Hypercontractivity and log Sobolev inequalities for completely bounded norms

Salman Beigi
Institute for Research in Fundamental Sciences (IPM)
Tehran, Iran

Joint work with Christopher King
J. Math. Phys. 57, 015206 (2016)
arXiv:1509.02610

math.ipm.ac.ir

math.ipm.ac.ir

- Introduce (classical) Markov semigroups
- Hypercontractivity and log-Sobolev inequalities
- Applications in
- estimating mixing time
- local state transformation
- Quantum hypercontractivity and log-Sobolev inequalities
- Completely bounded (CB) norm
- CB-hypercontractivity and CB-log-Sobolev inequalities

Markov semigroups

- (Ω, π) : finite probability space with $\pi(x)>0$ for all $x \in \Omega$
- $L^{2}(\Omega, \pi)$: space of real functions on Ω

$$
\langle f, g\rangle=\mathbb{E}[f g], \quad\|f\|_{2}=\left(\mathbb{E}\left[f^{2}\right]\right)^{\frac{1}{2}}
$$

Markov semigroups

- (Ω, π) : finite probability space with $\pi(x)>0$ for all $x \in \Omega$
- $L^{2}(\Omega, \pi)$: space of real functions on Ω

$$
\langle f, g\rangle=\mathbb{E}[f g], \quad\|f\|_{2}=\left(\mathbb{E}\left[f^{2}\right]\right)^{\frac{1}{2}}
$$

- Markov semigroup: $P_{t}: L^{2}(\Omega, \pi) \rightarrow L^{2}(\Omega, \pi), \quad \forall t \geq 0$
- $P_{0}=I$
- $t \mapsto P_{t}$ continuous
- $P_{s} P_{t}=P_{s+t}$
- P_{t} is stochastic: $\quad P_{t} 1=1, \quad \& \quad f \geq 0 \Rightarrow P_{t} f \geq 0$

Lindblad operator

$$
\mathcal{L}:=-\lim _{t \rightarrow 0^{+}} \frac{1}{t}\left(P_{t}-I\right)=-\left.\frac{\mathrm{d}}{\mathrm{~d} t} P_{t}\right|_{t=0}
$$

Lindblad operator

$$
\mathcal{L}:=-\lim _{t \rightarrow 0^{+}} \frac{1}{t}\left(P_{t}-I\right)=-\left.\frac{d}{d t} P_{t}\right|_{t=0} \quad \Rightarrow \quad P_{t}=e^{-t \mathcal{L}}
$$

Lindblad operator

$$
\begin{aligned}
& \quad \mathcal{L}:=-\lim _{t \rightarrow 0^{+}} \frac{1}{t}\left(P_{t}-I\right)=-\left.\frac{\mathrm{d}}{\mathrm{dt}} P_{t}\right|_{t=0} \quad \Rightarrow \quad P_{t}=e^{-t \mathcal{L}} \\
& \text { - } P_{t} 1=1 \Rightarrow \quad \mathcal{L} 1=0
\end{aligned}
$$

Lindblad operator

$$
\begin{aligned}
& \quad \mathcal{L}:=-\lim _{t \rightarrow 0^{+}} \frac{1}{t}\left(P_{t}-I\right)=-\left.\frac{\mathrm{d}}{\mathrm{~d} t} P_{t}\right|_{t=0} \quad \Rightarrow \quad P_{t}=e^{-t \mathcal{L}} \\
& \text { - } P_{t} 1=1 \Rightarrow \mathcal{L} 1=0
\end{aligned}
$$

Reversible

We assume that \mathcal{L} is self-adjoint as an operator acting on $L^{2}(\Omega, \pi)$.

- Reversibility $\Rightarrow \pi$ is an invariant measure: $\pi P_{t}=\pi$
- Reversibility $\Rightarrow \mathcal{L}$ is positive semidefinite

Dirichlet form

$$
\mathcal{E}(f, g):=\langle f, \mathcal{L} g\rangle=\mathbb{E}[f \mathcal{L} g]=\mathbb{E}[g \mathcal{L} f]=-\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle f, P_{t} g\right\rangle\right|_{t=0}
$$

- Dirichlet form is positive semidefinite

p-norm

- $\|\cdot\|_{p}$ is a norm for $p \geq 1: \quad \quad\|f\|_{p}=\left(\mathbb{E}\left[|f|^{p}\right]\right)^{\frac{1}{p}}$
- $\|\cdot\|_{p}$ is a norm for $p \geq 1: \quad\|f\|_{p}=\left(\mathbb{E}\left[|f|^{p}\right]\right)^{\frac{1}{p}}$
- \hat{p}-norm is the dual of p-norm where $1 / \hat{p}+1 / p=1$

Hölder's inequality: $\quad \mathbb{E}[f g] \leq\|f\|_{p} \cdot\|g\|_{\hat{\rho}}$

