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Applications in
estimating mixing time
local state transformation

Quantum hypercontractivity and log-Sobolev inequalities
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Markov semigroups

(Ω, π): finite probability space with π(x) > 0 for all x ∈ Ω

L2(Ω, π): space of real functions on Ω

〈f , g〉 = E[f g ], ‖f ‖2 =
(
E[f 2]

) 1
2

Markov semigroup: Pt : L2(Ω, π)→ L2(Ω, π), ∀t ≥ 0
P0 = I
t 7→ Pt continuous
PsPt = Ps+t

Pt is stochastic: Pt1 = 1, & f ≥ 0⇒ Pt f ≥ 0



fig/ipmwhite

Markov semigroups

(Ω, π): finite probability space with π(x) > 0 for all x ∈ Ω

L2(Ω, π): space of real functions on Ω

〈f , g〉 = E[f g ], ‖f ‖2 =
(
E[f 2]

) 1
2

Markov semigroup: Pt : L2(Ω, π)→ L2(Ω, π), ∀t ≥ 0
P0 = I
t 7→ Pt continuous
PsPt = Ps+t

Pt is stochastic: Pt1 = 1, & f ≥ 0⇒ Pt f ≥ 0



fig/ipmwhite

Lindblad operator

L := − limt→0+
1
t (Pt − I ) = − d

dtPt

∣∣∣
t=0

⇒ Pt = e−tL

Pt1 = 1 ⇒ L1 = 0

Reversible
We assume that L is self-adjoint as an operator acting on L2(Ω, π).

Reversibility ⇒ π is an invariant measure: πPt = π

Reversibility ⇒ L is positive semidefinite
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Dirichlet form

E(f , g) := 〈f ,Lg〉 = E[f Lg ] = E[gLf ] = − d
dt
〈f ,Ptg〉

∣∣∣
t=0

Dirichlet form is positive semidefinite
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p-norm

‖ · ‖p is a norm for p ≥ 1 : ‖f ‖p =
(
E[|f |p]

) 1
p

p̂-norm is the dual of p-norm where 1/p̂ + 1/p = 1

Hölder’s inequality: E[fg ] ≤ ‖f ‖p · ‖g‖p̂

p → ‖f ‖p is non-decreasing
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Hypercontractivity inequalities

Operator norm: ‖A‖q→p := sup
f 6=0

‖Af ‖p
‖f ‖q

By the convexity of x 7→ xq: ‖Pt‖q→q ≤ 1, ∀q ≥ 1

Do we have ‖Pt‖q→p ≤ 1 for some p > q?

An inequality of the above form is called a hypercontractivity inequality
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Hypercontractivity inequality ⇒ Log-Sobolev inequality

Theorem I
p(t) smooth increasing function with p(0) = q. Let c = (q − 1)/p′(0)

‖Pt‖q→p(t) ≤ 1, ∀t ≥ 0

⇒ Ent(f ) ≤ c qq̂ E
(
f 1/q̂, f 1/q

)
, ∀f > 0

Ent(f ) = E(f log f )− Ef logEf

Best constant c in LS inequality: αq

αq = αq̂
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Log-Sobolev inequality⇒ Hypercontractivity inequality

Theorem II
p(t) smooth increasing function with p(0) = q. Let c(t) = (p(t)− 1)/p′(t).

Ent(f ) ≤ c(t) p(t)p̂(t) E
(
f /p̂(t), f 1/(p(t))

)
, ∀f > 0,∀t

⇒ ‖Pt‖q→p(t) ≤ 1, ∀t ≥ 0
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Comparing LS constants

Theorem
For 1 ≤ q ≤ p ≤ 2

qq̂ E
(
f 1/q̂, f 1/q) ≥ pp̂ E

(
f 1/p̂, f 1/p)

q 7→ αq is non-decreasing on [1, 2]

α2 is the largest log-Sobolev constant

α2 = sup
f>0

Ent(f 2)

4E(f , f )

Corollary

‖Pt‖q→p ≤ 1, ∀p, q s.t.
p − 1
q − 1

≤ et/α2 .
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Tensorization

(Ωk , πk), and Lk reversible Lindblad operator

Ω̃ = Ω1 × · · · × Ωn, π̃ = π1 ⊗ · · · ⊗ πn
L̃ = L̂1 + · · ·+ L̂m Lindblad operator for (Ω̃, L̃)

