Dynamical maps and memory kernels

Dariusz Chruściński

Nicolaus Copernicus University, Toruń, POLAND

Mathematical Aspects of Quantum Information NIMS, Daejeon, February 2016

Quantum evolution

 $\mathrm{dim}\mathcal{H}=n$; $\mathfrak{S}(\mathcal{H})$ — space of quantum states (density matrices)

$$\Lambda_t:\mathfrak{S}(\mathcal{H})\longrightarrow\mathfrak{S}(\mathcal{H})$$

$$\rho_t = \Lambda_t[\rho] \; ; \quad t \ge 0$$

- \bullet Λ_t is completely positive and trace-preserving (CPTP)
- $\Lambda_0 = 1$

(quantum) dynamical map

Physics likes equations of motions

We look for the linear equation for Λ_t

Basic example — unitary evolution

$$H = H^*$$

$$L[\rho] = -i[H, \rho]$$

$$\frac{d}{dt}\Lambda_t = L\Lambda_t \; ; \quad \Lambda_0 = \mathbb{1}$$

$$\Lambda_t[\rho] = U_t \rho U_t^* \; ; \quad U_t = e^{-iHt} \; ; \; t \in \mathbb{R}$$

Markovian semigroup

$$\frac{d}{dt}\Lambda_t = L\Lambda_t \; ; \quad \Lambda_0 = \mathbb{1} \quad \longrightarrow \quad \Lambda_t = e^{tL} \; ; \; t \ge 0$$

What is the most general L?

Theorem (GKSL (1976))

$$\Lambda_t = e^{tL}$$
 is CPTP iff

$$L[\rho] = -i[H, \rho] + \left(\Phi[\rho] - \frac{1}{2} \{\Phi^*[\mathbb{I}], \rho\}\right)$$

$$H^* = H$$
; Φ – arbitrary CP

Quantum Open Systems

$$S+E \longrightarrow \mathcal{H}_S \otimes \mathcal{H}_E$$

$$U_t = e^{-iHt}$$

$$t = 0 \to \rho \otimes \omega$$

$$\rho_t := \Lambda_t[\rho] = \operatorname{Tr}_E \left[U_t \rho \otimes \omega U_t^{\dagger} \right]$$

Nakajima-Zwanzig equation

$$\rho_t := \Lambda_t[\rho] = \operatorname{Tr}_E \left[U_t \rho \otimes \omega U_t^{\dagger} \right]$$
$$\frac{d}{dt} \Lambda_t = \int_0^t K_{t-\tau} \Lambda_{\tau} d\tau$$

One obtains a Markovian semigroup e^{tL} only in the very special regime $K(t) \longrightarrow \delta(t)L$

$$\frac{d}{dt}\Lambda_t = L\Lambda_t$$

Local vs. non-local

• non-local master equation (Nakajima-Zwanzig equation)

$$\frac{d}{dt} \Lambda_t = \int_0^t K_{t-\tau} \Lambda_\tau \, d\tau$$

local in time master equation

$$\frac{d}{dt}\Lambda_t = L_t \Lambda_t$$

$$\Lambda_t \longrightarrow L_t = \dot{\Lambda}_t \Lambda_t^{-1}$$

Local vs. non-local

• non-local master equation (Nakajima-Zwanzig equation)

$$\frac{d}{dt} \Lambda_t = \int_0^t K_{t-\tau} \Lambda_\tau \, d\tau$$

local in time master equation

$$\frac{d}{dt}\Lambda_t = L_t \Lambda_t$$

$$\Lambda_t \longrightarrow L_t = \dot{\Lambda}_t \Lambda_t^{-1}$$

local generator

$$L_t[\rho] = -i[H_t, \rho] + \left(\Phi_t[\rho] - \frac{1}{2} \{\Phi_t^*[\mathbb{I}], \rho\}\right)$$

non-local (memory kernel) generator

$$K_t[\rho] = -i[G_t, \rho] + \left(\Psi_t[\rho] - \frac{1}{2} \{\Psi_t^*[\mathbb{I}], \rho\}\right)$$

 H_t , G_t – hermitian ; Φ_t , Ψ_t – hermiticity-preserving

These structures guarantee that Λ_t is hermiticity- and trace-preserving

What about complete positivity?

