On quantum correlations.

Wladyslaw Adam Majewski
Instytut Fizyki Teoretycznej i Astrofizyki, UG ul. Wita Stwosza 57, 80-952 Gdańsk, Poland;

- PLAN:
- Classical probability; correlations, canonical form of two-points correlation function.
- Quantization - definitions: $C^{*}\left(W^{*}\right)$ case.
- What is lost during the quantization procedure?
- Decomposition theory (\equiv integral representation).
- Coefficient of quantum correlations.
- Entanglement of Formation (\equiv EoF).
- Classical probability theory:
- The pair (Ω, \mathcal{F}) consists of a set Ω and a σ-algebra \mathcal{F}.
- Definition 1. A probability space is a triple (Ω, \mathcal{F}, p) where Ω is a space (sample space), \mathcal{F} is a σ-algebra (a family of events), and p is a probability measure on (Ω, \mathcal{F}).
- Definition 2. A correlation coefficient $C(X, Y)$ is defined as

$$
\begin{equation*}
C(X, Y)=\frac{E(X Y)-E(X) E(Y)}{\left(E\left(X^{2}\right)-E(X)^{2}\right)^{\frac{1}{2}}\left(E\left(Y^{2}\right)-E(Y)^{2}\right)^{\frac{1}{2}}}, \tag{1}
\end{equation*}
$$

where $E(X)=\int X d p, X$ a stochastic variable.

- Note that $C(X, Y)$ provides a nice classification. Firstly: $C(X, Y) \in$ $[-1,1]$. Secondly, if $C(X, Y)$ is equal to 0 then stochastic variables X and Y are uncorrelated. Further, if $C(X, Y) \in(0,1]$, then X, Y are said to be correlated and finally when $C(X, Y) \in[-1,0)$, stochastic variables X and Y are said to be anti correlated.
- $E(X, Y)$ plays a crucial role in the definition of $C(X, Y)$.
- We will need the notion of Dirac's (point) measure δ_{a}, where $a \in E$. Such measures are determined by the condition:

$$
\begin{equation*}
\delta_{a}(f)=f(a) \tag{2}
\end{equation*}
$$

- We say that a measure μ has a finite support if it can be written as a linear (finite) combination of δ_{a} 's.
- The well known fact is, Chapter 3, Section 2 , Corollaire 3 in N. Bourbaki Livre VI. Intégration:

Theorem 3. Any positive finite measure μ on E is a limit point, in the vague topology, of a convex hull of positive measures having a finite support contained in the support of μ.

- Remark 4. 1. This result will be not valid in the non-commutative setting. It is taken from the (classical) measure theory.

2. A slightly stronger formulation can be find in Meyer. Namely, every probability measure λ in $\mathfrak{M}(\Omega)$ is a weak limit of discrete (with finite support) measures belonging to the collection of probability measures in $\mathfrak{M}(\Omega)$ which have the same barycenter as $\lambda(\mathfrak{M}(\Omega)$ stands for the collection of Radon measures on Ω).
3. The statement of Theorem 3 can be rephrased by saying that a classical measure has the weak-* Riemann approximation property.

- Classical composite systems
- A composite system is characterized by the triple $\left(\Gamma \equiv \Gamma_{1} \times \Gamma_{2}, \mu, T_{t}\right)$, where the probability measure μ is defined on the Cartesian product of two measurable spaces $\left(\Gamma_{1} \times \Gamma_{2}, \mathcal{F}_{1} \times \mathcal{F}_{2}\right)$, and finally, T_{t} is a global evolution defined on Γ.
- We recall that there is the identification

$$
\begin{equation*}
C\left(\Gamma_{1} \times \Gamma_{2}\right)=C\left(\Gamma_{1}\right) \otimes C\left(\Gamma_{2}\right) \tag{3}
\end{equation*}
$$

where on the right hand side of $(3) \otimes$ stands for the tensor product,

- We will identify the function f_{1} (defined on Γ_{1}) with the function $f_{1} \otimes \mathbb{1}_{\Gamma_{2}}$ (defined on $\Gamma_{1} \times \Gamma_{2}$); and analogously for f_{2}.
- We wish to study the functionals $\varphi(\cdot)$ given by

$$
\begin{equation*}
\varphi\left(f_{1} \otimes f_{2}\right)=\varphi\left(f_{1} f_{2}\right) \equiv \varphi_{\mu}\left(f_{1} f_{2}\right) \equiv \int_{\Gamma_{1} \times \Gamma_{2}} f_{1}\left(\gamma_{1}\right) f_{2}\left(\gamma_{2}\right) d \mu \tag{4}
\end{equation*}
$$

where $f_{i} \in C\left(\Gamma_{i}\right), i=1,2$.

