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Preface

Positive linear functionals and positive linear maps had been playing important
roles in the theory of operator algebras, which reflect noncommutative order struc-
tures. Such order structures provide basic mathematical frameworks for current
quantum information theory. The main purpose of this lecture note is to introduce
basic notions like separability /entanglement and Schmidt numbers from quantum
information theory in terms of positive maps between matrix algebras.

Basic tools are Choi matrices and duality arising from bilinear pairing between
matrices. We begin with concrete examples of positive maps Ad, which sends x
to s*rs, and define separability/entanglement and Schmidt numbers in terms of
Choi matrices. We also use duality to introduce various kinds of positivity, like k-
positivity and complete positivity. Positive maps which are not completely positive
are indispensable tools to detect entanglement through the duality.

In Chapter 1, we introduce the above notions and exhibit nontrivial examples of
positive maps. We also provide a unified argument to recover various known criteria
through ampliation. We will focus in Chapter 2 on the issue how positive maps
detect entanglement. Through the discussion, exposed faces of the convex cones of
all positive maps play important roles. We exhibit three classes of positive maps,
by Choi, Woronowicz and Robertson in 1970’s and 1980’s which generate exposed
extreme rays of the convex cone of all positive linear maps.

This is the collection of lecture notes during the fall semester of 2022, at Seoul
National University, Seoul, Korea. The author tried to minimize preliminaries, re-
quiring only undergraduate linear algebra. The author is grateful to all the audiences
for their feedbacks on the notes. Special thanks are due to Kyung Hoon Han for
his careful reading of the drafts. Nevertheless, any faults in this lecture notes are
responsibility of the author.

February 2023
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Chapter 1

Positive Maps and Bi-partite
States

In this chapter, we introduce various kinds of positive maps between matrix algebras
together with the corresponding notions for the tensor products of matrix algebras.
We begin with the most elementary positive maps Adg for given matrices s, which
send x to s*xs. These maps give rise to important classes of positive maps according
to the ranks of s, by taking convex combinations. Positive maps arising in this
way with matrices whose ranks are at most k£ are called k-superpositive maps, and
all of them make the class of completely positive maps which play crucial roles.
Another important positive map is given by the transpose, which makes the class of
decomposable positive maps together with completely positive maps.

For a given linear map between matrix algebras, we assign a matrix in the
tensor product of matrices, or equivalently a block matrix, which is called the Choi
matrix. The block matrices corresponding to completely positive maps are precisely
positive (semi-definite) matrices, which represent bi-partite states after normalizing
by the trace. The class of 1-superpositive maps corresponds to separable states.
Nonseparable states are called entanglement, which is now recognized as one of the
most important resources in the current quantum information theory.

Another main tool is the bilinear pairing between matrices which gives rise to
the bilinear pairing between linear maps through the Choi matrices. The dual
notion of k-superpositivity by this bilinear pairing is k-positivity, which has been
studied among operator algebraists since Stinespring’s representation theorem in the
1950’s. The usual positivity of linear maps coincides with 1-positivity arising in this
way. Therefore, the positivity of linear maps between matrix algebras is just the
dual notion of separability of bi-partite states, and this is why positive maps play
important roles to detect entanglement.

After we fix notations together with several preliminaries in Section 1.1, we show

in Section 1.2 that the map Ad, generates an extreme ray of the convex cone of all
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positive linear maps, and introduce the notion of k-superpositive maps and decom-
posable maps. In Section 1.3, we show that all positive maps are decomposable in
low dimensional cases like maps between 2 x 2 matrices. In Section 1.4, we define
Choi matrices through which we introduce various kinds of bi-partite states, under
the name of Schmidt numbers. We define the bilinear pairing between linear maps in
Section 1.5 and get the notion of k-positivity which is dual to k-superpositivity. Dur-
ing the discussion, we see that complete positivity of maps corresponds to positivity
of block matrices through the Choi matrices. Sections 1.6 and 1.7 will be devoted
to introduce various examples which distinguish k-superpositivity and k-positivity
of maps together with the corresponding states which include Werner states and
isotropic states. We also see concrete examples of indecomposable positive maps.
Finally, we introduce the notion of mapping cones in Section 1.8 with which we
obtain various characterizations of aforementioned notions in terms of ampliation
which is the tensor product with the identity map. Our exposition of topics reverses
historical development in parts, and this is why we add historical remarks in Section
1.9.

1.1 Preliminaries

1.1.1 Vectors and matrices

A vector in the vector space C™ over the complex field is denoted by a ket |v), which

may be understood as a column vector or an n x 1 matrix;

U1
%)
vy =| . |eC™
Un
The adjoint of ket |v) is denoted by a bra(v|, that is,
<U’ = (?_)1, Vg, -« 77_}71) e C".

For given two vectors |v) and |w) in C", we have
lw) = vwy + Vgwg + -+ + Tpwy,

and so (v|w) is the standard inner product of C" which is linear in the second
variable and conjugate-linear in the first variable. So, (v| may be considered as the
linear functional on C™ which sends |w) to (v|w). On the other hand, we see that

VW ViWe v V1Wy

VW1 VaWsg -+ VUalWy
[u(w| =

Umwl vmwQ T vmwn
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is an m x n matrix of rank one, for [v) € C™ and |w) € C™. This is nothing but
[o){w] : |u) = Joxwlu) = (wlwlv) e T, uy e C",

as a linear map from C" into C™ with the one dimensional range space spanned by
|v). The set M,,x, of all m x n matrices is a vector space over the complex field.
When m = n, we use the notation M,,, which is usually called the matrix algebra
since two square matrices with the same size can be multiplied.

The vectors appearing in the standard orthonormal basis {e; : i = 1,2,...,n} of
C™ are denoted by

liy = 1|« i-th,

0
so we may write |v) = Y v]i). If [iy € C™ and |j) € C™ then
)|
is the m x n matrix whose entries are zeros except for (i, j)-entry 1. So, the collection
{HGl:i=1,2,....,m, j=1,2,...,n}

is the standard matrix units. The m x n matrix A = [a;;] may be written by

a1 a2 - Aip
Q21 Q22 -+ Q2pn
A=yl =
2y
Am1 Am2 " Omp
When we consider concrete examples, we sometimes use notations |0),[1),..., be-

ginning with |0) for orthonormal basis. In this case, we have

0) = ((1)) eC?, |- ((1)) e’

for the two dimensional case.

1.1.2 Positive matrices

A self-adjoint n x n matrix A is called positive semi-definite or just positive if
(z|Alx) =0 (1.1)
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for every |z) € C". Every |z) € C" gives rise to the rank one matrix |x)(x|, which is

positive since
yle)(aly) = [alyl* = 0
for every |y) € C™. If |x) is a unit vector then |x){x| is the projection onto the one

dimensional space spanned by |z). By the spectral decomposition, we know that

every positive matrix can be written by

Z |2z,

with a finite family {|z,)} of vectors. It should be noted that this expression is far
from being unique. By another application of the spectral decomposition, we know
that a positive matrix is the square of a matrix. We write A < B for Hermitian
matrices A and B if B — A is positive.

For two matrices A = [a;;] and B = [b;;] with the same sizes, we define

<A, B> =Tr (ABT> = Zaijbij,
,J

where BT and Tr (AB") denote the transpose of B and the trace of ABT, respec-

tively. This is a bilinear pairing which is non-degenerate, that is, satisfies
(A,B) =0 for every B < A=0.
It should be noted that (A, A) may be negative. For an example, we take a self-

0 i
= (50)

to get (A, A) = —2 < 0. We have the following relations

adjoint

(A,BCY =(AC",B) = (BT A, ),

whenever the sizes of matrices are given so that the above relation is meaningful.
We also note that the identity

" = @l = |5l
holds with the notation |Z) = ) . 2;|7). Therefore, we also have
(A, |2)gl) = Tr (Alz)(FIY)
= Tr (Aly){z]) (1.2)
= Tr ((z[Aly)) = (x| Aly).

Especially, we have

(| Alz) = (A, |2)(z])
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for every A € M, and |x) € C". Therefore, we see that A € M, is positive if and
only if (A, B) = 0 for every positive B.
We note that every linear functional ¢ on the space M, is of the form

0: A (A B),  AeM,, (1.3)

for an n x n matrix B,. Then p is positive, that is, sends a positive matrix to a
nonnegative real numbers if and only if B, is positive. Furthermore, it is easily seen
that o is unital, that is, sends the identity matrix to 1, if and only if B, is of trace
one. A positive matrix p of trace one is called a density matrix, or a state, which is
of the form

0= Zpi|fi><§i|, (1.4)

for a probability distribution {p;} with >, p; = 1 and a family {|{;)} of unit vectors.
We note that the set, denoted by D, of all states in M,, is a convex set whose
elements are convex combinations of one dimensional projections {|{)(¢|} with unit
vectors {|¢)}, which are called pure states. Sometimes, a positive matrix itself is

called an (unnormalized) state.

1.1.3 Tensor products

An m x n matrix A = >, . a;;[i)(j| corresponds to the vector
(Al = Y ayilijle Cm @ CT, (1.5)
2%
where we usually delete the tensor notation in {(i| ® (j| to write as {i|{j|, or even as
(ij|. If we endow {(i|(j|} with the lexicographic order then (A| is the concatenation

<A| = (CLH,...,a1n7a21,...,agn,...,...,CLmh...,(J,mn)Ecmn

of row vectors of the matrix A.
The tensor product A ® B of two matrices A and B is defined by

A®B = (Z aij|i><j|> ® (Z bkg]k><€|> = D abuel DI

ikl
If we endow {|i)|k)} and {|7)|¢)} with the lexicographic orders again, then A ® B

has the matrix form. For example, when both A and B are 2 x 2 matrices, we have

a11b11  a11bia aiebin ajebio

. a11bar  a11baa  ai2bar  aigbao
AR B =
a1011  as1bia  axbin  aznbis

a21091  as1bag by ageba
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In this way, a matrix in M,, ® M, may be identified as an m x m block matrix
whose entries are n x n matrices. So, we may identify M,, ® M, with M,,(M,).
Especially, I, ® B is the m x m diagonal block matrix whose diagonal block is given
by B € M,, where I,, denotes the m x m identity matrix. Sometimes, we denote
by I for the identity matrix. On the other hand, A ® I,, is the m x m block matrix
whose (i, j) block is given by a;;1,, € M,. Note that

(A®B)[HIO = Y aibueliy|k

ik

- (Z aij|i>> ® (Z bke|k‘>> = Alj) ® Bl(),

and so A® B sends [j)|¢) to A|j) ® B|() as a linear map from C"™ ® C" into itself.
The following identities are easily checked;

(CeD)' =C"® D",

(A® B)(C® D) = AC® BD,

Tr(A® B) = Tr (A)Tr (B),
whenever they are defined. Suppose that A and C' are m x n matrices, and B, D
are k x ¢ matrices. Using the above relations, we also have the identity

(A® B,C® D) =(A,CXB, D). (1.6)
For linear maps ¢y : M,,, — M,, and ¢ : M,,, — M,,, we define the linear map
01 @ @ 2 My, & My, — My, @ My,
as follows: Every element of M,,, ® M,,, is given by A = "' |i){j| ® A;; with

ij=1
A;j € M,,, in a unique way. We define

(G @6)(A) = 3 G111 ® ba(Ay) € My, ® My,

3,j=1

Then we see that ¢ ® ¥ sends A® B € M,,, ® M,,, to ¢(A) ® Y(B) € M,,, ® M,,.

1.1.4 Singular value decomposition

Let A be an arbitrary m x n matrix. Then A*A is an n x n positive matrix with
eigenvalues

AMZXZ2 2 A >0=X 1 == A,
with » < m and r» < n. Denoting by D the r x r diagonal matrix with the diagonal
entries A\i,...,\,, we have

VHARA)V = <lo) 8)

12



for an n x n unitary matrix V. We write V = (V1 Vg) with the n x r matrix V;

and the n x (n — r) matrix V5. Then we have
VE(A*AW, =DeM,,  Vi(A*A)Vy=0¢e M,_,.

Define the m x r matrix U; by U; = AV, D~1/2 with the obvious meaning for D12,
Then we have

UiUy = DTVPVFA*AVID Y2 = 1,

and so we can take an m x (m — r) matrix U, so that U = (U1 Ug) isan m x m

unitary. We have

Uy AV, = UfAV,D™2DY? = UyU, DY? = D'?,
Uz AV, = UF AViD~Y2D'Y? = Uy3U,DY? = 0.

From V;*(A*A)V, = 0, we also have AV, = 0, and so we have

AV — <U1*AV1 UI*AVQ) _ <D1/2 o>

Uz AV, UrAV, 0 0

as m X n matrices.

Therefore, the m x n matrix A is written by
A=UXV*, (1.7)

with the matrix ¥ given by
S = DINEXE € Myyn,
k=1

and unitary matrices U € M,, and V € M,. This is known as the singular value

decomposition of A, and )\}/ 2, e A% are called the singular values of A. By the

5 D2 I. 0\ /(DY* 0
_(o 0)‘(0 0)(0 In_r)’

we also see that A can be written as

identity

A:U(ﬁ“ g)w (1.8)

with invertible matrices U € M,,, and W € M,,. This can be also obtained from row

and column elementary operations.

References: [11]
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1.1.5 Ranks

For a matrix A, we denote by Im A the range space which is the span of column
vectors. The span of the conjugates of row vectors is the orthogonal complement
of the kernel space ker A. By the dimension theorem, the span of columns and the
span of rows share the same dimension, which is called the rank of A and is denoted
by rank A. We see that ker A*A = ker A which implies rank A = rank A*A, and so
the number r in the singular value decomposition (1.7) is the rank of A.

When A = %, 5 a;;|i){j|, the j-th column vector is given by

Ay = Syl

Take any basis {|&x) : & = 1,2,...,rank A} of Im A and write Alj) = >}, s;klék),

then we have
A= AL = Y A= l& (Z sjk<j|> :
j=1 k J

Therefore, we have
rank A

A= 0 L&l (1.9)
h=1

with (| = >, 5;1{j|, and we see that it is possible to express A with the sum
of a family of rank one matrices with the cardinality rank A. In the singular value
decomposition (1.7), we take column vectors {|¢;)} and {|n;)} of the unitary matrices
U and V', respectively. Then we have

A= (S leil) (e W lerl) (355 1m041)
= (S l6il) (S A2 HT) (2, 1ms]) = SV A

Therefore, vectors {|&)} and {|nx)} in (1.9) can be chosen to be orthogonal.

A vector of the form |£) ® |n) in C™ ® C" is called a product vector which
corresponds to the m x n matrix |£){(7| of rank one under the correspondence (1.5).
The Schmidt rank of a vector |() € C™ ® C", denoted by SR (), is the smallest
number of product vectors whose sum is |(). By the correspondence (1.5) and
the expression (1.9), we see that the Schmidt rank coincides with the rank of the

corresponding matrix.

1.1.6 Boundary of a convex set

Suppose that C' is a nonempty convex set in a real vector space R”. A point = of C'

is called a relative interior point or just an interior point of C'if for each y € C' there
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) Zo
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Figure 1.1: If the line segment from an interior point xy to y can be extended, then
the line segment from any point z to y also can be extended

is t > 1 such that (1 — t)y + tx € C. This means that the line segment from every
y € C' to x may be extended within C. The set of all interior points of C' will be
denoted by int C, which coincides with the relative interior of C' with respect to the
affine manifold generated by C. From this, one may see that int C' is nonempty for
any nonempty convex set C. A point y € C' which is not an interior point is called
a boundary point, and the set of all boundary points of C' is denoted by 0C.

We fix an interior point xy of a convex set C. Suppose that y € C satisfies the
condition sup{t : (1 —t)zo +ty € C'} = 1. That is, we suppose that the line segment
from zy to y cannot be extended within C'. Then it is clear that y is a boundary
point of C. Suppose that y does not satisfy the condition. Then there is ¢t > 1
such that (1 —t)xg + ty € C. For an arbitrary z € C' we can take s < 0 such that

s(t—1

(1 — s)xg + sz € C since zg is an interior point. Put r = tfs). Then we see that

r < 0 and

1—s

(1—=r)y+rz= [(1—t)xy + ty] + %[(l—s)xo—i—sz] eC.

— S
This shows that y is an interior point of C'. See Figure 1.1. Therefore, we conclude
that y is an interior point of C'if and only if the line segment from a single interior
point z( to y can be extended within C'.

A nonempty convex subset F' of a convex set C' is called a face of C' if the
following property

xo, 11 €C, 0<t<1l, (1—t)zg+tx;e I = zg,x1€F

holds. This means that if an interior point of a line segment in C belongs to F
then the line segment itself is contained in F. An extreme point is nothing but a
face consisting of a single point. A face F of a convex set C' is called proper if it
is a proper subset of C'. If a point of a face F' is an interior point of C' then we
see that F' = C'. Therefore, a proper face must be contained in the boundary. The
intersection of an arbitrary family of faces is again a face whenever it is nonempty,

and so every point z of a convex set has the smallest face F' containing the point.
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We see that = is an interior point of F', and a convex set is completely partitioned
into interiors of faces.

Suppose that C'is a compact convex set. If x € C'is not an extreme point then it
is an interior point of a line segment. We extend this line segment until it meets the
boundary, and so we see that x is a convex combination of two boundary points. If
one of them is not an extreme point and contained in a proper face then we express
it as a convex combination of two boundary points of the face. We continue this
process to see that every point of a compact convex set in a finite dimensional space
is a convex combination of extreme points. Carathéodory theorem tells us that every
point of a d-dimensional convex set is the convex combination of extreme points with
the cardinality at most d + 1. An important consequence is that the convex hull of
a compact set in a finite dimensional space is again compact. It should be noted
that this is not the case for infinite dimensional spaces.

