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Quantum evolution

dimH* =n ; &(H) - space of quantum states (density matrices)

At S(H) — S(H)

pe=2Ne[p]; >0

@ Ay is completely positive and trace-preserving (CPTP)
L AO =1

(quantum) dynamical map
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Physics likes equations of motions

We look for the linear equation for A,
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Basic example — unitary evolution
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Markovian semigroup

d
aAt:LAt; A=1 — A =eF5t>0

What is the most general L ?

Theorem (GKSL (1976))
Ay = etl is CPTP iff

] = =ilt, il + (0] - 3201 )

H*=H ; ® - arbitrary CP




Dynamical maps and memory kernels

Quantum Open Systems

S+E — Hs®Hg
Ut:e—th
t=0—=pQuw

pe = Ne[p] = Trg {Utp(X)wth
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Nakajima-Zwanzig equation

pe = N[p] = Trg [Um@wUﬂ

7At / Kt TA dr

One obtains a Markovian semigroup e‘* only in the very special
regime K (t) — 6(t)L
d

T Ay =LA,
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Local vs. non-local

@ non-local master equation (Nakajima-Zwanzig equation)

d t
tht:/O Kt_TATdT

@ local in time master equation

d
— A = LiA
g M t\
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Local vs. non-local

@ non-local master equation (Nakajima-Zwanzig equation)

d t
tht:/O Kt_TATdT

@ local in time master equation

d
— A = LiA
g M t\

At — Lt = AtA;l
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local generator

Lol = —ilHep) + <<1>t[p]—§{<1>:m7p})

non-local (memory kernel) generator

Kilp = —ilGup] + (wt[p]—i{wrm,p})

H;, Gy — hermitian ; &;, U; — hermiticity-preserving

These structures guarantee that A, is hermiticity- and trace-preserving

What about complete positivity?
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What is known:

Llp) = =ilt )+ (0 - 3107100}

t
Ay =T exp (/ L7d7'>
0

P, —-CP = At -CPTP
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What is known:

Kilpl = —ilChpl+ (wt[p]—;{w:m,p})

NO general results were known!

only so-called semi-Markov classical evolution was characterized

| provide sufficient conditions during this talk



Example: qubit dephasing

Li[p] = %v(t)[aspog —
_ pii Alt)pi2
Addel = < A(t)pa1  p22 )
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Example: qubit dephasing
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As) — A@D)

CP = \t)e[-1,1]

NO simple condition for k()
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_ P11 A(t)pr2
Addel = < A(t)par  p22 >

t
If v(t) satisfies I'(t) ::/ vy(T)dT < oo for finite ¢
0

time-local — A(t) =e T® >0
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_ P11 A(t)pr2
Addel = < A(t)par  p22 >

If (t) satisfies T'(t) :=

t
/ vy(T)dT < oo for finite ¢
0

time-local — A(t) =e T® >0
Atis CP <= \(t) € [-1,1]

At) 20 = ~(t) is singular
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Example: let A(t) = cost; (non-Markovian evolution — next talk)

P11 p12 cost
A =
b ( pa1cost  pag )

v(t) = tant  (singular)
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Example: let A(t) = cost; (non-Markovian evolution — next talk)

P11 p12 cost
A =
b ( pa1cost  pag )

v(t) = tant  (singular)

k(t)=1 (t>0) (regular)
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Example: let A(t) = cost; (non-Markovian evolution — next talk)

P11 p12 cost
A =
b ( pa1cost  pag )

v(t) = tant  (singular)
k(t)=1 (t>0) (regular)

non-trivial & singular L; <+— simple & regular K;
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ST
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Laplace transform domain

d t
- At = Kt—TAT dr

shy — 1= K A,
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Laplace transform domain

d t
@ At = ) Kt—TAT dr
shy — 1= K A,
~ 1
As = — — A =777
s — K
. ~ 1 ‘L
semigroup — Ag = 17 — M =ce
S J—

L At CP
@ what about /NXS ?
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Completely monotone functions

A function f: [0,00) — R is completely monotone (CM) if

dn
(F1)" ()20, n=0,1,2,...
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Completely monotone functions

A function f: [0,00) — R is completely monotone (CM) if

dn
(F1)" ()20, n=0,1,2,...