- $\|\cdot\|_{p}$ is a norm for $p \geq 1: \quad \quad\|f\|_{p}=\left(\mathbb{E}\left[|f|^{p}\right]\right)^{\frac{1}{p}}$
- \hat{p}-norm is the dual of p-norm where $1 / \hat{p}+1 / p=1$

Hölder's inequality: $\quad \mathbb{E}[f g] \leq\|f\|_{p} \cdot\|g\|_{\hat{\rho}}$

- $p \rightarrow\|f\|_{p}$ is non-decreasing

Hypercontractivity inequalities

- Operator norm:

$$
\|A\|_{q \rightarrow p}:=\sup _{f \neq 0} \frac{\|A f\|_{p}}{\|f\|_{q}}
$$

Hypercontractivity inequalities

- Operator norm:

$$
\|A\|_{q \rightarrow p}:=\sup _{f \neq 0} \frac{\|A f\|_{p}}{\|f\|_{q}}
$$

- By the convexity of $x \mapsto x^{q}$:

$$
\left\|P_{t}\right\|_{q \rightarrow q} \leq 1, \quad \forall q \geq 1
$$

Hypercontractivity inequalities

- Operator norm:

$$
\|A\|_{q \rightarrow p}:=\sup _{f \neq 0} \frac{\|A f\|_{p}}{\|f\|_{q}}
$$

- By the convexity of $x \mapsto x^{q}$:

$$
\left\|P_{t}\right\|_{q \rightarrow q} \leq 1, \quad \forall q \geq 1
$$

- Do we have $\left\|P_{t}\right\|_{q \rightarrow p} \leq 1 \quad$ for some $p>q$?
- An inequality of the above form is called a hypercontractivity inequality

Hypercontractivity inequality \Rightarrow Log-Sobolev inequality

Theorem I

$p(t)$ smooth increasing function with $p(0)=q$. Let $c=(q-1) / p^{\prime}(0)$

$$
\begin{aligned}
\left\|P_{t}\right\|_{q \rightarrow p(t)} \leq 1, & \forall t \geq 0 \\
& \Rightarrow \operatorname{Ent}(f) \leq c q \hat{q} \mathcal{E}\left(f^{1 / \hat{q}}, f^{1 / q}\right), \quad \forall f>0
\end{aligned}
$$

$$
\operatorname{Ent}(f)=\mathbb{E}(f \log f)-\mathbb{E} f \log \mathbb{E} f
$$

Hypercontractivity inequality \Rightarrow Log-Sobolev inequality

Theorem I

$p(t)$ smooth increasing function with $p(0)=q$. Let $c=(q-1) / p^{\prime}(0)$

$$
\begin{aligned}
\left\|P_{t}\right\|_{q \rightarrow p(t)} \leq 1, & \forall t \geq 0 \\
& \Rightarrow \operatorname{Ent}(f) \leq c q \hat{q} \mathcal{E}\left(f^{1 / \hat{q}}, f^{1 / q}\right), \quad \forall f>0
\end{aligned}
$$

$$
\operatorname{Ent}(f)=\mathbb{E}(f \log f)-\mathbb{E} f \log \mathbb{E} f
$$

- Best constant c in LS inequality: α_{q}
- $\alpha_{q}=\alpha_{\hat{q}}$

Log-Sobolev inequality \Rightarrow Hypercontractivity inequality

Theorem II

$p(t)$ smooth increasing function with $p(0)=q$. Let $c(t)=(p(t)-1) / p^{\prime}(t)$.

$$
\begin{aligned}
\operatorname{Ent}(f) \leq c(t) p(t) \hat{p}(t) \mathcal{E}\left(f^{/ \hat{p}(t)}, f^{1 /(p(t))}\right), & \forall f>0, \forall t \\
& \Rightarrow\left\|P_{t}\right\|_{q \rightarrow p(t)} \leq 1, \quad \forall t \geq 0
\end{aligned}
$$

Comparing LS constants

Theorem
For $1 \leq q \leq p \leq 2$

$$
q \hat{q} \mathcal{E}\left(f^{1 / \hat{q}}, f^{1 / q}\right) \geq p \hat{p} \mathcal{E}\left(f^{1 / \hat{p}}, f^{1 / p}\right)
$$

Comparing LS constants

Theorem

For $1 \leq q \leq p \leq 2$

$$
q \hat{q} \mathcal{E}\left(f^{1 / \hat{q}}, f^{1 / q}\right) \geq p \hat{p} \mathcal{E}\left(f^{1 / \hat{p}}, f^{1 / p}\right)
$$

- $q \mapsto \alpha_{q}$ is non-decreasing on [1, 2]
- α_{2} is the largest log-Sobolev constant

$$
\alpha_{2}=\sup _{f>0} \frac{\operatorname{Ent}\left(f^{2}\right)}{4 \mathcal{E}(f, f)}
$$