References: [99], [127], [74]

1.1.7 convex cones

Recall that a subset of a real vector space is called a convex cone if it is closed under
summations and scalar multiplications by nonnegative numbers. A point xy € K is
said to generate an extreme ray of a convex cone K or to be extremal in K if the
ray {txo : t = 0} itself is a face of K. This is the case if and only if o = x1 + 2
with x1, 2, € K implies that x; is a nonnegative scalar multiplication of xy. In this
case, the ray {tzo : t = 0} is called an extreme ray. Sometimes, the point xg itself is
called extreme.

The set of all n x n positive matrices, denoted by M, is a closed convex cone
in the real vector space M of all Hermitian matrices. We note that a positive
matrix generates an extreme ray of M," if and only if it is of rank one. We see that
A € M, is an interior point of M," if and only if rank A = n, or equivalently A is
non-singular. Especially, the identity matrix 7, is an interior point of M,F. The ray
generated by I, may be considered to be located at the center of the convex cone
M. In fact, if we take a projection P onto a proper subspace then we have

1
sup{teR:(l—t}P+t-§]n>0}=2.

If we extend the line segment from P to %]n until the line meets the boundary of
M+, then the line segment meets at the orthogonal complement I,, — P, and %[n is
located at the center of the line segment.

For a positive matrix A, we consider the range vectors of A and take the convex
cone F' generated by {|£){£] : |£) € Im A}, then A is an interior point of F'. Especially,
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for any |£) € Im A there exists ¢ > 1 such that (1 — ¢)[){&| + tA is positive. The
convex cone F' is the smallest face containing A, and every face of M arises in this
way.

We note that a convex cone K itself has no extreme point except zero. The set D,,
of all density matrices is the intersection of the convex cone M, and the hyperplane
determined by the condition that the trace is one. If we take a hyperplane H which
does not contain zero but meets an extreme ray of K then the intersection is just a

single point which is an extreme point of the convex set K n H.

1.2 Positive maps

We first note that every positive map between matrix algebras is sitting in the real
vector space of all Hermiticity preserving maps. We will show that the map Ad,
defined by Ads(z) = s*xs generates an extreme ray of the convex cone P of all
positive linear maps. Using those maps together with the transpose map, we define

the notions of k-superpositivity and decomposability for positive maps.

1.2.1 Positive maps between matrix algebras

The vector space of all linear maps from M,, into M,, will be denoted by L(M,,, M,)
which is of m?n? dimension over the complex field. A linear map ¢ : M,, — M,
is called Hermiticity preserving if ¢(a) € M, is Hermitian whenever a € M, is
Hermitian. When ¢ is Hermiticity preserving, we write a = b + ic with Hermitian
matrices b and ¢, then we have

¢(a*) = o(b—ic) = ¢(b) —id(c) = (¢(b) +19(c))* = ¢(a)".
In short, ¢ satisfies the following relation
o(a*) = ¢(a)”, a € M,,. (1.10)

If ¢ satisfies the property (1.10) and a is Hermitian then we have ¢(a)* = ¢(a*) =
¢(a), and so ¢(a) is Hermitian. Therefore, we see that ¢ is Hermiticity preserving
if and only if it satisfies (1.10). The restriction of a Hermiticity preserving map
¢ : M,, — M, on M" is a real linear map from M into M". Conversely, every real
linear map ¢ : M2 — M! can be extended to the complex linear map ¢ : M, — M,
by

dla +1ib) = ¢(a) + ip(b). (1.11)

The set H(M,,, M,) of all Hermiticity preserving maps is a vector space over the

real field with the real dimension m?n2.
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A linear map ¢ : M,, — M, is called positive if it sends positive matrices to
positive matrices. Because every Hermitian matrix is the difference of two positive
matrices, it is clear that every positive linear map is Hermiticity preserving. The
set of all positive maps from M,, into M,, will be denoted by Py[M,,, M, ], which is
a closed convex cone in the real vector space H(M,,, M,).

For a given linear map ¢ : M,,, — M,, the adjoint map ¢* : M,, — M,, is defined
by

($(@),9) = @.0(),  ©& My ye My,

It is easy to see that the following relation

(@ov)* = 9™ oo"

holds whenever the composition ¢ o 1) is possible. A linear map ¢ : M,, — M, is
positive if and only if {(¢(z),y) = 0 for every positive z € M, and positive y € M,
if and only if (x, ¢*(y)) = 0 for every positive x and y if and only if ¢* : M,, — M,,
is a positive linear map. In short, we have seen that ¢ is positive if and only if its

adjoint map ¢* is positive.

1.2.2 Extremal positive maps

For a given m x n matrix s, we define the linear map Ad, : M,, — M, by
Ady(x) = s*zs, x € M,,.

It is clear that Ad, is a positive map for any matrix s. The map Ad, is called a

congruence map when u is a unitary. It is easy to see that the following identities
Adst = Adt OAdS7 (Ads)* = AdST

hold for matrices s and ¢, whenever st is defined. It is also clear that if s € M, is
nonsingular then Ad, : M, — M, is an order isomorphism. Recall that a bijective
map ¢ : M,, — M,, is called an order isomorphism when both ¢ and ¢~! are positive,
that is, ¢ satisfies

s<t <= ¢(s) <o) (1.12)

A linear map which generates an extreme ray of the convex cone Py is called
an extremal positive map. It is clear that ¢ is extremal positive if and only if so is
¢*. If ¢ is extremal positive and o is a linear order isomorphism then both ¢ o ¢
and ¢ o o are also extremal whenever they are defined, because both ¢ — oo ¢ and
¢ — ¢ o o define affine isomorphisms between Py[M,,, M,,]. We will show that the
map Ad, is an extremal positive map. To do this, we need the following:
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Proposition 1.2.1 Suppose that a € M, commutes every b € M,. Then a is a

scalar multiple of the identity matriz.

Proof. Write a = Y ; - a;;|i)(j|. Then [k)(l|a = a|k){¢| implies
(Clalk) = (k[k)(Clalk) = (klalk)XCk) = 0,

when £ # ¢, and so a must be a diagonal matrix. We also have

(lall) = Ck|k)(Llalt) = (klalk)(E|e) = (klalk),
for each k, /. o

The identity map id = Ad; with the identity matrix I is the key case for the
extremeness of the maps Ad,. Sometimes, we denote by id,, for the identity map on

M,,.
Lemma 1.2.2 The identity map id,, = Ady, is extremal in Py[M,,, M,].

Proof.  Suppose that both ¢ and id,, — ¢ are positive. Then for every unit vector
|£) € C™, we have 0 < ¢(|€)(¢]) < [€)(¢], and so there exists A¢ with 0 < ¢ < 1 such
that

P(IE)EN) = Ael€)(El,

because |{)({| generates an extreme ray of the convex cone M, . We have to show
that \¢ = A, for any unit vectors |{) and |n). We note that ¢(p) < p for every
projection in M®, which implies (I,, — p)¢(p) = 0. We replace p by I,, — p, to get
po(I, — p) = 0. Therefore, we have

0= (I, —p)o(p) — pop(In —p) = ¢(p) — pp(Iy).
Taking the adjoint, we also have
0= (¢(p) = pe(1n))* = ¢(p) — ¢(In)p,

and conclude that ¢(1,,) commutes with every projection. Since every matrix is the
linear combination of projections, we see that ¢(I,) = A, by Proposition 1.2.1.

Taking an orthonormal basis {|£;)}, we have
Do Ael€l = D oI} = ¢1n) = AL = D A€l

Putting |;) at the right-side of the above identity, we have A\¢; = A, and we conclude

that ¢ = X -id,,. This shows that id,, is an extremal positive map. o
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Lemma 1.2.3 Suppose that m < n and s is an m x n matrix of the form
s = (Im O) € M,,xn

with the m x m identity matrix I, in the left corner. If ¢ : M, — M, is extremal

positive then Adsop : My — M, is also extremal.

Proof. Note that ¢ = Ad; is of the form:

O'SCL'—><8 8>EM”

We define 7 : M,, — M,, by

a b
T.(C d)HaeMm.

Then we have 700 = id,,. Suppose that o o ¢ = b1 + 1y with ¥y, 1y € P1[M,, M,,].
Then we have

p=TooO0@p=TOY +TO1s.

Since ¢ is extremal, there exists A > 0 such that 7(¢(a)) = A¢p(a) for each a € M,.

Because

wfa) < oto(a) = (%) 1), ae sy,

we have (¢ o 7)(4b1(a)) = 41 (a) for a € M;. Therefore, it follows that
¥1(a) = o(r(4(@)) = o (3(a)) = Ao (6(a).

for each a € M,,, and s0 00 ¢ = Ad, o6 is extremal. o

Theorem 1.2.4 For any m x n matriz s, the linear map Ady, : M,, — M, is

extremal positive.

Proof. By singular value decomposition (1.8), we have s = upqw with the m x k

p
0

u,w. Then we have

matrix p = and k x n matrix q = (I,.C 0) together with invertible matrices

Ad; = Ad, 0Ad,0Ad, o Ad, .

By lemma 1.2.3 and Lemma 1.2.2, we see that Ad,r = Ad,r cid is extremal, and so
Ad, = (Ad,r)* is also extremal. Therefore, Ad, o Ad, is extremal by Lemma 1.2.3
again. On the other hand, Ad,, and Ad, are order isomorphisms since w and v are

invertible. Therefore, we conclude that Ad, is extremal. o
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It is very difficult in general to find out all the extreme rays of the convex
cone P[M,,, M,], and it is an open problem even for low dimensional cases like
m = n = 3. But, it is not so difficult to find boundary points of P;[M,,, M,]. We
see that if ¢(a) is singular for a nonzero a € M," then ¢ must be a boundary point
of P;. Indeed, the following is immediate from the definition of interior points.

Proposition 1.2.5 If ¢ € int Py[M,,, M,,] then ¢ sends every nonzero element in

M to an interior point of M, .

Proof. Take a nonzero a € M} and b € M, and consider the map ¢ : M,, — M,
given by ¢(z) = g EZ;b Then there exists t > 1 such that (1 —¢)y) + t¢ € Py, and
so we have (1 —t)b+ t¢(a) = 0. Since b e M was arbitrary, we see that ¢(a) is an

interior point of M. o

We will see later that the converse of Proposition 1.2.5 also holds. See Proposi-
tion 2.3.3. Therefore, ¢ is on the boundary of P1[M,,, M, ] if and only if there is a
nonzero a € M, such that ¢(a) € M, is singular. It is easily seen that the positive
map Ad, : M,, — M, satisfies this property for every s € M,,,. Especially, if
S € My, itself is singular then Ad,(a) is singular for every a € M,,.

References: [111], [118]

1.2.3 k-superpositive maps

We denote by SPy the convex hull of {Ad; : rank s < k};
SPy := conv {Ad; : rank s < k} < Py,

where conv S denotes the convex hull of S. We also use the notation SPy[M,,, M, ]
when we need to specify the domain and range. If k < ¢ < m A n and ranks = ¢
then Ad, ¢ SIP, since it is extremal, where m A n denotes the the minimum of m

and n. Therefore, we have the following chain of strict inclusions
SP1 &SP & -SSPy & - & SPiian

of convex cones of positive maps. A positive map in SPj is called k-superpositive.
A 1-superpositive map may be called just superpositive.

Proposition 1.2.6 For each k = 1,2,...,m A n, the convex cone SPy, is closed in
H(M,,, M,,).

Proof.  We consider the linear functional 7 on the space H(M,,, M,,) defined by
7(¢) = Tro(ln), ¢ € H(Mp, M,).
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Then we have 7(Ad,) = 3, |sij|* for s = 33, s45]i)(j|. Next, we consider the set
Ck := {5 € Myxn : Tanks <k, 3, |si> = 1},

which is compact. Then the image of (', under the continuous map s — Ad, is a
compact subset of H(M,,, M,) whose convex hull is {¢ € SPy, : 7(¢) = 1}, which is

also compact. Therefore, we conclude that the convex cone SP is closed. o

It is clear that the transpose map T : x + z' is a positive map between M,,.
The transpose map is extremal in Py[M,,, M, ], since T = T oid and T is an order
isomorphism. When n > 2, it is easy to see that T is not a member of the convex
cone SP,[M,,, M,], whose extreme rays consist of Ads. If we assume that T € SP,,
then we have T = Ad; for a matrix s =}, ; s;;[i)(j|. We have

AL(DG) = Y SasrelpXal)GIRXE = Y Sipsjelp)XLl.

Since T(|i){(j]) = [j){i|, we have §;;5;; = 1 for every i, j, especially s has no zero
entries. On the other hand, we have 5;,s;, = 0 whenever (p,¢) # (j,4), which is
absurd.

Since the composition of positive maps is positive, we see that

SP* := {To¢: ¢ € SP;}
is a convex cone in P;, and we have another chain of strict inclusions
SP'g SP’S --- S SPF & - & SP™ (1.13)
of convex cones in P;. By the identity
T o Ad,(a) = (s*as)’ = sTa'5 = Ads(a") = Ad; oT(a),

we see that ¢ € SP* if and only if T o ¢ € SP;, if and only if ¢ o T € SP;.

In the identity Adjey,(a) = [n){&|al&){(n|, we see that (£]a|¢) is a scalar and
T(In){n|) = [7){7]. Therefore, we have T o Adey,(a) = Adjeysi(a), and so get the
identity

To Adigyy = Adjexal - (1.14)

Hence, it follows that two convex cones SP; and SP' coincide, and we have the

following inclusion:

SP, < SP,,, .,, n SP™"™. (1.15)

Proposition 1.2.7 Suppose that s € M,,x, is nonzero. Then Ad, € SP™"" if and

only if s is of rank one.
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Proof. It remains to prove the ‘only if’ part. Suppose that Adg belongs to the
convex cone SP™"". Since Ady generates an extreme ray of Py, it also generates an
extreme ray of the smaller cone SP""", and so Ad, = Ad; oT for an m x n matrix
t, which implies that the identity

s*|Exmls = t*|m]elt

holds for every |£) and |n) in C™. We fix a vector |n) so that t*|7) # 0 and (n|s # 0.
For arbitrary nonzero [£), the left side is a rank one matrix with the range vector
s*|€). On the other hand, the right side is a rank one matrix with the range vector
t*|n), and so s*[€) is a scalar multiple of t*|) for arbitrary |£) € C™. Therefore s*

is of rank one. o

Proposition 1.2.7 tells us that an extreme ray of SP,, .,, belongs to SP™"" then it
actually belongs to SP; = SP'. Note that this does not imply that SP,,.,, N SP™*"
coincides with SP;. The convex hull of two convex cones K; and K is nothing but

K1+K2:{I1+$225L’i€Ki}.

Now, we have concrete examples of positive maps in SP,, ., + SP™"". Those maps
in this class, which are called decomposable, can be expressed by the combinations
of Ads and T. One question arises naturally: Does every positive map arise in this

way?

References: [3], [106], [108]

1.3 Positive maps between 2 x 2 matrices

In this section, we show that all positive maps between 2 x 2 matrices can be ex-
pressed with Ad, and the transpose map. The main step is to realize the congruence
map Ady by a 2 x 2 special unitary matrix U as a rotation in the three dimensional

real vector space.

1.3.1 Congruence maps and orthogonal transformations

In order to show that every positive map from M, into itself is decomposable, we
first look at the 4-dimensional real vector space M2 whose elements may be written
by

B < t+2z x—1y

ety t—z) =tly + x0, + yo, + 20,

with real numbers ¢, x,y, z and Pauli matrices

Oy = ((1) (1)) o, = (? Bi), o, = ((1) _01>. (1.16)
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The following four matrices

1 1 1 1
{7512, 2% % 7502}
make an orthonormal basis of M with respect to the inner product given by

(a,b) = Tr (ab*) = > ay;by;, (1.17)

for a,b e MY. We see that o € M, if and only if ¢ > |z| and t* — 22 > 2 + y? if and
only if t = 0 and 2%+ y* + 22 < t? holds. Therefore, we see that o € D, if and only if
9 1

2+’ + 22 < PP t=§ (1.18)

holds, and so D, is the three dimensional ball, called the Bloch ball.
We recall that the matrix %]2 is located at the center of the convex cone M,
and consider the distance from g € D, satisfying (1.18) to

1
Ox = 5[2 € DQ.

The distance |z — y|us arising from the inner product (1.17) is called the Hilbert—
Schmidt distance. We have

. 2
. 2 _ z r—1y
el 9

=2(2% +9* + 27).

Therefore, we see that g € Dy if and only if ¢, x, y and z satisfy the relation (1.18)

if and only if the inequality
1
— < R

holds, as it was expected. We also see that p is on the boundary, that is, satisfies
the equality ||ox — 0|us = \% if and only if o = [£)(€| is of rank one if and only if o
generates an extreme ray of the convex cone M, . The 2-dimensional sphere which
is the boundary of D, is called the Bloch sphere. We also note that each boundary
point of D, corresponds to the range vector |£) € C? up to scalar multiplications,
which corresponds to a point of the complex projective space CP!.

We say that ¢ : M,, — M, is trace preserving if Tr (¢(x)) = Tr(x) for every
x € M,,. By the identity Tra = (I, a), we see that ¢ is trace preserving if and only
if ¢* is unital. A trace preserving unital positive map between M, has an interesting
geometric interpretation. We begin with a Hermiticity preserving map ¢ on M,
which is the orthogonal sum of R/; and the subspace

Z .= span{oy,0y,0.}
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of MY. Suppose that ¢ is unital and trace preserving. Then both RI, and Z are
invariant under ¢, and ¢|z is a linear transform in the three dimensional space Z
over the real field.

We examine what happens for Ady with a 2 x 2 special unitary

U- (g ‘5) Y

«

It is clear that the congruence map Ady is unital and trace preserving. We have

(a B\[0 1\ [a —B\ [(2Re(aB) a*- 3
Ady(o) = (—ﬁ a) (1 O) (B d) N <a2 — 32 —2Re(af)
We choose real variables a, b, ¢,d with a = a+ib, 8 = c¢+id and a®> +b*+c* +d? = 1,

then we have
o — % = (1 —2b* — 2¢%) +i(2ab — 2cd),

2a3 = (2ac + 2bd) + i(—2ad + 2bc),

and so, it follows that
Ady(o,) = (1 — 2% — 2¢%)o, + (2ab — 2cd)o, + (2ac + 2bd)o..

