all states on M, and Sⁿ the set of all normal states on M, i.e. the set of all normalized, weakly*continuous positive forms on M (equivalently, the set of all density matrices). The subset conv^π(Sⁿ₁ ⊗ Sⁿ₂) in Sⁿ will be called the set of separable states and will be denoted by Sⁿ_{sep}. The closure is taken with respect to the projective operator space norm on M_{1,*} ⊙ M_{2,*}. The subset Sⁿ \ Sⁿ_{sep} ⊂ Sⁿ is called the subset of normal entangled states.

- Further differences between commutative and noncommutative cases.
- Fact 11. 1. classical case.

Let δ_a be a Dirac's measure on a product measure space, i.e. δ_a is given on $\Gamma_1 \times \Gamma_2$. Note that the marginal of the point measure δ_a gives another point measure, i.e. $\delta_a|_{\Gamma_1} = \delta_{a_1}$. Here we put $a \in \Gamma_1 \times \Gamma_2$, $a = (a_1, a_2)$. The same in "physical terms" reads: a reduction of a pure state is again a pure state.

2. non-commutative case.

Let \mathcal{H} and \mathcal{K} are finite dimensional Hilbert spaces. Without loss of generality we can assume that $\dim \mathcal{H} = \dim \mathcal{K} = n$. Let $\omega_x(\cdot) = (x, \cdot x)$ be a state on $B(\mathcal{H}) \otimes B(\mathcal{K})$ where x is assumed to be of the form

$$x = \frac{1}{\sqrt{n}} \left(\sum_{i} e_i \otimes f_i \right). \tag{13}$$

Here $\{e_i\}$ and $\{f_i\}$ are basis in $\mathcal H$ and $\mathcal K$ respectively. Then, we have

$$\omega_x \left(A \otimes \mathbb{1} \right) = \frac{1}{n} \left(\sum_i e_i \otimes f_i, A \otimes \mathbb{1} \sum_j e_j \otimes f_j \right)$$

= $\frac{1}{n} \sum_{i,j} \left(e_i, A e_j \right) \left(f_i, f_j \right) = \mathbf{Tr}_{\mathcal{H}} \frac{1}{n} \mathbb{1} A \equiv \mathbf{Tr}_{\mathcal{H}} \varrho_0 A,$ (14)

where $\varrho_0 = \frac{1}{n}\mathbb{1}$ is "very non pure" state. In other words, the non-commutative counterpart of the marginal of a point measure (pure state) does not need to be again a point measure (pure state). Consequently, the second crucial ingredient of the discussion leading to Corollary 5 is not valid in non-commutative case.

- The next difficulty follows from the geometrical characterization of the set of states. Namely,
- **Proposition 12.** Let \mathfrak{A} be a C*-algebra. Then the following conditions are equivalent
 - 1. The state space $\mathfrak{S}_{\mathfrak{A}}$ is a simplex.
 - 2. \mathfrak{A} is abelian algebra.
 - 3. Positive elements \mathfrak{A}^+ of \mathfrak{A} form a lattice.
- Therefore in quantum case the set of states is not a simplex (contrary to the classical case). Consequently, in quantum case, all possible decompositions of a given state should be taken into account. In general, there are many such decompositions.

- G. Choquet:
- Let K be a base of a convex cone C with apex at the origin. The cone C gives rise to the order $\leq (a \leq b \text{ if and only if } b a \in C)$. K is said to be a simplex if C equipped with the order \leq is a lattice (Lattice is a partially ordered set in which every two elements have a supremum and an infimum).
- To sum up: as the family of states in quantum mechanics does not form a simplex, a state can be decomposed in many ways.
- Intuition: 2D ball (non-simplex) versus a triangle (simplex).

- A decomposition of a state can be realized using measure-theoretical approach (decomposition theory \equiv integral representations).
- It should be noted that extreme points of some subsets of states can exhibit "bad" measure-theoretic properties. To avoid such cases, an auxiliary condition, Ruelle's separability condition SC, should be imposed (this point is essential for EoF).
- Decompositions supported by extreme points are essential for *EoF*; not for coefficient of quantum correlations!
- Fortunately, all essential physical models, satisfy SC condition. Consequently, the program of decomposing of states can be carried out.

