A mathematical toolbox for resource theories

February 2016

What are resources?

Resource objects are things which can be converted into each other via processes, such as:

 $\operatorname{timber} + \operatorname{nails} \longrightarrow \operatorname{table}$

The details vary with the context:

- ▶ Industrial chemistry: $N_2 + 3 H_2 \xrightarrow{\text{Haber process}} 2 NH_3$
- ► Thermodynamics: hot gas + cold gas $\xrightarrow{\text{Carnot process}}$ gas + work
- ▶ Communication: noisy channel $\xrightarrow{\text{Channel coding}}$ perfect channel
- ► Energy economics: nuclear fuel + reactor $\xrightarrow{\text{fission}}$ electricity + nuclear waste + reactor

Persistent pattern: **convertibility** and **combinability** of resource objects. One investigates problems about catalysis, rates, ...

A mathematical theory of resources

The **convertibility** and **combinability** is formalized by a mathematical structure:

Definition

An ordered commutative monoid $(A, +, 0, \geq)$ consists of a set A with the structure of

- a commutative monoid (A, +, 0),
- a partial order (A, \geq) ,
- such that addition is monotone,

$$x \ge y \quad \Rightarrow \quad x + z \ge y + z.$$

A mathematical theory of resources

Intuition:

- "+" describes how resource objects combine, with trivial resource object 0.
- " $a \ge b$ " means that: there is a process which turns *a* into *b*.
- If a ≥ b and b ≥ a, then a = b. Mutually interconvertible resource objects are considered equal.

Example: the resource theory of chemistry

Let **Chem** be the ordered commutative monoid in which the resource objects $a, b, \ldots \in$ **Chem** are collections of molecules like

$$2 \operatorname{H}_2 \operatorname{O}_2, \qquad 2 \operatorname{H}_2 \operatorname{O} + \operatorname{O}_2, \qquad \dots,$$

with addition given by union of collections.

Declare $a \ge b$ to hold if your laboratory can perform a chemical reaction of type $a \rightarrow b$.

Example: the resource theory of chemistry

We have

$$2\,\mathrm{H}_2\mathrm{O}_2 \not\geq 2\,\mathrm{H}_2\mathrm{O} + \mathrm{O}_2,$$

but

$$2\operatorname{H}_2\operatorname{O}_2 + \operatorname{MnO}_2 \geq 2\operatorname{H}_2\operatorname{O} + \operatorname{O}_2 + \operatorname{MnO}_2.$$

This is an example of **catalysis**, a phenomenon which may occur in any resource theory.

Example: the resource theory of paint

Let **Paint** be the ordered commutative monoid in which a resource object $a \in$ **Paint** is a collection of buckets, where each bucket in *a* contains paint of a certain colour.

The binary operation + joins collections of buckets. The empty collection of buckets is 0.

The paints in different buckets can be mixed:

Declare $a \ge b$ to hold if b can be obtained from a by mixing paints and/or discarding buckets.

Example: the resource theory of communication

The resource objects of CommCh are channels (stochastic matrices) P, Q, \ldots with arbitrary finite input and output alphabet.

Take $P \ge Q$ if there exist encoding and decoding channels enc and dec such

Channels combine by using them in parallel,

The binary operation "+" often has a multiplicative character!

Example: the ordered commutative monoid of graphs

The elements of Grph are finite graphs, ordered via the existence of a homomorphism:

They combine via disjunctive product, $V(G + H) := V(G) \times V(H)$,

$$(v,w)\sim (v',w')$$
 : \iff $v\sim v'$ \lor $w\sim w'$.

Example: the ordered commutative monoid of graphs

Theorem Catalysis exists in Grph. For example, $3C_5 \geq K_{11}, \qquad 3C_5 + (3C_5 \vee K_{11}) \geq K_{11} + (3C_5 \vee K_{11}).$

Taking the distinguishability graph of a channel is a homomorphism ${\tt CommCh} \to {\tt Grph}.$

This is closely related to zero-error communication.

Example: representation theory

Let G be a locally compact group. The elements of $\operatorname{Rep}(G)$ are the unitary representations $\pi : G \to \mathcal{U}(H)$ for any \mathcal{H} .

Declare $\pi \ge \rho$ to hold whenever ρ is weakly contained in π . This turns $\operatorname{Rep}(G)$ into a semilattice with the direct sum as join.

Two representations combine via the tensor product, $\pi + \rho := \pi \otimes \rho$.

Regularizations

Ordered commutative monoids are very nasty beasts. So let's turn them into better-behaved gadgets!

The catalytic regularization

On an ordered commutative monoid *A*, introduce the **catalytic ordering**,

 $x \ge_{\operatorname{cat}} y \qquad :\iff \qquad \exists z, \ x+z \ge y+z.$

In this new ordering, A is guaranteed to be cancellative,

$$x + z \ge_{\operatorname{cat}} y + z \implies x \ge_{\operatorname{cat}} y.$$

Now define an ordered abelian group OAG(A) as consisting of the formal differences x - x', ordered as

$$x - x' \ge y - y'$$
 : \iff $x + y' \ge_{cat} y + x'.$

DAG(A) is an ordered generalization of the **Grothendieck group** of a commutative monoid.