Similarly, we also have

Ady(o,) = (—2ab — 2cd)o, + (1 — 26 — 2d*)o, + (2ad — 2bc)o,
Ady(0,) = (—2ac + 2bd)o, + (—2ad — 2bc)o, + (1 — 2¢* — 2d*)o.

Therefore, the map ¢ determines a linear transform between three dimensional space
Z spanned by Pauli matrices, which corresponds to the following 3 x 3 matrix

1—202—2¢2 —2ab—2cd  —2ac + 2bd
2ab — 2cd 1 =202 —2d*> —2ad — 2bc
2ac + 2bd 2ad — 2bc 1 —2¢? — 242

This is an orthogonal matrix with the determinant 1, and sends (d, —c, b)T to itself.
Therefore, it represents the rotation in R?® around the direction (d, —c,b)T € R3. Tt
rotates by the angles 20 satisfying cosf = a and sin?6 = b* + ¢ + d?, and every
rotation in R? arises in this way.

Note that the transpose map T : M — M is also unital and trace preserving.

Since T (o) = 04, T(0y) = —0, and T(0,) = 0., we see that the trace map induces
the reflection

1 0 0

0 -1 0},

0 0 1

which is an orthogonal matrix with the determinant —1. We recall that every

orthogonal matrix which is not a rotation can be expressed by the composition of a
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rotation and the above reflection. We also recall that a linear map ¢ between R" is
an isometry, that is, |¢(z)| = |z| for every z, if and only if ¢ preserves the inner
product if and only if it is represented by an orthogonal matrix. Therefore, we have
the following:

Proposition 1.3.1 Let ¢ : My — My is unital and trace preserving. If ¢|z is an
isometry then ¢ = Ady or ¢ = Ady oT for a unitary matriz U.

References: [88], [8], [6], [7]

1.3.2 Decomposability of positive maps

Now, suppose that ¢ is positive as well as unital and trace preserving. Then ¢ sends
D, into itself, that is, we have

0€ Dy = ¢(p) € Ds.

For a given g € Z, we have ¢ + o, € D, if and only if ||g|ps < \% By the relation

o0+ 0s) = (o) + 04, We have

1 1
€ Z, < — = < —.
0 o] s 7 o (o) |us 7

When we identity (Z, ]| |as) with the normed space (R?, || ||), we see that ¢|z sends
the unit ball in R? into itself. Such a linear map is called a contraction. Then, the
map ¢|z belongs to the convex set C3 of all real linear contractions between R?, and
S0, ¢|z is a convex combination of extreme points of Cs. It is easy to see that ¢ € Cs
is an extreme point of Cs if and only if ¢ is an isometry.

Proposition 1.3.2 Let C, be the convex set of all contractions between R™. A linear
map ¢ € C,, 1s an extreme point of C,, if and only if ¢ is an isometry.

Proof. By the singular value decomposition, ¢ is the composition of isometries and
a diagonal map 6 € C,. If ¢ is extreme in C, then J is also extreme in C,. It is
evident that a diagonal map which is extreme in C, is an isometry. For the converse,
we suppose that ¢ is an isometry of R" and ¢ = (1 — t)¢g + té1 with ¢g, ¢ € C,,.
When |z = 1, we have (1 —1)¢po(x) + td1(x) = ¢(z) is an extreme point of the unit
ball. Therefore, it follows that ¢g(x) = ¢1(z) = ¢(x) for every z with ||z|| = 1, and
we conclude that ¢ = ¢y = ¢1. o

By Proposition 1.3.1 and Proposition 1.3.2, we conclude that every unital trace
preserving positive map between 2 x 2 matrices is decomposable. For general cases,
we begin with a map in the interior of P;. We recall that if ¢ € int P1[M,,,, M,,] then
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¢ sends every nonzero element in M," to an interior point of M, by Proposition
1.2.5. In short, ¢(a) is nonsingular whenever a is nonzero. It is easy to see that ¢
is an interior point of IP; if and only if ¢* is an interior point of P;.

Proposition 1.3.3 Let ¢ be an interior point of the convex cone P1[M,,, M,]|. Then
there exist nonsingular a,b € M} such that the map gg = Ad, o¢ o Ad, s positive,

unital and trace preserving.

Proof. We note that ¢ is unital if and only if a¢(b*)a = I if and only if the identity
p(b*) 7t = a? (1.19)
holds, and ¢ is trace preserving if and only if Adyr 0¢* o Ad,r is unital if and only if
¢*(a®T)~t = v*T, (1.20)
where !t = (a*)T = (a")? has the obvious meaning. We define the map f from D,

into itself by

1
f(s) =

) Teofer e 1
which is a continuous self map on the compact convex set D,,. By Brower’s fixed
point theorem, there exists so € D,, such that f(sg) = so. We take a,be M} so that

CL2 = s, b2 _ ¢*(a2T)—T‘

—ole*(s) ], seDy,

The second identity tells us that a and b satisfy (1.20), and so ¢ is trace preserving.
Furthermore, we have
1
2

* 2T—T—1_1 2\—1
@ = s = 20[67 (@) 1] = ~o?)

with t = Tr¢[¢*(a?T)~T]~!, which implies I, = tap(b*)a = to(1,). Because ¢ is
trace preserving, we have ¢ = 1. Therefore, we conclude that ¢ is unital by (1.19).

(]

Therefore, we conclude that every interior point ¢ of the convex cone Py[Ma, Ms|
is decomposable. By the exactly same argument as in Proposition 1.2.6, it is easily
seen that the convex cone SP,, ., + SP™"" is also closed. Therefore, we have the
following;:

Theorem 1.3.4 Every positive map in Pi[ My, M| is decomposable.

From this, we see that every extremal positive map between 2 x 2 matrices is of
the form Ad, or AdsoT for a 2 x 2 matrix s. It is known [129] that every positive
map in P;[M,y, Ms] and [ M3, Ms] is also decomposable. We will see in Section
1.5 that this is not the case for IP;[ M3, M3]. Concrete examples of indecomposable
positive linear maps will be given in Section 1.6.

References: [111], [129], [6], [7]
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1.4 Choi matrices and separable states

For a given linear map ¢ from M,, into M,,, we associate the Choi matrix Cy in the
tensor product M,, ® M, which plays a central role throughout the topics. With
this isomorphism ¢ — Cg, 1-superpositive maps correspond to separable states, and
composition with the transpose map corresponds to taking the partial transpose.

1.4.1 Choi matrices

We note that a linear map ¢ : M,, — M, is completely determined by ¢(|i){j|) for
i,7 =1,2,...,m, because {|i)(j| : i,7 = 1,...,m} is a basis of M,,. We define the
Choi matrix C, of a linear map ¢ € L(M,,, M,,) by

Co = X, D ®@B([iXj]) € My, ® M,.
ij=1
Then it is clear that

is a linear isomorphism, which is called the Jamiotkowski—Choi isomorphism. By

the relation Y, ;(a, [)){j[)é(|i){j|) = #(a), we have

(@a®b,Cy) = Z<a, |G )<b; &(1i)(1)) = <b, d(a)) (1.21)

for a € M, and b € M,. The identity (1.21) may be used as the definition of the
Choi matrix, because it determines the entries of the Choi matrix when a = |i){j]
and b = |[k){(|.

If ¢ maps from M,, into M, then ¢* interchanges the domain and the range,
and so Cyx belongs to M,, ® M,,. For given a € M,, and b € M,,, we have

b®a,Cyx) = <a,¢"(b)) = {(#(a),b) = a®b,Cy). (1.22)

Therefore, Cyx € M,, ® M,, is the flip of C, € M,,, ® M,,, where the flip operation is
defined by Q@ y — y ® x.
Now, we look for properties of the Choi matrices which correspond to Hermiticity

preserving maps and positive maps.

Proposition 1.4.1 A linear map ¢ : M,, — M, is Hermiticity preserving if and
only if Cy is Hermitian.
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Proof. By the definition of Choi matrix, we see that C, is Hermitian if and only if
the following

o([pGD* = o()Gl),  ij=12,....m (1.23)
holds. Recall that ¢ is Hermiticity preserving if and only if ¢(a)* = ¢(a*) for every
a € M,,, which implies (1.23). Conversely, the relation (1.23) implies

¢(a)* = ¢ (X ay|)" = X aye(|HG)* = X aye(1i)]) = ¢(a*),
for a = ZGZJ’Z><j‘ € Mm O
A matrix p € M,,, ® M,, is called block-positive when
{lel¢) =0

holds for every product vector |() € C™ ® C". Compare with the definition (1.1)
of positive matrices. The convex cone of all block-positive matrices is denoted by
BP{[M,, ® M,] or just by BP;.

Proposition 1.4.2 A linear map ¢ : M,, — M, is positive if and only if C, is
block-positive in M,, ® M,.

Proof.  We note that ¢ is positive if and only if ¢(|£)(£]) is positive in M,, for every
|€) € C™ if and only if

(Xl ¢(16XXEN) = EXEI @ ImXl, Cop = ISIMXEKI, Co) = EIGICSIO M)

is nonnegative for every [£) € C™ and |n) € C", where we used (1.2). o

For an m x n matrix s = 3, . s;;]i){j|, we have

Caa, = D 190l ® (S 50nl0XE1) 93Xl (S 565101 )
— (S0 SDIPIRY) (X565 X, CaliXall)
— (s 5l O1Y) (L5351 ) -
Therefore, we see that
Caa, = 1563, (1.24)

under the correspondence between s € M,,x,, and the vector |5) € C™ ® C™ given
by (1.5). It is worthwhile to write down the Choi matrix of the map Ady when

5 = (CCL Z) We have (3| = (a,b,c,d), and

la|> ab ac ad

. ba |b]*> bc bd
Caa. = 196G = | 7 ‘El) > ad
da db de |d?
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We also have <;f] = (a,c,b,d), and

la|> ac ab ad

_ e | @ ad
N A
da dc db |d|?

which is the flip of Caq,. On the other hand, we have {(s*| = (a,¢,b,d), and so we
see that Caq_, is the conjugation of the flip of Cagq,.

References: : [32], [67], [21],

1.4.2 Schmidt numbers and entanglement

The identity (1.24) tells us that the Choi matrix of the map Ady is of rank one
mmn X mn positive matrix onto the vector in C"™ ® C™ whose Schmidt rank coincides
with the rank of the matrix s. We define

Se[M ® M| : = {Cy € My ® My, : ¢ € SPL[Miyn, M,]}
= conv {|CXC¢| € My, @ M, : [0 e C"®C™, SR|C) < k),

for k =1,2,...,mAn. Then we see that g € S if and only if p is an (unnormalized)
state of the form

0= 2 |Cz><<z|

with SR|(;) < k. Furthermore, a linear map ¢ belongs to SP,, ., if and only if
C, is positive. Because a positive matrix generates an extreme ray of the cone
(M,, ® M,)* if and only if it is of rank one, we see that Ad, generates an extreme
ray of the cone SP,, .,,. The point of Theorem 1.2.4 is that Ad, generates an extreme

ray of the much larger convex cone P;. We may summarize in the following diagram:
L(Mm7 Mn) : S]P)l % SPk’ % S]P)m/\n % Pl

LJC | l l l (1.25)

Mm ® Mn : 81 _—,Cf_- Sk -—,Cf—- (Mm & Mn)Jr _—,Cf_- Bpl

A state o € Sk\Sk_1 is called to have Schmidt number k. A state of Schmidt
number one is also called separable, and a state which is not separable is called
entangled. Recall that a vector in C™ ® C" with Schmidt rank one is called a
product vector. Then, a state in (M,, ® M,)" is separable if and only if it is the

convex combination of rank one projections onto product vectors. In other words,
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a state o is separable if and only if there exists a finite family of product vectors
{[€i)Ini)} satisfying
0 = > [&lmi&lml. (1.26)

If we restrict ourselves to the case of normalized states with trace one, then we have

0= Zpi|§i>|77i><§i|<77i|

with unit vectors |&;), |n;) and probability distribution {p;}. A state in the tensor
product M,, ® M, is called a bi-partite state, or more precisely an m ® n state to
emphasize the size of matrices.

We denote by M,! ® M, the convex cone generated by a ® b with a € M,} and
be M}';

MM, :=conv{a®be M,, @ M, :ae M} be M:}.

Since [€)[n){€[(n| = [£)X¢] @ |n){nl belongs to M ® M,7, we have & « M ® M,
Conversely, if a = 3 |£,)(§,| € M), and b = . [ny)(ny| € M, then we have

a®b= Z €211 )<Epl 4]

is separable. Therefore, we have
S =M QM.

In short, a bi-partite state is separable if and only if it is the sum of product states
of the forms a ® b with positive a € M} and b e M. So, entanglement consists of
the difference

(M, ® M) "\M} @ M.

In the case of the space C(X) of all continuous functions on a compact Haus-
dorff space X, the algebraic tensor product C'(X)® C(Y) consists of finite sums of
functions of separable variables, that is, functions of the form f(z)g(y). By Stone-
Weierstrass theorem, we see that C(X) ® C(Y) is dense in C(X x Y). We write
P:=C(X)*®@C(Y)". Then P— P :={f —g: f,g € P} is a unital subalgebra of
C'(X x Y,R) which separates points in X x Y. Applying the real version of Stone—
Weierstrass theorem, we see that P — P is dense in C'(X x Y R). Therefore, we
conclude that P = C(X)" @ C(Y)* is dense in C(X x Y)*, and there exists no
entanglement in function spaces.

If a state o € M,,, ® M,, is of rank one, then it is easy to find its Schmidt number
by the Schmidt rank of its range vector. For example,

10
(1.27)

O = O
O O OO

0
1
0

o O O



is of Schmidt number one, or equivalently separable, because the range vector

(105 + [1))]0) = (1,0,1,0)T e C* ® C?

(1 o)

which is of rank one. On the other hand,

corresponds to the 2 x 2 matrix

(1.28)

_ o O =
OO OO
OO OO
_ o O

is of Schmidt number two, and so entangled, because the range vector (1,0,0,1)"

é (1) which is of rank two.
Note that the matrix in (1.28) is the Choi matrix of the identity map on Ms.
The Choi matrix

corresponds to

Ca= 3 11 ® X = ko

1,j=1

of the identity map on M, with
wy =Y IDliyeCr®C”
i=1

plays an important role. It is a bi-partite state with the maximal Schmidt number.
In general, a pure state ¢ = |()(| is called maximally entangled if |() = > |&) ® [n;)
with orthonomal bases {|¢;)} and {|n;>}. On the other hand, the identity matrix in
M,, ® M, is the Choi matrix of the trace map

Tr : X — Tr (X)I,, X € M,,.

The trace map may be considered to be located at the center of the convex cone Py
of all positive maps, by the location of the identity matrix in M,, ® M,,. In fact,
we will see in Section 2.3 that the converse of Proposition 1.2.5 holds, and so the
trace map is an interior point of the convex cone P;[M,,, M,]. On the other hand,
the identity map between M, is located at a corner of the convex cone Pi[M,,, M, ],
since it generates an extreme ray of P;.

For given complex numbers «, f with modulus one, we take a product vector
& =(1Laf) ®(1,8)" =(1,8,0p8,a) e C*RC?,
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to get the pure separable state

1 B aBf &
— 2 —
IOXCl = a% a%? 0415 agﬂ
a af B 1

Taking § = 1,1, —1, —i, and averaging the corresponding states, we get the following

separable state
1 - - a

€ MQ@MQ. (129)
a - - 1
For double indices (i, k) and (7, ¢) from {1,...,m}x{1,...,n} with (i, k) # (4, ),
we consider the bi-partite state o r),j.¢) (o) in M, ® M, defined by
0(ik),5.0) (@) = L + alik)(GE| + o jO)(iK],

for a complex number a with modulus one. It is clear that o ), .0 () is positive.
If © = j then the entries o and @ appear in the i-the diagonal block, and so it is
separable. This is also the case when k = ¢. In order to deal with the case i # j
and k # £, we consider the product vector

& = (i) + aBli) @ (k) + BIO)) = liky + Blil) + apljk) + aljb). (1.30)

By the exactly same way to get the separable state (1.29), we see that o .0 (@) is
separable whenever |a| = 1, by adding diagonal entries. Now, it is easily seen that

00 k),(,0) (+1) = Lin, 0Gi,),(5,0) (F1) = Lrns (L, + |1k)ik]) — Ling,

make a linearly independent family with the cardinality (mn)?. Therefore, we con-
clude that &;[M,, ® M, ] has nonzero volume in (M,, ® M,,)™".

References: [128], [34], [124], [40], [106]

1.4.3 Partial transposes

The Choi matrix of the transpose map is given by
Cr = Z [T (1)) = Z |71 ® 1)l
ij=1 t,j=1
When n = 2, its matrix form is given by
1
Cr =

o O O

o= O O
o O = O
— o O O
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which is not positive.
We see that Ct € M,,(M,) is the block-wise transpose of Cjq as an n x n matrix
with entries from M,,. Every o € M,, ® M, is uniquely expressed by

0= Y, [Xil®ey
ij=1
with g;; € M,,. We define the partial transpose " by
"= D i@ = Y 10| ® e
ij=1 ij=1

We note that Cr is the partial transpose of Ciq. In general, we have

Cour = D101 ® 6(19)Xl) = (Co)" (1.31)

For a given linear map ¢ : M,, — M, we define the linear map ¢ : M,, — M,
by
¢(x) = d(z),  x€Mpy,
where ¥ is the matrix whose entries are the conjugates of the corresponding entries

of x. Then, we have
C; =G,

If ¢ is Hermiticity preserving then we have

$ah)" = d(aT)r = ¢(a™*) = §(7) = d(2).