Theorem (Bernstein)

A function f : [0,00) — R is CM iff it is a Laplace transform of a
positive function g(t) > 0

£(s) = / g(t)dt
0
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Completely monotone functions — examples
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Completely monotone functions — examples

If fand g are CM, then f-.-g - CM
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“Quantum Bernstein theorem”

*At /Kt TA dr

Ay —CP
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“Quantum Bernstein theorem”

*At /Kt TA dr

Ay —CP

shs — 1 = K A

(*1)”%7\5 —CP n=0,1,2,... CM-CP
S
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How to construct a legitimate K; 7
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Markovian semigroup — quantum jumps representation
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Markovian semigroup — quantum jumps representation
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L=B-Z7
At:LAt N Aoz]l

N,=-ZN, ; Ng=1 —» Nelp] = e_iCtpeiCTt

~ 1 ~ 1

N, = A= ———————
S s4+Z 0 % s—B+Z

Ay = N, + N,BA,
-1

Ks: ~s Ns ~s~s cee) = 1Vg =~
No(1+Qu +QuQu ) = Moy

Q¢ := BN,
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As = No(1+ Qs +QsQs + )
A =N+ Nex (Qe + Qe Qi + Qe x Qe xQr +....)
Nt, Q¢ = BNy —CP
quantum jump representation

"t
A = Nt+/ dtyNi_y, BNy, + . ..
0
= Nt—FNt*BNt—FNt*BNt*BNt—F
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L — I(t

L=B-Z — Ny=-ZN, ; No=1 — N[p| = e iCtpeic"t

AN =N+ Npx (Qe+ Qe Qe + Qe x Qe x Q¢ +...) 5 Q:= BN,
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L — I(t

L=B-Z — Ny=-ZN, ; No=1 — N[p| = e iCtpeic"t

AN =N+ Npx (Qe+ Qe Qe + Qe x Qe x Q¢ +...) 5 Q:= BN,

it
Kt:Bt—Zt — Nf_/ Zt_TNTdT N():]l — Nt—CP
J0O

Ay = Ni+Npx(Qi+ Qi Qi+ Qe Qi Qi+ . .) 3 Qy := ByxNy — CP
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We call {NV;, @} a legitimate pair iff
@ N, Q are CP, and Ny =1
o Tr[(Q:+ Ny)p] =0,
° [|Qs]l <1

At =N+ Nex (Qr + Qi+ Qr + Qe x Qe+ Qy +...)
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We call {NV;, @} a legitimate pair iff
@ N, Q are CP, and Ny =1
o Tr[(Q:+ Ny)p] =0,
° [|Qs]l <1

At =N+ Nex (Qr + Qi+ Qr + Qe x Qe+ Qy +...)

Ky =B, - %,
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Example:

N, = (1 . /Otf(T)dT> 1
()0 ; /ff(r)df <1

Q= f(t)B; B-CPTP = ||Q,][1 = |f(s)| <1
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Example:

t
Ny = (1—/0 f(T)dT) 1
() >0 ; /oofmdfél
0
Q= f(t)B; B-CPTP = ||Q,][1 = |f(s)| <1

K, = k(t)(B - 1)
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Example:

t
Ny = (1—/0 f(T)dT) 1
() >0 ; /oofmdfél
0
Q= f(t)B; B-CPTP = ||Q,][1 = |f(s)| <1

K, = k(t)(B - 1)
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Qubit dephasing

Blp] = o3p0s
= - sf(s)
5 = T )
f(t) >0 ; Oof(T)dT<1
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K, = k(t)(B - 1)

B? =B —CPTP projector

Ay = <1 - /Otf(T)dT> 1+ /Otf(T)dTB

Og/tf(f)drgl
0

but f(t) needs not be positive!
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Properties — 1

Convexity

If {Nt(k),ng)} are legitimate pairs then a convex combination
Ny = Zpth(k) ; Q= Zkaik)
k k

provide a legitimate pair.
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Properties — 2

Reduced pair

Suppose that {IN;, Q;} defines a legitimate pair for the evolution in
H ® Hp. Then for arbitrary state w in Hg

Nip] = Tre(Ne[p@w]), Qip] = Tre(Qip@w)),

provide a legitimate pair for the reduced evolution in H.



Dynamical maps and memory kernels

Properties — 3

Gauge transformations

If {N¢, Q:} is a legitimate pair and F; is a dynamical map, then
N{ = FiNt; Q= FiQy,

provide a legitimate pair as well.
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Properties — 4

CP shift

If {Ny, Q¢} is a legitimate pair and G, is a linear map such that
J G-dr is CP, then

t
M=M+/%W;%=@—%
0

define a legitimate pair provided Q) is CP.
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Properties — 4

CP shift

If {Ny, Q¢} is a legitimate pair and G, is a linear map such that
J G-dr is CP, then

t
N=Ni+ [ Gudri Q=6
0
define a legitimate pair provided Q) is CP.

t
N; + / Q.dr —CPTP
0
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New equation — collision models
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Summary

| provided a relation between time-local and non-local
approaches

| provided a construction for a family of legitimate kernels in
terms of legitimate pairs

all known examples fit this class

this class defines a natural generalization of classical
semi-Markov evolution

the necessary condition is still missing

see the next talk for INTERESTING results on non-Markovian
quantum evolution!
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