Comparing LS constants

Theorem

For $1 \leq q \leq p \leq 2$

$$
q \hat{q} \mathcal{E}\left(f^{1 / \hat{q}}, f^{1 / q}\right) \geq p \hat{p} \mathcal{E}\left(f^{1 / \hat{p}}, f^{1 / p}\right)
$$

- $q \mapsto \alpha_{q}$ is non-decreasing on [1, 2]
- α_{2} is the largest log-Sobolev constant

$$
\alpha_{2}=\sup _{f>0} \frac{\operatorname{Ent}\left(f^{2}\right)}{4 \mathcal{E}(f, f)}
$$

Corollary

$$
\left\|P_{t}\right\|_{q \rightarrow p} \leq 1, \quad \forall p, q \text { s.t. } \quad \frac{p-1}{q-1} \leq e^{t / \alpha_{2}} .
$$

Tensorization

- $\left(\Omega_{k}, \pi_{k}\right)$, and \mathcal{L}_{k} reversible Lindblad operator

Tensorization

- $\left(\Omega_{k}, \pi_{k}\right)$, and \mathcal{L}_{k} reversible Lindblad operator
- $\widetilde{\Omega}=\Omega_{1} \times \cdots \times \Omega_{n}, \quad \widetilde{\pi}=\pi_{1} \otimes \cdots \otimes \pi_{n}$
- $\widetilde{\mathcal{L}}=\hat{\mathcal{L}}_{1}+\cdots+\hat{\mathcal{L}}_{m}$ Lindblad operator for $(\widetilde{\Omega}, \widetilde{\mathcal{L}})$
- $\widetilde{P}_{t}=e^{-t \widetilde{\mathcal{L}}}=e^{-t \mathcal{L}_{\mathbf{1}}} \otimes \cdots \otimes e^{-t \mathcal{L}_{n}}$

Tensorization

- $\left(\Omega_{k}, \pi_{k}\right)$, and \mathcal{L}_{k} reversible Lindblad operator
- $\widetilde{\Omega}=\Omega_{1} \times \cdots \times \Omega_{n}, \quad \widetilde{\pi}=\pi_{1} \otimes \cdots \otimes \pi_{n}$
- $\widetilde{\mathcal{L}}=\hat{\mathcal{L}}_{1}+\cdots+\hat{\mathcal{L}}_{m}$ Lindblad operator for $(\widetilde{\Omega}, \widetilde{\mathcal{L}})$
- $\widetilde{P}_{t}=e^{-t \widetilde{\mathcal{L}}}=e^{-t \mathcal{L}_{\mathbf{1}}} \otimes \cdots \otimes e^{-t \mathcal{L}_{n}}$

Theorem

$$
\alpha_{q}(\widetilde{\mathcal{L}})=\max _{k} \alpha_{q}\left(\mathcal{L}_{k}\right)
$$

Tensorization

- $\left(\Omega_{k}, \pi_{k}\right)$, and \mathcal{L}_{k} reversible Lindblad operator
- $\widetilde{\Omega}=\Omega_{1} \times \cdots \times \Omega_{n}, \quad \tilde{\pi}=\pi_{1} \otimes \cdots \otimes \pi_{n}$
- $\widetilde{\mathcal{L}}=\hat{\mathcal{L}}_{1}+\cdots+\hat{\mathcal{L}}_{m}$ Lindblad operator for $(\widetilde{\Omega}, \widetilde{\mathcal{L}})$
- $\widetilde{P}_{t}=e^{-t \widetilde{\mathcal{L}}}=e^{-t \mathcal{L}_{\mathbf{1}}} \otimes \cdots \otimes e^{-t \mathcal{L}_{n}}$

Theorem

$$
\alpha_{q}(\widetilde{\mathcal{L}})=\max _{k} \alpha_{q}\left(\mathcal{L}_{k}\right)
$$

Proof:

- Operator norm is multiplicative:

$$
\left\|\widetilde{P}_{t}\right\|_{q \rightarrow p}=\left\|e^{-t \mathcal{L}_{\mathbf{1}}}\right\|_{q \rightarrow p} \cdots\left\|e^{-t \mathcal{L}_{n}}\right\|_{q \rightarrow p}
$$

Tensorization

- $\left(\Omega_{k}, \pi_{k}\right)$, and \mathcal{L}_{k} reversible Lindblad operator
- $\widetilde{\Omega}=\Omega_{1} \times \cdots \times \Omega_{n}, \quad \widetilde{\pi}=\pi_{1} \otimes \cdots \otimes \pi_{n}$
- $\widetilde{\mathcal{L}}=\hat{\mathcal{L}}_{1}+\cdots+\hat{\mathcal{L}}_{m}$ Lindblad operator for $(\widetilde{\Omega}, \widetilde{\mathcal{L}})$
- $\widetilde{P}_{t}=e^{-t \widetilde{\mathcal{L}}}=e^{-t \mathcal{L}_{\mathbf{1}}} \otimes \cdots \otimes e^{-t \mathcal{L}_{n}}$

