A mathematical toolbox for resource theories

February 2016

What are resources?

Resource objects are things which can be converted into each other via processes, such as:

$$
\text { timber }+ \text { nails } \longrightarrow \text { table }
$$

The details vary with the context:

- Industrial chemistry: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \xrightarrow{\text { Haber process }} 2 \mathrm{NH}_{3}$
- Thermodynamics: hot gas + cold gas $\xrightarrow{\text { Carnot process }}$ gas + work
- Communication: noisy channel $\xrightarrow{\text { Channel coding }}$ perfect channel
- Energy economics:
nuclear fuel + reactor $\xrightarrow{\text { fission }}$ electricity + nuclear waste + reactor
Persistent pattern: convertibility and combinability of resource objects. One investigates problems about catalysis, rates, ...

A mathematical theory of resources

The convertibility and combinability is formalized by a mathematical structure:

Definition

An ordered commutative monoid $(A,+, 0, \geq)$ consists of a set A with the structure of

- a commutative monoid $(A,+, 0)$,
- a partial order (A, \geq),
- such that addition is monotone,

$$
x \geq y \quad \Rightarrow \quad x+z \geq y+z
$$

A mathematical theory of resources

Intuition:

- " + " describes how resource objects combine, with trivial resource object 0 .
- " $a \geq b$ " means that: there is a process which turns a into b.
- If $a \geq b$ and $b \geq a$, then $a=b$. Mutually interconvertible resource objects are considered equal.

Example: the resource theory of chemistry

Let Chem be the ordered commutative monoid in which the resource objects $a, b, \ldots \in$ Chem are collections of molecules like

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}, \quad 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}, \quad \ldots,
$$

with addition given by union of collections.
Declare $a \geq b$ to hold if your laboratory can perform a chemical reaction of type $a \rightarrow b$.

Example: the resource theory of chemistry

We have

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \nsupseteq 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2},
$$

but

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{MnO}_{2} \geq 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+\mathrm{MnO}_{2} .
$$

This is an example of catalysis, a phenomenon which may occur in any resource theory.

Example: the resource theory of paint

Let Paint be the ordered commutative monoid in which a resource object $a \in$ Paint is a collection of buckets, where each bucket in a contains paint of a certain colour.

The binary operation + joins collections of buckets. The empty collection of buckets is 0 .

The paints in different buckets can be mixed:

Declare $a \geq b$ to hold if b can be obtained from a by mixing paints and/or discarding buckets.

Example: the resource theory of communication

The resource objects of CommCh are channels (stochastic matrices) P, Q, \ldots with arbitrary finite input and output alphabet.

Take $P \geq Q$ if there exist encoding and decoding channels enc and dec such

Channels combine by using them in parallel,

The binary operation "+" often has a multiplicative character!

Example: the ordered commutative monoid of graphs

The elements of Grph are finite graphs, ordered via the existence of a homomorphism:

They combine via disjunctive product, $V(G+H):=V(G) \times V(H)$,

$$
(v, w) \sim\left(v^{\prime}, w^{\prime}\right) \quad: \Longleftrightarrow \quad v \sim v^{\prime} \vee w \sim w^{\prime} .
$$

Example: the ordered commutative monoid of graphs

Theorem
Catalysis exists in Grph. For example,

$$
3 C_{5} \nsupseteq K_{11}, \quad 3 C_{5}+\left(3 C_{5} \vee K_{11}\right) \geq K_{11}+\left(3 C_{5} \vee K_{11}\right) .
$$

Taking the distinguishability graph of a channel is a homomorphism

$$
\text { CommCh } \rightarrow \text { Grph. }
$$

This is closely related to zero-error communication.

Example: representation theory

Let G be a locally compact group. The elements of $\operatorname{Rep}(G)$ are the unitary representations $\pi: G \rightarrow \mathcal{U}(H)$ for any \mathcal{H}.

Declare $\pi \geq \rho$ to hold whenever ρ is weakly contained in π. This turns $\operatorname{Rep}(G)$ into a semilattice with the direct sum as join.

Two representations combine via the tensor product, $\pi+\rho:=\pi \otimes \rho$.

Regularizations

Ordered commutative monoids are very nasty beasts. So let's turn them into better-behaved gadgets!

The catalytic regularization

On an ordered commutative monoid A, introduce the catalytic ordering,

$$
x \geq \text { cat } y \quad: \Longleftrightarrow \quad \exists z, x+z \geq y+z
$$

In this new ordering, A is guaranteed to be cancellative,

$$
x+z \geq \text { cat } y+z \quad \Longrightarrow \quad x \geq \text { cat } y .
$$

Now define an ordered abelian group $\operatorname{OAG}(A)$ as consisting of the formal differences $x-x^{\prime}$, ordered as

$$
x-x^{\prime} \geq y-y^{\prime} \quad: \Longleftrightarrow \quad x+y^{\prime} \geq \text { cat } y+x^{\prime}
$$

$\operatorname{OAG}(A)$ is an ordered generalization of the Grothendieck group of a commutative monoid.

