Hypercontractivity and log Sobolev inequalities for completely bounded norms

Salman Beigi

Institute for Research in Fundamental Sciences (IPM) Tehran, Iran

Joint work with Christopher King

J. Math. Phys. 57, 015206 (2016) arXiv:1509.02610

math.ipm.ac.ir

math.ipm.ac.ir

Outline

- Introduce (classical) Markov semigroups
- Hypercontractivity and log-Sobolev inequalities
- Applications in
 - estimating mixing time
 - local state transformation
- Quantum hypercontractivity and log-Sobolev inequalities
- Completely bounded (CB) norm
 - CB-hypercontractivity and CB-log-Sobolev inequalities

Markov semigroups

- (Ω, π) : finite probability space with $\pi(x) > 0$ for all $x \in \Omega$
- $L^2(\Omega,\pi)$: space of real functions on Ω

$$\langle f,g\rangle = \mathbb{E}[fg], \qquad \|f\|_2 = \left(\mathbb{E}[f^2]\right)^{\frac{1}{2}}$$

Markov semigroups

- (Ω, π) : finite probability space with $\pi(x) > 0$ for all $x \in \Omega$
- $L^2(\Omega, \pi)$: space of real functions on Ω

$$\langle f,g\rangle = \mathbb{E}[fg], \qquad \|f\|_2 = \left(\mathbb{E}[f^2]\right)^{\frac{1}{2}}$$

• Markov semigroup: $P_t: L^2(\Omega, \pi) \to L^2(\Omega, \pi), \qquad \forall t \ge 0$

- $P_0 = I$
- $t \mapsto P_t$ continuous
- $P_sP_t = P_{s+t}$
- P_t is stochastic: $P_t 1 = 1$, & $f \ge 0 \Rightarrow P_t f \ge 0$

$$\mathcal{L} := -\lim_{t \to 0^+} \frac{1}{t} (P_t - I) = -\frac{d}{dt} P_t \Big|_{t=0}$$

$$\mathcal{L} := -\lim_{t \to 0^+} \frac{1}{t} (P_t - I) = -\frac{d}{dt} P_t \Big|_{t=0} \qquad \Rightarrow \quad P_t = e^{-t\mathcal{L}}$$

$$\mathcal{L} := -\lim_{t \to 0^+} \frac{1}{t} (P_t - I) = -\frac{d}{dt} P_t \Big|_{t=0} \qquad \Rightarrow \quad P_t = e^{-t\mathcal{L}}$$

• $P_t 1 = 1 \quad \Rightarrow \quad \mathcal{L} 1 = 0$

$$\mathcal{L} := -\lim_{t \to 0^+} \frac{1}{t} (P_t - I) = -\frac{d}{dt} P_t \Big|_{t=0} \quad \Rightarrow \quad P_t = e^{-t\mathcal{L}}$$

$$\bullet P_t 1 = 1 \quad \Rightarrow \quad \mathcal{L} 1 = 0$$

Reversible

We assume that \mathcal{L} is self-adjoint as an operator acting on $L^2(\Omega, \pi)$.

- Reversibility $\Rightarrow \pi$ is an invariant measure: $\pi P_t = \pi$
- \bullet Reversibility $\Rightarrow \mathcal{L}$ is positive semidefinite

$$\mathcal{E}(f,g) := \langle f, \mathcal{L}g \rangle = \mathbb{E}[f\mathcal{L}g] = \mathbb{E}[g\mathcal{L}f] = -\frac{\mathsf{d}}{\mathsf{d}t}\langle f, P_tg \rangle \Big|_{t=0}$$

• Dirichlet form is positive semidefinite

•
$$\|\cdot\|_p$$
 is a norm for $p\geq 1$: $\|f\|_p = \left(\mathbb{E}[|f|^p]\right)^{rac{1}{p}}$

p-norm

- $\|\cdot\|_p$ is a norm for $p \ge 1$: $\|f\|_p = \left(\mathbb{E}[|f|^p]\right)^{\frac{1}{p}}$
- \hat{p} -norm is the dual of p-norm where $1/\hat{p}+1/p=1$

Hölder's inequality: $\mathbb{E}[fg] \leq ||f||_p \cdot ||g||_{\hat{p}}$

p-norm

- $\|\cdot\|_p$ is a norm for $p \ge 1$: $\|f\|_p = \left(\mathbb{E}[|f|^p]\right)^{\frac{1}{p}}$
- \hat{p} -norm is the dual of p-norm where $1/\hat{p}+1/p=1$