- Now taking into account the weak-* Riemann approximation property, see Theorem 3, one has

$$
\begin{align*}
\varphi\left(f_{1} f_{2}\right) & =\lim _{n \rightarrow \infty} \int_{\Gamma_{1} \times \Gamma_{2}} f_{1}\left(\gamma_{1}\right) f_{2}\left(\gamma_{2}\right) d \mu_{n} \\
& =\lim _{n \rightarrow \infty} \int_{\Gamma_{1} \times \Gamma_{2}} f_{1}\left(\gamma_{1}\right) f_{2}\left(\gamma_{2}\right)\left(\sum_{n} \lambda_{n} d \delta_{\left(a_{1, n}, a_{2, n}\right)}^{(n)}\right) \tag{5}
\end{align*}
$$

where $\delta_{(a, b)}$ stands for the Dirac's measure supported by $(a, b), \lambda_{n} \geq 0$ and $\sum_{n} \lambda_{n}=1$.

- Note, that for a point measure, one has

$$
\delta_{(a, b)}=\delta_{a} \times \delta_{b}
$$

$$
\begin{align*}
\varphi_{\mu}\left(f_{1} f_{2}\right) & =\lim _{n \rightarrow \infty} \sum_{n} \lambda_{n} \int_{\Gamma_{1}} f_{1}\left(\gamma_{1}\right) d \delta_{a_{1, n}}^{(n)}\left(\gamma_{1}\right) \int_{\Gamma_{2}} f_{2}\left(\gamma_{2}\right) d \delta_{a_{2, n}}^{(n)}\left(\gamma_{2}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{n} \lambda_{n} \varphi_{\delta_{a_{1, n}}}\left(f_{1}\right) \varphi_{\delta_{a_{2, n}}}\left(f_{2}\right) \tag{6}\\
& =\lim _{n \rightarrow \infty} \sum_{n} \lambda_{n}\left(\varphi_{\delta_{a_{1, n}}} \otimes \varphi_{\delta_{a_{2, n}}}\right)\left(f_{1} \otimes f_{2}\right)
\end{align*}
$$

for any $f_{i} \in C\left(\Gamma_{i}\right), i=1,2$.

- Consequently

$$
\begin{equation*}
\varphi_{\mu}\left(f_{1} \otimes f_{2}\right)=\lim _{n \rightarrow \infty} \sum_{n} \lambda_{n}\left(\varphi_{\delta_{a_{1, n}}} \otimes \varphi_{\delta_{a_{2, n}}}\right)\left(f_{1} \otimes f_{2}\right) \tag{7}
\end{equation*}
$$

for any $f_{i} \in C\left(\Gamma_{i}\right), i=1,2$.

- Corollary 5. For a classical case, any two point correlation function of bipartite system is given by the limit of a convex combination of product states.
- This is taken as the basic feature of classical correlations.
- Quantization: C^{*}-algebra approach.
- "quantization" consists in replacing classical coordinate q_{k} and canonically conjugate momentum p_{l} by self-adjoint operators satisfying CCR relations:

$$
\begin{equation*}
\left[q_{k}, q_{l}\right]=0=\left[p_{k}, p_{l}\right], \quad\left[p_{k}, q_{l}\right]=\frac{h}{2 \pi i} \delta_{k l} \tag{8}
\end{equation*}
$$

$$
k, l=1, \ldots, n
$$

- No any finite dimensional realization!
- (v.Neumann, Rellich, Stone, Weyl) under natural requirements (irreducibility, sufficient regularity) CCR relations fix the representation of operators p_{k}, q_{l} up to unitary equivalence provided that n is finite!
- For Statistical Mechanics, QFT - n is infinite!
- There are non-equivalent representations.
- typical algebras for infinite systems: factor III.
- (D. Kastler and his school) There is a C^{*}-algebra carrying some of the main features attached to the concept of Weyl quantization.
- C^{*}-algebra formalism is appearing.
- Essential point for quantum probability:
- Theorem 6. (Markov-Riesz-Kakutani) If φ is a linear, positive, continuous form on $C_{\mathfrak{K}}(\Gamma)$ (continuous functions with compact support) then there exist a unique positive Borel measure μ on E such that

$$
\begin{equation*}
\varphi(f)=\int_{E} f d \mu \quad f \in C_{\mathfrak{K}}(\Gamma) . \tag{9}
\end{equation*}
$$

