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@ Introduce (classical) Markov semigroups

o Hypercontractivity and log-Sobolev inequalities

o Applications in
o estimating mixing time
o local state transformation

o Quantum hypercontractivity and log-Sobolev inequalities

o Completely bounded (CB) norm
o CB-hypercontractivity and CB-log-Sobolev inequalities



Markov semigroups

o (Q,7): finite probability space with 7(x) > 0 for all x € Q

o [2(Q,7): space of real functions on Q
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Markov semigroups

o (Q,7): finite probability space with 7(x) > 0 for all x € Q

o L2(Q,7): space of real functions on Q

) =gl [l = (EIF)°

@ Markov semigroup: Py : L?(Q,7) — L3(Q,7), YVt >0
o Po=1
o t+— P: continuous
o PP = Ps+t
o P; is stochastic: Pl1=1, & f>0= PS>0
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Lindblad operator

E:Z—Iimt_>0+ %(Pt—l):—ipt = Pt:e_tﬁ

o Pil=1 = [L1=0

Reversible

We assume that £ is self-adjoint as an operator acting on L2(Q, ).

o Reversibility = 7 is an invariant measure: 7P, =7

@ Reversibility = L is positive semidefinite



Dirichlet form

£(F.8) = (F.Lg) = ElfLg] = BlgLf] = — (F. Prg)

t=0

o Dirichlet form is positive semidefinite



o | -|lpisanorm for p>1: ||f||p=(IE[|f|”]>p
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o | -|lpisanorm for p>1: ||f||p=(IE[|f|”]>;

@ p-norm is the dual of p-norm where 1/p+1/p=1
Holder's inequality: Elfg] < ||fll»-llglls

@ p — ||f]|» is non-decreasing



Hypercontractivity inequalities

@ Operator norm:

Allgp = sup LAl
f#0 ||f||q
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Hypercontractivity inequalities

@ Operator norm: IA] . |Af]p
= sup
v Il
@ By the convexity of x — x9: [|Pellg—q < 1, Vg>1

o Do we have  ||P¢|lg—p <1 for some p > g7

@ An inequality of the above form is called a hypercontractivity inequality



Hypercontractivity inequality = Log-Sobolev inequality

p(t) smooth increasing function with p(0) = g. Let ¢ = (¢ — 1)/p'(0)
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Hypercontractivity inequality = Log-Sobolev inequality

p(t) smooth increasing function with p(0) = g. Let ¢ = (¢ — 1)/p'(0)

|Pellgmpry <1, VE>0
= Ent(f) < cqag(fl/*?, fl/q), VF >0

Ent(f) = E(flog f) — Ef log Ef

o Best constant c in LS inequality: o



Log-Sobolev inequality=- Hypercontractivity inequality

p(t) smooth increasing function with p(0) = q. Let c(t) = (p(t) — 1)/p'(t).

Ent(f) < c(t) p(t),ﬁ(t)é’(f/ﬁ(t), fl/(P(fD), Vf > 0,Vt

= [|Ptllgmpiy <1,  VE>0
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Comparing LS constants

For1<g<p<2

q@,g(fl/é, fl/q) > pﬁg(fl/ﬁ, fl/p)

@ g +— aq is non-decreasing on [1,2]
@ « is the largest log-Sobolev constant

Cw Ent(fz)
o2 R ag(r.F)

p
[IPellgmsp < 1, Vpgst < et/oz,




Tensorization

o (Q, k), and Ly reversible Lindblad operator



Tensorization

o (Q, k), and Ly reversible Lindblad operator
Oﬁlex...er” %:7{'1®...®ﬂ-n
o L=17Ly++ L, Lindblad operator for (Q, £)

o Pt — e—tﬁ — e_tL]_ R ® e—tl:,,



Tensorization

o (Q, k), and Ly reversible Lindblad operator
oﬁ:le---xQn, T=m Q- - Qm,
o L=17Ly++ L, Lindblad operator for (Q, £)

o Pt — e—tﬁ — e—tﬁj_ R ® e—tl:,,




Tensorization

o (Q, k), and Ly reversible Lindblad operator
oﬁ:le---xQn, T=m Q- - Qm,
o L=17Ly++ L, Lindblad operator for (Q, £)

o Pt — e—tﬁ — e—tﬁl R ® e—tl:,,

ag(L) = max aq(Lk)