Hölder's inequality: $\mathbb{E}[fg] \leq ||f||_p \cdot ||g||_{\hat{p}}$

• $p \rightarrow ||f||_p$ is non-decreasing

Hypercontractivity inequalities

• Operator norm:

$$||A||_{q \to p} := \sup_{f \neq 0} \frac{||Af||_p}{||f||_q}$$

Hypercontractivity inequalities

- Operator norm: $\|A\|_{q \to p} := \sup_{f \neq 0} \frac{\|Af\|_p}{\|f\|_q}$
- By the convexity of $x\mapsto x^q$: $\|P_t\|_{q\to q}\leq 1, \qquad \forall q\geq 1$

Hypercontractivity inequalities

- Operator norm: $\|A\|_{q \to p} := \sup_{f \neq 0} \frac{\|Af\|_p}{\|f\|_q}$
- By the convexity of $x\mapsto x^q$: $\|P_t\|_{q\to q}\leq 1, \quad \forall q\geq 1$
- Do we have $\|P_t\|_{q \to p} \leq 1$ for some p > q?
- An inequality of the above form is called a hypercontractivity inequality

Hypercontractivity inequality \Rightarrow Log-Sobolev inequality

Theorem I

p(t) smooth increasing function with p(0) = q. Let c = (q-1)/p'(0)

$$\begin{aligned} \|P_t\|_{q \to p(t)} &\leq 1, \quad \forall t \geq 0 \\ &\Rightarrow \mathsf{Ent}(f) \leq c \, q \hat{q} \, \mathcal{E}\Big(f^{1/\hat{q}}, \, f^{1/q}\Big), \quad \forall f > 0 \end{aligned}$$

 $\operatorname{Ent}(f) = \mathbb{E}(f \log f) - \mathbb{E}f \log \mathbb{E}f$

Hypercontractivity inequality \Rightarrow Log-Sobolev inequality

Theorem I

p(t) smooth increasing function with p(0) = q. Let c = (q-1)/p'(0)

$$\begin{split} \|P_t\|_{q \to p(t)} &\leq 1, \quad \forall t \geq 0 \\ &\Rightarrow \mathsf{Ent}(f) \leq c \, q \hat{q} \, \mathcal{E}\Big(f^{1/\hat{q}}, \, f^{1/q}\Big), \quad \forall f > 0 \end{split}$$

$$\operatorname{Ent}(f) = \mathbb{E}(f \log f) - \mathbb{E}f \log \mathbb{E}f$$

• Best constant c in LS inequality: α_q

• $\alpha_q = \alpha_{\hat{q}}$

Theorem II

p(t) smooth increasing function with p(0) = q. Let c(t) = (p(t) - 1)/p'(t).

$$\begin{split} \mathsf{Ent}(f) &\leq c(t) \, \rho(t) \hat{\rho}(t) \, \mathcal{E}\Big(f^{/\hat{\rho}(t)}, \, f^{1/(\rho(t))}\Big), \quad \forall f > 0, \forall t \\ &\Rightarrow \|P_t\|_{q \to \rho(t)} \leq 1, \qquad \forall t \geq 0 \end{split}$$

Comparing LS constants

Theorem

For $1 \leq q \leq p \leq 2$

$$q\hat{q}\,\mathcal{E}ig(f^{1/\hat{q}},f^{1/q}ig)\geq p\hat{p}\,\mathcal{E}ig(f^{1/\hat{p}},f^{1/p}ig)$$

Comparing LS constants

Theorem

For $1 \le q \le p \le 2$

$$q\hat{q}\,\mathcal{E}ig(f^{1/\hat{q}},f^{1/q}ig)\geq p\hat{p}\,\mathcal{E}ig(f^{1/\hat{p}},f^{1/p}ig)$$

- $q \mapsto \alpha_q$ is non-decreasing on [1,2]
- α_2 is the largest log-Sobolev constant

$$\alpha_2 = \sup_{f>0} \frac{\operatorname{Ent}(f^2)}{4\mathcal{E}(f,f)}$$

Comparing LS constants

Theorem

For $1 \leq q \leq p \leq 2$

$$q\hat{q}\,\mathcal{E}ig(f^{1/\hat{q}},f^{1/q}ig)\geq p\hat{p}\,\mathcal{E}ig(f^{1/\hat{p}},f^{1/p}ig)$$