In short, we have

TogoT = ¢,

for a Hermiticity preserving map ¢. Therefore, we also have
Crog = Cgor = Cj = CJ, (1.32)
for a Hermiticity preserving map ¢. We also note the following identity
(a@b)' =a" @b

holds. If a and b are Hermitian, then we have

(a@b)T =aT®b=0a*"® (b)) =a®b’.

Because §; = M} ® M, and the transpose of a positive matrix is again positive,
we have the following:
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Theorem 1.4.3 The partial transpose of a separable state is positive.

A positive matrix is called of positive partial transpose or just PPT if its partial
transpose is positive. Theorem 1.4.3, which is called the PPT criterion for sepa-
rability says that every separable state is of PPT. It is also can be seen from the
inclusion relation (1.15). On the other hand, Proposition 1.2.7 tells us that if a rank
one state in M,, ® M, is of PPT then it should be separable. More generally, it is
known [63] that if a PPT state in M, ® M, has rank at most max{m,n} then it is
separable.

Note that the matrix in (1.27) is of PPT, but the matrix Ciq in (1.28) is not of
PPT, from which we may infer that Ciq is not separable. In fact, we know that the
positive map id = Ad; is not 1-superpositive, because rank I > 1. The convex cone
of all m®n PPT state will be denoted by PPT[M,, ® M,] or just by PPT. Then
we have S € PPT < Span = (M,,, ® M,,)" in the diagram (1.25). The converse of
Theorem 1.4.3 does not hold in general.

References: [24], [94], [63]

1.4.4 Entanglement with positive partial transpose

For given positive matrices a and b, it is easy to see that ker(a + b) < kera by the
identity (£[(a + b)|§) = (£|al&) + (£|b|&). Therefore, we have Ima < Im (a + b) for
a,be M}, and so we also have

Ima+Imb = Im (a + b), a,be M},

This simple fact is useful to show that a given state is not separable, because the
expression o = Y, |(;{(;| gives rise to the restriction |(;) € Imp. In fact, we note
that the following

Im ¢ = span {|(;)}
holds for a positive matrix o = > |}
It is easily seen that the following matrix

1 - - 1 - < .1
b1
.2 1
e T
o=|1 - - -1 - - -1 (1.33)
. o1 1 -
2
1 -
-1 - 2
1 1 1
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is a PPT state. In fact, we have o' = o. We see that the range is the 4-dimensional
space which is spanned by

10210) + [D]1) + [2)[2),

1 1 1 (1.34)
— |01 +V2[D[0), —=|1)[2) +V2[2[1), ——=[2)]0) + v/2]0}|2),
ﬁ|>\> [1)[0) \/5|>|> 2)|1) ﬁ\>!> 10)12)
with the corresponding 3 x 3 matrices
100 0 &5 0 0 0 0 0 0 2
01 0], V2 0 o], 0 0 =, (1)00.(1.35)
0 01 0O 0 0 0 V2 0 7 0 0

If p is separable, then the four dimensional space spanned by these four matrices

must contain rank one matrices. In other words, there exist a, b, ¢, d € C such that

b
a 75 d\/§
b\/i a 75
4 3

is of rank one. Considering various 2 x 2 submatrices, one see easily that this is not
possible. Therefore, we conclude that o is an entangled state.

A nonzero subspace of C"™ ® C" is called entangled when it has no nonzero
product vector. A state is entangled whenever its range space is entangled. We
have seen that the four dimensional subspace of C3® C? spanned by four vectors in
(1.34) is entangled.

Even though the range space of a state is not entangled, a PPT state o may be
shown to be entangled by considering the range space of the partial transpose o'
as well as the range space of p itself. Suppose that g is a separable state with the
expression in (1.26) whose range space is spanned by the product vectors |&;)[n;).
By the relation

(Xl = (1€)XE @ Imynl)"
= )" @ [n)n|
= [l ® [mnl = 1) In)<&l

we have the following identity
0" = Y €Dl

for 0 = Y, [€)ni)(&|<mi]. If the partial transpose o' is positive then we see that
the range space o' is spanned by product vectors |£;)[n;). Therefore, we have the
following necessary condition for separability.
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Theorem 1.4.4 Suppose that o is a PPT state. If o is separable then there exists

a finite family {|&>ni>} of product vectors satisfying
Im o = span {|&)[n)},  Imo" = span {|&)[n;)}.

The vector |€)|n) is called the partial conjugate of the product vector |€)|n).

Theorem 1.4.4 is called the range criterion for separability which is especially useful

for PPT states whose range is not full. For an example, we consider the following

PPT state o, defined by

p - p p
. 2 . . .
1 .
1
o=10p p - r | (1.36)
. . p2 .
p p p

We note that ranks of g, and gg are 7 and 6, respectively. We also note that the

kernels of g, and QII: are spanned by

1

respectively.

and
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If g, is separable then there exists a product vector [£)|n) € Imp such that
|0 € Im o' We write |€) = (21, 29, 23)T € C® and |n) = (y1,v2, y3)T € C? then we
have

) = (211, T1Y2, T1Y3, T2Y1, T2y, $2y3>$3y17$3y2,$3y3)T eC’®C’.
Therefore, we have the following system of equations

T1Y1 = T2y2,
T2Y2 = T3Ys,
T1Y2 = PTay, (1.37)
TaYs = pI3Y2,
T3y1 = pT1y3
We note that this system of equations has four unknowns up to scalar multiplications
and five equations, and so we may expect that there is no nontrivial solution like

|€>Im) # 0. In fact, one can easily see that (1.37) has a nontrivial solution only when
p = 1. Therefore, we conclude that g, is a PPT entangled states for p # 1.

References: [129], [24], [113], [62], [83], [68], [69]

1.5 Duality and completely positive maps

We define in this section a bilinear pairing between Hermiticity preserving linear
maps through Choi matrices. The dual object of k-superpositivity is nothing but k-
positivity which had been studied since 1950’s. Through the discussion, we naturally
get the correspondence between complete positivity of linear maps and positivity of
their Choi matrices.

1.5.1 Dual cones of convex cones

For finite dimensional vector spaces X and Y, we recall that every linear map
¢ € L(X,Y™) corresponds to the linear functional L, € (X ® Y)* given by

Ls(z®y) = o(2)(y), 2€X, yey, (1.38)

where X* denotes the dual space of X consisting of all linear functionals on X. In
case of matrix algebras, we employ the identification (1.3) between M,, and its dual
My If ¢ : M,, — M} then the Choi matrix Cy4 plays the role of a linear functional
on M,, ® M, by the relation (1.21):

<CL ® b7 C¢>Mm®Mn = <b7 ¢(a)>Mn7 ae Mm7 b € M"“
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which is nothing but the reformulation of (1.38) in terms of bilinear pairing between
matrices. Therefore, it is natural to define the bilinear pairing between M,, ® M,
and L(M,,, M,) by

(a®b,dp) = (b, p(a)), ae M, be M, ¢eL(M,,M,). (1.39)

Then we have (p, ¢y, = {(p,Cy) by (1.21) for p € M,, ® M,, and ¢ € L(M,,, M,).
Because every g € M,, ® M,, can be written by o = Cy, for ¢ € L(M,,, M,), it is also
natural to define the bilinear pairing

<¢7 ¢>2 = <C¢7 C¢>>7 ¢7 w € L<Mm7 Mn) (140)

between mapping spaces. If o = Cy, then we have

(0,001 = {0,Cy) = (Cy,Cy) = (¥, $)a,

and so we do not distinguish the bilinear pairings (-, ), (-, ) and {-,- )9, and use
the same notation (-, -) for them.
The following identity

(&, 9y = (&%, ¢%) (1.41)

is immediate, because Cyx € M,, ® M,, is the flip of C, € M,, ® M, by (1.22). For
given linear maps ¢ € L(Ma, Mp), v € L(Mpg, M¢c) and o € L(My, Mc), we also

have
(Yoo¢,o)= Z<¢(¢(€ij))a o(eij)) = Z<¢(€z‘j), V*(o(ei))) = (&, ¥* 0 0),

which also implies (¢, * o o) = (¥ 0 1), ¢p*) = (1,0 0 ¢*) by (1.41). Therefore, we
have

Wog,0)={(, 9" 00)={¥,00¢"). (1.42)

Suppose that X and Y are finite-dimensional real spaces which are dual to
each other through a non-degenerate bilinear pairing { , ), that is, x € X satisfies
(x,y) = 0 for every y € Y implies = = 0, and same for y € Y. To be precise, we define
the linear map ox : X — Y*; for a given = € X, we define ox(z) € Y* as the linear
functional which sends y to {(z,y). Then non-degeneracy condition tells us that ox
is injective, and so we have dim X < dimY. By the similar map oy : Y — X™*, we
have dim X = dim Y, and both ox and oy are linear isomorphisms. Throughout
this note, we always assume that a bilinear pairing is non-degenerate.

For a given subset C' of X, we define the dual cone C° in Y by

C°={yeY :{(x,y) =0 for each z € C},
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and the dual cone D° < X similarly for a subset D of Y. If C' is a closed convex
cone in a finite dimensional real vector space X and zy ¢ C, then it is known that
there exists a linear functional f on X such that f(z) = 0 for every z € C' and
f(zo) < 0. From this, we have the following:

Proposition 1.5.1 For any subset C' of X, the bidual cone C°° is the smallest
closed convex cone containing C.

Proof. 'We denote by X temporarily the smallest closed convex cone containing C',
then it is clear that X < C°°. Suppose that xq ¢ X'. Then there exists y € Y such
that (x,y) = 0 for every x € X but (xp,y) < 0. Since C' < X, we have y € C°. But
the relation (zg,y) < 0 tells us that zq ¢ C°°. Therefore, we conclude that C*° = X.

(]

References: [99], [127], [34], [108], [107], [36]

1.5.2 k-positive maps and completely positive maps

By Proposition 1.5.1, we see that every closed convex cone C' of X is the dual cone
of C° 'Y, that is C°° = C'. This means that C' is determined by the intersection
of ‘half-spaces’ {x € X : {x,y) = 0} given by y € C°. We are going to determine the
dual cone of the convex cone SPy with respect to the pairing (1.40). This is same
as the dual cone of Sy, with respect to the pairing (1.39).

For any |¢) = 3% | ||y € C™ ® C* with SR |¢) < k, we have

O = D leaas| @ lyaysl,

1,j=1

and so, we also have

UEXCI, Cop = - yaxysl, dlzaa;1))

i,j=1

_ zuw@mmeHW@wmwm>

1,j=1 i,j=1
Putting
k k
=Y DlzyeC T, )= bl e T,
i=1 i=1
we see that

{IEXC] Cop = mpXnl, (idi ® 9)(1€)¢ED))- (1.43)

Therefore, we have the following:
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Theorem 1.5.2 A map ¢ : M, — M, belongs to SP), if and only if the map id; ® ¢
from M, ® M,, into M & M, is positive.

We say that ¢ is k-positive if the map id; ® ¢ is positive, and completely positive
if it is k-positive for every k = 1,2,.... The convex cone of all k-positive maps
(respectively completely positive maps) from M,, into M, is denoted by Py[M,,,, M, ]
(respectively CP[M,,, M,]).

Theorem 1.5.3 For a linear map ¢ : M,, — M, the following are equivalent:
(1) ¢ is completely positive,
(i) idpan ® ¢ is positive,

(iii) ¢ belongs to SPyan,

(iv) Cy is positive.

Proof.  Since the convex cone (M, ® M,,)" is self-dual, the equivalences between
(i), (iii) and (iv) follows from Theorem 1.5.2. By the relation

(idy ® Adg)(a®b) = a® (s*bs) = ([ ® )" (a®b) (I} ® s),

we see that every map in SP,, ., is completely positive. o

For a =3, ; aij|i)(jl and b = ¥, ; bi;]i)(j| in M, the Schur product aob is given
by aob =3} aibi|i)(j|. For a positive a € M., the map

Yo:1x—aoux, x e M, (1.44)

is a completely positive map whose Choi matrix is given by
Cx, = Yl @[] = ) ais |Gl
i, 2%

which is positive. Considering the partial transpose Cga, we see that Cy,, is separable
if and only if it is diagonal by Theorem 1.4.3.
By the statement (iii) of Theorem 1.5.3, every completely positive map ¢ is of

¢ = Ad,

el

the form

for a finite family {s; : i € I} of m x n matrices. This is called a Kraus decomposition
of ¢. This decomposition is obtained from a decomposition of C, = >’ [&;)(&;| into
the sum of rank one positive matrices |£;)(&;|, and so it is far from being unique.
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If we take {|¢;)} to be linearly independent then we can also take a decomposition
¢ = Y, Ad,, so that {s;} is linearly independent m x n matrices.

A state o € M, ® M, is called k-block-positive if {(|p|¢) = 0 for every vector
|¢) € C™ ® C™ with SR|¢) < k. Since {|¢XC],Cy) = (C|Cy|(), we also see that ¢
is k-positive if and only if Cy is k-block-positive. The convex cone of all k-block-
positive matrices in M,, ® M, is denoted by BPy[M,, ® M,]. We complement the
diagram (1.25) as follows:

L(M,,, M,): SP, & SP, < CP

N

Py,

N

Py
1JC l ! ! ! l (1.45)
In this diagram, SP; and P, are dual to each others with respect to the pairing

(1.40). On the other hand, the duality relation between Sy and Py with respect to
the pair (1.39) may be stated as follows:

Theorem 1.5.4 Fork=1,2,...,m A n, we have the following:

(i) A linear map ¢ : M,, — M, is k-positive if and only if {o,¢) = 0 for every
state o with Schmidt number < k,

(i) A state o € M,, ® M, is of Schmidt number < k if and only if {o,¢) = 0 for
every k-positive map ¢ : M,, — M,.

Compositions of k-positive maps by the transpose map give rise another impor-
tant class of positive maps. We denote by T} the transpose map on M;,.

Proposition 1.5.5 For a linear map ¢ : M,, — M, the following are equivalent:
(i) ¢ o Ty, is k-positive,
(ii) T, o ¢ is k-positive,
(iii) Tk ® ¢ is positive,
(iv) C§ is k-block-positive.

Proof. 'We note that o is k-block-positive if and only if ¢ is k-block-positive, and
so the equivalence between (i), (ii) and (iv) follows from the identities (1.31) and
(1.32). On the other hand, the identity

idy ® (T 0¢) = (T ®T,) o (T ® )
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tells us that (ii) and (iii) are equivalent, because both T} ® T,, and its inverse are

positive maps. o

We say that ¢ is k-copositive when ¢ satisfies the conditions in Proposition 1.5.5,
and completely copositive when it is k-copositive for every k = 1,2,.... The convex
cone of all completely copositive maps will be denoted by CCP, or CCP[M,,, M,]
to specify the domain and the range. Then we have

CCP[M,,, M,,] = SP™",

because CP = SP,,.,. We also see that ¢ is completely copositive if and only if
¢oT,, is completely positive if and only if Cg is positive. We say that o € M,, ® M,,
is copositive when o' is positive.

References: [72], [73], [21], [66], [34], [124], [108],

1.5.3 Faces for completely positive maps

Recall that every face of the convex cone (M,, ® M,)" is determined by a subspace
of C™®C™; for a subspace V, the set of all positive matrices whose range spaces are
contained in V' is a face of (M,, ® M,,)*, and every face is in this form. Therefore,
every face of the convex cone CP[M,,, M,] is also determined by a subspace of the
space M,,, of all m x n matrices.

Proposition 1.5.6 For a given subspace V' of M, xn, the set
Fy :=conv {Ady, : s; € V} (1.46)
is a face of CP[M,,, M|, and every face arises in this way.

For a given p € M,", we denote by CP[ M,,,, M,,; p] the convex set of all completely
positive maps ¢ with ¢(I) = p. We note that ¢ = > Ad,, belongs to CP[M,,,, M,,; p]
Ad,, in
CP[M,,, M,; p], we take the subspace V = span{s; : i € I'}. Then every map in Fy
is of the form ¢ =}, Ad;, with t;, € V. Write ¢, = >, ayis;. Then we have

P(x) = Ztiwtk = Z (Z @iks;"> x <Z Oéjk8j>
k k i J
— Z (; o‘zikajk) S;TS;.

We write 3;; = >, dipajp. Then we see that ¢ € CP[M,,, M,;p] if and only if
2, Biisisy = p, and ¢(1) = (1) if and only if 3, ;(8i; — dij)s}'s; = 0, where 6;; = 1

if and only if } s¥s; = p. For a given completely positive map ¢ = >

el

43



for i = j, and 0;; = 0 for ¢ # j. If {s}s; : 4,5 € I} is linearly independent then we
see that 1) = ¢, that is, the the intersection of Fy and CP[M,,, M,;p] consists of a
single point {¢}. Therefore, we conclude that ¢ is an extreme point of the convex
set CP[M,,, M,;p] whenever {sfs,} is linearly independent. The converse is also
true. We will use the following lemma whose simple proof is omitted.

Lemma 1.5.7 Suppose that {|v;) :i = 1,... n} is linearly independent in C". Then
{lvixv;| 14,7 = 1,...,n} is linearly independent in M,

Theorem 1.5.8 Suppose that p e M and ¢ =),

family {s;} of m x n matrices with Y. ; s¥s; = p. Then ¢ is an extreme point of the

Ads, with linearly independent

1€l
convez set CP[M,,, My,; p| if and only if {s}s; :i,j € I} is linearly independent.