Theorem

$$
\alpha_{q}(\widetilde{\mathcal{L}})=\max _{k} \alpha_{q}\left(\mathcal{L}_{k}\right)
$$

Proof:

- Operator norm is multiplicative:

$$
\left\|\widetilde{P}_{t}\right\|_{q \rightarrow p}=\left\|e^{-t \mathcal{L}_{1}}\right\|_{q \rightarrow p} \cdots\left\|e^{-t \mathcal{L}_{n}}\right\|_{q \rightarrow p}
$$

- Classical conditional entropy is a convex combination of entropies \& entropy is sub-additivity

Application: bounding the mixing time

$$
\begin{gathered}
\tau_{\text {mix }}:=\min \left\{t:\left\|\mu P_{t}-\pi\right\|_{\mathrm{TV}} \leq \frac{1}{e}, \forall \mu\right\} \\
\|\rho\|_{\mathrm{TV}}=\sum_{x}|\rho(x)|
\end{gathered}
$$

Application: bounding the mixing time

$$
\begin{array}{rlr}
\tau_{\text {mix }}:=\min \left\{t:\left\|\mu P_{t}-\pi\right\|_{\mathrm{TV}} \leq \frac{1}{e}, \forall \mu\right\} \\
\|\rho\|_{\mathrm{TV}}=\sum_{x}|\rho(x)| & \\
\left\|\mu P_{t}-\pi\right\|_{\mathrm{TV}} \leq\left\|\frac{\mu P_{t}}{\pi}-1\right\|_{2} & \\
=\left\|P_{t} f-\mathbb{E} f\right\|_{2} & (f=\mu / \pi) \\
\leq e^{-\lambda t}\|f-\mathbb{E} f\|_{2} & \left(\pi_{\min }=\min _{x \in \Omega} \pi(x)\right) \\
\leq e^{-\lambda t} \sqrt{\frac{1}{\pi_{\min }}} &
\end{array}
$$

Application: bounding the mixing time

\[

\]

Application: bounding the mixing time

$$
\begin{aligned}
\left\|\mu P_{t}-\pi\right\|_{\mathrm{TV}} & \leq 2 D\left(\mu P_{t} \| \pi\right) \\
& =2 \operatorname{Ent}\left(f_{t}\right)
\end{aligned}
$$

(Pinsker's inequality)

$$
\left(f_{t}=\frac{\mu P_{t}}{\pi}\right)
$$

Application: bounding the mixing time

$$
\begin{array}{rc}
\left\|\mu P_{t}-\pi\right\|_{\mathrm{TV}} \leq 2 D\left(\mu P_{t} \| \pi\right) & \text { (Pinsker's inequality) } \\
=2 \operatorname{Ent}\left(f_{t}\right) & \left(f_{t}=\frac{\mu P_{t}}{\pi}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Ent}\left(f_{t}\right)=-\mathcal{E}\left(f_{t}, \log f_{t}\right) & \\
\leq-\frac{1}{\alpha_{1}} \operatorname{Ent}\left(f_{t}\right) & \text { (Log-Sobolev inequality) }
\end{array}
$$

Application: bounding the mixing time

Log-Sobolev constant

$$
\begin{array}{cc}
\left\|\mu P_{t}-\pi\right\|_{\mathrm{TV}} \leq 2 D\left(\mu P_{t} \| \pi\right) & \text { (Pinsker's inequality) } \\
=2 \operatorname{Ent}\left(f_{t}\right) & \left(f_{t}=\frac{\mu P_{t}}{\pi}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Ent}\left(f_{t}\right)=-\mathcal{E}\left(f_{t}, \log f_{t}\right) & \\
\leq-\frac{1}{\alpha_{1}} \operatorname{Ent}\left(f_{t}\right) & \text { (Log-Sobolev inequality) } \\
\operatorname{Ent}\left(f_{t}\right) \leq e^{-t / \alpha_{1}} \operatorname{Ent}\left(f_{0}\right)=e^{-t / \alpha_{1}} D(\mu \| \pi)
\end{array}
$$

Application: bounding the mixing time

Log-Sobolev constant

$$
\begin{array}{cc}
\left\|\mu P_{t}-\pi\right\|_{\mathrm{TV}} \leq 2 D\left(\mu P_{t} \| \pi\right) & \text { (Pinsker's inequality) } \\
=2 \operatorname{Ent}\left(f_{t}\right) & \left(f_{t}=\frac{\mu P_{t}}{\pi}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Ent}\left(f_{t}\right)=-\mathcal{E}\left(f_{t}, \log f_{t}\right) \\
\leq-\frac{1}{\alpha_{1}} \operatorname{Ent}\left(f_{t}\right) & \text { (Log-Sobolev inequality) } \\
\operatorname{Ent}\left(f_{t}\right) \leq e^{-t / \alpha_{1}} \operatorname{Ent}\left(f_{0}\right)=e^{-t / \alpha_{1}} D(\mu \| \pi) \\
\tau_{\min }=O\left(\alpha_{1} \log \log \frac{1}{\pi_{\min }}\right)=O\left(\alpha_{2} \log \log \frac{1}{\pi_{\min }}\right)
\end{array}
$$