- $q \mapsto \alpha_q$ is non-decreasing on [1,2]
- α_2 is the largest log-Sobolev constant

$$\alpha_2 = \sup_{f>0} \frac{\operatorname{Ent}(f^2)}{4\mathcal{E}(f,f)}$$

Corollary

$$\|P_t\|_{q \to p} \leq 1, \qquad \forall p, q \text{ s.t.} \qquad \frac{p-1}{q-1} \leq e^{t/\alpha_2}.$$

• (Ω_k, π_k) , and \mathcal{L}_k reversible Lindblad operator

• (Ω_k, π_k) , and \mathcal{L}_k reversible Lindblad operator • $\widetilde{\Omega} = \Omega_1 \times \cdots \times \Omega_n$, $\widetilde{\pi} = \pi_1 \otimes \cdots \otimes \pi_n$ • $\widetilde{\mathcal{L}} = \hat{\mathcal{L}}_1 + \cdots + \hat{\mathcal{L}}_m$ Lindblad operator for $(\widetilde{\Omega}, \widetilde{\mathcal{L}})$ • $\widetilde{P}_t = e^{-t\widetilde{\mathcal{L}}} = e^{-t\mathcal{L}_1} \otimes \cdots \otimes e^{-t\mathcal{L}_n}$

•
$$(\Omega_k, \pi_k)$$
, and \mathcal{L}_k reversible Lindblad operator
• $\widetilde{\Omega} = \Omega_1 \times \cdots \times \Omega_n$, $\widetilde{\pi} = \pi_1 \otimes \cdots \otimes \pi_n$
• $\widetilde{\mathcal{L}} = \hat{\mathcal{L}}_1 + \cdots + \hat{\mathcal{L}}_m$ Lindblad operator for $(\widetilde{\Omega}, \widetilde{\mathcal{L}})$
• $\widetilde{P}_t = e^{-t\widetilde{\mathcal{L}}} = e^{-t\mathcal{L}_1} \otimes \cdots \otimes e^{-t\mathcal{L}_n}$

Theorem

$$\alpha_q(\widetilde{\mathcal{L}}) = \max_k \alpha_q(\mathcal{L}_k)$$

•
$$(\Omega_k, \pi_k)$$
, and \mathcal{L}_k reversible Lindblad operator
• $\widetilde{\Omega} = \Omega_1 \times \cdots \times \Omega_n$, $\widetilde{\pi} = \pi_1 \otimes \cdots \otimes \pi_n$
• $\widetilde{\mathcal{L}} = \hat{\mathcal{L}}_1 + \cdots + \hat{\mathcal{L}}_m$ Lindblad operator for $(\widetilde{\Omega}, \widetilde{\mathcal{L}})$
• $\widetilde{P}_t = e^{-t\widetilde{\mathcal{L}}} = e^{-t\mathcal{L}_1} \otimes \cdots \otimes e^{-t\mathcal{L}_n}$

Theorem

$$\alpha_q(\widetilde{\mathcal{L}}) = \max_k \alpha_q(\mathcal{L}_k)$$

Proof:

• Operator norm is multiplicative:

$$\|\widetilde{P}_t\|_{q\to p} = \|e^{-t\mathcal{L}_1}\|_{q\to p} \cdots \|e^{-t\mathcal{L}_n}\|_{q\to p}$$

•
$$(\Omega_k, \pi_k)$$
, and \mathcal{L}_k reversible Lindblad operator
• $\widetilde{\Omega} = \Omega_1 \times \cdots \times \Omega_n$, $\widetilde{\pi} = \pi_1 \otimes \cdots \otimes \pi_n$
• $\widetilde{\mathcal{L}} = \hat{\mathcal{L}}_1 + \cdots + \hat{\mathcal{L}}_m$ Lindblad operator for $(\widetilde{\Omega}, \widetilde{\mathcal{L}})$
• $\widetilde{P}_t = e^{-t\widetilde{\mathcal{L}}} = e^{-t\mathcal{L}_1} \otimes \cdots \otimes e^{-t\mathcal{L}_n}$

