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o PLAN:

e Classical probability; correlations, canonical form of two-points correlation
function.

e Quantization - definitions: C* (W) case.

e What is lost during the quantization procedure?
e Decomposition theory (= integral representation).
e Coefficient of quantum correlations.

e Entanglement of Formation (= EoF).
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Classical probability theory:

The pair (€2, F) consists of a set €2 and a o-algebra F.

Definition 1. A probability space is a triple (2, F,p) where Q) is a
space (sample space), F is a o-algebra (a family of events), and p is a

probability measure on (2, F).

Definition 2. A correlation coefficient C(X,Y) is defined as

C(X,Y) =

(E(X?2) - BE(X)2)2(E(Y?) — E(Y)?)z

where F(X) = [ Xdp, X a stochastic variable.
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e Note that C'(X,Y) provides a nice classification. Firstly: C(X,Y) €
[—1,1]. Secondly, if C(X,Y) is equal to 0 then stochastic variables X
and Y are uncorrelated. Further, if C(X,Y) € (0,1], then X, Y are
said to be correlated and finally when C(X,Y) € [—1,0), stochastic
variables X and Y are said to be ant: correlated.

e F(X,Y) plays a crucial role in the definition of C'(X,Y).

e We will need the notion of Dirac's (point) measure d,, where a € F.
Such measures are determined by the condition:

Sa(f) = fla). (2)

e We say that a measure i has a finite support if it can be written as a
linear (finite) combination of §,'s.
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e The well known fact is, Chapter 3, Section 2, Corollaire 3 in N. Bourbaki
Livre VI. Intégration:

Theorem 3. Any positive finite measure 11 on E is a limit point, in
the vague topology, of a convex hull of positive measures having a finite
support contained in the support of L.

e Remark 4. 1. This result will be not valid in the non-commutative
setting. It is taken from the (classical) measure theory.

2. A slightly stronger formulation can be find in Meyer. Namely, every
probability measure \ in (L)) is a weak limit of discrete (with finite
support) measures belonging to the collection of probability measures
in () which have the same barycenter as A (M(2) stands for the
collection of Radon measures on §2).

3. The statement of Theorem 3 can be rephrased by saying that a
classical measure has the weak-* Riemann approximation property.
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e Classical composite systems

e A composite system is characterized by the triple (I' = 'y x 'y, p, Ty),
where the probability measure 1 1s defined on the Cartesian product of

two measurable spaces (I'y x Iy, F1 X Fa), and finally, T} is a global
evolution defined on I'.

e We recall that there is the identification
C(Fl X Fg) = C(Fl) X C(Fg), (3)
where on the right hand side of (3) ® stands for the tensor product,

e We will identify the function f; (defined on I'y) with the function fi®1r,
(defined on I'; x I's); and analogously for fs.
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e We wish to study the functionals ¢(-) given by

o(f1® o) = p(fifo) = o fife) = / B felvo)di, (4)

't xI'y

where fz c C(Fz), 1 =1, 2.

e Now taking into account the weak-* Riemann approximation property,
see Theorem 3, one has

©(f1f2) = lim - f1(v1) fa(y2)dpn

(5)
— lim fi (%)fz(%)(z And(S((Zl),n,az,n))’

where J(, ) stands for the Dirac's measure supported by (a,b), A, > 0
and > A, =1.
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e Note, that for a point measure, one has

5(a,b) = 5a X 5(,.

eu(fifa) = lim > Ay [ fi(y)doS? (1) [ fa(r2)ddS2) (72)

n—>00 ~ r, , Ty
= lim > sy ([1)$s,,, (f2) (6)

Lm Y An(ps,,, ® 9s,,,)(f1© f2),

for any f; € C(I';), i =1, 2.
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e Consequently

Pu(fi® f2) = lim > A (054, ,, @ Psay )1 ® f2) (7)

for any f; € C(I;), i = 1, 2.

e Corollary 5. For a classical case, any two point correlation function of

bipartite system is given by the limit of a convex combination of product
states.

e [ his is taken as the basic feature of classical correlations.

e Quantization: C*-algebra approach.
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e ‘quantization” consists in replacing classical coordinate ¢; and
canonically conjugate momentum p; by self-adjoint operators satisfying
CCR relations:

h

9k, q1) =0 =|p,p1], |pPr,q] = %5% (8)

k.l=1,..n.
e No any finite dimensional realization!

e (v.Neumann, Rellich, Stone, Weyl) under natural requirements
(irreducibility, sufficient regularity) CCR relations fix the representation
of operators pi, q; up to unitary equivalence provided that n is finite!
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e For Statistical Mechanics, QFT - n s infinite!

e There are non-equivalent representations.
e typical algebras for infinite systems: factor lll.