Proof. Suppose that ¢ = > Ady, is an extreme point of the convex set CP[M,,, M,; p]
and ), jaijs;s; = 0. We have to show that o;; = 0. We first consider the case when
a = [ay;] is a Hermitian matrix. We may assume that —I < [a;;] < I by taking a

scalar multiplication. Define

o+(z) = Z Ad,,(z) + Z Q;jsixs;, r € M,y,.
i 0
If we write 6;; + a;; = (5, then we have ¢4 (z) = Z” Bijsixs;. Writing [8;;] = v*,

¢+ (x) = ZZ%i%ijmj = Z trxty,
k

ij k

we have

with ¢ = )] ; Ykjsj- Therefore, we see that ¢, is completely positive. By the same
way, we also see that ¢_ is also completely positive. The relation ¢ = %((;Lr +¢_) tells
us that ¢ = ¢, = ¢_. Considering the Choi matrices of the map x — Z” ;57 TS;,
we conclude that a = [a;;] = 0 by Lemma 1.5.7. For the general cases, we take
conjugate to get >, s @j;sis; = 0. Then we have >, ;(ai; + @;;)sis; = 0. Since
a + o is self-adjoint, we see that a + a* = 0. By the same reasoning, we also have
ia —io* = 0. Therefore, we conclude that & = 1(a + a*) + 2 (ia — ie*) must be
Zero. o

References: [21], [76]

1.5.4 Decomposable maps and PPT states

Recall that a map in SP,, ., +SP""" is called decomposable. Then ¢ is decomposable
if and only if it is the sum of a completely positive map and a completely copositive
map. The convex cone of all decomposable maps will be denoted by DEC[M,,,, M,,]
or just by DEC, and the corresponding convex cone of matrices in M,, ® M, is
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denoted by DEC(M,,, ® M,,) or DEC whose member is the sum of a positive matrix
and a copositive matrix. On the other hand, the linear map corresponding to a
PPT matrix will be also called a PPT map, and the convex cone of all PPT maps
is denoted by PPT[M,,, M, ] or PPT. A map is a PPT map if and only if it is both
completely positive and completely copositive. We may summarize as follows:

L(M,,,M,): SP;, < PPT c CP c DEC < P

Lic ! ! l ! (1.47)
M,®M,: & < PPT < (M,®M,* < DEC < BP;
Suppose that C7 and C5 are closed convex cones in a finite dimensional real

vector space X. Then the identity (C; + C3)° = C] n C5 is easily seen. We also
have a clear inclusion (C; n Cs)° o C} + Cf, from which we have

CinCoc (C1+C5)°=C"nC5° =CpnCs.
Hence, we have the relations
(Ch +Cy)° =07 n (3, (CynCy)° =C7 + C3, (1.48)

for closed convex cones (' and C5. Therefore, we see that two convex cones PPT
and DEC are dual to each other with respect to the pairing (1.40). On the other
hand, PPT and DEC are dual with respect to the pairing (1.39).

Theorem 1.5.9 A linear map ¢ : M,, — M, is decomposable if and only if the
inequality (o, ¢) = 0 holds for every PPT state o € M, ® M,,.

In view of two diagrams (1.45) and (1.47), it is natural to look for any relations
between PPT and Sy, or equivalently those between DEC and P,. We first note that
S1[M,, ® M, = PPT[M,,® M,] holds if and only if DEC[M,,, M,,| = P1[M,,, M,]
holds. Theorem 1.3.4 tells us the relation DEC[M,, My] = Py[M,, Ms] holds, by
which we also have

S1[My ® M| = PPT [ My ® M,].

It was also shown in [129] that the following identities
DEC[ My, M3]| = Py[M,, Ms], DEC[ M3, My| = Py[ M3, Ms)|
hold which are equivalent to S;[M, ® M3] = PPT [ My ® Mj].
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By the example (1.33), we know that the strict inclusion
Si1[Ms ® Ms] & PPT[Ms® Ms]
holds in M3 ® Ms;, and so we have
DEC[M;, Ms] S Py [Ms, Ms].

We will see a concrete example for this strict inclusion in the next section. It was
shown in [18] that the following inclusion

]P)Q[Mg, M3] - DEC[Mg, Mg] (149)
holds for a special class of linear maps, and the equivalent dual inclusion relation
SQ[Mg ® Mg] c PPT[Mg ® Mg]

had been conjectured in [100]. The relation (1.49) was proved in [133], and the
relation P,,_1[M,,, M,,] € DEC[M,,, M,] is conjectured in [26].

It is also an interesting question to ask how large Schmidt numbers are attained
by PPT states. It is known [17, 65, 14] that PPT states may have arbitrary large
Schmidt numbers when we increase the size of matrices. It is equivalent to look for
indecomposable k-positive maps for large k. See [10]. In the case of m > 3 and
n = 4, it is unknown if there exists a PPT state with Schmidt number greater than

2, or equivalently if there exists an indecomposable 2-positive map.

References: [129], [18], [100], [133], [17], [65], [26], [14], [10]

1.6 Nontrivial examples of positive maps

In this section, we exhibit Tomiyama’s examples of linear maps which distinguish
k-positivity for different k’s, by considering the line segment between the trace map
and the identity map, which are located at the center and the boundary of the
convex cone PPy, respectively. We also give two examples of indecomposable positive

maps by Choi and Woronowicz.

1.6.1 Tomiyama’s example of k-positive maps

In this section, we will explore examples of positive maps which are not completely
positive. By the strict inclusion (1.13), we also have the following strict inclusions
of convex cones in the space H(M,, M,);

46



We first look for explicit examples to distinguish the above convex cones.

We recall that the trace map %Trn is located in the center of the convex cone
CP, and the identity map id,, generates an extreme ray of P;. We consider the line
segment between these two maps to define

1
dr=(1—=XN)=Tr, + \id,, —0 < A< +0. (1.50)
n

It is clear that ¢y € CP for A € [0,1], and ¢, € P; implies A < 1. We have

ST ! APVITPRPp
Cyy = Z ) ® T5ijfn + A Z i) @ [i){J]
i,j=1 1,j=1

1— A
= I, ® I, + Nw)w|,

with |w) = S [)|i) € C*® C*. We take [¢) = ¥, [id}i) with SR|¢) = k. If
¢y € P, then we have

0 < {(Cy,, [OXCI) = %k + Ak? = %[1 + A(nk —1)],

from which we get a necessary condition

-1
<A<l1 1.51
nk —1 ( )
for ¢, € Py. When \ = %, the map ¢, is the scalar multiplication of the map
Tnk = KTr, —id,, k=1,2,...,n, (1.52)

whose Choi matrix is given by
Cr,, =kl ® 1, — |wXw|.

In order to show that (1.51) is also sufficient for ¢, € Py, it suffices to show that 7,

is k-positive. For this purpose, we need the following:

Proposition 1.6.1 For a linear map ¢ : M,, — M, and k = 1,2,... n, the follow-
ing are equivalent:

(i) ¢ is k-positive,
(ii) Ad,o@* is completely positive for every rank k projection p in M,y,,

(iii) (I, ® p)Cyx (L, ®p) € M,, ® M,, is positive for every rank k projection p in
M,,.

(iv) (p®1L,)Cy(p®1,) € M, ® M, is positive for every rank k projection p in M,,.
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(v) Zf,j=1 1EE|@9(|€)E;]) € My ® M, is positive for every orthornormal family
{&:i=1,2,...,k} in C™,

(vi) 2ij=1 || ® (| )X¢;5]) € My, ® M, is positive for every orthornormal family
{&:i=1,2,...,k} in C™.

Proof. In order to prove (i) = (ii), we suppose that ¢ is k-positive and p € M,
is a rank k projection. Take a unitary u € M,, which sends C* x {0} = C™ onto the
range of p. Then Ad, o Ad, o¢p* is a k-positive map from M,, into M}, and so it is
completely positive by Theorem 1.5.3. Therefore, we see that Ad, o¢* is completely
positive. For the reverse direction, we suppose that (ii) holds, and s is arbitrary
rank k matrix in M,,.,. Take a projection p € M,, such that rankp < k and ps = s,
to see that

{p,Ads) = (¢, Adps) = {(p,Ads 0 Ad,) = (Ad,r 09, Ad,) = (Ad,r, Ad, 0¢™).

By the assumption, Ad, o¢™ is completely positive, and so we have (¢, Ads) > 0 and
conclude that ¢ is k-positive. The equivalence (ii) < (iii) also comes out from
Theorem 1.5.3, since the Choi matrix of Ad,o¢* is just (1, ® p)Csx (I, ® p). Since
Cg+ is the flip of Cy, we see that (iii) and (iv) are equivalent.

We take arbitrary projection p of rank k, and write p = Zle |E(&;| for or-
thonormal family {|¢;):i=1,2,...,k} of C™. Then we have

Z 1604€5| ® B(1€E0),

(P®L)Co(p® L) = Z pls)tlp ® d(|s)<t])
= Z Z )&l s)CE; &5 @ o([s)(t])
- Z €& @ ¢ (Z@ s>|s><t|<t|§]>>

which shows (iv) <= (v). The remaining equivalence between (v) and (vi) is easily
seen by considering the isometry from C* into C™ which sends |i) to |&). o

Proposition 1.6.2 For k =1,2,...,n, the map 7, : M,, — M, 1is k-positive.

Proof.  In order to apply Proposition 1.6.1 (vi), we take an orthonormal family
{|&> i =1,2,...,k} of vectors in C". Then we have 7, 1 (|&)(&;|) = kdi; L, — € )&,
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and so it follows that

Y, DG @ l€x&]) = kZIiXiI@In— >, X ® 16|

ij=1 1,j=1
=kl @ I, — |£)X¢],
with [€) = S [id]¢,) € C*®C™. Now, we conclude that kI ® I,, — [€)(€| = 0 holds
since (£|€) = k. o

Theorem 1.6.3 For k = 1,2,...,n, the map ¢, : M, — M, is k-positive if and
only if A satisfies the inequality

—1
<A<l
nk—1

We note that ¢, is completely copositive if and only if (Cg, )" is positive if and

only if =2 > |\| if and only if
o<1

n—1 n+1
Summarizing, we have the following:

Proposition 1.6.4 The linear ¢ in (1.50) satisfies the following:
(i) ¢y is positive if and only if n_—fl <A<,
(i1) ¢y is completely positive if and only if n;—il <A<,

1

(111) ¢y is completely copositive if and only if n_—jl SAS 9

Therefore, ¢, is either completely positive or completely copositive whenever it

is positive. Especially, there is no indecomposable positive maps among ¢,’s.

References: [20], [125], [120], [126]

1.6.2 The Choi map between 3 x 3 matrices

In the case of n = 3, the map 731 = 2¢_; 2 is located at the end point of the interval
on which ¢, is positive, and its Choi matrix is given by
-1 . . |

Co,=1| -1 - - S -1
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In order to get an example of indecomposable positive map, we adjust the diagonal

part of C,,, as follow:

1 - - . =1 - . . -

L T T (1.53)

-1 - - . -1 . o1
Note that neither the above matrix nor its partial transpose is positive. This is the

Choi matrix of the map defined by

T11 + T3 —T12 —T13
Gen(T) = —Z21 Tog + Z11 —T23 = (x) — =z, (1.54)
—T31 —T32 T33 + Ta2

for x = [z;;] € M3, with

2$11 + T33
¢($) = . 231722 + X1
. 2233 + x99

In order to show that ¢g, is positive, we begin with the following:

Proposition 1.6.5 Let A be an n x n nonsingular positive matriz, and |y a unit
vector. Then A = &) &| if and only if (&| A7) < 1.

Proof.  We have A > |§)(&] if and only if T = A™Y2|¢)&|A™Y2 if and only if
|A72160)] < 1 if and only if (€| A& < 1. o

Now, we see that ¢, is positive if and only if (|0 ){&o|) = [£0){(&o| for every unit
vector |§o) if and only if

(olv(|€op&ol) ey <1

for every unit vector [£) if and only if the inequality

a
R
20+ 28+a 29+ 0

(1.55)

holds for all positive real numbers o, # and 7.

Lemma 1.6.6 The inequality (1.55) holds for all positive real numbers c, B and .
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Proof. Taking x = %, y=2%and z = g, it suffices to show the inequality
1 N 1 N 1 _

242 24y 24z

or equivalently xy + yz + 2z > 3 under the constraint xyz = 1. This comes out by

Y

comparing the arithmetic and geometric means. o

Therefore, we conclude that the map ¢, is a positive map. One may check that
the bilinear pairing of the matrix (1.53) with the PPT matrix in (1.33) is strictly
negative, and so we also conclude that ¢, is not decomposable. This is another way
to see that the PPT state in (1.33) is entangled. The map ¢¢, in (1.54) is usually
called the Choi map.

Theorem 1.6.7 The Choi map ¢a, defined in (1.54) is a positive map which is not

decomposable.

The Choi map ¢, had been extended in higher dimensions in various directions
[121, 89, 18, 132, 90, 41]. See also Section 2.5.

References: [22], [25], [23], [121], [89], [18], [132], [90], [41]

1.6.3 The Woronowicz map from 2 x 2 matrices to 4 x 4 ma-
trices

We also give an example of an indecomposable positive map from M, into M. We
define the linear map ¢y, from M, into My by

do — 2y — 224+ 3w 2z + 2z

(T oYY, —2x + 2y 2z z :
Do <z w) . Yy 2w —2z—w |’ (1.56)

—2y—w 4z + 2w

Then the map ¢y, sends the rank one matrix

(1 @
Pema Jaf?

to
o — 2] + 2]a* -2+ 2a
-2+ 2 2 o}
a 2]a? —2a — |a?

—2a —|al* 4+ 2|al?

The k x k principal submatrix of the left—upper corner has the determinant A, as

follows:
A =2l + |a — 2)?,
Ay = 2|al? + 4,
Az = [afla + 2P,
Ay =0.
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Therefore, we see that ¢ywo(pa) is positive when a # 0, —2. For a = 0, a = —2
and a = 00, the map ¢y, sends

e (V) e () = ()

to the matrices

4 -2 . . 24 -6 - - 3

—92 92 . . -6 2 -2 S :
N . -2 8 . and N R I
4 .20 S —-1 2

respectively, which are positive. Therefore, we see that the map ¢y, is a positive
map. We note that ¢(p,) is of rank three for every aw € C U {00}. The map ¢y, is

called the Woronowicz map. The Choi matrix of ¢y, is given by

4 -2 . . 22
2 2 2 .
1 .
4 )
Coyo =
2 2 . 3
1 .
) 2 -1

We will see in Section 2.6 that the map ¢y, in (1.56) is an extremal positive
map. If ¢y, is decomposable, then it must be of the form Ad, or T o Ad,, and so
the Choi matrix is of rank one or its partial transpose is of rank one. We see that
neither is the case, and so ¢y, is not decomposable.

References: [130], [49]

1.7 Isotropic states and Werner states

We continue to look for conditions for k-superpositivity of the maps by Tomiyama in
the last section, or equivalently, determine the Schmidt numbers of the corresponding
Choi matrices and their partial transposes. These are isotropic states and Werner

states, respectively.

1.7.1 Isotropic states

We return to the map ¢, defined in (1.50) which is completely positive if and only
if n;—il < A <1 by Theorem 1.6.3. In this case, we have the state
1—A 1—A
O\ ‘= Cqs)\ = T [n ®[n + )\|W><W‘ = T CTr + >\Cid (157)
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which is called the isotropic state. We recall that the vector |w) was defined by
lw) = >" | |i). We have already seen in Proposition 1.6.4 that 0, is positive if and

only if ¢, is completely copositive if and only if n;_ll <A< and so gy is a PPT

+1’
state if and only if
-1 1
A<
-1 n+1
holds.
When A = — 1, one can show that
n 1
=—1I1,®1, — 1.
0 = T ® L — Xl (1.5%)

is separable. In fact, we modify the vector |¢) given in (1.30) to define
Gty = (Ii) + BIk)) @ (i) — Blk)) = i) — Blik)y + Blki) — |kk)

with a complex number § of modulus one, and put

1
%k = 7 Z |Gt <G|

B=%1,+i

for each ordered pair (i, k) with ¢ # k and i,k = 1,2,...,n. Summing up all of
them, we get the separable state

2(n —1) Z [iiyCii| +2 ) |ik)ik| — 2 <|w><w| - |n'><n'|>

i#k i=1

—an |id)(ii| + 2 Z ik )(ik| — 2|w)Xw].
i#k
Adding the separable state 2(n—1) Z:.;j i )(ij|, we finally get the state g, in (1.58)
up to scalar multiplication. Therefore, we see that o, € S, if and only if p) € &1, in
case of A < 0.
We proceed to determine the Schmidt number of the state o), or equivalently
look for the condition on A for which ¢, is k-superpositive. In order to determine

the Schmidt number of the state p), we consider the bilinear pairing with ¢, for

o=~

<Q,\,QM>=n(¥+)\) (1_M+u)+(n2n)l_)\l_qu(nQn))\u

n n n
= A\u(n? —1) + 1.
Therefore, oy € Sj, implies that (g, 0,) = 0 with y = —L, which holds only when
A< Z]; . Therefore, we have the following necessary condition

-1 nk —1
<AL )
n?—1 n?—1

(1.59)

53



for ¢, € Si. Since

nk—l_ —1 +k ) —1
n2—1 n2—-1 n nz—1),’

we see that A\, := n’;j divides the interval [n;—il, 1] into n subintervals with the

same lengths.