- Let \mathfrak{A} be an abelian C^{*}-algebra with unit $\mathbb{1}$. Then, Gelfand-Neimark theorem says that \mathfrak{A} can be identified with the (abelian) C^{*}-algebra of all complex valued continuous functions on Γ, where Γ is a compact Hausdorff space.
- Quantization of probability calculus: drop abelian!
- Noncommutative case
- C^{*}-algebra case: $\left(\mathfrak{A}_{1} \otimes \mathfrak{A}_{2}, \mathfrak{S}\right)$, where \mathfrak{S} stands for the set of states.
- W^{*}-algebra case: to take in account normal states one has (Sakai; Effros, Ruan)

Theorem 7. Let $\mathfrak{M} \subseteq B(\mathcal{H})$ and $\mathfrak{N} \subseteq B(\mathcal{K})$ be two von Neumann algebras. Denote by \mathfrak{M}_{*} the predual of \mathfrak{M}, i.e. such Banach space that $\left(\mathfrak{M}_{*}\right)^{*}$ is isomorphic to \mathfrak{M}, i.e. $\left(\mathfrak{M}_{*}\right)^{*} \cong \mathfrak{M}$. There is an isometry

$$
\begin{equation*}
(\mathfrak{M} \otimes \mathfrak{N})_{*}=\mathfrak{M}_{*} \otimes_{\pi} \mathfrak{N}_{*}, \tag{10}
\end{equation*}
$$

where the von Neumann algebra $\mathfrak{M} \otimes \mathfrak{N}$ is the weak closure of the set $\{A \otimes B ; A \in \mathfrak{M}, B \in \mathfrak{N}\}$. In particular,

$$
\begin{equation*}
B(\mathcal{H} \otimes \mathcal{K})_{*}=B(\mathcal{H})_{*} \otimes_{\pi} B(\mathcal{K})_{*} \tag{11}
\end{equation*}
$$

- \otimes_{π} stands for the operator space projective tensor product:
- (1) a matrix norm $\|\cdot\|$ on a linear space V is an assignment of a norm $\|\cdot\|$ on the matrices $M_{n}(V)$ for $\forall_{n \in \mathbb{N}}$.
- (2) an operator space is a linear space V together with a matrix norm $\|\cdot\|$ for which: $\|v \oplus w\|_{n+m}=\max \left\{\|v\|_{m},\|w\|_{n}\right\}$ and $\|\alpha v \beta\|_{n} \leq$ $\|\alpha\|\|v\|_{m}\|\beta\|$ where $v \in M_{n}(V), w \in M_{n}(V), \alpha \in M_{n, m}, \beta \in M_{n, m}$.
- (3) given an element $u \in M_{n}(V \otimes W)$ define

$$
\|u\|_{\pi}=\inf \{\|\alpha\|\|v\|\|w\|\|\beta\| ; u=\alpha(v \otimes w) \beta\}
$$

where $v \in M_{p}(V), w \in M_{q}(W), \alpha \in M_{n, p \times q}$, and $\beta \in M_{p \times q, n}$.

- Lack of the weak* Riemann approximation property (for products!).
- Namely, one has (see Exercise 11.5.11 in Kadison, Ringrose)

Example 8. Let $\mathfrak{A}_{1}=B(\mathcal{H})$ and $\mathfrak{A}_{2}=B(\mathcal{K})$ where \mathcal{H} and \mathcal{K} are 2-dimensional Hilbert spaces. Consider the vector state $\omega_{x}(\cdot)=(x, \cdot x)$ with $x=\frac{1}{\sqrt{2}}\left(e_{1} \otimes f_{1}+e_{2} \otimes f_{2}\right)$ where $\left\{e_{1}, e_{2}\right\}$ and $\left\{f_{1}, f_{2}\right\}$ are orthonormal bases in \mathcal{H} and \mathcal{K} respectively. Let ρ be any state in the norm closure of the convex hull of product states, i.e. $\rho \in \overline{\operatorname{conv}}\left(\mathfrak{S}_{1} \otimes \mathfrak{S}_{2}\right)$. Then, one can show that

$$
\begin{equation*}
\left\|\omega_{x}-\rho\right\| \geq \frac{1}{4} \tag{12}
\end{equation*}
$$