Theorem

$$\alpha_q(\widetilde{\mathcal{L}}) = \max_k \alpha_q(\mathcal{L}_k)$$

Proof:

• Operator norm is multiplicative:

$$\|\widetilde{P}_t\|_{q\to p} = \|e^{-t\mathcal{L}_1}\|_{q\to p} \cdots \|e^{-t\mathcal{L}_n}\|_{q\to p}$$

 Classical conditional entropy is a convex combination of entropies & entropy is sub-additivity

Spectral gap

$$\begin{aligned} \tau_{\mathsf{mix}} &:= \mathsf{min}\{t: \, \|\mu \mathcal{P}_t - \pi\|_{\mathsf{TV}} \leq \frac{1}{e}, \forall \mu \} \\ \|\rho\|_{\mathsf{TV}} &= \sum_x |\rho(x)| \end{aligned}$$

$$\begin{aligned} \tau_{\mathsf{mix}} &:= \mathsf{min}\{t : \|\mu P_t - \pi\|_{\mathsf{TV}} \leq \frac{1}{e}, \forall \mu\} \\ \|\rho\|_{\mathsf{TV}} &= \sum_{x} |\rho(x)| \\ \|\mu P_t - \pi\|_{\mathsf{TV}} \leq \|\frac{\mu P_t}{\pi} - 1\|_2 \\ &= \|P_t f - \mathbb{E}f\|_2 \\ &\leq e^{-\lambda t} \|f - \mathbb{E}f\|_2 \\ &\leq e^{-\lambda t} \sqrt{\frac{1}{\pi_{\mathsf{min}}}} \qquad (\pi_{\mathsf{min}} = \min_{x \in \Omega} \pi(x)) \end{aligned}$$

$$\begin{aligned} \tau_{\mathsf{mix}} &:= \mathsf{min}\{t : \|\mu P_t - \pi\|_{\mathsf{TV}} \leq \frac{1}{e}, \forall \mu\} \\ \|\rho\|_{\mathsf{TV}} &= \sum_{x} |\rho(x)| \\ \|\mu P_t - \pi\|_{\mathsf{TV}} \leq \|\frac{\mu P_t}{\pi} - 1\|_2 \\ &= \|P_t f - \mathbb{E}f\|_2 \\ &\leq e^{-\lambda t} \|f - \mathbb{E}f\|_2 \\ &\leq e^{-\lambda t} \sqrt{\frac{1}{\pi_{\mathsf{min}}}} \qquad (\pi_{\mathsf{min}} = \min_{x \in \Omega} \pi(x)) \end{aligned}$$

$$au_{\mathsf{min}} = O(rac{1}{\lambda}\lograc{1}{\pi_{\mathsf{min}}})$$

Log-Sobolev constant

 $\|\mu P_t - \pi\|_{\mathsf{TV}} \leq 2D(\mu P_t \|\pi)$

 $= 2 \operatorname{Ent}(f_t)$

(Pinsker's inequality)

$$(f_t = \frac{\mu P_t}{\pi})$$

Log-Sobolev constant

 $\|\mu P_t - \pi\|_{\mathsf{TV}} \leq 2D(\mu P_t \|\pi)$ $= 2\mathsf{Ent}(f_t)$ $\frac{\mathsf{d}}{\mathsf{d}t}\mathsf{Ent}(f_t) = -\mathcal{E}(f_t, \log f_t)$ $\leq -\frac{1}{\alpha_1}\mathsf{Ent}(f_t)$

(Pinsker's inequality)

$$(f_t = \frac{\mu P_t}{\pi})$$

(Log-Sobolev inequality)

Log-Sobolev constant

$$\begin{split} \|\mu P_t - \pi\|_{\mathsf{TV}} &\leq 2D(\mu P_t \|\pi) & (\mathsf{Pinsker's inequality}) \\ &= 2\mathsf{Ent}(f_t) & (f_t = \frac{\mu P_t}{\pi}) \\ \frac{\mathsf{d}}{\mathsf{d}t}\mathsf{Ent}(f_t) &= -\mathcal{E}(f_t, \log f_t) \\ &\leq -\frac{1}{\alpha_1}\mathsf{Ent}(f_t) & (\mathsf{Log-Sobolev inequality}) \\ &= \mathsf{Ent}(f_t) &\leq e^{-t/\alpha_1}\mathsf{Ent}(f_0) = e^{-t/\alpha_1}D(\mu\|\pi) \end{split}$$