Application: bounding the mixing time

Random transposition

- Start with $1,2, \ldots, n$
- In each time step choose random i, j and exchange them
- Using $\tau_{\text {min }}=O\left(\frac{1}{\lambda} \log \frac{1}{\pi_{\text {min }}}\right)$

$$
\tau_{\text {mix }}=O\left(n^{2} \log n\right)
$$

- Using $\tau_{\text {min }}=O\left(\alpha_{1} \log \log \frac{1}{\pi_{\text {min }}}\right)$

$$
\tau_{\text {mix }}=O(n \log n)
$$

Application: Non-interactive correlation distillation

- Given two bipartite distributions $\pi_{A B}$ and $\mu_{C D}$
- Are there n and stochastic maps $T: A^{n} \rightarrow C$ and $S: B^{n} \rightarrow D$ s.t.

$$
\pi^{\otimes n}(T \otimes S)=\mu ?
$$

Application: Non-interactive correlation distillation

- Given two bipartite distributions $\pi_{A B}$ and $\mu_{C D}$
- Are there n and stochastic maps $T: A^{n} \rightarrow C$ and $S: B^{n} \rightarrow D$ s.t.

$$
\pi^{\otimes n}(T \otimes S)=\mu ?
$$

Application: Non-interactive correlation distillation

- Given two bipartite distributions $\pi_{A B}$ and $\mu_{C D}$
- Are there n and stochastic maps $T: A^{n} \rightarrow C$ and $S: B^{n} \rightarrow D$ s.t.

$$
\pi^{\otimes n}(T \otimes S)=\mu ?
$$

- Define $U: L^{2}\left(\pi_{A}\right) \rightarrow L^{2}\left(\pi_{B}\right)$ by

$$
U f(b)=\mathbb{E}[f(A) \mid B=b]
$$

Application: Non-interactive correlation distillation

- Given two bipartite distributions $\pi_{A B}$ and $\mu_{C D}$
- Are there n and stochastic maps $T: A^{n} \rightarrow C$ and $S: B^{n} \rightarrow D$ s.t.

$$
\pi^{\otimes n}(T \otimes S)=\mu ?
$$

- Define $U: L^{2}\left(\pi_{A}\right) \rightarrow L^{2}\left(\pi_{B}\right)$ by

$$
U f(b)=\mathbb{E}[f(A) \mid B=b]
$$

- Define $V: L^{2}\left(\mu_{C}\right) \rightarrow L^{2}\left(\mu_{D}\right)$ similarly.

Theorem [Ahlswede, Gács '76]

If there are $p>q$ such that $\|U\|_{q \rightarrow p} \leq 1$ and $\|V\|_{q \rightarrow p}>1$, then the answer is no.

Quantum hypercontractivity \& log-Sobolev inequalities

- Depolorizing channels form a quantum Markov semigroup:

$$
\mathcal{L}(X):=X-\operatorname{tr} X \frac{l}{d}, \quad \quad e^{-t \mathcal{L}}(\rho)=e^{-t} \rho+\left(1-e^{-t}\right) \frac{l}{d}
$$

Quantum hypercontractivity \& log-Sobolev inequalities

- Depolorizing channels form a quantum Markov semigroup:

$$
\mathcal{L}(X):=X-\operatorname{tr} X \frac{l}{d}, \quad \quad e^{-t \mathcal{L}}(\rho)=e^{-t} \rho+\left(1-e^{-t}\right) \frac{l}{d}
$$

- The theory of is developed by Olkiewicz \& Zegarlinski (1999)
- There are several complications due to non-commutativity

Quantum hypercontractivity \& log-Sobolev inequalities

- Depolorizing channels form a quantum Markov semigroup:

$$
\mathcal{L}(X):=X-\operatorname{tr} X \frac{l}{d}, \quad \quad e^{-t \mathcal{L}}(\rho)=e^{-t} \rho+\left(1-e^{-t}\right) \frac{l}{d}
$$

- The theory of is developed by Olkiewicz \& Zegarlinski (1999)
- There are several complications due to non-commutativity
- Easier when

$$
\pi=\text { maximally mixed }=\frac{l}{d}
$$

Quantum hypercontractivity \& log-Sobolev inequalities

- Semigroup of maps $\Phi_{t}: \mathcal{M}_{d} \rightarrow \mathcal{M}_{d}$

$$
\Phi_{t}=e^{-t \mathcal{L}}
$$

- completely positive self-adjoint (reversible) trace preserving \& unital $\quad(\pi=I / d)$