What is known:

$$L_t[
ho] \ = \ -i[H_t,
ho] + \left(\Phi_t[
ho] - rac{1}{2} \{\Phi_t^*[\mathbb{I}],
ho\}
ight)$$

$$\Lambda_t = \mathcal{T} \exp\left(\int_0^t L_{ au} d au
ight)$$

$$\Phi_t - \mathsf{CP} \implies \Lambda_t - \mathsf{CPTP}$$

What is known:

$$K_t[\rho] = -i[G_t, \rho] + \left(\Psi_t[\rho] - \frac{1}{2} \{\Psi_t^*[\mathbb{I}], \rho\}\right)$$

NO general results were known!

only so-called semi-Markov classical evolution was characterized

I provide sufficient conditions during this talk

Example: qubit dephasing

$$L_t[\rho] = \frac{1}{2}\gamma(t)[\sigma_3\rho\sigma_3 - \rho]$$

$$\Lambda_t[\rho] = \begin{pmatrix} \rho_{11} & \lambda(t)\rho_{12} \\ \lambda(t)\rho_{21} & \rho_{22} \end{pmatrix}$$

$$CP \iff |\lambda(t)| \le 1$$

$$\dot{\lambda}(t) = -\gamma(t)\lambda(t)$$
; $\lambda(0) = 1 \longrightarrow \lambda(t) = \exp\left(-\int_0^t \gamma(\tau)d\tau\right)$

Example: qubit dephasing

$$K_t[\rho] = \frac{1}{2}k(t)[\sigma_3\rho\sigma_3 - \rho]$$

$$\dot{\lambda}(t) = -\int_0^t k(t-\tau)\lambda(\tau)d\tau \; ; \; \lambda(0) = 1 \longrightarrow \lambda(t) = ???$$

Laplace:
$$\lambda(t) \rightarrow \widetilde{\lambda}(s) = \int_0^\infty e^{-st} \lambda(t) dt$$

$$\dot{\lambda}(t) = -\int_0^t k(t-\tau) \lambda(\tau) d\tau \; ; \; \lambda(0) = 1$$

$$s\widetilde{\lambda}(s) - 1 = -\widetilde{k}(s)\widetilde{\lambda}(s) \longrightarrow \widetilde{\lambda}(s) = \frac{1}{s+\widetilde{k}(s)}$$

$$\widetilde{\lambda}(s) \longrightarrow \lambda(t)$$

$$\mathsf{CP} \iff \lambda(t) \in [-1,1]$$

NO simple condition for k(t)

$$\Lambda_t[\rho] = \left(\begin{array}{cc} \rho_{11} & \lambda(t)\rho_{12} \\ \lambda(t)\rho_{21} & \rho_{22} \end{array}\right)$$
 If $\gamma(t)$ satisfies $\Gamma(t) := \int_0^t \gamma(\tau)d\tau < \infty$ for finite t time-local $\longrightarrow \lambda(t) = e^{-\Gamma(t)} \geq 0$
$$\Lambda_t \text{ is CP} \iff \lambda(t) \in [-1,1]$$

$$\lambda(t) \not\geqslant 0 \implies \gamma(t) \text{ is singular}$$

$$\begin{split} \Lambda_t[\rho] &= \left(\begin{array}{cc} \rho_{11} & \lambda(t)\rho_{12} \\ \lambda(t)\rho_{21} & \rho_{22} \end{array} \right) \\ \text{If } \gamma(t) \text{ satisfies } \Gamma(t) := \int_0^t \gamma(\tau)d\tau < \infty \quad \text{for finite } t \\ \\ \text{time-local} &\longrightarrow \lambda(t) = e^{-\Gamma(t)} \geq 0 \\ \\ \Lambda_t \text{ is CP} &\iff \lambda(t) \in [-1,1] \\ \\ \lambda(t) \not\geqslant 0 &\implies \gamma(t) \text{ is singular} \end{split}$$

Example: let $\lambda(t) = \cos t$; (non-Markovian evolution – next talk)

$$\Lambda_t[\rho] = \begin{pmatrix} \rho_{11} & \rho_{12} \cos t \\ \rho_{21} \cos t & \rho_{22} \end{pmatrix}$$

$$\gamma(t) = \tan t$$
 (singular)

$$k(t) = 1 \quad (t \ge 0)$$
 (regular)

non-trivial & singular $L_t \longleftrightarrow \mathsf{simple}$ & regular K_t

Example: let $\lambda(t) = \cos t$; (non-Markovian evolution – next talk)

$$\Lambda_t[\rho] = \begin{pmatrix} \rho_{11} & \rho_{12} \cos t \\ \rho_{21} \cos t & \rho_{22} \end{pmatrix}$$

$$\gamma(t) = \tan t$$
 (singular)

$$k(t) = 1 \quad (t \ge 0)$$
 (regular)

non-trivial & singular $L_t \longleftrightarrow \mathsf{simple} \& \mathsf{regular} \ K_t$