Log-Sobolev constant

 $\|\mu P_{t} - \pi\|_{TV} \leq 2D(\mu P_{t} \| \pi)$ (Pinsker's inequality) $(f_t = \frac{\mu P_t}{\tau})$ $= 2 \operatorname{Ent}(f_{t})$ $\frac{\mathsf{d}}{\mathsf{d}t}\mathsf{Ent}(f_t) = -\mathcal{E}(f_t, \log f_t)$ $\leq -\frac{1}{\alpha_1}\mathsf{Ent}(f_t)$ (Log-Sobolev inequality) $\operatorname{Ent}(f_t) \leq e^{-t/\alpha_1} \operatorname{Ent}(f_0) = e^{-t/\alpha_1} D(\mu \| \pi)$ $au_{\min} = O(lpha_1 \log \log \frac{1}{\pi_{\min}}) = O(lpha_2 \log \log \frac{1}{\pi_{\min}})$

Random transposition

- Start with 1, 2, ..., *n*
- In each time step choose random i, j and exchange them

• Using
$$\tau_{\min} = O(\frac{1}{\lambda} \log \frac{1}{\pi_{\min}})$$

$$\tau_{mix} = O(n^2 \log n)$$

• Using
$$\tau_{\min} = O(\alpha_1 \log \log \frac{1}{\pi_{\min}})$$

$$au_{\mathsf{mix}} = O(n \log n)$$

- Given two bipartite distributions π_{AB} and μ_{CD}
- Are there *n* and stochastic maps $T: A^n \to C$ and $S: B^n \to D$ s.t.

$$\pi^{\otimes n}(T\otimes S)=\mu?$$

- Given two bipartite distributions π_{AB} and μ_{CD}
- Are there *n* and stochastic maps $T: A^n \to C$ and $S: B^n \to D$ s.t.

$$\pi^{\otimes n}(T\otimes S)=\mu?$$

- Given two bipartite distributions π_{AB} and μ_{CD}
- Are there *n* and stochastic maps $T : A^n \to C$ and $S : B^n \to D$ s.t.

$$\pi^{\otimes n}(T\otimes S)=\mu?$$

• Define $U: L^2(\pi_A) \to L^2(\pi_B)$ by $Uf(b) = \mathbb{E}[f(A)|B = b]$

- Given two bipartite distributions π_{AB} and μ_{CD}
- Are there *n* and stochastic maps $T : A^n \to C$ and $S : B^n \to D$ s.t.

$$\pi^{\otimes n}(T\otimes S)=\mu?$$

- Define $U: L^2(\pi_A) \to L^2(\pi_B)$ by $Uf(b) = \mathbb{E}[f(A)|B = b]$
- Define $V: L^2(\mu_C) \rightarrow L^2(\mu_D)$ similarly.

Theorem Ahlswede, Gács '76]

If there are p>q such that $\|U\|_{q\to p}\leq 1$ and $\|V\|_{q\to p}>1$, then the answer is no.

• Depolorizing channels form a quantum Markov semigroup:

$$\mathcal{L}(X) := X - \operatorname{tr} X \frac{l}{d}, \qquad e^{-t\mathcal{L}}(\rho) = e^{-t}\rho + (1 - e^{-t})\frac{l}{d}$$

• Depolorizing channels form a quantum Markov semigroup:

$$\mathcal{L}(X) := X - \operatorname{tr} X \frac{l}{d}, \qquad e^{-t\mathcal{L}}(\rho) = e^{-t}\rho + (1 - e^{-t})\frac{l}{d}$$

- The theory of is developed by Olkiewicz & Zegarlinski (1999)
- There are several complications due to non-commutativity

• Depolorizing channels form a quantum Markov semigroup:

$$\mathcal{L}(X) := X - \operatorname{tr} X \frac{l}{d}, \qquad \qquad e^{-t\mathcal{L}}(\rho) = e^{-t}\rho + (1 - e^{-t})\frac{l}{d}$$

- The theory of is developed by Olkiewicz & Zegarlinski (1999)
- There are several complications due to non-commutativity
- Easier when

$$\pi = \mathsf{maximally} \ \mathsf{mixed} = rac{l}{d}$$

• Semigroup of maps $\Phi_t : \mathcal{M}_d \to \mathcal{M}_d$

$$\Phi_t = e^{-t\mathcal{L}}$$

• completely positive self-adjoint (reversible) trace preserving & unital $(\pi = I/d)$