Quantum hypercontractivity \& log-Sobolev inequalities

- Semigroup of maps $\Phi_{t}: \mathcal{M}_{d} \rightarrow \mathcal{M}_{d}$

$$
\Phi_{t}=e^{-t \mathcal{L}}
$$

- completely positive self-adjoint (reversible) trace preserving \& unital $\quad(\pi=I / d)$
- Inner product: $\langle A, B\rangle=\frac{1}{d} \operatorname{tr}\left(A^{\dagger} B\right)=\widehat{\operatorname{tr}}\left(A^{\dagger} B\right)$
(tr: normalized trace)

Quantum hypercontractivity \& log-Sobolev inequalities

- Semigroup of maps $\Phi_{t}: \mathcal{M}_{d} \rightarrow \mathcal{M}_{d}$

$$
\Phi_{t}=e^{-t \mathcal{L}}
$$

- completely positive self-adjoint (reversible) trace preserving \& unital $\quad(\pi=I / d)$
- Inner product: $\langle A, B\rangle=\frac{1}{d} \operatorname{tr}\left(A^{\dagger} B\right)=\widehat{\operatorname{tr}}\left(A^{\dagger} B\right)$
(tr: normalized trace)
- HC inequalities $\Leftrightarrow \mathrm{LS}$ inequalities

Quantum hypercontractivity \& log-Sobolev inequalities

- Semigroup of maps $\Phi_{t}: \mathcal{M}_{d} \rightarrow \mathcal{M}_{d}$

$$
\Phi_{t}=e^{-t \mathcal{L}}
$$

- completely positive self-adjoint (reversible) trace preserving \& unital $\quad(\pi=I / d)$
- Inner product: $\langle A, B\rangle=\frac{1}{d} \operatorname{tr}\left(A^{\dagger} B\right)=\widehat{\operatorname{tr}}\left(A^{\dagger} B\right)$
(tr : normalized trace)
- HC inequalities $\Leftrightarrow \mathrm{LS}$ inequalities
- $\alpha_{2} \geq \alpha_{q}, \quad \forall q$

Tensorization

- $\widetilde{\mathcal{L}}=\hat{\mathcal{L}}_{1}+\cdots+\hat{\mathcal{L}}_{m}$ Lindblad operator for $(\widetilde{\Omega}, \widetilde{\mathcal{L}})$
- $\widetilde{\Phi}_{t}=e^{-t \widetilde{\mathcal{L}}}=e^{-t \mathcal{L}_{1}} \otimes \cdots \otimes e^{-t \mathcal{L}_{n}}$

$$
\alpha_{q}(\widetilde{\mathcal{L}}) \stackrel{?}{=} \max _{k} \alpha_{q}\left(\mathcal{L}_{k}\right)
$$

- Tensorization doesn't hold!

Tensorization

- $\widetilde{\mathcal{L}}=\hat{\mathcal{L}}_{1}+\cdots+\hat{\mathcal{L}}_{m}$ Lindblad operator for $(\widetilde{\Omega}, \widetilde{\mathcal{L}})$
- $\widetilde{\Phi}_{t}=e^{-t \widetilde{\mathcal{L}}}=e^{-t \mathcal{L}_{1}} \otimes \cdots \otimes e^{-t \mathcal{L}_{n}}$

$$
\alpha_{q}(\widetilde{\mathcal{L}}) \stackrel{?}{=} \max _{k} \alpha_{q}\left(\mathcal{L}_{k}\right)
$$

- Tensorization doesn't hold!
- $\left\|\Phi_{t}\right\|_{q \rightarrow p}$ is not multiplicative!
- Quantum conditional entropy is not a convex combination of entropies!

Completely bounded norm

Theorem [Devetak, Junge, King, Ruskai '06]
CB-norm is multiplicative for CP maps

Completely bounded norm

Theorem [Devetak, Junge, King, Ruskai '06]
CB-norm is multiplicative for CP maps
(t, q)-norm

$$
\frac{1}{r}=\frac{1}{t}-\frac{1}{q}
$$

$\sigma_{R}:$ positive $\& \hat{\operatorname{tr}}(\sigma)=1 \quad$ sup if $t \geq q, \quad \& \quad$ inf if $t \leq q$

Completely bounded norm

Theorem [Devetak, Junge, King, Ruskai '06]
CB-norm is multiplicative for CP maps
(t, q)-norm

$$
\frac{1}{r}=\frac{1}{t}-\frac{1}{q}
$$

$\sigma_{R}:$ positive \& $\widehat{\operatorname{tr}}(\sigma)=1 \quad$ sup if $t \geq q, \quad \& \quad$ inf if $t \leq q$

$$
\|\Phi\|_{\mathrm{CB}, q \rightarrow p}:=\sup _{R} \sup _{X_{R S}>0} \frac{\left\|\mathcal{I}_{R} \otimes \Phi\left(X_{R S}\right)\right\|_{(t, p)}}{\left\|X_{R S}\right\|_{(t, q)}}
$$