Proof:

@ Operator norm is multiplicative:

IPellg—p = lle™ ™ lgmsp - [l€™ " [lg—sp



Tensorization

o (Q, k), and Ly reversible Lindblad operator
oﬁ:le---xQn, T=m1 Q- QRmy
o L=1L1+--+ L, Lindblad operator for (ﬁ, L)

o Pp=eth=ethrg...Qe thn

ag(L) = max aq(Lk)

Proof:

@ Operator norm is multiplicative:
IPellg—p = le™*lgmp -+ - le™"lg—p

o Classical conditional entropy is a convex combination of entropies
& entropy is sub-additivity



Application: bounding the mixing time

Spectral gap
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Application: bounding the mixing time

Spectral gap

. 1
Tmix := min{t : ||uP; — wll1v < E,V,u}

lellv = > 1p(4)
P X

liuPe = wllavs |2~ 12
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Application: bounding the mixing time

Spectral gap

. 1
Tmix := min{t : ||uP; — wll1v < E,V,u}

lollrv = ()]
P X

liuPe = wllavs |2~ 12

= ||Pef — Ef]l2 (f = p/m)

< e M| f —Ef|2

1
< A min — i
<e p— (w min m(x))
1 1
Tmin = O(X IOg 7Tmin)
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Log-Sobolev constant
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Application: bounding the mixing time

Log-Sobolev constant

[P — mllrv< 2D(pPy||T) (Pinsker's inequality)
P
= 2Ent(f,) (f, = %

%Ent(ft) = —&(f,log fi)

< —aiEnt(ft) (Log-Sobolev inequality)
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Application: bounding the mixing time

Log-Sobolev constant

[P — mllrv< 2D(pPy||T) (Pinsker's inequality)
P
= 2Ent(f,) (f, = %

%Ent(f}) = —&(f,log fi)

< —aiEnt(ft) (Log-Sobolev inequality)
1
Ent(f,) < e~ t/“*Ent(fy) = e~/ D(y|7)

! ) = O(az log log ! )

Tmin Tmin

Tmin = O(a1 log log



Application: bounding the mixing time

Random transposition

o Start with 1,2,....n

@ In each time step choose random i, and exchange them

o Using Tmin = O(% log —1-)

T = O(n?log n)

o Using Tmin = O(a; loglog ﬁ)

Tmix = O(nlog n)
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o Given two bipartite distributions wag and pcp

@ Are there n and stochastic maps T: A” — Cand S: B" — D s.t.

7T ®S) = u?
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Application: Non-interactive correlation distillation

o Given two bipartite distributions wag and pcp

@ Are there n and stochastic maps T: A” — Cand S: B" — D s.t.
7T ®S) = u?

o Define U : [2(ma) — L2(ng) by  UF(b) = E[f(A)|B = b]
o Define V : L2(uc) — L%(up) similarly.

Theorem [Ahlswede, Gacs '76]

If there are p > g such that ||U|/q—p <1 and ||V|q—p > 1, then the answer
is no.
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Quantum hypercontractivity & log-Sobolev inequalities

@ Depolorizing channels form a quantum Markov semigroup:

£(X) = X XL, (o) = e pt (1)

@ The theory of is developed by Olkiewicz & Zegarlinski (1999)
@ There are several complications due to non-commutativity

o Easier when

. . /
m = maximally mixed = 5
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Quantum hypercontractivity & log-Sobolev inequalities

@ Semigroup of maps ¢, : My — My

q)t = e_tl:
o completely positive
self-adjoint (reversible)
trace preserving & unital (7 =1/d)

o Inner product: (A, B) = 1tr(ATB) = tr(ATB)

o HC inequalities < LS inequalities

9 Qo Z Qgq, vq

(tr: normalized trace)



Tensorization

o L=1Ly+ -+ L, Lindblad operator for (ﬁ, L)

° ast — e—tz — e—tl:;l ® . ® e—tﬁ,,
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Tensorization

o L=1Ly+ -+ L, Lindblad operator for (ﬁ, L)

° ast — e—tz — e—tl:;l ® . ® e—tﬁn
aq(L) £ maxag(Ly)

o Tensorization doesn't hold!

o ||®¢]|g—p is not multiplicative!