e (D. Kastler and his school) There is a C*-algebra carrying some of the
main features attached to the concept of Weyl quantization.

e (*-algebra formalism is appearing.

e Essential point for quantum probability:
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e Theorem 6. (Markov-Riesz-Kakutani) If ¢ is a linear, positive,
continuous form on Cg(I") (continuous functions with compact support)
then there exist a unique positive Borel measure 11 on E such that

o(f) = [E fdu e Cy(D). (9)

e Let 2 be an abelian C*-algebra with unit 1. Then, Gelfand-Neimark
theorem says that 2 can be identified with the (abelian) C*-algebra of
all complex valued continuous functions on I', where I' is a compact
Hausdorff space.

e Quantization of probability calculus: drop abelian!
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e Noncommutative case
e ('*-algebra case: (%1 ® A5, S), where G stands for the set of states.

e IV *-algebra case: to take in account normal states one has (Sakai; Effros,
Ruan)

Theorem 7. Let 9 C B(H) and M C B(K) be two von Neumann

algebras. Denote by N, the predual of N, i.e. such Banach space that
(OMN,)* is isomorphic to M, i.e. (M,)* = M. There is an isometry

(M RNy = My D7 N, (10)

where the von Neumann algebra 9 ® ) is the weak closure of the set
{A® B; A e M, B e MN}. In particular,

B(H®K). = B(H), ®» B(K).. (11)
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e X, stands for the operator space projective tensor product:

e (1) a matrix norm || - || on a linear space V is an assignment of a norm
| - || on the matrices M, (V') for V¥, c.

e (2) an operator space is a linear space V together with a matrix norm
|- || for which: |lv & wl[nim = maz{||v]|m, |w|n} and [lovfl, <
||| ||v|lm || B|] where v € M, (V), w € Mp(V), & € My, B € My .

e (3) given an element u € M, (V ® W) define
lull7 = inf{{laf|[[vf[[w][l|6]; v = alv®w)B}

where v € M, (V), w € My(W), o € M,, pxq, and B € My g n.
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e Lack of the weak™ Riemann approximation property (for products!).

e Namely, one has (see Exercise 11.5.11 in Kadison, Ringrose)

Example 8. Let 2, = B(H) and s = B(K) where H and K are
2-dimensional Hilbert spaces. Consider the vector state w.(-) = (x,- x)
with x = %(elé‘@fl +eo® fo) where{e1, es} and { f1, fo} are orthonormal
bases in H and K respectively. Let p be any state in the norm closure of
the convex hull of product states, i.e. p € conv(S1 ® S3). Then, one
can show that

lwe = pll = - (12)

e Remark 9. One should note that w, can always be approximated by
a finite linear combination of simple tensors. However, here we wish
to approximate w, by a convex combination of positive (normalized)
functionals (cf Theorem 3) and this makes the difference.
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e Consequently, contrary to the classical case (see Corollary 5) even in the
simplest non-commutative case, the space of all states of 21 ® 25 is not
norm closure of conv(G; ® G,).

o [t means, in mathematical terms, that for non-commutative case, for
product structures, the weak™ Riemann approximation property of
a (classical) measure does not hold.

e Thus, we are in position to give the following definitions:
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Definition 10. — C*-algebra case.
Let?l;, 2 = 1,2 bea (C™*-algebra, G the set of all states on 2 = 21; R4,
i.e. the set of all normalized positive forms on 2. The subset
conv (61 ® G2) in & will be called the set of separable states and will
be denoted by S,.,. The closure is taken with respect to the norm of
A*. The subset G\ G4, C S is called the subset of entangled states.

— W*-algebra case, (cf. Theorem 7.)
LetN;, 1= 1,2 be a W*-algebra, INl = 91 @My be the spacial tensor
product of My and My, S the set of all states on M, and G™ the
set of all normal states on N, i.e. the set of all normalized, weakly*-
continuous positive forms on 9 (equivalently, the set of all density
matrices). The subset conv™ (&7 ® &) in &™ will be called the set
of separable states and will be denoted by &¢,,,. The closure is taken
with respect to the projective operator space norm on Iy . © My ..
The subset G" \ G7,, C G" is called the subset of normal entangled
states.
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e Further differences between commutative and noncommutative cases.

e Fact 11. 1. classical case.
Let 0, be a Dirac’'s measure on a product measure space, i.e. 0, IS
given onI'y xI's. Note that the marginal of the point measure 9., gives
another point measure, i.e. 4|0, = 04,. Here we put a € T'; x I'y,
a = (a1,a2). The same in “physical terms” reads: a reduction of a
pure state 1s again a pure state.
2. non-commutative case.