Completely bounded norm

Theorem [Devetak, Junge, King, Ruskai '06]
CB-norm is multiplicative for CP maps
(t, q)-norm

$$
\begin{aligned}
& \left\|X_{R S}\right\|_{(t, q)}:=\sup \backslash \inf _{\sigma_{R}}\left\|\left(\sigma_{R}^{-1 / 2 r} \otimes I_{S}\right) X_{R S}\left(\sigma_{R}^{-1 / 2 r} \otimes I_{S}\right)\right\|_{q} \\
& \frac{1}{r}=\frac{1}{t}-\frac{1}{q} \\
& \sigma_{R}: \text { positive \& } \widehat{\operatorname{tr}}(\sigma)=1 \quad \text { sup if } t \geq q, \quad \& \quad \text { inf if } t \leq q
\end{aligned}
$$

$$
\|\Phi\|_{\mathrm{CB}, q \rightarrow p}:=\sup _{R} \sup _{X_{R S}>0} \frac{\left\|\mathcal{I}_{R} \otimes \Phi\left(X_{R S}\right)\right\|_{(t, p)}}{\left\|X_{R S}\right\|_{(t, q)}}
$$

- Choice of t is arbitrary. Usually $t=q$

CB-log-Sobolev inequality

- CB-hypercontractive: $\|\Phi\|_{\mathrm{CB}, q \rightarrow p} \leq 1$ for some $q \leq p$

CB-log-Sobolev inequality

- CB-hypercontractive: $\|\Phi\|_{\text {CB }, q \rightarrow p} \leq 1$ for some $q \leq p$
- CB-log-Sobolev inequality:
(tr: normalized trace)

$$
\begin{aligned}
& \widehat{\operatorname{tr}}\left(X_{R S} \log X_{R S}\right)-\widehat{\operatorname{tr}}_{R}\left(\widehat{\operatorname{tr}}_{S}\left(X_{R S}\right) \log \widehat{\operatorname{tr}}_{S}\left(X_{R S}\right)\right) \\
& \leq c q \hat{q} \widehat{\operatorname{tr}}\left(X_{R S}^{1 / \hat{q}}\left(\mathcal{I}_{R} \otimes \mathcal{L}\right)\left(X_{R S}^{1 / q}\right)\right)
\end{aligned}
$$

CB-log-Sobolev inequality

- CB-hypercontractive: $\|\Phi\|_{\text {CB }, q \rightarrow p} \leq 1$ for some $q \leq p$
- CB-log-Sobolev inequality:
($\widehat{\text { tr: }}$ normalized trace)

$$
\begin{aligned}
\widehat{\operatorname{tr}}\left(X_{R S} \log X_{R S}\right)-\widehat{\operatorname{tr}}_{R}(& \left.\widehat{\operatorname{tr}}_{S}\left(X_{R S}\right) \log \widehat{\operatorname{tr}}_{S}\left(X_{R S}\right)\right) \\
& \leq c q \hat{q} \widehat{\operatorname{tr}}\left(X_{R S}^{1 / \hat{q}}\left(\mathcal{I}_{R} \otimes \mathcal{L}\right)\left(X_{R S}^{1 / q}\right)\right)
\end{aligned}
$$

- [SB, King '15] CB-hypercontractivity \Leftrightarrow CB-log-Sobolev inequality

CB-log-Sobolev inequality

- CB-hypercontractive: $\|\Phi\|_{\text {CB }, q \rightarrow p} \leq 1$ for some $q \leq p$
- CB-log-Sobolev inequality:
(tr: normalized trace)

$$
\begin{aligned}
\widehat{\operatorname{tr}}\left(X_{R S} \log X_{R S}\right)-\widehat{\operatorname{tr}}_{R}(& \left.\widehat{\operatorname{tr}}_{S}\left(X_{R S}\right) \log \widehat{\operatorname{tr}}_{S}\left(X_{R S}\right)\right) \\
& \leq c q \hat{q} \widehat{\operatorname{tr}}\left(X_{R S}^{1 / \hat{q}}\left(\mathcal{I}_{R} \otimes \mathcal{L}\right)\left(X_{R S}^{1 / q}\right)\right)
\end{aligned}
$$

- [SB, King '15] CB-hypercontractivity \Leftrightarrow CB-log-Sobolev inequality
- $\alpha_{2}^{\mathrm{CB}} \geq \alpha_{q}^{\mathrm{CB}}, \quad \forall q$