- Quantum correlations
- One can perform the quantization of the coefficient of correlations:

Definition 13.

$$C_q(A, A') = \frac{\langle (A - \langle A \rangle) (A' - \langle A' \rangle) \rangle}{\langle (A - \langle A \rangle)^2 \rangle^{\frac{1}{2}} \langle (A' - \langle A' \rangle)^2 \rangle^{\frac{1}{2}}}$$
(15)

where $\langle A \rangle = \phi(A)$; $A \in \mathfrak{A}$, $\phi \in \mathfrak{S}$.

- BUT, the coefficient C_q is not able to distinguish correlations of quantum nature from that of classical nature.
- Thus, a new measure of quantum correlation should be introduced.

- To this end, we will look for the best approximation of a given state ω by separable states, like in Kadison-Ringrose example.
- However, a given (non pure) state ω , in general, can possess various decompositions. Thus, we should use the decomposition theory.
- To proceed with the study of coefficient of (quantum) correlations for a quantum composite system specified by $(\mathfrak{A} = \mathfrak{A}_1 \otimes \mathfrak{A}_2, \mathfrak{S}_{\mathfrak{A}})$, where \mathfrak{A}_i are C^* -algebras, we will consider restriction maps

$$(r_1\omega)(A) = \omega(A \otimes \mathbb{1}) \tag{16}$$

$$(r_2\omega)(B) = \omega(\mathbb{1} \otimes B), \tag{17}$$

where $\omega \in \mathfrak{S}_{\mathfrak{A}}$, $A \in \mathfrak{A}_1$, and $B \in \mathfrak{A}_2$.

• $r_i : \mathfrak{S}_{\mathfrak{A}} \to \mathfrak{S}_{\mathfrak{A}_i}$ and the restriction map r_i is continuous (in weak-* topology), i = 1, 2.

- To proceed with the decomposition procedure we start with a measure on the state space \mathfrak{S} (from $M_{\omega}(\mathfrak{S}) \equiv \{\mu : \omega = \int_{\mathfrak{S}} \nu d\mu(\nu)\}$).
- Define

$$\mu_i(F_i) = \mu(r_i^{-1}(F_i))$$
(18)

for i = 1, 2, where F_i is a Borel subset in $\mathfrak{S}_{\mathfrak{A}_i}$.

- The formula (18) provides the well defined measures μ_i on $\mathfrak{S}_{\mathfrak{A}_i}$, i = 1, 2.
- Having two measures μ_1 , μ_2 on \mathfrak{S}_1 , and \mathfrak{S}_2 respectively, we want to "produce" a new measure $\boxtimes \mu$ on $\mathfrak{S}_{\mathfrak{A}_1} \times \mathfrak{S}_{\mathfrak{A}_2}$. To this end, firstly, let us consider the case of finitely supported probability measure μ :

$$\mu = \sum_{i=1}^{N} \lambda_i \delta_{\rho_i},\tag{19}$$

where $\lambda_i \ge 0$, $\sum_{i=1}^N \lambda_i = 1$, and δ_{ρ_i} denotes the Dirac's measure.

λT

• Define

$$\mu_1 = \sum_{\substack{i=1\\N}}^N \lambda_i \delta_{r_1 \rho_i} \tag{20}$$

$$\mu_2 = \sum_{i=1}^{N} \lambda_i \delta_{r_2 \rho_i}.$$
(21)

Then

$$\boxtimes \mu = \sum_{i=1}^{N} \lambda_i \delta_{r_1 \rho_i} \times \delta_{r_2 \rho_i}$$
(22)

gives a well defined measure on $\mathfrak{S}_{\mathfrak{A}_1} \times \mathfrak{S}_{\mathfrak{A}_2}$. Here $\mathfrak{S}_{\mathfrak{A}_1} \times \mathfrak{S}_{\mathfrak{A}_2}$ is understood as a measure space obtained as a product of two measure spaces $\mathfrak{S}_{\mathfrak{A}_1}$ and $\mathfrak{S}_{\mathfrak{A}_2}$. A measure structure on $\mathfrak{S}_{\mathfrak{A}_i}$ is defined as the Borel structure determined by the corresponding weak-* topology on $\mathfrak{S}_{\mathfrak{A}_i}$, i = 1, 2.