Let H and IC are finite dimensional Hilbert spaces. Without loss of
generality we can assume that dimH=dimiC = n. Let w,(-) = (z,- x)
be a state on B(H) ® B(K) where x is assumed to be of the form

x:% Zei@)f?; : (13)

1
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Here {e;} and {f;} are basis in H and K respectively. Then, we have

wx(A®]l):% Zez’®fi7"4®]lz€j®fj
i J (14)

1 1
— ﬁ Z (ez-, Aej) (fz, f]) — TI"HE]IA = Try 004,
]

where o9 = %]l Is ‘very non pure” state. In other words, the
non-commutative counterpart of the marginal of a point measure
(pure state) does not need to be again a point measure (pure state).
Consequently, the second crucial ingredient of the discussion leading
to Corollary 5 is not valid in non-commutative case.
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e The next difficulty follows from the geometrical characterization of the
set of states. Namely,

e Proposition 12. Let 2 be a C*algebra. Then the following conditions
are equivalent

1. The state space Gy is a simplex.
2. U is abelian algebra.
3. Positive elements AT of 2 form a lattice.

e Therefore in quantum case the set of states is not a simplex (contrary
to the classical case). Consequently, in quantum case, all possible
decompositions of a given state should be taken into account. |In
general, there are many such decompositions.
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e G. Choquet:

e Let K be a base of a convex cone C with apex at the origin. The cone
C' gives rise to the order < (a < b if and only if b —a € C'). K is said
to be a simplex if C' equipped with the order < is a lattice (Lattice is a
partially ordered set in which every two elements have a supremum and

an infimum).

e To sum up: as the family of states in quantum mechanics does not form
a simplex, a state can be decomposed in many ways.

e Intuition: 2D ball (non-simplex) versus a triangle (simplex).
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e A decomposition of a state can be realized using measure-theoretical
approach (decomposition theory = integral representations).

e |t should be noted that extreme points of some subsets of states can
exhibit “bad” measure-theoretic properties. To avoid such cases, an
auxiliary condition, Ruelle's separability condition SC, should be imposed
(this point is essential for EoF).

e Decompositions supported by extreme points are essential for FoF’; not
for coefficient of quantum correlations!

e Fortunately, all essential physical models, satisfy SC condition.
Consequently, the program of decomposing of states can be carried
out.
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e Quantum correlations

e One can perform the quantization of the coefficient of correlations:

Definition 13.

where < A >= ¢(A); A€, ¢ € 6.

e BUT, the coefficient C, is not able to distinguish correlations of quantum
nature from that of classical nature.

e Thus, a new measure of quantum correlation should be introduced.
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e To this end, we will look for the best approximation of a given state w
by separable states, like in Kadison-Ringrose example.

e However, a given (non pure) state w, in general, can possess various
decompositions. Thus, we should use the decomposition theory.

e To proceed with the study of coefficient of (quantum) correlations for a
quantum composite system specified by (2 = 2; ® 2As, Sy), where 2,
are C'"-algebras, we will consider restriction maps

(rw)(4A) =w(A®1) (16)
(row)(B) = w(l ® B), (17)
where w € Gy, A € A4, and B € 5.

o r; : Oy — Gy and the restriction map r; is continuous (in weak-*
topology), i = 1, 2.
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e To proceed with the decomposition procedure we start with a measure
on the state space & ( from M, (&) = {u:w = [svdu(v)}).

e Define
ui(F) = p(ry (F) (18)
for i = 1,2, where I is a Borel subset in Gy..

e The formula (18) provides the well defined measures p; on Gy, @ =1, 2.

e Having two measures 1, o on &1, and G, respectively, we want to
"produce” a new measure Xu on Gy, X Gg,. To this end, firstly, let us
consider the case of finitely supported probability measure p:

N
H= Z Ailp;; (19)
1=1
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where \; > 0, Z,fil A; = 1, and 9, denotes the Dirac’s measure.

e Define
N
H1 =) Nibry, (20)
i=1
N
H2 =) Ailryp; (21)
i=1
Then
N
Xy = Z >‘i57“1pz' X 57”2% (22)
i=1

gives a well defined measure on Gy, X Gy(,. Here Gy, X Gy, is understood
as a measure space obtained as a product of two measure spaces Gy,
and Gg,. A measure structure on Gy, is defined as the Borel structure
determined by the corresponding weak-* topology on &g, 1 = 1, 2.
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Take an arbitrary measure p from M. By Theorem 3 there exists a net
of discrete measures (having a finite support) py such that ux — p, and
the convergence is understood in the weak-* topology on Gy,.

Defining pf (u5) analogously as i (o respectively) one has p# — 1y
and u5 — 1o, where again the convergence is taken in the weak-*
topology on Gy, (G, respectively).

Then define, for each k, Ku* as it was done in (22). {&,uk} Is convergent
(in weak *-topology) to a measure on Gy, X Gg,.