• Semigroup of maps $\Phi_t : \mathcal{M}_d \to \mathcal{M}_d$

$$\Phi_t = e^{-t\mathcal{L}}$$

• completely positive self-adjoint (reversible) trace preserving & unital $(\pi = I/d)$

• Inner product:
$$\langle A, B \rangle = \frac{1}{d} \operatorname{tr}(A^{\dagger}B) = \widehat{\operatorname{tr}}(A^{\dagger}B)$$

(tr: normalized trace)

• Semigroup of maps $\Phi_t : \mathcal{M}_d \to \mathcal{M}_d$

$$\Phi_t = e^{-t\mathcal{L}}$$

• completely positive self-adjoint (reversible) trace preserving & unital $(\pi = I/d)$

• Inner product:
$$\langle A, B \rangle = \frac{1}{d} \operatorname{tr}(A^{\dagger}B) = \widehat{\operatorname{tr}}(A^{\dagger}B)$$

(tr: normalized trace)

HC inequalities ⇔ LS inequalities

• Semigroup of maps $\Phi_t : \mathcal{M}_d \to \mathcal{M}_d$

$$\Phi_t = e^{-t\mathcal{L}}$$

• completely positive self-adjoint (reversible) trace preserving & unital $(\pi = I/d)$

• Inner product:
$$\langle A, B \rangle = \frac{1}{d} \operatorname{tr}(A^{\dagger}B) = \widehat{\operatorname{tr}}(A^{\dagger}B)$$

(tr: normalized trace)

- HC inequalities ⇔ LS inequalities
- $\alpha_2 \ge \alpha_q, \quad \forall q$

•
$$\widetilde{\mathcal{L}} = \widehat{\mathcal{L}}_1 + \dots + \widehat{\mathcal{L}}_m$$
 Lindblad operator for $(\widetilde{\Omega}, \widetilde{\mathcal{L}})$
• $\widetilde{\Phi}_t = e^{-t\widetilde{\mathcal{L}}} = e^{-t\mathcal{L}_1} \otimes \dots \otimes e^{-t\mathcal{L}_n}$
 $\alpha_q(\widetilde{\mathcal{L}}) \stackrel{?}{=} \max_k \alpha_q(\mathcal{L}_k)$

• Tensorization doesn't hold!

•
$$\widetilde{\mathcal{L}} = \hat{\mathcal{L}}_1 + \dots + \hat{\mathcal{L}}_m$$
 Lindblad operator for $(\widetilde{\Omega}, \widetilde{\mathcal{L}})$

•
$$\widetilde{\Phi}_t = e^{-t\widetilde{\mathcal{L}}} = e^{-t\mathcal{L}_1} \otimes \cdots \otimes e^{-t\mathcal{L}_n}$$

$$\alpha_q(\widetilde{\mathcal{L}}) \stackrel{?}{=} \max_k \alpha_q(\mathcal{L}_k)$$

- Tensorization doesn't hold!
 - $\|\Phi_t\|_{q \to p}$ is not multiplicative!
 - Quantum conditional entropy is not a convex combination of entropies!

Theorem [Devetak, Junge, King, Ruskai '06]

CB-norm is multiplicative for CP maps

Theorem [Devetak, Junge, King, Ruskai '06]

CB-norm is multiplicative for CP maps

(t, q)-norm

 σ_R :

Theorem [Devetak, Junge, King, Ruskai '06]

CB-norm is multiplicative for CP maps

(*t*, *q*)-norm

 σ_R :

$$\begin{split} \|X_{RS}\|_{(t,q)} &:= \sup \backslash \inf_{\sigma_R} \|(\sigma_R^{-1/2r} \otimes I_S) X_{RS}(\sigma_R^{-1/2r} \otimes I_S)\|_q \\ & \frac{1}{r} = \frac{1}{t} - \frac{1}{q} \\ \text{positive \& } \widehat{\mathrm{tr}}(\sigma) = 1 \qquad \text{ sup if } t \ge q, \quad \& \quad \inf \text{ if } t \le q \end{split}$$

$$\|\Phi\|_{\mathsf{CB},q\to p} := \sup_{R} \sup_{X_{RS>0}} \frac{\|\mathcal{I}_R \otimes \Phi(X_{RS})\|_{(t,p)}}{\|X_{RS}\|_{(t,q)}}$$