- Remark 9. One should note that ω_{x} can always be approximated by a finite linear combination of simple tensors. However, here we wish to approximate ω_{x} by a convex combination of positive (normalized) functionals (cf Theorem 3) and this makes the difference.
- Consequently, contrary to the classical case (see Corollary 5) even in the simplest non-commutative case, the space of all states of $\mathfrak{A}_{1} \otimes \mathfrak{A}_{2}$ is not norm closure of $\operatorname{conv}\left(\mathfrak{S}_{1} \otimes \mathfrak{S}_{2}\right)$.
- It means, in mathematical terms, that for non-commutative case, for product structures, the weak* Riemann approximation property of a (classical) measure does not hold.
- Thus, we are in position to give the following definitions:

Definition 10. - C^{*}-algebra case.
Let $\mathfrak{A}_{i}, i=1,2$ be a C^{*}-algebra, \mathfrak{S} the set of all states on $\mathfrak{A} \equiv \mathfrak{A}_{1} \otimes \mathfrak{A}_{1}$, i.e. the set of all normalized positive forms on \mathfrak{A}. The subset $\overline{\operatorname{conv}}\left(\mathfrak{S}_{1} \otimes \mathfrak{S}_{2}\right)$ in \mathfrak{S} will be called the set of separable states and will be denoted by $\mathfrak{S}_{\text {sep }}$. The closure is taken with respect to the norm of \mathfrak{A}^{*}. The subset $\mathfrak{S} \backslash \mathfrak{S}_{\text {sep }} \subset \mathfrak{S}$ is called the subset of entangled states.

- W^{*}-algebra case, (cf. Theorem 7.)

Let $\mathfrak{M}_{i}, i=1,2$ be a W^{*}-algebra, $\mathfrak{M}=\mathfrak{M}_{1} \otimes \mathfrak{M}_{2}$ be the spacial tensor product of \mathfrak{M}_{1} and \mathfrak{M}_{2}, \mathfrak{S} the set of all states on \mathfrak{M}, and \mathfrak{S}^{n} the set of all normal states on \mathfrak{M}, i.e. the set of all normalized, weakly*continuous positive forms on \mathfrak{M} (equivalently, the set of all density matrices). The subset $\overline{\operatorname{conv}}^{\pi}\left(\mathfrak{S}_{1}^{n} \otimes \mathfrak{S}_{2}^{n}\right)$ in \mathfrak{S}^{n} will be called the set of separable states and will be denoted by $\mathfrak{S}_{\text {sep }}^{n}$. The closure is taken with respect to the projective operator space norm on $\mathfrak{M}_{1, *} \odot \mathfrak{M}_{2, *}$. The subset $\mathfrak{S}^{\mathfrak{n}} \backslash \mathfrak{S}_{\text {sep }}^{n} \subset \mathfrak{S}^{\mathfrak{n}}$ is called the subset of normal entangled states.

- Further differences between commutative and noncommutative cases.
- Fact 11. 1. classical case.

Let δ_{a} be a Dirac's measure on a product measure space, i.e. δ_{a} is given on $\Gamma_{1} \times \Gamma_{2}$. Note that the marginal of the point measure δ_{a} gives another point measure, i.e. $\left.\delta_{a}\right|_{\Gamma_{1}}=\delta_{a_{1}}$. Here we put $a \in \Gamma_{1} \times \Gamma_{2}$, $a=\left(a_{1}, a_{2}\right)$. The same in "physical terms" reads: a reduction of a pure state is again a pure state.
2. non-commutative case.