Example: let $\lambda(t) = \cos t$; (non-Markovian evolution – next talk)

$$\Lambda_t[\rho] = \begin{pmatrix} \rho_{11} & \rho_{12} \cos t \\ \rho_{21} \cos t & \rho_{22} \end{pmatrix}$$

$$\gamma(t) = \tan t$$
 (singular)

$$k(t) = 1 \quad (t \ge 0)$$
 (regular)

non-trivial & singular $L_t \longleftrightarrow \mathsf{simple} \& \mathsf{regular} \ K_t$

Laplace transform domain

$$\frac{d}{dt} \Lambda_t = \int_0^t K_{t-\tau} \Lambda_\tau \, d\tau$$
$$s\widetilde{\Lambda}_s - 1 = \widetilde{K}_s \widetilde{\Lambda}_s$$

$$\widetilde{\Lambda}_s = rac{1}{s-\widetilde{K}_s} \longrightarrow \Lambda_t = ???$$
 semigroup $\longrightarrow \widetilde{\Lambda}_s = rac{1}{s-L} \longrightarrow \Lambda_t = e^{tL}$

- Λ₊ CP
- what about $\widetilde{\Lambda}_s$?

Laplace transform domain

$$\frac{d}{dt} \Lambda_t = \int_0^t K_{t-\tau} \Lambda_\tau \, d\tau$$
$$s \widetilde{\Lambda}_s - 1 = \widetilde{K}_s \widetilde{\Lambda}_s$$

$$\begin{split} \widetilde{\Lambda}_s &= \frac{1}{s - \widetilde{K}_s} \quad \longrightarrow \quad \Lambda_t =??? \\ \text{semigroup} &\longrightarrow \ \widetilde{\Lambda}_s = \frac{1}{s - L} \quad \longrightarrow \quad \Lambda_t = e^{tL} \end{split}$$

- Λ_t CP
- ullet what about $\widetilde{\Lambda}_s$?

Completely monotone functions

A function $f: [0,\infty) \to R$ is completely monotone (CM) if

$$(-1)^n \frac{d^n}{ds^n} f(s) \ge 0, \quad n = 0, 1, 2, \dots$$

Theorem (Bernstein)

A function $f:[0,\infty)\to R$ is CM iff it is a Laplace transform of a positive function $g(t)\geq 0$

$$f(s) = \int_{0}^{\infty} e^{-st} g(t) dt$$

Completely monotone functions

A function $f: [0, \infty) \to R$ is completely monotone (CM) if

$$(-1)^n \frac{d^n}{ds^n} f(s) \ge 0, \quad n = 0, 1, 2, \dots$$

Theorem (Bernstein)

A function $f:[0,\infty)\to R$ is CM iff it is a Laplace transform of a positive function $g(t)\geq 0$

$$f(s) = \int_{0}^{\infty} e^{-st} g(t) dt$$

Completely monotone functions — examples

$$f(t) = \frac{1}{t+a}$$

$$f(t) = e^{-at} \; ; \; a > 0$$

If f and g are CM, then $f \cdot g$ — CM

Completely monotone functions — examples

$$f(t) = \frac{1}{t+a}$$

$$f(t) = e^{-at} \quad ; \quad a > 0$$

If f and g are CM, then $f \cdot g$ — CM

"Quantum Bernstein theorem"

$$\frac{d}{dt} \Lambda_t = \int_0^t K_{t-\tau} \Lambda_\tau \, d\tau$$

$$\Lambda_t \, - \mathsf{CP}$$

$$s\widetilde{\Lambda}_s - 1 = \widetilde{K}_s\widetilde{\Lambda}_s$$

$$(-1)^n rac{d^n}{ds^n} \widetilde{\Lambda}_s$$
 — CP $n=0,1,2,\ldots$ CM-CF

"Quantum Bernstein theorem"

$$\frac{d}{dt} \Lambda_t = \int_0^t K_{t-\tau} \Lambda_\tau \, d\tau$$

$$\Lambda_t \; - \mathsf{CP}$$

$$s\widetilde{\Lambda}_s - 1 = \widetilde{K}_s \widetilde{\Lambda}_s$$

$$(-1)^n \frac{d^n}{ds^n} \widetilde{\Lambda}_s$$
 — CP $n = 0, 1, 2, \dots$ CM-CP

How to construct a legitimate K_t ?