P̃t = e−tL̃ = e−tL1 ⊗ · · · ⊗ e−tLn

Theorem

αq(L̃) = max
k
αq(Lk)

Proof:
Operator norm is multiplicative:

‖P̃t‖q→p = ‖e−tL1‖q→p · · · ‖e−tLn‖q→p

Classical conditional entropy is a convex combination of entropies
& entropy is sub-additivity
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Application: bounding the mixing time
Spectral gap

τmix := min{t : ‖µPt − π‖TV ≤
1
e
,∀µ}

‖ρ‖TV =
∑
x

|ρ(x)|

‖µPt − π‖TV≤ ‖
µPt

π
− 1‖2

= ‖Pt f − Ef ‖2 (f = µ/π)

≤ e−λt‖f − Ef ‖2

≤ e−λt
√

1
πmin

(πmin = min
x∈Ω

π(x))

τmin = O(
1
λ
log

1
πmin

)
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Application: bounding the mixing time
Log-Sobolev constant

‖µPt − π‖TV≤ 2D(µPt‖π) (Pinsker’s inequality)

= 2Ent(ft) (ft =
µPt

π
)

d
dt

Ent(ft) = −E(ft , log ft)

≤ − 1
α1

Ent(ft) (Log-Sobolev inequality)

Ent(ft) ≤ e−t/α1Ent(f0) = e−t/α1D(µ‖π)

τmin = O(α1 log log
1

πmin
) = O(α2 log log

1
πmin

)
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Application: bounding the mixing time
Random transposition

Start with 1, 2, . . . , n

In each time step choose random i , j and exchange them

Using τmin = O( 1
λ log 1

πmin
)

τmix = O(n2 log n)

Using τmin = O(α1 log log 1
πmin

)

τmix = O(n log n)
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Application: Non-interactive correlation distillation

Given two bipartite distributions πAB and µCD

Are there n and stochastic maps T : An → C and S : Bn → D s.t.

π⊗n(T ⊗ S) = µ?

Define U : L2(πA)→ L2(πB) by Uf (b) = E[f (A)|B = b]

Define V : L2(µC )→ L2(µD) similarly.

Theorem [Ahlswede, Gács ’76]
If there are p > q such that ‖U‖q→p ≤ 1 and ‖V ‖q→p > 1, then the answer
is no.



fig/ipmwhite

Application: Non-interactive correlation distillation

Given two bipartite distributions πAB and µCD

Are there n and stochastic maps T : An → C and S : Bn → D s.t.

π⊗n(T ⊗ S) = µ?

Define U : L2(πA)→ L2(πB) by Uf (b) = E[f (A)|B = b]

Define V : L2(µC )→ L2(µD) similarly.

Theorem [Ahlswede, Gács ’76]
If there are p > q such that ‖U‖q→p ≤ 1 and ‖V ‖q→p > 1, then the answer
is no.



fig/ipmwhite

Application: Non-interactive correlation distillation

Given two bipartite distributions πAB and µCD

Are there n and stochastic maps T : An → C and S : Bn → D s.t.

π⊗n(T ⊗ S) = µ?

Define U : L2(πA)→ L2(πB) by Uf (b) = E[f (A)|B = b]

Define V : L2(µC )→ L2(µD) similarly.

Theorem [Ahlswede, Gács ’76]
If there are p > q such that ‖U‖q→p ≤ 1 and ‖V ‖q→p > 1, then the answer
is no.



fig/ipmwhite

Application: Non-interactive correlation distillation

Given two bipartite distributions πAB and µCD

Are there n and stochastic maps T : An → C and S : Bn → D s.t.

π⊗n(T ⊗ S) = µ?

Define U : L2(πA)→ L2(πB) by Uf (b) = E[f (A)|B = b]

Define V : L2(µC )→ L2(µD) similarly.