IFTiA Gdańsk University - Poland

- Take an arbitrary measure μ from M_{ω} . By Theorem 3 there exists a net of discrete measures (having a finite support) μ_k such that $\mu_k \to \mu$, and the convergence is understood in the weak-* topology on $\mathfrak{S}_{\mathfrak{A}}$.
- Defining μ_1^k (μ_2^k) analogously as μ_1 $(\mu_2$ respectively) one has $\mu_1^k \to \mu_1$ and $\mu_2^k \to \mu_2$, where again the convergence is taken in the weak-* topology on $\mathfrak{S}_{\mathfrak{A}_1}$ ($\mathfrak{S}_{\mathfrak{A}_2}$ respectively).
- Then define, for each k, ⊠µ^k as it was done in (22). {⊠µ^k} is convergent (in weak *-topology) to a measure on 𝔅_{𝔅1} × 𝔅_{𝔅2}.
- Consequently, taking the weak-* limit we arrive at the measure $\boxtimes \mu$ on $\mathfrak{S}_{\mathfrak{A}_1} \times \mathfrak{S}_{\mathfrak{A}_2}$. It follows that $\boxtimes \mu$ does not depend on the chosen approximation procedure.
- Now, we are in position to give the definition of the coefficient of quantum correlations, $d(\omega, A_1, A_2) \equiv d(\omega, A)$, where $A_i \in \mathfrak{A}_i$.

• Definition 14. Let a quantum composite system $(\mathfrak{A} = \mathfrak{A}_1 \otimes \mathfrak{A}_2, \mathfrak{S}_{\mathfrak{A}})$ be given. Take a $\omega \in \mathfrak{S}_{\mathfrak{A}}$. We define the coefficient of quantum correlations as

$$d(\omega, A) = \inf_{\mu \in M_{\omega}(\mathfrak{S}_{\mathfrak{A}})} \left| \int_{\mathfrak{S}_{\mathfrak{A}}} \xi(A) d\mu(\xi) - \int_{\mathfrak{S}_{\mathfrak{A}_{1}} \times \mathfrak{S}_{\mathfrak{A}_{2}}} \xi(A) (d \boxtimes \mu)(\xi) \right|.$$
(23)

- Following the strategy of Kadison-Ringrose example, an evaluation of a distance between the given state ω and the set of approximative separable states is done.
- It is a simple matter to see that d(ω, A) is equal to 0 if the state ω is a separable one. The converse statement is much less obvious. However, we are able to prove it. Namely:

- Theorem 15. Let \mathfrak{A} be the tensor product of two C*-algebras \mathfrak{A}_1 , \mathfrak{A}_2 . Then state $\omega \in \mathfrak{S}_{\mathfrak{A}}$ is separable if and only if $d(\omega, A) = 0$ for all $A \in \mathfrak{A}_1 \otimes \mathfrak{A}_2$
- The basic idea of the proof of the statement that $d(\omega,A)=0$ implies separability of ω relies on the study of continuity properties of the function

$$M_{\omega}(\mathfrak{S}_{\mathfrak{A}}) \ni \mu \mapsto \int_{\mathfrak{S}_{\mathfrak{A}}} \xi(A) d\mu(\xi) - \int_{\mathfrak{S}_{\mathfrak{A}_{1}} \times \mathfrak{S}_{\mathfrak{A}_{2}}} \xi(A) (d \boxtimes \mu)(\xi)$$
(24)

and the proof falls naturally into few steps.

- $M_{\omega}(\mathfrak{S}_{\mathfrak{A}})$ is a compact set.
- The mapping $M_{\omega}(\mathfrak{S}_{\mathfrak{A}}) \ni \mu \mapsto \boxtimes \mu \in M^+(\mathfrak{S}_{\mathfrak{A}_1} \times \mathfrak{S}_{\mathfrak{A}_2})$ is weakly continuous.