Let \mathcal{H} and \mathcal{K} are finite dimensional Hilbert spaces. Without loss of generality we can assume that $\operatorname{dim} \mathcal{H}=\operatorname{dim} \mathcal{K}=n$. Let $\omega_{x}(\cdot)=(x, \cdot x)$ be a state on $B(\mathcal{H}) \otimes B(\mathcal{K})$ where x is assumed to be of the form

$$
\begin{equation*}
x=\frac{1}{\sqrt{n}}\left(\sum_{i} e_{i} \otimes f_{i}\right) \tag{13}
\end{equation*}
$$

Here $\left\{e_{i}\right\}$ and $\left\{f_{i}\right\}$ are basis in \mathcal{H} and \mathcal{K} respectively. Then, we have

$$
\begin{align*}
\omega_{x}(A \otimes \mathbb{1}) & =\frac{1}{n}\left(\sum_{i} e_{i} \otimes f_{i}, A \otimes \mathbb{1} \sum_{j} e_{j} \otimes f_{j}\right) \tag{14}\\
& =\frac{1}{n} \sum_{i, j}\left(e_{i}, A e_{j}\right)\left(f_{i}, f_{j}\right)=\operatorname{Tr}_{\mathcal{H}} \frac{1}{n} \mathbb{1} A \equiv \operatorname{Tr}_{\mathcal{H}} \varrho_{0} A
\end{align*}
$$

where $\varrho_{0}=\frac{1}{n} \mathbb{1}$ is "very non pure" state. In other words, the non-commutative counterpart of the marginal of a point measure (pure state) does not need to be again a point measure (pure state). Consequently, the second crucial ingredient of the discussion leading to Corollary 5 is not valid in non-commutative case.

- The next difficulty follows from the geometrical characterization of the set of states. Namely,
- Proposition 12. Let \mathfrak{A} be a C^{*}-algebra. Then the following conditions are equivalent

1. The state space $\mathfrak{S}_{\mathfrak{A}}$ is a simplex.
2. \mathfrak{A} is abelian algebra.
3. Positive elements \mathfrak{A}^{+}of \mathfrak{A} form a lattice.

- Therefore in quantum case the set of states is not a simplex (contrary to the classical case). Consequently, in quantum case, all possible decompositions of a given state should be taken into account. In general, there are many such decompositions.
- G. Choquet:
- Let K be a base of a convex cone C with apex at the origin. The cone C gives rise to the order $\leq(a \leq b$ if and only if $b-a \in C)$. K is said to be a simplex if C equipped with the order \leq is a lattice (Lattice is a partially ordered set in which every two elements have a supremum and an infimum).
- To sum up: as the family of states in quantum mechanics does not form a simplex, a state can be decomposed in many ways.
- Intuition: $2 D$ ball (non-simplex) versus a triangle (simplex).
- A decomposition of a state can be realized using measure-theoretical approach (decomposition theory \equiv integral representations).
- It should be noted that extreme points of some subsets of states can exhibit "bad" measure-theoretic properties. To avoid such cases, an auxiliary condition, Ruelle's separability condition SC, should be imposed (this point is essential for EoF).
- Decompositions supported by extreme points are essential for EoF; not for coefficient of quantum correlations!
- Fortunately, all essential physical models, satisfy SC condition. Consequently, the program of decomposing of states can be carried out.
- Quantum correlations
- One can perform the quantization of the coefficient of correlations:

Definition 13.

$$
\begin{equation*}
C_{q}\left(A, A^{\prime}\right)=\frac{\left\langle(A-\langle A\rangle)\left(A^{\prime}-\left\langle A^{\prime}\right\rangle\right)\right\rangle}{\left\langle(A-\langle A\rangle)^{2}\right\rangle^{\frac{1}{2}}\left\langle\left(A^{\prime}-\left\langle A^{\prime}\right\rangle\right)^{2}\right\rangle^{\frac{1}{2}}} \tag{15}
\end{equation*}
$$

where $<A>=\phi(A) ; A \in \mathfrak{A}, \phi \in \mathfrak{S}$.