The many-copy regularization Let *G* be an ordered abelian group *G*. Then

$$x \ge y \qquad \Longleftrightarrow \qquad x-y \ge 0.$$

Hence it is sufficient to consider the **positive cone** G_+ .

Then introduce the many-copies ordering,

$$x \ge_{\infty} 0 \qquad : \iff \qquad \exists n \in \mathbb{N}, \ nx \ge 0.$$

In this new ordering, G is guaranteed to be torsion-free,

$$nx \ge_{\infty} 0 \implies x \ge_{\infty} 0.$$

Now define an ordered \mathbb{Q} -vector space $OVS_{\mathbb{Q}}(G)$ as consisting of the formal fractions $\frac{1}{n}x$, ordered as

$$\frac{1}{n}x \ge 0 \qquad :\Longleftrightarrow \qquad x \ge_{\infty} 0.$$

The seed regularization

Suppose that V is an ordered \mathbb{Q} -vector space that has an **order unit** $u \in V_+$, i.e. for all $x \in V$ there is $\lambda \in \mathbb{Q}$ such that

 $x + \lambda u \ge 0.$

In this case, the seed regularization has a simple description: introduce a new ordering on ${\cal V}$ by putting

$$x \ge_{\text{seed}} 0 \qquad :\iff \qquad \exists \varepsilon > 0, \ x + \varepsilon u \ge 0.$$

This results in the Archimedean ordered \mathbb{Q} -vector space $AOVS_{\mathbb{Q}}(V)$.

Now we are in the realm of functional analysis!

Rates and the rate theorem

Frequently, we would like to produce many copies of a resource object y from many copies of a resource object x. Mass production increases efficiency!

In the asymptotic limit, how many copies of y can be produced per copy of x? This is a question about **rates**:

$$R_{\max}(x \to y) = \sup\left\{\frac{m}{n} \mid nx \ge my\right\}$$

$$R_{\min}(x \to y) = \inf\left\{\frac{m}{n} \mid nx \ge my\right\}$$

Rates and the rate formula

There is a better-behaved notion of **regularized rate**: r is a regularized rate if for every $\varepsilon > 0$ there are $k, m, n \in \mathbb{N}$ with $|r - \frac{m}{n}| < \varepsilon$ and $k \le n\varepsilon$ such that

 $nx + ku \ge my$.

Applying the Hahn-Banach theorem to $AOVS_{\mathbb{Q}}(A)$ yields:

Theorem (Rate formula) If $x, y \ge 0$, then

 $R_{\min}^{\operatorname{reg}}(x \to y) = 0, \qquad R_{\max}^{\operatorname{reg}}(x \to y) = \inf_{f} \frac{f(x)}{f(y)}.$

where $f : A \to \mathbb{R}$ ranges over all (extremal) homomorphisms.

Application to entanglement theory

Nielsen's Theorem: pure bipartite states under LOCC are described by Major, the ordered commutative monoid of finite probability spaces ordered by majorization.

Conjecture

The extremal functionals $\texttt{Major}
ightarrow \mathbb{R}$ are precisely the Rényi entropies,

$$H_{\alpha}(p) = \frac{1}{1-\alpha} \log\left(\sum_{i} p_{i}^{\alpha}\right)$$

If this is true, then the rate formula yields

$${\cal R}^{
m reg}_{
m max}(p
ightarrow q) = \inf_lpha {H_lpha(p)\over H_lpha(q)}.$$

The trouble with epsilonification

In most resource theories that come up in information theory, one does not require to outcome of a process to coincide *exactly* with a desired resource *b*. It is enough if arbitrarily good approximations to *b* can be produced.

Goal: incorporate this into the formalism and redevelop classical Shannon theory.

Problem: so far, all approaches to **epsilonification** have failed.

The trouble with epsilonification

Possible solution: maybe the standard paradigms used in information theory are not quite "right".

Conventionally, $x \ge_{\varepsilon} y$ means:

$$\exists y' \approx_{\varepsilon} y, \quad x \ge y'.$$

But maybe it should mean:

$$\forall x' \approx_{\varepsilon} x \quad \exists y' \approx_{\varepsilon} y, \quad x' \geq y'.$$

The trouble with epsilonification

Advantages of this alternative definition:

- ► Nicely symmetric.
- Guarantees composability on the nose,

$$x \ge_{\varepsilon} y, \qquad y \ge_{\varepsilon} z \implies x \ge_{\varepsilon} z.$$

► More realistic.

This results in a family of ordered commutative monoids A_{ε} indexed by $\varepsilon > 0$. Regularize to $ADVS_{\mathbb{Q}}(A_{\varepsilon})$ and take the limit

 $\lim_{\varepsilon\to 0} \operatorname{AOVS}_{\mathbb{Q}}(A_{\varepsilon}).$

Details to be worked out. Opinions?