Theorem [Devetak, Junge, King, Ruskai '06]

CB-norm is multiplicative for CP maps

(t,q)-norm

 σ_R :

$$\begin{split} \|X_{RS}\|_{(t,q)} &:= \sup \backslash \inf_{\sigma_R} \|(\sigma_R^{-1/2r} \otimes I_S) X_{RS}(\sigma_R^{-1/2r} \otimes I_S)\|_q \\ & \frac{1}{r} = \frac{1}{t} - \frac{1}{q} \\ \text{positive \& } \widehat{\operatorname{tr}}(\sigma) = 1 \qquad \text{ sup if } t \ge q, \quad \& \quad \inf \text{ if } t \le q \end{split}$$

$$\|\Phi\|_{\mathsf{CB},q\to p} := \sup_{R} \sup_{X_{RS>0}} \frac{\|\mathcal{I}_{R} \otimes \Phi(X_{RS})\|_{(t,p)}}{\|X_{RS}\|_{(t,q)}}$$

• Choice of t is arbitrary. Usually t = q

• CB-hypercontractive: $\|\Phi\|_{\mathsf{CB},q o p} \leq 1$ for some $q \leq p$

• CB-hypercontractive: $\|\Phi\|_{\mathsf{CB},q o p} \leq 1$ for some $q \leq p$

• CB-log-Sobolev inequality: (fr: normalized trace)

$$\widehat{\operatorname{tr}}(X_{RS}\log X_{RS}) - \widehat{\operatorname{tr}}_R \Big(\widehat{\operatorname{tr}}_S(X_{RS}) \log \widehat{\operatorname{tr}}_S(X_{RS}) \Big) \\ \leq cq\widehat{q} \, \widehat{\operatorname{tr}} \left(X_{RS}^{1/\widehat{q}} \, (\mathcal{I}_R \otimes \mathcal{L})(X_{RS}^{1/q}) \right)$$

- CB-hypercontractive: $\|\Phi\|_{\mathsf{CB},q o p} \leq 1$ for some $q \leq p$
- CB-log-Sobolev inequality: (tr: normalized trace)

$$\widehat{\operatorname{tr}}(X_{RS}\log X_{RS}) - \widehat{\operatorname{tr}}_R \Big(\widehat{\operatorname{tr}}_S(X_{RS}) \log \widehat{\operatorname{tr}}_S(X_{RS}) \Big) \\ \leq cq\widehat{q} \, \widehat{\operatorname{tr}} \left(X_{RS}^{1/\widehat{q}} \, (\mathcal{I}_R \otimes \mathcal{L})(X_{RS}^{1/q}) \right)$$

● [SB, King '15] CB-hypercontractivity ⇔ CB-log-Sobolev inequality

- CB-hypercontractive: $\|\Phi\|_{\mathsf{CB},q o p} \leq 1$ for some $q \leq p$
- CB-log-Sobolev inequality: (fr: normalized trace)

$$\begin{split} \widehat{\operatorname{tr}}(X_{RS}\log X_{RS}) &- \widehat{\operatorname{tr}}_R \Big(\widehat{\operatorname{tr}}_S(X_{RS}) \log \widehat{\operatorname{tr}}_S(X_{RS}) \Big) \\ &\leq cq \hat{q} \, \widehat{\operatorname{tr}} \left(X_{RS}^{1/\hat{q}} \, (\mathcal{I}_R \otimes \mathcal{L})(X_{RS}^{1/q}) \right) \end{split}$$

• [SB, King '15] CB-hypercontractivity \Leftrightarrow CB-log-Sobolev inequality • $\alpha_2^{CB} \ge \alpha_q^{CB}$, $\forall q$

- CB-hypercontractive: $\|\Phi\|_{\mathsf{CB},q o p} \leq 1$ for some $q \leq p$
- CB-log-Sobolev inequality: (fr: normalized trace)

$$\begin{split} \widehat{\operatorname{tr}}(X_{RS}\log X_{RS}) &- \widehat{\operatorname{tr}}_R \Big(\widehat{\operatorname{tr}}_S(X_{RS}) \log \widehat{\operatorname{tr}}_S(X_{RS}) \Big) \\ &\leq cq\widehat{q} \, \widehat{\operatorname{tr}} \left(X_{RS}^{1/\widehat{q}} \, (\mathcal{I}_R \otimes \mathcal{L})(X_{RS}^{1/q}) \right) \end{split}$$