- BUT, the coefficient C_{q} is not able to distinguish correlations of quantum nature from that of classical nature.
- Thus, a new measure of quantum correlation should be introduced.
- To this end, we will look for the best approximation of a given state ω by separable states, like in Kadison-Ringrose example.
- However, a given (non pure) state ω, in general, can possess various decompositions. Thus, we should use the decomposition theory.
- To proceed with the study of coefficient of (quantum) correlations for a quantum composite system specified by ($\mathfrak{A}=\mathfrak{A}_{1} \otimes \mathfrak{A}_{2}, \mathfrak{S}_{\mathfrak{A}}$), where \mathfrak{A}_{i} are C^{*}-algebras, we will consider restriction maps

$$
\begin{align*}
& \left(r_{1} \omega\right)(A)=\omega(A \otimes \mathbb{1}) \tag{16}\\
& \left(r_{2} \omega\right)(B)=\omega(\mathbb{1} \otimes B), \tag{17}
\end{align*}
$$

where $\omega \in \mathfrak{S}_{\mathfrak{R}}, A \in \mathfrak{A}_{1}$, and $B \in \mathfrak{A}_{2}$.

- $r_{i}: \mathfrak{S}_{\mathfrak{A}} \rightarrow \mathfrak{S}_{\mathfrak{A}_{i}}$ and the restriction map r_{i} is continuous (in weak-* topology), $i=1,2$.
- To proceed with the decomposition procedure we start with a measure on the state space $\mathfrak{S}\left(\right.$ from $\left.M_{\omega}(\mathfrak{S}) \equiv\left\{\mu: \omega=\int_{\mathfrak{S}} \nu d \mu(\nu)\right\}\right)$.
- Define

$$
\begin{equation*}
\mu_{i}\left(F_{i}\right)=\mu\left(r_{i}^{-1}\left(F_{i}\right)\right) \tag{18}
\end{equation*}
$$

for $i=1,2$, where F_{i} is a Borel subset in $\mathfrak{S}_{\mathfrak{A}_{i}}$.

- The formula (18) provides the well defined measures μ_{i} on $\mathfrak{S}_{\mathfrak{A}_{i}}, i=1,2$.
- Having two measures μ_{1}, μ_{2} on \mathfrak{S}_{1}, and \mathfrak{S}_{2} respectively, we want to "produce" a new measure $\boxtimes \mu$ on $\mathfrak{S}_{\mathfrak{A}_{1}} \times \mathfrak{S}_{\mathfrak{A}_{2}}$. To this end, firstly, let us consider the case of finitely supported probability measure μ :

$$
\begin{equation*}
\mu=\sum_{i=1}^{N} \lambda_{i} \delta_{\rho_{i}} \tag{19}
\end{equation*}
$$

where $\lambda_{i} \geq 0, \sum_{i=1}^{N} \lambda_{i}=1$, and $\delta_{\rho_{i}}$ denotes the Dirac's measure.

- Define

$$
\begin{align*}
& \mu_{1}=\sum_{i=1}^{N} \lambda_{i} \delta_{r_{1} \rho_{i}} \tag{20}\\
& \mu_{2}=\sum_{i=1}^{N} \lambda_{i} \delta_{r_{2} \rho_{i}} \tag{21}
\end{align*}
$$

Then

$$
\begin{equation*}
\boxtimes \mu=\sum_{i=1}^{N} \lambda_{i} \delta_{r_{1} \rho_{i}} \times \delta_{r_{2} \rho_{i}} \tag{22}
\end{equation*}
$$

gives a well defined measure on $\mathfrak{S}_{\mathfrak{A}_{1}} \times \mathfrak{S}_{\mathfrak{A}_{2}}$. Here $\mathfrak{S}_{\mathfrak{A}_{1}} \times \mathfrak{S}_{\mathfrak{A}_{2}}$ is understood as a measure space obtained as a product of two measure spaces $\mathfrak{S}_{\mathfrak{A}_{1}}$ and $\mathfrak{S}_{\mathfrak{A}_{2}}$. A measure structure on $\mathfrak{S}_{\mathfrak{A}_{i}}$ is defined as the Borel structure determined by the corresponding weak-* topology on $\mathfrak{S}_{\mathfrak{A}_{i}}, i=1,2$.