o Quantum conditional entropy is not a convex combination of entropies!
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Theorem [Devetak, Junge, King, Ruskai '06]
CB-norm is multiplicative for CP maps
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Completely bounded norm

Theorem [Devetak, Junge, King, Ruskai '06]
CB-norm is multiplicative for CP maps

(t,g)-norm

1Xrs | (e.q) := sup\inf, _[[(05""*" @ Is)Xrs(ox " ® Is)llq

~ | =
Q|+~

1
r

og: positive & tr(c) =1 supift>gq, & infift<g

1Zr ® ®(Xrs)ll(t,p)
1 Xrsll(t,q)

|®|lcB,g—p := sup sup
RS>0



Completely bounded norm

Theorem [Devetak, Junge, King, Ruskai '06]
CB-norm is multiplicative for CP maps

(t,g)-norm

1Xrs | (e.q) := sup\inf, _[[(05""*" @ Is)Xrs(ox " ® Is)llq
R

~ | =
Q|+

1
r

og: positive & tr(c) =1 supift>gq, & infift<g

1 Zr @ ®(Xrs)ll(¢,p)
®||c, ‘= sup sup ,
|®llcs,g-p = su Xesea I Xrsl(eq)

o Choice of t is arbitrary. Usually t = ¢
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o CB-hypercontractive: ||®||cg,q—p < 1 for some g < p

o CB-log-Sobolev inequality: (tr: normalized trace)

tr(XRs |0g XRS — trR (trs(XRs |Og trs(XR5)>

< cqafr (XH (Tr @ L)L)

o [SB, King '15] CB-hypercontractivity < CB-log-Sobolev inequality

CB CB
a2 2 aq 9y Vq



CB-log-Sobolev inequality

CB-hypercontractive: ||®|lcg g—p < 1 for some g < p

CB-log-Sobolev inequality: (tr: normalized trace)

G(XRS |og XRS) — E?R a’s(XRs) |Og 'a’s(XRs)>

< cqqtr (Xl (ZTr @ £)(Xgs"))

[SB, King '15] CB-hypercontractivity < CB-log-Sobolev inequality
as® >alB, Vg

Tensorization holds!

o CB-norm is multiplicative on CP maps!
o CB-log-Sobolev inequality is already in terms of conditional entropy!
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Application: bounding the mixing time

o [Kastoryano, Temme '13]: a; gives a bound on the mixing time of &,

o afP gives a bound on the mixing time of ®; ® - -- ® &,
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Application: local state transformation

o Given pag and o¢p

o Question: Is there nand ® : A” — C and V : B" — D such that

d® W(p?g) =ocp?

o If dp, g such that
1 1 ES 1
||r;;5 o} Ap o r;;”CB,q—m <1 & ”rgB oMo F;ZHCB:q—’P >1

the answer is NO!

o A, : A— B is the map whose Choi matrix is pag
o Tm(X) = MY2XM/?

o M* is the entry-wise complex conjugate of M
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o CB version of log-Sobolev inequality characterizes CB-hypercontractivity
inequalities

Application: mixing time [Kastoryano & Temme '13]

o CB-log-Sobolev inequalities can be used to bound mixing times of
multipartite systems

Application: non-interactive correlation simulation
o Computing the CB-hypercontractivity ribbon [Delgosha, B. '14]

Open problem: compute the CB-log-Sobolev constant for depolorizing
channels

Open problem: generalize to non-unital channels



For further reading

S. Beigi, C. King

Hypercontractivity and the logarithmic Sobolev inequality for the completely

bounded norm
J. Math. Phys. 57, 015206 (2016)

R. Olkiewicz, B. Zegarlinski
Hypercontractivity in noncommutative L, spaces
J. Funct. Anal. 161(1) 246-285 (1999)

M.J. Kastoryano, K. Temme
Quantum logarithmic Sobolev inequalities and rapid mixing

J. Math. Phys. 54, 052202 (2013)

I. Devetak, M. Junge, C. King, M.B. Ruskai
Multiplicativity of completely bounded p-norms implies a new additivity

result
Commun. Math. Phys. 266, 37-63 (2006)

P. Delgosha, S. Beigi
Impossibility of Local State Transformation via Hypercontractivity

Commun. Math. Phys. 332, 449-476 (2014)



	HC ribbon
	Markov semigroups

	References