- [SB, King '15] CB-hypercontractivity \Leftrightarrow CB-log-Sobolev inequality
- $\bullet \ \alpha_2^{\mathsf{CB}} \geq \alpha_q^{\mathsf{CB}}, \qquad \forall q$
- Tensorization holds!
 - CB-norm is multiplicative on CP maps!
 - CB-log-Sobolev inequality is already in terms of conditional entropy!

• [Kastoryano, Temme '13]: α_1 gives a bound on the mixing time of Φ_t

- [Kastoryano, Temme '13]: α_1 gives a bound on the mixing time of Φ_t
- $\alpha_1^{\sf CB}$ gives a bound on the mixing time of $\Phi_t \otimes \cdots \otimes \Phi_t$

Application: local state transformation

- Given ρ_{AB} and σ_{CD}
- Question: Is there n and $\Phi: A^n \to C$ and $\Psi: B^n \to D$ such that

$$\Phi \otimes \Psi(\rho_{AB}^{\otimes n}) = \sigma_{CD}?$$

Application: local state transformation

- Given ρ_{AB} and σ_{CD}
- Question: Is there *n* and $\Phi: A^n \to C$ and $\Psi: B^n \to D$ such that

$$\Phi \otimes \Psi(\rho_{AB}^{\otimes n}) = \sigma_{CD}?$$

• If $\exists p, q$ such that

$$\|\Gamma_{\rho_B}^{\frac{1}{p'}} \circ \Lambda_{\rho} \circ \Gamma_{\rho_A^*}^{\frac{1}{q}}\|_{\mathsf{CB},q \to p} \leq 1 \qquad \& \qquad \|\Gamma_{\sigma_B}^{\frac{1}{p'}} \circ \Lambda_{\sigma} \circ \Gamma_{\sigma_A^*}^{\frac{1}{q}}\|_{\mathsf{CB},q \to p} > 1$$

the answer is NO!

- Λ_ρ: A → B is the map whose Choi matrix is ρ_{AB}
 Γ_M(X) = M^{1/2}XM^{1/2}
- M^* is the entry-wise complex conjugate of M

Other appliactions

Objectives

Confirmed Participants
Press Release
Meeting Facilities
Schedule (PDF)
Abstracts (PDF)
Mailing List
Workshop Videos
Workshop Files
Final Report (PDF)
Testimonials

Hypercontractivity and Log Sobolev Inequalities in Quantum Information Theory (15w5098)

Arriving in Banff, Alberta Sunday, February 22 and departing Friday February 27, 2015

Organizers

Patrick Hayden (Stanford University) Christopher King (Northeastern University) Ashley Montanaro (University of Bristol) Mary Beth Ruskai (delocalized)

Conclusion

- CB version of log-Sobolev inequality characterizes CB-hypercontractivity inequalities
- Application: mixing time [Kastoryano & Temme '13]
 - CB-log-Sobolev inequalities can be used to bound mixing times of multipartite systems
- Application: non-interactive correlation simulation
 - Computing the CB-hypercontractivity ribbon [Delgosha, B. '14]
- Open problem: compute the CB-log-Sobolev constant for depolorizing channels
- Open problem: generalize to non-unital channels

For further reading

S. Beigi, C. King

Hypercontractivity and the logarithmic Sobolev inequality for the completely bounded norm

- J. Math. Phys. 57, 015206 (2016)

R. Olkiewicz, B. Zegarlinski Hypercontractivity in noncommutative L_p spaces J. Funct. Anal. 161(1) 246-285 (1999)

M.J. Kastoryano, K. Temme Quantum logarithmic Sobolev inequalities and rapid mixing J. Math. Phys. 54, 052202 (2013)

📕 I. Devetak, M. Junge, C. King, M.B. Ruskai Multiplicativity of completely bounded p-norms implies a new additivity result

Commun. Math. Phys. 266, 37-63 (2006)

P. Delgosha, S. Beigi Impossibility of Local State Transformation via Hypercontractivity Commun. Math. Phys. 332, 449-476 (2014)