CB-log-Sobolev inequality

- CB-hypercontractive: $\|\Phi\|_{\text {CB }, q \rightarrow p} \leq 1$ for some $q \leq p$
- CB-log-Sobolev inequality:
(tr: normalized trace)

$$
\begin{aligned}
\widehat{\operatorname{tr}}\left(X_{R S} \log X_{R S}\right)-\widehat{\operatorname{tr}}_{R}(& \left.\widehat{\operatorname{tr}}_{S}\left(X_{R S}\right) \log \widehat{\operatorname{tr}}_{S}\left(X_{R S}\right)\right) \\
& \leq c q \hat{q} \widehat{\operatorname{tr}}\left(X_{R S}^{1 / \hat{q}}\left(\mathcal{I}_{R} \otimes \mathcal{L}\right)\left(X_{R S}^{1 / q}\right)\right)
\end{aligned}
$$

- [SB, King '15] CB-hypercontractivity \Leftrightarrow CB-log-Sobolev inequality
- $\alpha_{2}^{\mathrm{CB}} \geq \alpha_{q}^{\mathrm{CB}}, \quad \forall q$
- Tensorization holds!
- CB-norm is multiplicative on CP maps!
- CB-log-Sobolev inequality is already in terms of conditional entropy!

Application: bounding the mixing time

- [Kastoryano, Temme '13]: α_{1} gives a bound on the mixing time of Φ_{t}

Application: bounding the mixing time

- [Kastoryano, Temme '13]: α_{1} gives a bound on the mixing time of Φ_{t}
- $\alpha_{1}^{C B}$ gives a bound on the mixing time of $\Phi_{t} \otimes \cdots \otimes \Phi_{t}$

Application: local state transformation

- Given $\rho_{A B}$ and $\sigma_{C D}$
- Question: Is there n and $\Phi: A^{n} \rightarrow C$ and $\Psi: B^{n} \rightarrow D$ such that

$$
\Phi \otimes \Psi\left(\rho_{A B}^{\otimes n}\right)=\sigma_{C D} ?
$$

Application: local state transformation

- Given $\rho_{A B}$ and $\sigma_{C D}$
- Question: Is there n and $\Phi: A^{n} \rightarrow C$ and $\Psi: B^{n} \rightarrow D$ such that

$$
\Phi \otimes \Psi\left(\rho_{A B}^{\otimes n}\right)=\sigma_{C D} ?
$$

- If $\exists p, q$ such that

$$
\left\|\Gamma_{\rho_{B}}^{\frac{1}{\rho^{\prime}}} \circ \Lambda_{\rho} \circ \Gamma_{\rho_{A}^{*}}^{\frac{1}{q}}\right\|_{\mathrm{CB}, q \rightarrow p} \leq 1 \quad \& \quad\left\|\Gamma_{\sigma_{B}}^{\frac{1}{\rho^{\prime}}} \circ \Lambda_{\sigma} \circ \Gamma_{\sigma_{A}^{*}}^{\frac{1}{q}}\right\|_{\mathrm{CB}, q \rightarrow p}>1
$$

the answer is NO!

- $\Lambda_{\rho}: A \rightarrow B$ is the map whose Choi matrix is $\rho_{A B}$
- $\Gamma_{M}(X)=M^{1 / 2} X M^{1 / 2}$
- M^{*} is the entry-wise complex conjugate of M

Other appliactions

Objectives

Confirmed Participants

Press Release
Meeting Facilities
Schedule (PDF)
Abstracts (PDF)
Mailing List
Workshop Videos

Workshop Files

Final Report (PDF)
Testimonials

Hypercontractivity and Log Sobolev Inequalities in Quantum Information Theory (15w5098)

Arriving in Banff, Alberta Sunday, February 22 and departing Friday February 27, 2015

Organizers

Patrick Hayden (Stanford University)

Christopher King (Northeastern University)
Ashley Montanaro (University of Bristol)
Mary Beth Ruskai (delocalized)

- CB version of log-Sobolev inequality characterizes CB-hypercontractivity inequalities
- Application: mixing time [Kastoryano \& Temme '13]
- CB-log-Sobolev inequalities can be used to bound mixing times of multipartite systems
- Application: non-interactive correlation simulation
- Computing the CB-hypercontractivity ribbon [Delgosha, B. '14]
- Open problem: compute the CB-log-Sobolev constant for depolorizing channels
- Open problem: generalize to non-unital channels

For further reading

\square S．Beigi，C．King
Hypercontractivity and the logarithmic Sobolev inequality for the completely bounded norm
J．Math．Phys．57， 015206 （2016）
周 R．Olkiewicz，B．Zegarlinski
Hypercontractivity in noncommutative \mathbf{L}_{p} spaces
J．Funct．Anal．161（1）246－285（1999）
國 M．J．Kastoryano，K．Temme
Quantum logarithmic Sobolev inequalities and rapid mixing J．Math．Phys．54， 052202 （2013）
固
I．Devetak，M．Junge，C．King，M．B．Ruskai
Multiplicativity of completely bounded p－norms implies a new additivity result
Commun．Math．Phys．266，37－63（2006）
圊 P．Delgosha，S．Beigi
Impossibility of Local State Transformation via Hypercontractivity Commun．Math．Phys．332，449－476（2014）