In order to get sufficient conditions for ¢, € SIP;, we will use special kinds of
symmetries of the identity map id,, and its Choi matrix Cig. We call U ® V' acting
on C"®C™ a local unitary when both U and V' are unitaries acting on C” and C",
respectively. It is clear that both (U ® V)|¢) and |() € C™ ® C" share the same
Schmidt ranks, and so it follows that both states

Adpgv(0) = (U@ V*)o(U®YV)
and o have the same Schmidt numbers. For a linear map ¢ : C"™ — C", we have
{a®b, Adugy(Cys)) = (Adyrgyr(a®b), Cy)
= (Adyr(a) ® Adyr(b), Cy)
= (Adyr(b), ¢ o Adyr(a))
= (b, Ady o¢ o Adyr(a))
= (a®b, Cady ogord,r )
and so it follows that
Adyev(Ce) = Cady opord, - (1.60)
Two nxn unitaries U and V satisfy Adpgy (Ciq) = Ciq if and only if Ady o Adyr = id
if and only if UTV = AI,, with |A\| = 1. Especially, we have
Adyer(Cia) = Cia,

for every unitary U.
Now, we look for linear maps ¢ € L(M,, M,) satistying Adygs(Cy) = Cy for
every unitary U. This holds if and only if Adg o¢ o Adyr = ¢ if and only if

{RXLL, (1)) = URXUU*, ¢(U]i)GIU™T))- (1.61)
Now, we suppose that ¢ satisfies (1.61) for every unitary U, and proceed to determine
the (k,{) entry
kXX, o101

of ¢(|i){j]) for those ¢. We first consider the case when one of i, j, k and ¢, say i, is
different from others. In this case, we take the unitary U satisfying Uiy = —|i) and
Uley = |ty for v = j, k and ¢, to see that (|k){|, ¢(|i)(j|)) = 0. Therefore, it remains

to determine

Al ey, i<l o<1, kXL ¢(10<il)y,  <Iixil, o(1axE)),
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with ¢ # j and @ # k. Taking the unitary U with Ul|i) = |i) and Ulj) = i|j), we see
that {|7)(i|, ¢(|i){j|)) = 0. Taking the unitaries permuting |i)’s, we also see that the
values of

a = k)R e(10l)), B =il o))

are independent on the choices of 7, j and i, k, respectively. Now, we take the unitary
U with Uliy = Z5(Ji) + |7)) and U|j) = (/i) — [5)) to see that

a+ B =l o) + 5l e (10,
= %(<Ii><il, ¢(10)<i])) + <1< o(15)<1))

for i # j. Taking finally the unitary U with Uli) = |j) and U|j) = |i) for i # j, we
have

0l o(laxCl)) = <5<l ¢(15)< 1),

for ¢ # j, and so we also have

Al ¢(|0l)) = o+ 5

for every 7. Therefore, we have the following:

Proposition 1.7.1 For a map ¢ : M,, — M, the following are equivalent:
(i) Adper(Cy) = Cy for every unitary U,
(ii) Adgog o Adyr = ¢ for every unitary U,

(iii) ¢ = aTr, + pid, for complex numbers o and [3.

For a given ¢ € P1[M,,, M,,], we define the linear map
T[¢] = J AdU Ogb o AdUT dU,
U(n)

where the integration is taken over the unitary group U(n) of all n x n unitaries with

respect to the Haar measure. More precisely, this map is defined by the relation

(Te], ) = )<AdU o¢ o Adyr,)dU, ¢ € L[ My, My].

U(n

Because ¢ is k-superpositive if and only if Adg oo Adyyr is k-superpositive for every
unitary U, we see that if ¢ is k-superpositive then T[¢] is also k-superpositive. It
is also clear that T'[¢] satisfies the condition (ii) of Proposition 1.7.1, and so we
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have T[¢] = aTr, + fid,, for complex numbers o and . In order to determine the

coefficients o and (3, we first note the relations

(Adg og o Adyr, Tr ) = (¢, Adyx oTr o Ady) = (¢, Tr)
(Adg o o Adyr,id) = (¢, Ady= cid o Ady) = (¢,id),
from which we have
(p,id) = (T[¢],id) = (aTr + Bid,id) = na + n?p
(¢, Tr) =(T[p], Tr) = {aTr + Bid, Tr) = n*a + nf.
Solving this equations, we have

1 . 1

o =

(¢,id, — L Tr ). (1.62)
We summarize as follows:

Proposition 1.7.2 For a linear map ¢ : M,, — M,,, we define complexr numbers «
and B by (1.62). Then we have T[¢] = aTr,, + pid,,.

We take the positive map ¢ whose Choi matrix is given by Cy = 7|¢){(| with
¢) = 3F | Jii) e C"®C™. Then Cy has Schmidt number &, and ¢ is k-superpositive.
We also have

n—=k 3 nk —1
o = =
n?—1’ n? —1
and T'[¢] = ¢», with Ay = Z’;j Therefore, we conclude that ¢,, is k-superpositive.

We have already seen that o) with A = n;—fl is separable, and so it belongs to Sy for
every k =1,2,...,n. Therefore, we conclude that (1.59) gives rise to the necessary
and sufficient condition for g, € S, and summarize as follows:

Theorem 1.7.3 The linear map ¢y defined by (1.50) is k-superpositive if and only
if the isotropic state oy in (1.57) belongs to Sy if and only if \ satisfies
—1 <)< nk—1

n2—1 nz—1"

References: [128], [59], [124], [9], [55]

1.7.2 Werner states

It remains to look for conditions on A for which gy € S*, or equivalently, ¢} € Sj.
We recall that ¢! is positive if and only if n__—ll <A< n+r1 For those \’s, the state
o} is called the Werner state, which is given by

QE = (C%)F = C¢AOT = C¢w
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where the map v : M,, — M,, is defined by
T
Pyi=¢yoT = (1—>\)%—|—/\T.

Note that 1, is positive if and only if ¢, is positive if and only if n_—fl < A< 1.
We also recall that o} is separable if and only if gy is separable if and only if
<A< n+r1 by Theorem 1.7.3.

n2—1
In order to determine the Schmidt number of o}, we take |(;;) = |ij) — |ji) €

C" ® C™ with Schmidt rank two. Summing up all of them, we have
216Xl = D (15| = liy(il) = Cn = Cr,
i<j i#]

which is the Choi matrix of the map

—1 1 —1
-1/(n-1) = P-1/(n— T=(1- —Tr, —Tna
Y_1/tn—1) = P—1/(n—1) © < n—l)n r +n—1

up to a scalar multiple.

Theorem 1.7.4 For k =2,3,...,n, the Werner state o belongs to Sy, if and only
if ¥y is k-superpositive if and only if if and only if the following

-1 <A< L
n—1 n+1

holds.

Proof.  Suppose that ¢} € S;. Then the positivity of ¢} implies the condition.
When A = —L we have seen that QE €Sy, ¢ Sp. For A = - we know that

n—17 n+17

eSS o

Therefore, we see that the state g} has Schmidt number two whenever it is not
separable. We exhibit the properties of Werner states corresponding to isotropic
states. By the relation (1.60), we have

AdU®U<CT) = CT.
This property actually characterizes the Werner states as follows:

Proposition 1.7.5 For a map ¢ : M,, — M, the following are equivalent:
(i) Adygu(Cy) = Cy for every unitary U,
(ii) Ady oy o Adyr = 4 for every unitary U,

(iii) ¢ = oTr,, + BT, for complex numbers o and 3.
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Proof.  We replace ¢ in Proposition 1.7.1 by ¥ = T o ¢ to get the condition (iii).
From Proposition 1.7.1 (ii), we also have

Y=To¢p=ToAdgopoAdyr = Ady oT o ¢ o Adyr = Ady oy o Adyr,
which is (ii). This is equivalent to (i) by (1.60). o

For a given ¢ € P1[M,,, M,,], we define the linear map

W] = L( | Ady ot 0 Adyr dU,

as the definition of T'[¢]. Then we have
W[¢] = aTr,, + 5Ty,

with ] |
1 1

n2_1<¢>Trn_;Tn>a B: n2_1<waTn_gTrn>
by the exactly same method as that of Proposition 1.7.2. We take [() = |12)—|21) €
C"® C" with SR|() = 2. We also take ¢ € L(M,, M,) with Cy = [(){¢]. Then we

have (¢, T,,) = —2 and (¢, Tr,,) = 2, and so, we see that the following linear map

o =

n(n + 2) W) =

2n=1) =3 (Tr = T) =¢-1)m-1)

is 2-superpositive, which recovers the Schmidt number of the corresponding Werner
states.

Finally, we determine A for which ¢, is k-copositive, or equivalently, 1, is k-
positive, for k = 2,3, ..., n. Suppose that 1, € P,. Then we have

0 <{Wn, Vo1jn—1)) = —(n+ 1A+ 1,

and so A\ < n+r1 This implies that ¢, is completely positive by Proposition 1.6.4,
and so k-positive. Because ¢_j/,—1) is both 1-copositive and completely copositive,

we have the following:

Theorem 1.7.6 For k =2,3,...,n, the map ¢, is k-copositive if and only if ¥y is
k-positive if and only if the following inequality

! <A< L
n+1

n—1
holds.

Together with Theorem 1.7.5, we see that 2-superpositivity and 2-positivity co-
incide for the linear maps ¥,’s. We summarize in Figure 1.2.

References: [126], [128]
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0,
—1 —1 —1 1 nk—1 1 )\
n—1 nk—1 n2—1 n+1 n2—1

L SP? = CCP = P?

Figure 1.2: Various kinds of positivity of the map ¢, = (1 — /\)%Trn + Aid,,

1.8 Mapping cones and tensor products

Various convex cones of positive maps considered so far are invariant under compo-
sitions by completely positive maps. This property implies further characterizations
of various kinds of positive maps in terms of composition, ampliation and tensor
products. In order to explain them in a unified framework, we exhibit an iden-
tity which relates compositions and tensor products of linear maps between matrix
algebras.

In this section, we use the notations M4 and Mpg for matrix algebras which
are acting on the finite dimensional spaces C* and CP, respectively, in order to
emphasize the roles of parties in the tensor product. The convex cone CP[M 4, Mp]
will be abbreviated by CP4p, sometimes just by CP; the identity map on M, will
be denoted by id4. For sets K; and K5 of linear maps, K; o Ky will denote the set
of all ¢; o ¢ with ¢; € K; for i = 1,2. We also denote by Cg the set of of all C,,
with ¢ € K.

1.8.1 Mapping cones of positive maps

A closed convex cone K of positive linear maps in H(M 4, Mp) is called a right
mapping cone if K o CPy4 ¢ K, and a left mapping cone if CPggo K < K. A
closed convex cone K is also called a mapping cone when CPgg o K 0o CPy4 ¢ K
holds. Since idy € CP44 and idg € CPgp, it is clear that K is a mapping cone if
and only if it is both left and right mapping cones. The following proposition is an
immediate consequence of the identity (1.42);

@og,0) =L, c0)={h,50¢").

Proposition 1.8.1 Suppose that K is a closed convexr cone satisfying the relation
SP; ¢ K < Py. Then K 1s a right mapping cone if and only if K° is a right mapping

cone.
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Proof. Note that K is a right mapping cone if and only if (¢ 0 g,7) > 0 for every
¢ K, o€ CPyy and ¢ € K°. By the identity (1.42), this is the case if and only if
{(p,poc*) =0 for every p € K, 0 € CP44 and ¢ € K° if and only if K*° is a right
mapping cone, since (CP44)* = CPgy4. o

It is clear that SIP is a mapping cone, and so all the convex cones in the mapping
space H(My, Mp) appearing in the diagrams (1.45) are mapping cones. If K; and
K5 are mapping cones then their intersection K7 n K5 and their convex hull K7 + K,
are also mapping cones. Therefore, all the convex cones of H(M,, Mpg) appearing
in (1.47) are also mapping cones. We note that X' < K o CP holds automatically,

and so we have (K o CPP)° ¢ K° in general.

Proposition 1.8.2 A closed convex cone K of positive maps in H(Ma, Mp) is a
left mapping cone if and only if K° = (CPgg o K)°, and it is a right mapping
cone if and only if K° = (K o CP44)°. It is a mapping cone if and only if K° =
(CPpp o K o CPya)°.

As another application of the identity (1.42), we see that ¢ € (K o CP)° if and
only if (¢,1p ooy = 0 for every 1) € K and o € CP if and only if (¢)* 0 ¢,0) = 0 for
every ¢ € K and ¢ € CP if and only if * o ¢ € CP for every ) € K. In short, we
have

(K oCP)® = {¢p € H(M,, M,) : v* o ¢ € CP for every 1) € K},

which coincide with K° if and only if K is a right mapping cone by Proposition
1.8.2. Therefore, we see that the dual cone of a mapping cone K can be described
in terms of composition as well as bilinear pairing, and this is possible only when K

is a one-sided mapping cone. We summarize as follows:

Theorem 1.8.3 For a closed convex cone K of positive maps in the space H(Ma, Mp),
the following are equivalent:

(i) K is a right mapping cone,

(ii) ¢ € H(Ma, Mp) belongs to K° if and only if 1¥* o ¢ is completely positive for
every ¢ € K.

The following are also equivalent:

(iii) K is a left mapping cone,

(iv) ¢ € H(My, Mp) belongs to K° if and only if ¢ o * is completely positive for
every ¢ € K.

References: [114], [116], [106], [107], [117], [36]
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1
0| == a®bhF—=% |hoood
M, 02 - Mp,

Figure 1.3: The map ¢1 ® ¢2 sends G, to Gy, o504

1.8.2 Tensor products and compositions of linear maps

So far, we have described (K o CP)° and (CPo K')° in terms of compositions. We are
going to describe them in terms of tensor products of linear maps. To do this, we
need an identity which connects compositions and tensor products of linear maps.
For given linear maps ¢; : My, — Mp, with ¢ = 1,2, we note that every element of
the domain M4, ® M4, of the map ¢; ® ¢, can be written as the Choi matrix C, of
a linear map o : Ma, — Ma,, and Gy, ,.4+ belongs to the range Mp, ® Mp,. See
Figure 1.3.

For every b; € Mp, and by € Mp,, we have

(b1 @ bz, Cyyop0pt )81 B, = (b2, P2(0 (67 (01)))) B,
= (0" (¢3(b2)), 07 (b1)) 4,
:Zi,j<0*(¢§(b2))v ”>A1<¢1(b1)7 e a,
= 3, ;b2 da(0(€)))maCbrs dnef ) m,
= Zm-<bl ®b27¢1( ;4}) ® Pa(o(e m))>BlBQ,

where {e .} denotes the matrix units of M4. Therefore, we have
Conorost = Ly $1(€1)) ® da(0(ei))) = X, (01 ® d)(ef}) @ 0 (ef})),

which gives rise to the following:

Theorem 1.8.4 For linear maps ¢; : Ma, — Mp, fori=1,2 and o : My, — Ma,,
we have the identity

C(bzoaoqb’l" = (¢1 ® ¢2)(Ca)- (163)

Since Adpygy = Ady ® Ady, we see that the identity (1.60) is, in fact, a special
case of (1.63).

References: [80]
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1.8.3 Roles of ampliation

We are going to describe the dual cones in terms of ampliation idy ® ¢ or ¢ ® idp.
To do this, we consider the following diagrams

M,y 94, My My —2— My
E :
My —2— My Mg 92, Mg

which will give us formulae involving id4 ® ¢ and ¢ ® idg. Indeed, we have

(g, 00y ={poc* ) ={(Cpopr, Cy) = {(ida ® ¢)(Cypx), Cy),
(p,009) ={po¢*,0%) ={Cyogs, Cox) = {(# ®1dp)(Cy), Cox ).

From the first line, we see that ¢ € (K oCP44)° if and only if the ampliation id4 ® ¢
sends (M4 ® M4)* to Cge. We also see that ¢ € (CPpp o K)° if and only if ¢ ®idp
sends Ck to (Mp ® Mp)* from the second line. Therefore, we have the following:

Theorem 1.8.5 For a closed convex cone K < H(My, Mp) of positive maps, the

following are equivalent:
(i) K is a right mapping cone,
(il) ¢ € K° if and only if ida ® ¢ sends positive matrices to Cgo.
The following are also equivalent:
(iii) K is a left mapping cone,
(iv) ¢ € K° if and only if ¢ ®idg sends Ck to positive matrices.

When K¢ is given by the mapping cone SPy, the statement (ii) of Theorem 1.8.5
tells us that ¢ € SPy[M,4, Mp] if and only if id 4 ® ¢ sends every state in M4 ® Mp to
a separable state. In this context, a 1-superpositive map is also called entanglement
breaking. On the other hands, the statement (iv) with K° = DEC and K° = Py

gives rise to following:

Corollary 1.8.6 For ¢ : My — Mg, we have the following:
(i) ¢ is decomposable if and only if p®idp sends PPT states to positive matrices,

(i) ¢ is k-positive if and only if ¢ @ idp sends states with Schmidt numbers < k

to positive matrices.
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Every vector |() = Zle |€>Ini> € C* ® C4 has Schmidt number < k whenever
¢ < k. Therefore, we see that ¢ is k-positive if and only if

4

(0 ®@ida)(|C)XC]) = Z ¢(16)X1) & [yl

2,7=1

is positive whenever ¢ < k if and only if Zf i1 M)l @ ([§:)<E;1) is positive when-
ever { < k. Compare with the conditions (v) and (vi) of Proposition 1.6.1.

The dual cone of a mapping cone can be also explained in terms of Choi matrices
of maps in the dual cone. To do this, we consider the following diagrams

My —245 My, My —2 My
qu yza
MB —>w* MA MB e MB

to get the identities

(g, o) =P*0¢,0)={(ida®¥*)(Cy),C,),
(p,000) ={poy* 0) ={(Y®idp)(Cy), Cs).

Therefore, we see that ¢ € (K oCPa4)° if and only if id4 ®* sends Cy to a positive
matrix for every ¢ € K, and ¢ € (CPpp o K)° if and only if ¢ ® idg sends Cy to a
positive matrix for every ¢ € K.

Theorem 1.8.7 For a closed conver cone K < H(My, Mg) of positive maps, the
following are equivalent:

(i) K is a right mapping cone,

(i) ¢ € K° if and only if (ida ® ¢¥*)(Cy) = 0 for every i € K.
Furthermore, the following are also equivalent:

(iii) K is a left mapping cone,

(iv) ¢ € K° if and only if (¢ ®1idp)(Cy) = 0 for every ¢ € K.

When we take K = SP}, this gives us the following characterization of Schmidt
numbers of states:

Corollary 1.8.8 A state 9 € Ma® Mp belongs to Sy if and only if (ida®1)(0) = 0
for every k-positive map ¢ : Mg — My if and only if (v ® idg)(0) = 0 for every
k-positive map 1 : My — Mp.
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The most important case occurs when k = 1; a state o is separable if and only
if (¢ ®idg)(e) = 0 for every positive map ¢ : My — Mp. If we take ¢p = T, the
transpose map, then we have the PPT criterion; if ¢ is separable then (T®id)(o) = 0.
We see that (o, T) = 0 if and only if (o', Ciy) = 0. This condition tells us that the
sum of some coefficients of o is nonnegative. Therefore, we see that the condition
(v ®idp)(e) = 0 is much stronger than (p, 1) > 0 to detect entanglement.