The many-copy regularization

Let G be an ordered abelian group G. Then

$$
x \geq y \quad \Longleftrightarrow \quad x-y \geq 0
$$

Hence it is sufficient to consider the positive cone G_{+}.
Then introduce the many-copies ordering,

$$
x \geq \infty 0 \quad: \Longleftrightarrow \quad \exists n \in \mathbb{N}, n x \geq 0
$$

In this new ordering, G is guaranteed to be torsion-free,

$$
n x \geq_{\infty} 0 \quad \Longrightarrow \quad x \geq \infty
$$

Now define an ordered \mathbb{Q}-vector space $\operatorname{OVS}_{\mathbb{Q}}(G)$ as consisting of the formal fractions $\frac{1}{n} x$, ordered as

$$
\frac{1}{n} x \geq 0 \quad: \Longleftrightarrow \quad x \geq \infty 0
$$

The seed regularization

Suppose that V is an ordered \mathbb{Q}-vector space that has an order unit $u \in V_{+}$, i.e. for all $x \in V$ there is $\lambda \in \mathbb{Q}$ such that

$$
x+\lambda u \geq 0
$$

In this case, the seed regularization has a simple description: introduce a new ordering on V by putting

$$
x \geq \text { seed } 0 \quad: \Longleftrightarrow \quad \exists \varepsilon>0, x+\varepsilon u \geq 0
$$

This results in the Archimedean ordered \mathbb{Q}-vector space $\mathrm{AOVS}_{\mathbb{Q}}(V)$.
Now we are in the realm of functional analysis!

Rates and the rate theorem

Frequently, we would like to produce many copies of a resource object y from many copies of a resource object x. Mass production increases efficiency!

In the asymptotic limit, how many copies of y can be produced per copy of x ? This is a question about rates:

$$
\begin{aligned}
& R_{\max }(x \rightarrow y)=\sup \left\{\left.\frac{m}{n} \right\rvert\, n x \geq m y\right\} \\
& R_{\min }(x \rightarrow y)=\inf \left\{\left.\frac{m}{n} \right\rvert\, n x \geq m y\right\}
\end{aligned}
$$

Rates and the rate formula

There is a better-behaved notion of regularized rate: r is a regularized rate if for every $\varepsilon>0$ there are $k, m, n \in \mathbb{N}$ with $\left|r-\frac{m}{n}\right|<\varepsilon$ and $k \leq n \varepsilon$ such that

$$
n x+k u \geq m y .
$$

Applying the Hahn-Banach theorem to $\operatorname{AOVS}_{\mathbb{Q}}(A)$ yields:
Theorem (Rate formula)
If $x, y \geq 0$, then

$$
R_{\min }^{\mathrm{reg}}(x \rightarrow y)=0, \quad R_{\max }^{\mathrm{reg}}(x \rightarrow y)=\inf _{f} \frac{f(x)}{f(y)}
$$

where $f: A \rightarrow \mathbb{R}$ ranges over all (extremal) homomorphisms.

Application to entanglement theory

Nielsen's Theorem: pure bipartite states under LOCC are described by Major, the ordered commutative monoid of finite probability spaces ordered by majorization.

Conjecture

The extremal functionals Major $\rightarrow \mathbb{R}$ are precisely the Rényi entropies,

$$
H_{\alpha}(p)=\frac{1}{1-\alpha} \log \left(\sum_{i} p_{i}^{\alpha}\right)
$$

If this is true, then the rate formula yields

$$
R_{\max }^{\mathrm{reg}}(p \rightarrow q)=\inf _{\alpha} \frac{H_{\alpha}(p)}{H_{\alpha}(q)}
$$

The trouble with epsilonification

In most resource theories that come up in information theory, one does not require to outcome of a process to coincide exactly with a desired resource b. It is enough if arbitrarily good approximations to b can be produced.

Goal: incorporate this into the formalism and redevelop classical Shannon theory.

Problem: so far, all approaches to epsilonification have failed.

The trouble with epsilonification

Possible solution: maybe the standard paradigms used in information theory are not quite "right".

Conventionally, $x \geq_{\varepsilon} y$ means:

$$
\exists y^{\prime} \approx_{\varepsilon} y, \quad x \geq y^{\prime}
$$

But maybe it should mean:

$$
\forall x^{\prime} \approx_{\varepsilon} x \quad \exists y^{\prime} \approx_{\varepsilon} y, \quad x^{\prime} \geq y^{\prime}
$$

The trouble with epsilonification

Advantages of this alternative definition:

- Nicely symmetric.
- Guarantees composability on the nose,

$$
x \geq_{\varepsilon} y, \quad y \geq_{\varepsilon} z \quad \Longrightarrow \quad x \geq_{\varepsilon} z
$$

- More realistic.

This results in a family of ordered commutative monoids A_{ε} indexed by $\varepsilon>0$. Regularize to $\operatorname{AOVS}_{\mathbb{Q}}\left(A_{\varepsilon}\right)$ and take the limit

$$
\lim _{\varepsilon \rightarrow 0} \operatorname{AOVS}_{\mathbb{Q}}\left(A_{\varepsilon}\right)
$$

Details to be worked out. Opinions?