- Take an arbitrary measure μ from M_{ω}. By Theorem 3 there exists a net of discrete measures (having a finite support) μ_{k} such that $\mu_{k} \rightarrow \mu$, and the convergence is understood in the weak-* topology on $\mathfrak{S}_{\mathfrak{A}}$.
- Defining $\mu_{1}^{k}\left(\mu_{2}^{k}\right)$ analogously as μ_{1} (μ_{2} respectively) one has $\mu_{1}^{k} \rightarrow \mu_{1}$ and $\mu_{2}^{k} \rightarrow \mu_{2}$, where again the convergence is taken in the weak-* topology on $\mathfrak{S}_{\mathfrak{A}_{1}}\left(\mathfrak{S}_{\mathfrak{A}_{2}}\right.$ respectively).
- Then define, for each $k, \boxtimes \mu^{k}$ as it was done in (22). $\left\{\boxtimes \mu^{k}\right\}$ is convergent (in weak $*$-topology) to a measure on $\mathfrak{S}_{\mathfrak{R}_{1}} \times \mathfrak{S}_{\mathfrak{R}_{2}}$.
- Consequently, taking the weak-* limit we arrive at the measure $\boxtimes \mu$ on $\mathfrak{S}_{\mathfrak{R}_{1}} \times \mathfrak{S}_{\mathfrak{R}_{2}}$. It follows that $\boxtimes \mu$ does not depend on the chosen approximation procedure.
- Now, we are in position to give the definition of the coefficient of quantum correlations, $d\left(\omega, A_{1}, A_{2}\right) \equiv d(\omega, A)$, where $A_{i} \in \mathfrak{A}_{i}$.
- Definition 14. Let a quantum composite system ($\left.\mathfrak{A}=\mathfrak{A}_{1} \otimes \mathfrak{A}_{2}, \mathfrak{S}_{\mathfrak{A}}\right)$ be given. Take a $\omega \in \mathfrak{S}_{\mathfrak{A}}$. We define the coefficient of quantum correlations as

$$
\begin{equation*}
d(\omega, A)=\inf _{\mu \in M_{\omega}\left(\mathfrak{S}_{\mathfrak{A}}\right)}\left|\int_{\mathfrak{S}_{\mathfrak{A}}} \xi(A) d \mu(\xi)-\int_{\mathfrak{S}_{\mathfrak{R}_{1}} \times \mathfrak{S}_{\mathfrak{R}_{2}}} \xi(A)(d \boxtimes \mu)(\xi)\right| . \tag{23}
\end{equation*}
$$

- Following the strategy of Kadison-Ringrose example, an evaluation of a distance between the given state ω and the set of approximative separable states is done.
- It is a simple matter to see that $d(\omega, A)$ is equal to 0 if the state ω is a separable one. The converse statement is much less obvious. However, we are able to prove it. Namely:
- Theorem 15. Let \mathfrak{A} be the tensor product of two C^{*}-algebras \mathfrak{A}_{1}, \mathfrak{A}_{2}. Then state $\omega \in \mathfrak{S}_{\mathfrak{A}}$ is separable if and only if $d(\omega, A)=0$ for all $A \in \mathfrak{A}_{1} \otimes \mathfrak{A}_{2}$
- The basic idea of the proof of the statement that $d(\omega, A)=0$ implies separability of ω relies on the study of continuity properties of the function

$$
\begin{equation*}
M_{\omega}\left(\mathfrak{S}_{\mathfrak{A}}\right) \ni \mu \mapsto \int_{\mathfrak{S}_{\mathfrak{R}}} \xi(A) d \mu(\xi)-\int_{\mathfrak{S}_{\mathfrak{R}_{1} \times \mathfrak{S}_{\mathfrak{A}_{2}}}} \xi(A)(d \boxtimes \mu)(\xi) \tag{24}
\end{equation*}
$$

and the proof falls naturally into few steps.

- $M_{\omega}\left(\mathfrak{S}_{\mathfrak{l}}\right)$ is a compact set.
- The mapping $M_{\omega}\left(\mathfrak{S}_{\mathfrak{A}}\right) \ni \mu \mapsto \boxtimes \mu \in M^{+}\left(\mathfrak{S}_{\mathfrak{A}_{1}} \times \mathfrak{S}_{\mathfrak{A}_{2}}\right)$ is weakly continuous.
- The continuity proved in the second step implies that the function (24) is a real valued, continuous function defined on a compact space. Hence, by Weierstrass theorem, infimum is attainable. Therefore, the condition $d(\omega, A)=0$ means that

$$
\begin{equation*}
\omega(A)=\int_{\mathfrak{S}_{\mathfrak{A}}} \xi(A) d \mu_{0}(\xi)=\int_{\mathfrak{S}_{\mathfrak{A}_{1}} \times \mathfrak{S}_{\mathfrak{A}_{2}}} \xi(A) d \boxtimes \mu_{0}(\xi) \tag{25}
\end{equation*}
$$

for all $A=A_{1} \otimes A_{2}$. But, this means the separability of ω.