Consequently, taking the weak-* limit we arrive at the measure Xpu
on Gg, X Gg,. It follows that Xy does not depend on the chosen
approximation procedure.

Now, we are in position to give the definition of the coefficient of
quantum correlations, d(w, A1, A2) = d(w, A), where A; € ;.
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e Definition 14. Let a quantum composite system (2 =21 @ As, Gy)
be given. Take a w € Gy. We define the coefficient of quantum

correlations as

dw, A)= inf E(A)dp(€) — / E(A)dR ) (€)].

HEML(Ga) |J ey Sy, X G,
(23)

e Following the strategy of Kadison-Ringrose example, an evaluation of a
distance between the given state w and the set of approximative separable
states is done.

e |t is a simple matter to see that d(w, A) is equal to 0 if the state w is a
separable one. The converse statement is much less obvious. However,
we are able to prove it. Namely:
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e Theorem 15. Let 2 be the tensor product of two C*-algebras 2y,
As. Then state w € Gy is separable if and only if d(w,A) = 0 for all
A€ 207 ® Ay

e The basic idea of the proof of the statement that d(w, A) = 0 implies
separability of w relies on the study of continuity properties of the
function

Mo(Sa) 3 prs | E(A)du(e) / EAARME)  (24)
Gy St XS,

and the proof falls naturally into few steps.
o M,(Gyg) is a compact set.

e The mapping M,(Gy) 2 pu — Ky € MT(Sy, x Gg,) is weakly
continuous.
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e The continuity proved in the second step implies that the function (24)
is a real valued, continuous function defined on a compact space. Hence,

by Weierstrass theorem, infimum is attainable. Therefore, the condition
d(w, A) = 0 means that

Sy

w(d) = [ e(A)duo(e) = /6 EAdEm©. @9

for all A= A, ® Ay. But, this means the separability of w.

e Theorem 15 may be summarized by saying that any separable state
contains “classical’ correlations only. Therefore, an entangled state
contains “non-classical” (or pure quantum) correlations.

e To comment the question of separability of normal states we have two
remarks:
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Remark 16. 1. (indirect way)
As we have considered (C*-algebra case, taking a normal state
@ € G = Gy N M, C Gon, we can apply Theorem 15 for its
analysis. If d(p, A) = 0 we are getting a “separable” decomposition
of . However, still one must check whether components of the
decomposition are normal or not.

2. (a possibility for a direct way)
One can try to modify the results obtained for C*-algebra case to
that which are relevant for W*-algebra case. However, there are two
essential differences. The first is given by Definition 10 — the closure
of convex hull should be carried out with respect to the projective
operator space norm topology.
The second difference leads to a great problem. Namely, the set
G, (normal states) is compact, in general, with respect to another
topology than that which gives compactness of Ggy.

IFTiA Gdansk University — Poland 30



Quantum correlations MAQIT, Daejeon, February 18, 2016

e Entanglement of Formation (Benett, DiVicenzo, Smolin, Wootters;
WAM)

o Definition 17. Let w be a state, w € F' C Gy g, and F' satisfy
separability condition SC. The entanglement of formation EoF' is defined
as

Frw)=  inf / F(ro)du(p) (26)

pEMuw(Sq; 2,)

where IF' is a concave non-negative continuous function which vanishes
on pure states and only on pure states

e Theorem 18. Let SC hold. E(w) = 0 if and only if w € F is separable.

e |t is worth pointing out that Entanglement of Formation, FoF’, is not
only a nice indicator of separability. It possesses also many useful
properties like convexity, semi-continuity and others.
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e Existence of I': finite dimensional case - one can take as I' the von
Neumann entropy S(p).

e However, for a general case (infinite dimensional) S(o) is only
semicontinuous and {p : S(p) < oo} is merely a meager set (set of
first category). General case - Orlicz spaces!

e Definition 19. Ruelle’s SC condition
Let 2l be a C*-algebra with unit, and § a subset of the state space Gg.
§ Is said to satisfy separability condition (SC) if there exists a sequence
of sub-C*-algebras {,,} such that |J,__, 2, is dense in A and each 2,
contains a two-sided, closed, separable ideal I,, such that

F={w, weBy, |wz|=1 n>1).
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e Final remarks:

e The presented “tools”: coefficient of quantum correlations and EoF, in
a sense, are complementary each other.

e w extreme, then p unique, then pu is either of the form Xy or not;
for EoF' extremality of w leads to a great simplifications - inf can be
dropped.

e Fol' gives a possibility to speak about “witness of entanglement”, i.e.
there are observables which determine the value of EoF'.

e Details are in: W. A. Majewski, Quantum correlations; quantum
probability approach, arXiv:1407.4754v4[quant-ph]

IFTiA Gdansk University — Poland 33