• The continuity proved in the second step implies that the function (24) is a real valued, continuous function defined on a compact space. Hence, by Weierstrass theorem, infimum is attainable. Therefore, the condition $d(\omega, A) = 0$ means that

$$\omega(A) = \int_{\mathfrak{S}_{\mathfrak{A}}} \xi(A) d\mu_0(\xi) = \int_{\mathfrak{S}_{\mathfrak{A}_1} \times \mathfrak{S}_{\mathfrak{A}_2}} \xi(A) d \boxtimes \mu_0(\xi), \qquad (25)$$

for all $A = A_1 \otimes A_2$. But, this means the separability of ω .

- Theorem 15 may be summarized by saying that any separable state contains "classical" correlations only. Therefore, an entangled state contains "non-classical" (or pure quantum) correlations.
- To comment the question of separability of normal states we have two remarks:

Remark 16. 1. (indirect way) As we have considered C^* -algebra case, taking a normal state $\varphi \in \mathfrak{S}^n_{\mathfrak{M}} \equiv \mathfrak{S}_{\mathfrak{M}} \cap \mathfrak{M}_* \subset \mathfrak{S}_{\mathfrak{M}}$, we can apply Theorem 15 for its analysis. If $d(\varphi, A) = 0$ we are getting a "separable" decomposition of φ . However, still one must check whether components of the decomposition are normal or not.

2. (a possibility for a direct way)

One can try to modify the results obtained for C^* -algebra case to that which are relevant for W^* -algebra case. However, there are two essential differences. The first is given by Definition 10 – the closure of convex hull should be carried out with respect to the projective operator space norm topology.

The second difference leads to a great problem. Namely, the set $\mathfrak{S}_{\mathfrak{M}}^n$ (normal states) is compact, in general, with respect to another topology than that which gives compactness of $\mathfrak{S}_{\mathfrak{M}}$.

- Entanglement of Formation (Benett, DiVicenzo, Smolin, Wootters; WAM)
- Definition 17. Let ω be a state, $\omega \in F \subset \mathfrak{S}_{\mathfrak{A}_1 \otimes \mathfrak{A}_2}$ and F satisfy separability condition SC. The entanglement of formation EoF is defined as

$$E_{\mathbb{F}}(\omega) = \inf_{\mu \in M_{\omega}(\mathfrak{S}_{\mathfrak{A}_{1} \otimes \mathfrak{A}_{2}})} \int \mathbb{F}(r\varphi) d\mu(\varphi)$$
(26)

where \mathbb{F} is a concave non-negative continuous function which vanishes on pure states and only on pure states

- **Theorem 18.** Let SC hold. $E(\omega) = 0$ if and only if $\omega \in F$ is separable.
- It is worth pointing out that Entanglement of Formation, *EoF*, is not only a nice indicator of separability. It possesses also many useful properties like convexity, semi-continuity and others.

- Existence of \mathbb{F} : finite dimensional case one can take as \mathbb{F} the von Neumann entropy $S(\varrho)$.
- However, for a general case (infinite dimensional) S(ρ) is only semicontinuous and {ρ : S(ρ) < ∞} is merely a meager set (set of first category). General case Orlicz spaces!
- **Definition 19.** Ruelle's SC condition

Let \mathfrak{A} be a C*-algebra with unit, and \mathfrak{F} a subset of the state space $\mathfrak{S}_{\mathfrak{A}}$. \mathfrak{F} is said to satisfy separability condition (SC) if there exists a sequence of sub-C*-algebras $\{\mathfrak{A}_n\}$ such that $\bigcup_{n=1}^{\infty} \mathfrak{A}_n$ is dense in \mathfrak{A} and each \mathfrak{A}_n contains a two-sided, closed, separable ideal \mathcal{I}_n such that

$$\mathfrak{F} = \{\omega, \ \omega \in \mathfrak{S}_{\mathfrak{A}}, \ \|\omega|_{\mathcal{I}_n}\| = 1, \ n \ge 1\}.$$

- Final remarks:
- The presented "tools": coefficient of quantum correlations and *EoF*, in a sense, are complementary each other.
- ω extreme, then μ unique, then μ is either of the form $\boxtimes \mu$ or not; for EoF extremality of ω leads to a great simplifications inf can be dropped.
- EoF gives a possibility to speak about "witness of entanglement", i.e. there are observables which determine the value of EoF.
- Details are in: W. A. Majewski, *Quantum correlations; quantum probability approach*, arXiv:1407.4754v4[quant-ph]