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What are resources?
Resource objects are things which can be converted into each other via
processes, such as:

timber + nails −→ table

The details vary with the context:

I Industrial chemistry: N2 + 3H2
Haber process−−−−−−−−→ 2NH3

I Thermodynamics: hot gas + cold gas
Carnot process−−−−−−−−−→ gas + work

I Communication: noisy channel
Channel coding−−−−−−−−−→ perfect channel

I Energy economics:

nuclear fuel+reactor
fission−−−−→ electricity+nuclear waste+reactor

Persistent pattern: convertibility and combinability of resource
objects. One investigates problems about catalysis, rates, . . .



A mathematical theory of resources

The convertibility and combinability is formalized by a mathematical
structure:

Definition

An ordered commutative monoid (A,+, 0,≥) consists of a set A with
the structure of

I a commutative monoid (A,+, 0),

I a partial order (A,≥),

I such that addition is monotone,

x ≥ y ⇒ x + z ≥ y + z .



A mathematical theory of resources

Intuition:

I “+” describes how resource objects combine, with trivial resource
object 0.

I “a ≥ b” means that: there is a process which turns a into b.

I If a ≥ b and b ≥ a, then a = b. Mutually interconvertible
resource objects are considered equal.



Example: the resource theory of chemistry

Let Chem be the ordered commutative monoid in which the resource
objects a, b, . . . ∈ Chem are collections of molecules like

2H2O2, 2H2O + O2, . . . ,

with addition given by union of collections.

Declare a ≥ b to hold if your laboratory can perform a chemical
reaction of type a→ b.



Example: the resource theory of chemistry

We have
2H2O2 6≥ 2H2O + O2,

but
2H2O2 + MnO2 ≥ 2H2O + O2 + MnO2.

This is an example of catalysis, a phenomenon which may occur in
any resource theory.



Example: the resource theory of paint

Let Paint be the ordered commutative monoid in which a resource
object a ∈ Paint is a collection of buckets, where each bucket in a
contains paint of a certain colour.

The binary operation + joins collections of buckets. The empty
collection of buckets is 0.

The paints in different buckets can be mixed:

Declare a ≥ b to hold if b can be obtained from a by mixing paints
and/or discarding buckets.



Example: the resource theory of communication

The resource objects of CommCh are channels (stochastic matrices)
P,Q, . . . with arbitrary finite input and output alphabet.

Take P ≥ Q if there exist encoding and decoding channels enc and
dec such

Q = enc P dec

Channels combine by using them in parallel,

P

Q

The binary operation “+” often has a multiplicative character!



Example: the ordered commutative monoid of graphs

The elements of Grph are finite graphs, ordered via the existence of a
homomorphism:

a

b

c

d

f

g

e

≤

g

a, c

b, d

f

e

They combine via disjunctive product, V (G + H) := V (G )× V (H),

(v ,w) ∼ (v ′,w ′) :⇐⇒ v ∼ v ′ ∨ w ∼ w ′.



Example: the ordered commutative monoid of graphs

Theorem

Catalysis exists in Grph. For example,

3C5 6≥ K11, 3C5 + (3C5 ∨ K11) ≥ K11 + (3C5 ∨ K11).

Taking the distinguishability graph of a channel is a homomorphism

CommCh→ Grph.

This is closely related to zero-error communication.



Example: representation theory

Let G be a locally compact group. The elements of Rep(G ) are the
unitary representations π : G → U(H) for any H.

Declare π ≥ ρ to hold whenever ρ is weakly contained in π. This turns
Rep(G ) into a semilattice with the direct sum as join.

Two representations combine via the tensor product, π + ρ := π ⊗ ρ.



Regularizations
Ordered commutative monoids are very nasty beasts. So let’s turn
them into better-behaved gadgets!
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The catalytic regularization

On an ordered commutative monoid A, introduce the catalytic
ordering,

x ≥cat y :⇐⇒ ∃z , x + z ≥ y + z .