Markovian semigroup — quantum jumps representation

$$L[\rho] = -i[H, \rho] + \left(B[\rho] - \frac{1}{2} \{B^*[\mathbb{I}], \rho\}\right)$$

$$X = \frac{1}{2} B^*[\mathbb{I}] \ge 0$$

$$L[\rho] = B[\rho] - [i(H\rho - \rho H) + (X\rho + \rho X)]$$

$$L = B - Z$$

$$Z[\rho] = i(C\rho - \rho C^{\dagger}) \quad ; \quad C = H - \frac{i}{2} X$$

Markovian semigroup — quantum jumps representation

$$L[\rho] = -i[H, \rho] + \left(B[\rho] - \frac{1}{2} \{B^*[\mathbb{I}], \rho\}\right)$$

$$X = \frac{1}{2} B^*[\mathbb{I}] \ge 0$$

$$L[\rho] = B[\rho] - [i(H\rho - \rho H) + (X\rho + \rho X)]$$

$$L = B - Z$$

$$Z[\rho] = i(C\rho - \rho C^{\dagger}) \quad ; \quad C = H - \frac{i}{2} X$$

$$L = B - Z$$

$$\dot{\Lambda}_t = L\Lambda_t \quad ; \quad \Lambda_0 = 1$$

$$N_t = -ZN_t \quad ; \quad N_0 = \mathbb{I} \quad \longrightarrow \quad N_t[\rho] = e^{-ST}\rho e^{-ST}$$

$$\widetilde{N}_s = \frac{1}{s+Z} \quad ; \quad \widetilde{\Lambda}_s = \frac{1}{s-B+Z}$$

$$\widetilde{\Lambda}_s = \widetilde{N}_s + \widetilde{N}_s B \widetilde{\Lambda}_s$$

$$\widetilde{\Lambda}_s = \widetilde{N}_s (\mathbb{I} + \widetilde{Q}_s + \widetilde{Q}_s \widetilde{Q}_s + \ldots) = \widetilde{N}_s \frac{1}{1 - \widetilde{Q}_s}$$

$$Q_t := BN_t$$

$$L = B - Z$$

$$\dot{\Lambda}_t = L\Lambda_t \quad ; \quad \Lambda_0 = 1$$

$$\dot{N}_t = -ZN_t$$
 ; $N_0 = 1$ \longrightarrow $N_t[\rho] = e^{-iCt}\rho e^{iC^{\dagger}t}$
$$\widetilde{N}_s = \frac{1}{s+Z}$$
 ; $\widetilde{\Lambda}_s = \frac{1}{s-B+Z}$
$$\widetilde{\Lambda}_s = \widetilde{N}_s + \widetilde{N}_s B \widetilde{\Lambda}_s$$

$$\widetilde{\Lambda}_s = \widetilde{N}_s(\mathbb{1} + \widetilde{Q}_s + \widetilde{Q}_s\widetilde{Q}_s + \ldots) = \widetilde{N}_s \frac{1}{1 - \widetilde{Q}_s}$$

 $Q_t := BN_t$

$$\widetilde{\Lambda}_s = \widetilde{N}_s (1\!\!1 + \widetilde{Q}_s + \widetilde{Q}_s \widetilde{Q}_s + \ldots)$$

$$\Lambda_t = N_t + N_t * (Q_t + Q_t * Q_t + Q_t * Q_t * Q_t + \ldots)$$

$$N_t, Q_t = BN_t - \mathsf{CP}$$

quantum jump representation

$$\Lambda_t = N_t + \int_0^t dt_1 N_{t-t_1} B N_{t_1} + \dots
= N_t + N_t * B N_t + N_t * B N_t * B N_t + \dots$$