References: [70], [113], [114], [60], [34], [124], [27], [36], [80],

1.8.4 Tensor products of positive maps

The dual cone may be also described in terms of state C;q with the maximal Schmidt

number. For this purpose, we consider the following diagrams

My —2— My My —2 M,
lidA lidg
My — My My -2 My,

together with the identity

(b, 000y ={p*,9p* 0 0™) = Yo" %) = (¢ ®V)(Cia,), Cox),
<¢7 Yo U> = <1/}* ° @, U> = <(¢* ® w*)<cid3)7 CU>7
to get the following:

Theorem 1.8.9 Suppose that K is a closed convez cone of positive maps in H(M4, Mpg).

Then the following are equivalent:
(i) K is a left mapping cone,
(ii) ¢ € K° if and only if (0 ®¢)(Cia,) = 0 for every ¢ € K.
Furthermore, the following are also equivalent:
(iii) K is a right mapping cone,
(iv) ¢ € K° if and only if (¢* @ *)(Ciap) = 0 for every i € K.

We note that the dual cones are described in terms of images of Ciq under the
tensor product ¢ ® ¥ in Theorem 1.8.9. Finally, we explore properties of ¢ ® 1
themselves in terms of dual cones. To do this, we put arbitrary 7 in the places of
id4 to get



together with the identity

(o oor,¢)=Woro0d)={PpoTo¢"0)={¢®@Y)(Cr) Co).

Then we see that ¢ € (CPggo K oCPy44)° if and only if ¢®1) sends positive matrices
to positive matrices for every 1) € K, that is, p®1) is a positive map for every ¢ € K.
Therefore, we have the following;:

Theorem 1.8.10 For a given closed convexr cone K < H(Ma, Mpg) of positive

maps, the following are equivalent:
(i) K is a mapping cone,
(ii) ¢ € K° if and only if ¢ ® ¥ is a positive map for every ¢ € K.

When K = SPj, Theorem 1.8.10 tells us that v ® ¢ is positive for every k-
superpositive map ¢ if and only if idy ® ¢ is positive. Noting that id; is a typical
example of SP;, one may ask if id, in the definition of k-positivity may be replaced
by another k-superpositive map. When we fix a matrix s with rank k, it is easily
seen that the map id; ® ¢ is positive if and only if Ad, ®¢ is positive, using singular
value decomposition of s.

We also put two identity maps in the diagram as follows:

id
My —=> M,

[ias

My —2 Mg

Then we get the identity (ida ® ¢)(Cia,) = Cy, and have the following:

Proposition 1.8.11 A linear map ¢ : My — Mpg belongs to a convex cone K if
and only if (ida ® ¢)(Cia,) belongs to Ck.

References: [117], [80]

1.8.5 Entanglement breaking maps

It is worthwhile to collect applications of results in this section for K° = SPj to
get equivalent conditions for k-superpositivity of a map ¢, or equivalently Schmidt
numbers of the state C.

Corollary 1.8.12 For a linear map ¢ : My — Mp, the following are equivalent:
(i) ¢ is k-superpositive, that is, ¢ = Y., Ad,, with ranks; <k,
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(ii) Cy belongs to Sy, that is, has the Schmidt numbers < k,
(iil) ¥* o ¢ is completely positive for every k-positive map ¥ : My — Mp,
(iv) ¢ o™ is completely positive for every k-positive map 1) : My — Mg,
(v) ida ® ¢ sends every state into Sk,
vi) ¢ ®idg sends every matrix in BPy to a positive matriz,
(vi) ¢ Y
(vil) (ida ®¥)(Cy) = 0 for every k-positive map 1 : Mg — Ma,
(vill) (¢ ®1idp)(Cy) = 0 for every k-positive map ¢ : My — Mp,
(ix) (¢ ®1)(Cia,) = 0 for every k-positive map ¢ : Ma — Mp,
(x) (¢* ®¢Y*)(Ciay) = 0 for every k-positive map 1) : My — Mg,
(xi) ¢ ® 1) is positive for every k-positive map ¢ : My — Mp.
(xii) (ida ® ¢)(Cia,) belongs to Sk.

If s = |£)(n]| is of rank one, then we have

Ad,(a) = |)}&lal&)nl = (€lalg) In)nl = <a, [EXED myl.

Therefore, we see that ¢ is 1-superpositive if and only if ¢ is of the following form
$la) = > La, veyur (1.64)
k

with positive matrices u;, and vg. This is called the Holevo form.

References: [114], [56], [61], [3], [27], [36], [80]

1.9 Historical remarks

Positive linear maps have played crucial roles in the theory of operator algebras
since the Gelfand—Naimark—Segal construction in the 1940’s, by which positive linear
functionals give rise to =representations of abstract C*-algebras. This construction
was extended for completely positive linear maps into operators in the 1955 paper
by Stinespring [110], where a linear map ¢ was defined to be completely positive
when id; ® ¢ is positive for every k = 1,2,.... Note that a linear functional on a
matrix algebra into scalars is completely positive if and only if it is just positive by
Theorem 1.5.3. See also [125] for more general situations. Stinespring representation
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theorem tells us that every completely positive map is of the form V*r(-)V for a
*~homomorphism 7 and a bounded linear map V. See [92].

Stgrmer defined the notion of decomposability in his paper [111] of 1963 by maps
of the form V*7(-)V with Jordan homomorphisms 7 which preserve Hermiticity and
square of Hermitian elements. It was shown later in [112] that a map is decomposable
in this sense if and only if it is the sum of a completely positive map and a completely
copositive map. In the paper [111], extremeness of the map Ad; in Theorem 1.2.4
had been considered in more general situations, and all the extreme points of the
convex set Py [ My, My, I of all unital positive maps between 2 x 2 matrices have been
found explicitly, from which Theorem 1.3.4 follows. We followed [118] and [6, 7] for
the proofs of Theorem 1.2.4 and Theorem 1.3.4, respectively. The maps Ad, also
play important roles in matrix theory. Suppose that a map ¢ : M,, — M, satisfies
#»(0) = 0 and (1.12). If we suppose further that ¢ is bijective or continuous then it
is known [109, 87, 104] that ¢ = Ad; or ¢ = Ad, oT for a nonsingular s € M,.

Choi matrices have been introduced by de Pillis [32] in 1967, where Proposition
1.4.1 was shown. Propositions 1.4.2 and Theorem 1.5.3 were given by Jamiotkowski
[67] in 1972 and Choi [21] in 1975, respectively, after whom the one-to-one cor-
respondence ¢ +— Cg4 is now called the Jamiotkowski-Choi isomorphism. Kraus
decomposition of completely positive maps were found independently [72, 73]. We
note that the matrix Y, ; |7){i| ® ¢(|i)(j|) has been considered in [32] and [67],
instead of Cy = >, . [)(j| ® ¢(|i){j|). Recall that the notions of Hermitcity and
1-block-positivity are invariant under taking partial transposes. Further variants
has been considered in [93, 80, 79, 54]. The Choi matrix can be defined for infi-
nite dimensional cases [57, 58, 84, 119, 35, 50, 85, 37| in various situations, and
multi-linear maps between matrix algebras [78, 52, 53]. Since Arveson’s extension
theorem for completely positive maps [4] and Choi’s Theorem 1.5.3 on the corre-
spondence between completely positivity of maps and positivity of Choi matrices,
it has been widely accepted by operator algebraists that completely positive maps
serve as morphisms for operator algebras reflecting noncommutative order struc-
tures, and important notions like nuclearity and injectivity have been described in
terms of completely positive maps. See the survey article [33]. Theorem 1.5.8 on
the extreme points of unital completely positive maps is also taken from [21].

The notion of duality between tensor products and linear maps in (1.39) goes
back to the work of Woronowicz [129] in 1976, where he showed that every positive
maps between M, and Mj are decomposable. For this purpose, he utilized the
duality to get the equivalent claim that for any PPT state o € My ® Ms there
exists a product vector [£)n) € Im o such that |£)|n) € Im o. This is equivalent in
principle to the claim that every 2® 3 PPT state in M, ® Mj is separable, as it was
noticed later by Horodecki’s in the paper [60] of 1996, where the duality between
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S; and Py was also given. Theorem 1.5.4 (i) on the duality between k-positivity
and states of Schmidt number < k was obtained in [34]. The duality between linear
maps through (1.40) was defined in [107]. Duality between separability of states and
positivity of maps can be extended for infinite dimensional cases [115].

The linear map 7,,,,—1 in (1.52) with & = n — 1, which was given by the 1972
paper of Choi [20], is the first concrete example of a linear map which distinguishes
complete positivity and k-positivity. The equivalent condition (iv) of Proposition
1.6.1 to the k-positivity is implicit in [20] and stated in [120] clearly. The condition
(vi) of Proposition 1.6.1 together with Theorem 1.6.3 is due to Tomiyama [126].
After the first example of indecomposable positive map in [22], Choi and Lam [25]
constructed the Choi map ¢q, in (1.54), which is known to be extreme [42]. The
linear map from M, into M, given by (1.56) was constructed by Woronowicz [130] in
the contexts of non-extendibility which has a close relationship with extremeness of
positive maps. There are other examples [122] of indecomposable maps between M,
and My. See also [112] for infinite family of indecomposable positive maps in other
dimensions. Further interesting properties of two maps by Choi and Woronowicz
will be discussed in the next chapter.

The notion of entanglement had been originated from the work by FEinstein,
Podolsky and Rosen in the 1930’s. It was defined for general mixed states by Werner
[128] in 1989 under the name of Einstein-Podolsky-Rosen correlation. Separable
states, which were defined as convex combinations of product states, were called
to be classically correlated in the paper. The notion of Schmidt numbers of bi-
partite states has been considered in [34] under the name k-simple vectors following
Woronowicz’ terminology [129], together with Theorem 1.5.2. The term Schmidt
numbers were introduced in [124], where Corollary 1.8.8 was shown. It was shown
in [40] that every state in the unit ball around the identity I, € M,, ® M, with
respect to the norm | - |gs is separable. It is very hard in general to prove that
a given state is entangled, since we have to show that some kinds of expressions
are not possible. In fact, it is now known [39] that it is an NP hard problem in
general to decide if a given state is separable or entangled. Positive maps play
crucial roles in this problem by duality: A state o is entangled if and only if there
exists a positive map ¢ such that (g, ¢) < 0. This will be the main topic of the
next chapter. Theorem 1.4.3, which is now called the PPT criterion, was presented
by Choi [24] in 1980 together with the example (1.33) of a PPT entangled state,
and rediscovered by Peres [94] in 1996. We note that the first example of a PPT
entangled state was given by Woronowicz [129] in 1976 among 2 ® 4 states in the
context of decomposability of positive maps. For more criteria for separability, we
refer to survey articles [38, 64]

The Werner states had been introduced by Werner [128] together with Proposi-
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tion 1.7.5 and the technique using the integration over the unitary group to show
that a given state is separable. It is another problem to look for decomposition
into finitely many product states. See [91]. On the other hands, Horodecki’s [59]
introduced the isotropic states and gave the condition for separability using the cor-
responding invariant properties in Proposition 1.7.1. Theorem 1.7.3 on the Schmidt
numbers of isotropic states was obtained in [124]. The k-copositivity of the map ¢,
or equivalently k-positivity of ¢, in Theorem 1.7.6 was obtained in [126] by another
application of Proposition 1.6.1.

The notion of superpositive maps has arisen more recently, even though positive
maps of the form (1.64) had been considered by Stgrmer [114] in 1980’s. In the paper
[61], a map ¢ was called entanglement breaking when ¢ satisfies the the condition
(v) of Corollary 1.8.12 with k& = 1, and it was shown that conditions (i), (iii), (iv)
and (xii) are equivalent to (v) in Corollary 1.8.12 together with the Holevo form
[56] in (1.64). On the other hand, a map was called superpositive in [3] when its
Choi matrix is separable. See [5] for the characteristic property of unital completely
positive maps which is not entanglement breaking. Equivalent conditions (ii), (iii)
and (v) of Corollary 1.8.12 for k-superpositive maps were given in [27]. We follow
[106, 108] for the definition of k-superpositivity. We note that Theorem 1.5.2 on the
dual of k-superpositivity recovers the definition of k-positivity.

Mapping cones were introduced by Stgrmer [114] in the 1980’s in more general
contexts to study the extension problem of positive maps. It was known [107, 117]
that the dual cones of mapping cones can be described in terms of compositions and
tensor products; ¢ € K° if and only if ¢ o1 is completely positive for every ¢ € K if
and only if 1) ® ¢ is positive for every ¢ € K if and only if (¢ ® ¢)(Ciq) = 0 for every
for every ¢ € K. One-sided mapping cone was introduced quite recently in [36] to see
that some of the above equivalences hold only when K is a one-sided mapping cone.
Results in Section 1.8, which were taken from [36] and [80], recover many known
results in a systematic way. For examples, statements (i) and (ii) of Corollary 1.8.6
were given in [70, 113] and [34], respectively. On the other hand, Corollary 1.8.8 with
k =1 gives rise to the Horodecki’s separability criterion [60]; a state ¢ is separable
if and only if (¢ ®idg)(0) = 0 for every positive map ¢ : M4 — Mp. The analogous
characterization of states in S in terms of k-positive maps is due to [124]. See also

[115] for an infinite dimensional analogue for Horodecki’s separability criterion.
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Chapter 2

Detecting Entanglement by
Positive Maps

We will focus in this chapter on the duality between positive maps and separable
states: A bi-partite state o € M, ® M, is separable if and only if (o, ) = 0 holds
for every positive map ¢ from M,, into M,. It is clear that this is the case if and
only if the inequality holds for every positive map which generates an extreme ray
of the convex cone IP; of all positive maps. But, it is not so easy to find extremal
positive maps, because we do not know facial structures of the convex cone P;. In
fact, it is enough to check the inequality for positive maps which generate exposed
rays of Py, by Straszewicz’s Theorem which tells us that the set of exposed points
of a compact convex set is dense among all extreme points.

We will also consider the question how much entanglement a given positive map
may detect. A positive map will be called optimal when it detects a maximal set of
entanglement. It turns out that the notion of optimality involves facial structures of
P, again; a positive map is optimal if and only if the smallest face containing it has
no completely positive map. We give a sufficient condition on positive maps which
detect maximal set of entanglement, in terms of exposed faces. This condition,
called the spanning property, is much easier to check, and this explains why we
are interested in exposed faces. We also note that the boundary of a convex cone
consists of maximal faces which are always exposed.

A face is exposed with respect to the bilinear pairing if and only if it is a dual face,
which is determined by a hyperplane given by an element of the dual cone. In order
to detect entangled states with positive partial transposes, we need indecomposable
positive maps, and so it is important to find indecomposable exposed positive maps,
in this contexts. We will exhibit such positive maps in low dimensional cases.

We will see in Section 2.1 that a face F' is exposed in the convex if and only if it
coincides with the bidual face F”. We also see that every face for completely positive
maps turns out to be exposed, and this is also the case for PPT states. Especially,
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we show that the map Ad, is exposed in the convex cone P; consisting of all positive
maps. In Section 2.2, we show that the Choi map ¢, has very special properties; the
smallest face containing ¢, is not exposed; the smallest exposed face ¢, containing
¢ has a nontrivial intersection with completely positive maps, but has the trivial
intersection with completely copositive maps. We will show in Section 2.3 that a
face is maximal if and only if its dual face is minimal among exposed faces. With
this, we can understand relative locations of convex cones P of all k-positive maps.
Section 2.4 will be devoted to explain optimality and spanning properties of positive
maps, and explain them in terms of faces and exposed faces, respectively.

In the remaining part, we will exhibit several examples of indecomposable pos-
itive maps in low dimensions. In Section 2.5, we exhibit parameterized examples
of indecomposable positive maps between 3 x 3 matrices, which are variants of the
Choi map. We will find positive maps among them which distinguish various kinds
of optimality. We also provide in Section 2.6 a sufficient condition for exposedness
of a positive map which is not so difficult to check, and we show that the Woronow-
icz map from M, into My is exposed. We will work with parameterized examples.
Finally, we exhibit in Section 2.7 an example of indecomposable exposed positive

map between 4 x 4 matrices, which was constructed by Robertson.

2.1 Exposed faces

A face is exposed if and only if it is a dual face. We will see that every face for
completely positive maps is exposed. This is also the case for PPT states. We also
show that the map Ad, generates an exposed ray of the convex cone of all positive

maps.

2.1.1 Dual faces

Suppose that X and Y are finite dimensional vector spaces with a non-degenerate

bilinear pairing between them. For a subset F' of a closed convex cone C' of X, we
define the subset F’ of C° by

F'={yeC®:{x,yy=0foreachx e F} c C° Y.

It is then clear that F’ is a face of C°, which is said to be the dual face of F'. For
an arbitrary subset F' of X, we have F' < F”, from which we also have F"” < F’.
Therefore, we have F’ = (F”)’ in general, and we see that every dual face is the dual
face of a face. If F' is a face with an interior point xq then it is also easy to see that

F'={yeC°:{xg,y) =0}
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When {x(} is a singleton, {zo}’ is denoted just by .

We say that a face F' of a closed convex cone C'in X is an exposed face if it is a
dual face of a subset in Y. This means that the face is determined by the hyperplane
{xe X :{x,yp) =0} in X given by a point yo € C°. In other words, we have

F=Cn{xeX: :{x,y) =0}
Proposition 2.1.1 For a subset F' of a convex cone C' in X, we have the following:
(i) F” is the smallest exposed face containing F,
(ii) F is an exposed face if and only if F' = F".