In this new ordering, A is guaranteed to be cancellative,

x + z ≥cat y + z =⇒ x ≥cat y .

Now define an ordered abelian group OAG(A) as consisting of the
formal differences x − x ′, ordered as

x − x ′ ≥ y − y ′ :⇐⇒ x + y ′ ≥cat y + x ′.

OAG(A) is an ordered generalization of the Grothendieck group of a
commutative monoid.



The many-copy regularization
Let G be an ordered abelian group G . Then

x ≥ y ⇐⇒ x − y ≥ 0.

Hence it is sufficient to consider the positive cone G+.

Then introduce the many-copies ordering,

x ≥∞ 0 :⇐⇒ ∃n ∈ N, nx ≥ 0.

In this new ordering, G is guaranteed to be torsion-free,

nx ≥∞ 0 =⇒ x ≥∞ 0.

Now define an ordered Q-vector space OVSQ(G ) as consisting of the
formal fractions 1

nx , ordered as

1
nx ≥ 0 :⇐⇒ x ≥∞ 0.



The seed regularization

Suppose that V is an ordered Q-vector space that has an order unit
u ∈ V+, i.e. for all x ∈ V there is λ ∈ Q such that

x + λu ≥ 0.

In this case, the seed regularization has a simple description:
introduce a new ordering on V by putting

x ≥seed 0 :⇐⇒ ∃ε > 0, x + εu ≥ 0.

This results in the Archimedean ordered Q-vector space AOVSQ(V ).

Now we are in the realm of functional analysis!



Rates and the rate theorem

Frequently, we would like to produce many copies of a resource object
y from many copies of a resource object x . Mass production increases
efficiency!

In the asymptotic limit, how many copies of y can be produced per
copy of x? This is a question about rates:

Rmax(x → y) = sup
{m
n

∣∣∣ nx ≥ my
}

Rmin(x → y) = inf
{m
n

∣∣∣ nx ≥ my
}



Rates and the rate formula

There is a better-behaved notion of regularized rate: r is a
regularized rate if for every ε > 0 there are k ,m, n ∈ N with
|r − m

n | < ε and k ≤ nε such that

nx + ku ≥ my .

Applying the Hahn-Banach theorem to AOVSQ(A) yields:

Theorem (Rate formula)

If x , y ≥ 0, then

Rreg
min(x → y) = 0, Rreg

max(x → y) = inf
f

f (x)

f (y)
.

where f : A→ R ranges over all (extremal) homomorphisms.



Application to entanglement theory

Nielsen’s Theorem: pure bipartite states under LOCC are described by
Major, the ordered commutative monoid of finite probability spaces
ordered by majorization.

Conjecture

The extremal functionals Major→ R are precisely the Rényi entropies,

Hα(p) =
1

1− α
log

(∑
i

pαi

)

If this is true, then the rate formula yields

Rreg
max(p → q) = inf

α

Hα(p)

Hα(q)
.



The trouble with epsilonification

In most resource theories that come up in information theory, one does
not require to outcome of a process to coincide exactly with a desired
resource b. It is enough if arbitrarily good approximations to b can be
produced.

Goal: incorporate this into the formalism and redevelop classical
Shannon theory.

Problem: so far, all approaches to epsilonification have failed.



The trouble with epsilonification

Possible solution: maybe the standard paradigms used in information
theory are not quite “right”.

Conventionally, x ≥ε y means:

∃y ′ ≈ε y , x ≥ y ′.

But maybe it should mean:

∀x ′ ≈ε x ∃y ′ ≈ε y , x ′ ≥ y ′.



The trouble with epsilonification

Advantages of this alternative definition:

I Nicely symmetric.

I Guarantees composability on the nose,

x ≥ε y , y ≥ε z =⇒ x ≥ε z .

I More realistic.

This results in a family of ordered commutative monoids Aε indexed by
ε > 0. Regularize to AOVSQ(Aε) and take the limit

lim
ε→0

AOVSQ(Aε).

Details to be worked out. Opinions?