$L \longrightarrow K_t$

$$L = B - Z \rightarrow \dot{N}_t = -ZN_t \; ; \; N_0 = \mathbb{1} \longrightarrow N_t[\rho] = e^{-iCt}\rho e^{iC^{\dagger}t}$$

$$\Lambda_t = N_t + N_t * (Q_t + Q_t * Q_t + Q_t * Q_t * Q_t + \dots) ; \quad Q_t := BN_t$$

$$K_t = B_t - Z_t \rightarrow \dot{N}_t = -\int_0^t Z_{t-\tau} N_\tau d\tau \; ; \; N_0 = \mathbb{1} \longrightarrow N_t - \mathsf{CP}$$

$$\Lambda_t = N_t + N_t * (Q_t + Q_t * Q_t + Q_t * Q_t * Q_t + \dots) ; \quad Q_t := B_t * N_t - \mathsf{CP}$$

$L \longrightarrow K_t$

$$L = B - Z \rightarrow \dot{N}_t = -ZN_t \; ; \; N_0 = \mathbb{1} \longrightarrow N_t[\rho] = e^{-iCt}\rho e^{iC^{\dagger}t}$$

$$\Lambda_t = N_t + N_t * (Q_t + Q_t * Q_t + Q_t * Q_t * Q_t + \ldots) ; \quad Q_t := BN_t$$

$$K_t = B_t - Z_t \rightarrow \dot{N}_t = -\int_0^t Z_{t-\tau} N_\tau d\tau \; ; \; N_0 = 1 \longrightarrow N_t - \mathsf{CP}$$

$$\Lambda_t = N_t + N_t * (Q_t + Q_t * Q_t + Q_t * Q_t * Q_t + \dots) \; ; \quad Q_t := B_t * N_t \; - \mathsf{CP}$$

We call $\{N_t,Q_t\}$ a legitimate pair iff

- ullet N_t,Q_t are CP, and $N_0=1$
- $\operatorname{Tr}[(Q_t + \dot{N}_t)\rho] = 0$,
- $||\widetilde{Q}_s|| \leq 1$

$$\Lambda_t = N_t + N_t * (Q_t + Q_t * Q_t + Q_t * Q_t * Q_t + \dots)$$

$$K_t = B_t - Z_t$$

$$\widetilde{Q}_s = \widetilde{B}_s \widetilde{N}_s \; \; ; \; \; \widetilde{N}_s = rac{1}{s + \widetilde{Z}_s}$$

We call $\{N_t,Q_t\}$ a legitimate pair iff

- ullet N_t,Q_t are CP, and $N_0=1$
- $\operatorname{Tr}[(Q_t + \dot{N}_t)\rho] = 0$,
- $||\widetilde{Q}_s|| \leq 1$

$$\Lambda_t = N_t + N_t * (Q_t + Q_t * Q_t + Q_t * Q_t * Q_t + \dots)$$

$$K_t = B_t - Z_t$$

$$\widetilde{Q}_s = \widetilde{B}_s \widetilde{N}_s \ ; \ \widetilde{N}_s = \frac{1}{s + \widetilde{Z}_s}$$

Example:

$$\begin{split} N_t &= \left(1 - \int_0^t f(\tau) d\tau\right) \mathbb{1} \\ f(t) &\geq 0 \;\; ; \;\; \int_0^\infty f(\tau) d\tau \leq 1 \\ Q_t &= f(t)B \; ; \quad B \text{-CPTP} \implies ||\widetilde{Q}_s||_1 = |\widetilde{f}(s)| \leq 1 \\ K_t &= k(t)(B-1) \\ \widetilde{k}(s) &= \frac{s\widetilde{f}(s)}{1-f(s)} \end{split}$$

Example:

$$N_t = \left(1 - \int_0^t f(\tau)d\tau\right) \mathbb{1}$$

$$f(t) \ge 0 \; ; \; \int_0^\infty f(\tau)d\tau \le 1$$

$$Q_t = f(t)B \; ; \; B \text{-CPTP} \implies ||\widetilde{Q}_s||_1 = |\widetilde{f}(s)| \le 1$$

$$K_t = k(t)(B - \mathbb{1})$$

$$\widetilde{k}(s) = \frac{s\widetilde{f}(s)}{1 - f(s)}$$

Example:

$$\begin{split} N_t &= \left(1 - \int_0^t f(\tau) d\tau\right) \mathbb{1} \\ f(t) &\geq 0 \; \; ; \quad \int_0^\infty f(\tau) d\tau \leq 1 \\ Q_t &= f(t)B \; ; \quad B \text{-CPTP} \implies ||\widetilde{Q}_s||_1 = |\widetilde{f}(s)| \leq 1 \\ K_t &= k(t)(B-1) \\ \widetilde{k}(s) &= \frac{s\widetilde{f}(s)}{1-f(s)} \\ f(t) &= \gamma e^{-\gamma t} \implies \widetilde{f}(s) = \frac{\gamma}{s+\gamma} \implies \widetilde{k}(s) = \gamma \implies k(t) = \gamma \delta(t) \end{split}$$