- Theorem 15 may be summarized by saying that any separable state contains "classical" correlations only. Therefore, an entangled state contains "non-classical" (or pure quantum) correlations.
- To comment the question of separability of normal states we have two remarks:

Remark 16. 1. (indirect way)
As we have considered C^{*}-algebra case, taking a normal state $\varphi \in \mathfrak{S}_{\mathfrak{M}}^{n} \equiv \mathfrak{S}_{\mathfrak{M}} \cap \mathfrak{M}_{*} \subset \mathfrak{S}_{\mathfrak{M}}$, we can apply Theorem 15 for its analysis. If $d(\varphi, A)=0$ we are getting a "separable" decomposition of φ. However, still one must check whether components of the decomposition are normal or not.
2. (a possibility for a direct way)

One can try to modify the results obtained for C^{*}-algebra case to that which are relevant for W^{*}-algebra case. However, there are two essential differences. The first is given by Definition 10 - the closure of convex hull should be carried out with respect to the projective operator space norm topology.
The second difference leads to a great problem. Namely, the set $\mathfrak{S}_{\mathfrak{M}}^{n}$ (normal states) is compact, in general, with respect to another topology than that which gives compactness of $\mathfrak{S}_{\mathfrak{M}}$.

- Entanglement of Formation (Benett, DiVicenzo, Smolin, Wootters; WAM)
- Definition 17. Let ω be a state, $\omega \in F \subset \mathfrak{S}_{\mathfrak{A}_{1} \otimes \mathfrak{R}_{2}}$ and F satisfy separability condition SC. The entanglement of formation EoF is defined as

$$
\begin{equation*}
E_{\mathbb{F}}(\omega)=\inf _{\mu \in M_{\omega}\left(\mathfrak{S}_{\left.\mathfrak{q}_{1} \otimes \mathfrak{N}_{2}\right)}\right)} \int \mathbb{F}(r \varphi) d \mu(\varphi) \tag{26}
\end{equation*}
$$

where \mathbb{F} is a concave non-negative continuous function which vanishes on pure states and only on pure states

- Theorem 18. Let $S C$ hold. $E(\omega)=0$ if and only if $\omega \in F$ is separable.
- It is worth pointing out that Entanglement of Formation, EoF, is not only a nice indicator of separability. It possesses also many useful properties like convexity, semi-continuity and others.
- Existence of \mathbb{F} : finite dimensional case - one can take as \mathbb{F} the von Neumann entropy $S(\varrho)$.
- However, for a general case (infinite dimensional) $S(\varrho)$ is only semicontinuous and $\{\varrho: S(\varrho)<\infty\}$ is merely a meager set (set of first category). General case - Orlicz spaces!
- Definition 19. Ruelle's $S C$ condition

Let \mathfrak{A} be a C^{*}-algebra with unit, and \mathfrak{F} a subset of the state space $\mathfrak{S}_{\mathfrak{A}}$. \mathfrak{F} is said to satisfy separability condition (SC) if there exists a sequence of sub-C*-algebras $\left\{\mathfrak{A}_{n}\right\}$ such that $\bigcup_{n=1}^{\infty} \mathfrak{A}_{n}$ is dense in \mathfrak{A} and each \mathfrak{A}_{n} contains a two-sided, closed, separable ideal \mathcal{I}_{n} such that

$$
\mathfrak{F}=\left\{\omega, \omega \in \mathfrak{S}_{\mathfrak{A}},\left\|\left.\omega\right|_{\mathcal{I}_{n}}\right\|=1, n \geq 1\right\}
$$

- Final remarks:
- The presented "tools": coefficient of quantum correlations and EoF, in a sense, are complementary each other.
- ω extreme, then μ unique, then μ is either of the form $\boxtimes \mu$ or not; for $E o F$ extremality of ω leads to a great simplifications - inf can be dropped.
- EoF gives a possibility to speak about "witness of entanglement", i.e. there are observables which determine the value of EoF.
- Details are in: W. A. Majewski, Quantum correlations; quantum probability approach, arXiv:1407.4754v4[quant-ph]