Theorem [Ahlswede, Gács ’76]
If there are p > q such that ‖U‖q→p ≤ 1 and ‖V ‖q→p > 1, then the answer
is no.



fig/ipmwhite



fig/ipmwhite

Quantum hypercontractivity & log-Sobolev inequalities

Depolorizing channels form a quantum Markov semigroup:

L(X ) := X − trX
I

d
, e−tL(ρ) = e−tρ+ (1− e−t)

I

d

The theory of is developed by Olkiewicz & Zegarlinski (1999)

There are several complications due to non-commutativity

Easier when
π = maximally mixed =

I

d
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Quantum hypercontractivity & log-Sobolev inequalities

Semigroup of maps Φt :Md →Md

Φt = e−tL

completely positive
self-adjoint (reversible)
trace preserving & unital (π = I/d)

Inner product: 〈A,B〉 = 1
d tr(A

†B) = t̂r(A†B)

(t̂r: normalized trace)

HC inequalities ⇔ LS inequalities

α2 ≥ αq, ∀q
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Tensorization

L̃ = L̂1 + · · ·+ L̂m Lindblad operator for (Ω̃, L̃)

Φ̃t = e−tL̃ = e−tL1 ⊗ · · · ⊗ e−tLn

αq(L̃)
?
= max

k
αq(Lk)

Tensorization doesn’t hold!

‖Φt‖q→p is not multiplicative!

Quantum conditional entropy is not a convex combination of entropies!
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Completely bounded norm

Theorem [Devetak, Junge, King, Ruskai ’06]

CB-norm is multiplicative for CP maps

(t, q)-norm

‖XRS‖(t,q) := sup\infσR
‖(σ−1/2r

R ⊗ IS)XRS(σ
−1/2r
R ⊗ IS)‖q

1
r

=
1
t
− 1

q

σR : positive & t̂r(σ) = 1 sup if t ≥ q, & inf if t ≤ q

‖Φ‖CB,q→p := sup
R

sup
XRS>0

‖IR ⊗ Φ(XRS)‖(t,p)

‖XRS‖(t,q)

Choice of t is arbitrary. Usually t = q
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σR : positive & t̂r(σ) = 1 sup if t ≥ q, & inf if t ≤ q

‖Φ‖CB,q→p := sup
R

sup
XRS>0

‖IR ⊗ Φ(XRS)‖(t,p)

‖XRS‖(t,q)

Choice of t is arbitrary. Usually t = q
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CB-log-Sobolev inequality
CB-hypercontractive: ‖Φ‖CB,q→p ≤ 1 for some q ≤ p

CB-log-Sobolev inequality: (t̂r: normalized trace)

t̂r(XRS logXRS)− t̂rR
(
t̂rS(XRS) log t̂rS(XRS)

)
≤ cqq̂ t̂r

(
X

1/q̂
RS (IR ⊗ L)(X

1/q
RS )

)

[SB, King ’15] CB-hypercontractivity ⇔ CB-log-Sobolev inequality

αCB
2 ≥ αCB

q , ∀q

Tensorization holds!
CB-norm is multiplicative on CP maps!
CB-log-Sobolev inequality is already in terms of conditional entropy!
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Application: bounding the mixing time

[Kastoryano, Temme ’13]: α1 gives a bound on the mixing time of Φt

αCB
1 gives a bound on the mixing time of Φt ⊗ · · · ⊗ Φt
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Application: local state transformation
Given ρAB and σCD

Question: Is there n and Φ : An → C and Ψ : Bn → D such that

Φ⊗Ψ(ρ⊗nAB) = σCD?

If ∃p, q such that

‖Γ
1
p′
ρB ◦ Λρ ◦ Γ

1
q

ρ∗A
‖CB,q→p ≤ 1 & ‖Γ

1
p′
σB ◦ Λσ ◦ Γ

1
q

σ∗A
‖CB,q→p > 1

the answer is NO!

Λρ : A→ B is the map whose Choi matrix is ρAB
ΓM(X ) = M1/2XM1/2

M∗ is the entry-wise complex conjugate of M
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Other appliactions
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Conclusion

CB version of log-Sobolev inequality characterizes CB-hypercontractivity
inequalities

Application: mixing time [Kastoryano & Temme ’13]

CB-log-Sobolev inequalities can be used to bound mixing times of
multipartite systems

Application: non-interactive correlation simulation
Computing the CB-hypercontractivity ribbon [Delgosha, B. ’14]

Open problem: compute the CB-log-Sobolev constant for depolorizing
channels
Open problem: generalize to non-unital channels
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