Qubit dephasing

$$K_t = k(t)(B - 1)$$

$$B[\rho] = \sigma_3 \rho \sigma_3$$

$$\widetilde{k}(s) = \frac{s\widetilde{f}(s)}{1 - f(s)}$$

$$f(t) \ge 0 \; ; \; \int_0^\infty f(\tau)d\tau \le 1$$

$$K_t=k(t)(B-1)$$

$$B^2=B \quad \text{-CPTP projector}$$

$$\Lambda_t=\left(1-\int_0^t f(\tau)d\tau\right)1\!\!1+\int_0^t f(\tau)d\tau\,B$$

$$0\leq \int_0^t f(\tau)d\tau\leq 1$$

but f(t) needs not be positive!

Convexity

If $\{N_t^{(k)},Q_t^{(k)}\}$ are legitimate pairs then a convex combination

$$N_t = \sum_k p_k N_t^{(k)} \; ; \; Q_t = \sum_k p_k Q_t^{(k)}$$

provide a legitimate pair.

Reduced pair

Suppose that $\{\mathbf{N}_t, \mathbf{Q}_t\}$ defines a legitimate pair for the evolution in $\mathcal{H} \otimes \mathcal{H}_E$. Then for arbitrary state ω in \mathcal{H}_E

$$N_t[\rho] = \operatorname{Tr}_E(\mathbf{N}_t[\rho \otimes \omega]), \ Q_t[\rho] = \operatorname{Tr}_E(\mathbf{Q}_t[\rho \otimes \omega]),$$

provide a legitimate pair for the reduced evolution in \mathcal{H} .

Gauge transformations

If $\{N_t,Q_t\}$ is a legitimate pair and \mathcal{F}_t is a dynamical map, then

$$N_t' = \mathcal{F}_t N_t \; ; \quad Q_t' = \mathcal{F}_t Q_t,$$

provide a legitimate pair as well.

CP shift

If $\{N_t,Q_t\}$ is a legitimate pair and \mathcal{G}_t is a linear map such that $\int_0^t \mathcal{G}_{ au} d au$ is CP, then

$$N_t' = N_t + \int_0^t \mathcal{G}_\tau d\tau \; ; \quad Q_t' = Q_t - \mathcal{G}_t,$$

define a legitimate pair provided Q'_t is CP.

$$N_t + \int_0^t Q_{\tau} d\tau$$
 -CPTF

CP shift

If $\{N_t,Q_t\}$ is a legitimate pair and \mathcal{G}_t is a linear map such that $\int_0^t \mathcal{G}_{ au} d au$ is CP, then

$$N_t' = N_t + \int_0^t \mathcal{G}_\tau d\tau \; ; \quad Q_t' = Q_t - \mathcal{G}_t,$$

define a legitimate pair provided Q'_t is CP.

$$N_t + \int_0^t Q_{\tau} d\tau$$
 -CPTP

New equation — collision models

$$\frac{d}{dt} \Lambda_t = \int_0^t K_{t-\tau} \Lambda_\tau \, d\tau$$

$$\{N_t, Q_t\}$$

$$\frac{d}{dt}\Lambda_t = \int_0^t \mathbb{K}_{t-\tau}\Lambda_\tau \, d\tau + \frac{d}{dt}N_t$$

$$\widetilde{\mathbb{K}}_s = s\widetilde{N}_s\widetilde{Q}_s\widetilde{N}_s^{-1}$$

Summary

- I provided a relation between time-local and non-local approaches
- I provided a construction for a family of legitimate kernels in terms of legitimate pairs
- all known examples fit this class
- this class defines a natural generalization of classical semi-Markov evolution
- the necessary condition is still missing
- see the next talk for INTERESTING results on non-Markovian quantum evolution!

References

- D.C. and A. Kossakowski, PRL, 104, 070406 (2010)
- D.C. and A. Kossakowski, EPL, 97, 20005 (2012)
- D.C. and A. Kossakowski, PRL, 111, 050402 (2013)
- D.C. and S. Maniscalco, PRL, 112, 120404 (2014)
- D.C. and A. Kossakowski, arXiv:1602.01642
- J. Bae and D.C, arXiv:1601.05522

