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What are resources?
Resource objects are things which can be converted into each other via
processes, such as:

timber + nails — table

The details vary with the context:

Haber process

» Industrial chemistry: N, + 3 H, 2NH,
» Thermodynamics: hot gas + cold gas M gas + work

Channel coding
_—

» Communication: noisy channel perfect channel

> Energy economics:
fissi ..
nuclear fuel +reactor —— electricity +nuclear waste 4 reactor

Persistent pattern: convertibility and combinability of resource
objects. One investigates problems about catalysis, rates, ...



A mathematical theory of resources

The convertibility and combinability is formalized by a mathematical
structure:
Definition
An ordered commutative monoid (A, +, 0, >) consists of a set A with
the structure of

» a commutative monoid (A, +,0),

» a partial order (A, >),

» such that addition is monotone,

X2y = X+tz>y-+z




A mathematical theory of resources

Intuition:

> “4" describes how resource objects combine, with trivial resource
object 0.

» “a > b" means that: there is a process which turns a into b.

» If a> b and b > a, then a = b. Mutually interconvertible
resource objects are considered equal.



Example: the resource theory of chemistry

Let Chem be the ordered commutative monoid in which the resource
objects a, b, ... € Chem are collections of molecules like

2H,0,, 2H,0 + O,,
with addition given by union of collections.

Declare a > b to hold if your laboratory can perform a chemical
reaction of type a — b.



Example: the resource theory of chemistry

We have
2H,0, #? 2H,0 + O,,

but
2H,0, +MnO, > 2H,0 + O, + MnO,.

This is an example of catalysis, a phenomenon which may occur in
any resource theory.



Example: the resource theory of paint

Let Paint be the ordered commutative monoid in which a resource
object a € Paint is a collection of buckets, where each bucket in a
contains paint of a certain colour.

The binary operation + joins collections of buckets. The empty
collection of buckets is 0.

The paints in different buckets can be mixed:

Declare a > b to hold if b can be obtained from a by mixing paints
and/or discarding buckets.



Example: the resource theory of communication

The resource objects of CommCh are channels (stochastic matrices)
P, @, ... with arbitrary finite input and output alphabet.

Take P > @ if there exist encoding and decoding channels enc and
dec such

S KT S I ST
Channels combine by using them in parallel,
—1 Q|

The binary operation “+" often has a multiplicative character!




Example: the ordered commutative monoid of graphs

The elements of Grph are finite graphs, ordered via the existence of a

homomorphism:
<

4

e

They combine via disjunctive product, V(G + H) := V(G) x V(H),

(vyw)~ (VW) = v~V Vw~w



Example: the ordered commutative monoid of graphs

Theorem

Catalysis exists in Grph. For example,

3G Z Ki, 3G+ (3G V K1) > Ki1 + (3Gs Vv Kiz).

Taking the distinguishability graph of a channel is a homomorphism
CommCh — Grph.

This is closely related to zero-error communication.



Example: representation theory
Let G be a locally compact group. The elements of Rep(G) are the
unitary representations 7 : G — U(H) for any .

Declare m > p to hold whenever p is weakly contained in 7. This turns
Rep(G) into a semilattice with the direct sum as join.

Two representations combine via the tensor product, 7 + p 1= 7 ® p.



Regularizations

Ordered commutative monoids are very nasty beasts. So let’s turn
them into better-behaved gadgets!

catalytic regularization

ordered
abelian
groups

ordered
commutative
monoids

seed regularization

Archimedean
ordered
Q-vector
spaces

ordered
Q-vector
spaces
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The catalytic regularization

On an ordered commutative monoid A, introduce the catalytic
ordering,

X Zecat Y = dz, x4+z>y+ 2z
In this new ordering, A is guaranteed to be cancellative,
X+zZ2caty+z = X Zcat Y-

Now define an ordered abelian group 0AG(A) as consisting of the
formal differences x — x’, ordered as

x—x’Zy—y’ <= x+y'2€aty+x'.

OAG(A) is an ordered generalization of the Grothendieck group of a
commutative monoid.



The many-copy regularization
Let G be an ordered abelian group G. Then

x>y <— x—y>0.
Hence it is sufficient to consider the positive cone G, .
Then introduce the many-copies ordering,
X > 0 < dn e N, nx > 0.
In this new ordering, G is guaranteed to be torsion-free,
nx >4 0 = X 250 0.

Now define an ordered Q-vector space 0VSg(G) as consisting of the
formal fractions 1x, ordered as

n

%XZO < X > 0.



The seed regularization

Suppose that V' is an ordered Q-vector space that has an order unit
ue Vy, ie forall x € V there is A € Q such that

x+ Au > 0.

In this case, the seed regularization has a simple description:
introduce a new ordering on V' by putting

X Zgeed 0 = Jde >0, x+eu>0.
This results in the Archimedean ordered QQ-vector space AOVSg( V).

Now we are in the realm of functional analysis!



Rates and the rate theorem

Frequently, we would like to produce many copies of a resource object
y from many copies of a resource object x. Mass production increases
efficiency!

In the asymptotic limit, how many copies of y can be produced per
copy of x? This is a question about rates:

Rmax(X*)y):sup{ﬂ‘nXZ m)/}
n

Rmin(x — y) = inf {% ‘ nx > my}



Rates and the rate formula

There is a better-behaved notion of regularized rate: r is a
regularized rate if for every £ > 0 there are k, m,n € N with
|r — 2| < e and k < ne such that

nx + ku > my.
Applying the Hahn-Banach theorem to AOVSg(A) yields:

Theorem (Rate formula)
If x,y >0, then

f(x
(v)

where f : A — R ranges over all (extremal) homomorphisms.

~—

Rl‘eg(x —y)=0, er:fagx(x —y)= ”}f

min

~




Application to entanglement theory

Nielsen's Theorem: pure bipartite states under LOCC are described by
Major, the ordered commutative monoid of finite probability spaces
ordered by majorization.

Conjecture
The extremal functionals Major — R are precisely the Rényi entropies,

; i ~log (Z P?)

Ha(p) =

If this is true, then the rate formula yields

RhE(p — q) = inf .
(p ) @ Ha(q)



The trouble with epsilonification

In most resource theories that come up in information theory, one does
not require to outcome of a process to coincide exactly with a desired
resource b. It is enough if arbitrarily good approximations to b can be
produced.

Goal: incorporate this into the formalism and redevelop classical
Shannon theory.

Problem: so far, all approaches to epsilonification have failed.



The trouble with epsilonification

Possible solution: maybe the standard paradigms used in information
theory are not quite “right”.

Conventionally, x >. y means:
Wy ~ey, x=y.
But maybe it should mean:

VX' ~ox Fy'mey, X >y



The trouble with epsilonification
Advantages of this alternative definition:
> Nicely symmetric.
» Guarantees composability on the nose,
X2ey, y2ez = X>c z.
> More realistic.

This results in a family of ordered commutative monoids A indexed by
€ > 0. Regularize to AOVSg(A:) and take the limit

l[im AOVSg(A.).
8'_% o(A:)

Details to be worked out. Opinions?