Proof. Suppose that an exposed face S’ satisfies the relation F < S’ < F”. Then
we have F” < §” < F', and so F' = §” and S’ = F”. This proves (i). The second

statement (ii) follows form (i). o

We recall that every face of the closed convex cone CP[M,,, M,] is of the form
Fy =conv{Ad;:seV}
for a subspace V' of M,,«,. By the relation
(Ady, Adey = ([5G, D) = ADGID) = [GIOP = Ks. 0, (21)
we see that (Fy)” = Fy, and we have the following:
Proposition 2.1.2 FEvery face of the convex cone CP is exposed.

We proceed to show that every face of the convex cone PPT of all PPT states
is also exposed. We begin with more general situations. Recall that we have the
relations (1.48);

(C1+Cy)° =C7 n (3, (CinCy)° =C7 + (5,

for closed convex cones C and Cs. Suppose that F; is a subset of C; for ¢+ = 1, 2.

Then it is easy to see that the following identity
(F1 + FQ)/ = Fl/ M F2/ (22)

holds, where (F} + F3)" is a face of the convex cone (C; + C5)° = C} n C5 and F} is
a face of Cy for ¢ = 1, 2.

Now, we suppose that F; is a face of a convex set C; for ¢ = 1,2. Then it is clear
that F} n Fy is a face of the convex set C; n Cy whenever it is not empty. Conversely,
suppose that F'is a face of C'} n (. Take an interior point x of F'. We also take the
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face F; of C; in which x is an interior point for ¢ = 1,2. Then x is also an interior
point of F; n F5, which is a face of C7 n Cy. Because x is an interior point of both
faces F' and F; n Iy of C7 n Oy, we conclude that F' = F} n F5. In short, we have

F=F nFy, int F' < int F7, int F' < int F5. (2.3)
It is clear that faces F; of C; satisfying (2.3) are uniquely determined.

Proposition 2.1.3 Suppose that C; is a closed convex cone in a finite dimensional
space, for i =1,2. For every face F' of Cy n Cy, there exist unique faces Fy and Fy
of Cy and Csy, respectively, satisfying (2.3). In this case, we have

F' =F+F, F'=F'nF.

Proof. The inclusion F| + F;, < F’ follows from F] < F’. For the reverse inclusion,
take y € F'. Since y € (C; n Cy)° = C} + C5, we may write y = y; + yo with y; € CY
for i = 1,2. If we take an interior point = of F}; n Fy, then z € int F; < C; by (2.3),
and (z,y;) = 0 for i = 1,2. By the relation

0= <ZL‘,y> = <l‘,y1> + <ZE,y2>,

we see that (z,y;) = 0 and y; € F], since x is an interior point of F;. Therefore, we
have y € F| + Fj. This proves the first identity. The second identity follows from
(2.2). o

Because every face of CP is of the form Fy, = {Ad; : s € V'}” for a subspace V
of M,,«n, we see that every face of CCP is of the form

FV .= {Ad,oT:seV}"
Therefore, every face of PPT = CP n CCP must be of the form
Fyn FY, (2.4)

for a pair (V, W) of subspaces of M,,x,. Note that the intersection of two exposed
faces is exposed again by (2.2). By Proposition 2.1.2 and Proposition 2.1.3, we have
the following;:

Proposition 2.1.4 FEvery face of the convex cone PPT is exposed.
Every face of (M,, ® M,,)" is also of the form
Fy={0e (M, ®M,)" :Impc V} (2.5)
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for a subspace of C™ ® C", with the same notation as in (1.46), and so every face
of the convex cone PPT of all PPT states is also of the form

FynFY,
for a pair (V, W) of subspaces C™ ® C", with
FW ={o" : o€ Fy}. (2.6)

It is not so easy in general to determine if i, n I’ is nontrivial or not. If we denote
by V the subspace of C* ® C? spanned by vectors in (1.34), then we see that the
PPT state ¢ defined by (1.33) belongs to the face Fy, n FV.

As for the convex cone P; of all positive maps, not every face is exposed even
in the low dimensional cases like P1[ My, My] = DEC[Ms, Ms]. See [13]. It is not
known whether every face of the convex cone &; is exposed or not.

References: [76], [34], [13], [43]

2.1.2 Exposed positive maps

A ray {txg : t = 0} of a closed convex cone C' generated by zy € C' is called an
exposed ray if it is an exposed face. In this case, we say that xy is exposed in C.
We proceed to show that an extreme ray Ady is exposed in P; as well as in CP for
every s € M,,x,. Recall that the dual cone of P; is SP;, and so ¢ € P; belongs to
(Ad,)"” if and only if the following

$ € Myxn, tanks = 1, (Ad,,Ad;) =0 = {(¢,Ad;) =0 (2.7)

holds. In order to show that Ad, generates an exposed ray of the convex cone Py,
we have to show that the condition (2.7) implies that ¢ is a scalar multiple of Ad,
by Proposition 2.1.1 (ii).

In the following discussion, we identify M, ® M, with M,,(M,) = M,,,, and
the entries of C4 € M,,, will be denoted by c(r e with ¢,7 = 1,...,m and
k.0 =1,...,n, where (i,k)’s and (j,¢)’s are endowed with the lexicographic orders.
Therefore,

i) G.o) = lik)CE; Co) = |0 @ [k)XE], Co) = kXL, o (1))
is the (k, ¢) entry of the (7, ) block of Cy € M,,(M,,).

By singular value decomposition, every m x n matrix is of the form uov* with

invertible matrices u € M,,, v € M,, and
o = Y |iXi] € Mo (2.8)
i=1
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Note that Ad,y,+ = Ad,+ o Ad, o Ad,,, and
¢ — Ad,x o o Ad,

is an affine isomorphism between H(M,,, M,). Therefore, we see that Ad,ym is
exposed in P[M,,, M,,] if and only if Ad, is exposed in P1[M,,, M,,]. We note that
the entries of Cpaq, are 0 or 1, and the (7, k), (7, ¢) entry is 1 if and only if i = k and
j=Cwithi,j=1,...,r.

From now on, we will prove that Ad, is exposed in P;[M,,, M, | when o is given
by (2.8). For this purpose, we suppose that ¢ € (Ad,)”. We first consider the m x n
matrix s = |i)(k| in (2.7), to see that the diagonal entries of C, are given by

ik, (ik) = 0, (i, k) e {l,....m} x{1,...n}\{(1,1),...,(r,7)}. (2.9)

When J is a subset of {1,2,...,m} x{1,2,...,n}, we denote by A the principal
submatrix of A by taking (i, k) rows and columns for (i, k) € J. In order to determine
off-diagonal entries c(; ) (j0) of Cy with (i,k) # (j,¢), we consider

J = {(7’>k)7(2’6)7(]7k>a(]7£)}a (2'10)

and the principal submatrix of [Cy4]; of Cy. If i = j or k = ¢ then [Cyl; is a
positive 2 x 2 matrix and so ¢ ), = 0 by considering the diagonal entries in
(2.9). Otherwise, [C,]s is a block matrix in My ® My = My(Msy). We proceed to
show that this is a block-positive matrix.

Suppose that m = 2,3,... and 4,5 = 1,2,...,m with ¢ # j. We consider the
linear map A : My — M, defined by

m (a1 a N Ny - Ny
&f(” ”)HMMWHWMMN+@MWHWMDmeMm
’ a21 G929

Then it is easily seen that the adjoint map (A\}%,)* : My, — M is given by

O 3 el (9 40 e,

L~ Qe Qo
2,j=1

If ¢ : My, — M, then (A},)* oo A" is a map from My into My, whose Choi matrix
is given by just [Cy]s with J in (2.10). Therefore, we see that if Cy is block-positive
then [Cy]; is also block-positive in My ® M.

Lemma 2.1.5 Suppose that o € BP1[My ® M| has at most one nonzero diagonal

entry. Then all the other entries of o are zero.
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Proof. ~ We first consider the case when all the diagonal entries are zero except
for the left upper corner. Then by the definition of block-positivity, the 2 x 2
principal submatrices 0¢(1,1),(1,2)}, 0f(2,1),2.2)}> 0{(1,1),(2,1)} and 0g(1,2),(2,2)} are positive.
Therefore, we see that g is of the form

a - -«

=1 27 |emum
¢ = .5..62(2)’

a .
with @ > 0 and «, 8 € C. Take {¢| = (1, z,y,2y) € C* ® C* whose Schmidt rank is
one. Then we have

0 < <o, [)¢]) = a + 2Re [y(za + z)]

for every y € C. This implies that za + 5 = 0 for every x € C, and so it follows
that o = § = 0. The remaining cases can be done in the same way. o

Therefore, we see that c(; ),y # 0 only when J contains at least two nonzero
diagonal entries of [Cy];. By diagonal entries given in (2.9), this happens only for
Clii),Gj) and ¢ ), With 4,7 =1,2,...,r and 7 # j. In this case, J is given by

={(,2),6,9), (5,2), G, 4)}

and the corresponding principal submatrices of Caq, and Cy4 are of the forms
1 . . 1 a - - «

o= | a5
1 - - 1 a - - b

respectively, with a,b > 0 and «, 8 € C. They are Choi matrices of the maps
(A7;)* 0 Adg oAy and (A7) o ¢ o AT, respectively.

We proceed to show that (Ake)* 0 @ o A% belongs to ((A},)* o Ad, oAT})" in
Py [ My, Ms]. To do this, we suppose that s € MQXQ is of rank one matrix satisfying
the relation (A} ,)*0Ad, oA, Ads) = 0. Then we have (Ad,, A} ,0Ad, o(A[)*) = 0.
Since A}, is completely positive, we see that A}l , o Ad,o(A%)* belongs to SP;. In
fact, it is easily seen that A}, o Ad, o(\})* = Ads, with

§ = su|i)(k| + s1a|i){C] + s21]7)CE| + s22|7)l| € Minsen,
which is of rank one. Therefore, we have
0= (Mg o Adso(AT})", 0) = (Ads, (AR )" 0 o AT),

to see that (A},)* o ¢ o A% belongs to ((Af,)* o Ad, oAT})" in Py[ My, Ms]. The
following two lemmas will show that the Choi matrix of (A?;)* o ¢ o A must be a
scalar multiple of Cigq,.
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Lemma 2.1.6 Suppose that a,b > 0 and o, € C. Then gupap € Mo(Ms) is
block-positive if and only if |a| + | 8] < Vab.

i(0—7)

Proof. Suppose that 0,545 is block-positive, and take (| = (p, pe'™, ge ,qel%)

in C? ® C? with real numbers p, . Note that SR{(¢| = 1. Then we have

0 < (Oapa: [OE]) = P’a + ¢°b + 2pgRe [ (o + Be )]
for every p, g € R. Therefore, we have
IRe [¢(a + 567217—)”2 < ab
for every # and 7, which implies the condition. For the converse, we put

S N
la| + |8 lal + 18] laf + [8]

af + 18]
Then we see that 0q40,8 = 0a1,b1,0,0 + Oas,b0,0,5 18 the Choi matrix of a decomposable

map. o

Lemma 2.1.7 The identity map ids on My is exposed in Pi[ My, Ms].

Proof. Suppose that ¢ € idy. Taking s = [i){(j| € Mayyo with i # j in (2.7), we see

i0
that C, must be of the form g, 3. We also take s = 1_19 ¢ > in (2.7), to see

—e —1
that
0 = {|5){3|, Gapap) = a+b—2Re (a + 56_219),

for every . Therefore, we have § = 0, and we also have
0=a+b—2Rea > a+b—2a| = 2vVab—2|a| >0,

by Lemma 2.1.6. This happens only when a = b = a. o

Now, we return to the discussion before Lemma 2.1.6, to see that the Choi matrix
of (A};)* o po AT must be a scalar multiple of Ciq,, and it is clear that all the choices
i, J share a common scalar multiple. Therefore, we see that C, is a scalar multiple
of Caq,, and conclude that Ad, is exposed. Using singular value decomposition
s = uov*, we have the following theorem which provides another proof of Theorem
1.2.4, because an exposed positive map must be extremal.

Theorem 2.1.8 For every s € M,,xn, the map Ad is exposed in Py[M,,, M,].

References: [134], [86], [53], [81]
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2.2 The Choi map revisited

In this section, we consider the bidual of the Choi map ¢,, which is the smallest
exposed face of Py containing ¢.,. Especially, we determine completely positive
maps and decomposable maps which belong to this bidual.

2.2.1 The Choi map and completely positive maps

In order to calculate the dual face of a positive map with respect to the duality
between SP; and Py, we take an extreme ray Adg in SP; with s = [£){n| € M,xp. If

we write [¢) = 3, &liy and Ji) = Y1yl then we have s = 3, &), and
so we have (5] = Z” §im;<il(j] and

Cadry = 18051 = ) Ems&ilidli>CklCe

1,5,k,¢

(2 5z£k|i><k|) ® (2 mﬁz|j><€\) = £l ® [m)<nl.

Therefore, we have

(Ady, ¢y = (EXEI @ Iyl &) = Iyl d(I)XED) = o (IExENIm.  (2.11)

We first find all |€)’s such that ¢(|€)€]) is singular, and find the kernel |) of
(|EXE|), to get extreme rays Ad, in the dual face ¢ in SP;.

We apply the above method to the Choi map ¢e, : M3 — Mj defined in (1.54).
For given [€) = (z,y, 2)" € C3, we calculate to get

det gan (1£)E]) = [2[*y[* + [y|*|2]* + |2l — Blayz].

This is nonnegative by arithmetic-geometric inequality, and this may give rise to
another proof for positivity of the Choi map. It vanishes when and only when two
of variables are zero or |z| = |y| = |z|. Therefore, ¢a,(|€)(€|) is singular if and only
if |€) is one of the following:

6= (1L0,0)", &)= (0,107, | = (0,0.1)7, &) = (€",e", T,
and the corresponding kernel vectors of ¢q,(|€)(E|) are given by
|ﬁ1> = (0’ 0, ]-)Ta |ﬁ2> = (L 0, O)Ta |773> = (07 1, 0)T7 |ﬁ4> = (@ia7 eib’ eic)T’

respectively, up to scalar multiplications. Then the dual face ¢/, is the convex

cone generated by superpositive maps Ad,’s with following 3 x 3 rank one matrices

s = [E):

00 1 00 0 00 0 1 a7y
000], [too], [000], sss,=|a 1 8],
00 0 00 0 010 v B 1



where afy = 1 with |a| = || = |y| = 1. We denote

S = {621,6327613} v {Sa,ﬁ,v rafy =1, |04| = |5| = |V| = 1}7 (2~12)

with matrix units. Then the convex cone ¢/, is generated by {Ad; : s € S}.
We note that matrices in S belong to the 7-dimensional subspace
D = {[aij] € Mg Q11 = Q9 = a33}. (213)

We also see that the following four matrices

111 1 -1 1 1 1 -1 1 -1 -1

11 1), (-1 1 =1}, 1 1 =1y, -1 1 1

1 11 1 -1 1 -1 -1 1 -1 1 1
together with esq, €32, €13 are linearly independent rank one matrices belonging to D.
Therefore, we conclude that S spans the 7-dimensional space D defined by (2.13).
We note that all maps in Fp, which is a face of CP, do not belong to SP;. We also
note ¢, & Fp nSPy, because there are rank one matrices in D which do not belong
to S.

We proceed to show that the smallest face Fj_ of Py containing ¢g, is strictly
smaller than the bidual face ¢, of the Choi map ¢, € Py[M;, M3]. From this, we
will conclude that Fj, is not exposed face. We see that Ads € ¢7, if and only if
(s,t) = 0 for every t € S if and only if (s,t) = 0 for every ¢t € D if and only if s
belongs to the 2-dimensional subspace

E = {s € Msy3 : s is diagonal, Trs = 0}.
Therefore, we conclude that ¢, n CP = F. We consider three matrices

1 . . S 1

in £/, and take
b0 = Ady, + Ad,, + Ady, € ¢, (2.14)

We put ¢, = (1 —t)pg + tden then we have

(3 —t)zn + tass : :
() = ' (3 —t)wa + tan : — [z45],
' (3 —t)x33 + twa

for = [x;;] € M;. By Proposition 1.6.5, we see that ¢; is a positive map if and
only if 0 <t < 3 and

o I6] 8
B_ta+ty B-th+ta Bty "
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for every positive o, 5 and . We take § = é and v — 0, to get a necessary condition
2-tta> +(B3-t)(1-t) =0, a>0

for positivity of ¢;. Therefore, we see that ¢, is positive only when 0 < ¢ < 1. This
tells us that ¢q, is on the boundary of the convex cone ¢, , and the smallest face
F,., determined by ¢, is strictly smaller than ¢, . Especially, we conclude that the
face Fj_, of P; is not exposed. One can also show that Fy contains no completely
positive map. In fact, it is known [42] that the Choi map ¢, generates an extreme

ray of P;. We summarize as follows:

Theorem 2.2.1 We define the subset S of Msy3 by (2.12), and put
D = span S, E = {te Msy.s:(s,t) =0 for every s € S}.

The smallest exposed face ¢ly, and the smallest face Fy, of Py containing the Choi
map ¢on have the following properties;

(i) ranks =1 and Ads € ¢L,, if and only if s € S,

(i) ¢l is generated by {Ads : s € S}, and ¢/, & Fp n SPy,
(ili) Fy,, & o and ¢g 0 CP = Fp.
(iv) F,,, has no nontrivial completely positive map.

Proof. It remains to prove (iv). If a completely positive map belongs to Fy_, , then
there is s € E such that Ads € Fj_ . Since ¢q, is an interior point of Fy , , there is
A > 1 such that (1 — A\) Adg +A¢e, is a positive map. Multiplying a scalar, we may
assume that ¢, — Ad, is a positive map. Comparing the 2 x 2 principal submatrices
of the inequality ¢c, (|x){x|) = Ads(|x){(x|), we have

|21 |* + |3 —T1T3 . s1P|z1> —5150217,
R 2 2] =\ ¢ - 20,. |2
T2X1 |z2|* + |2 5281T9T1  |sa]?|xel
for every x1,x9,x3 € C, where si, $o,s3 are diagonal entries of s € Ms. Taking

r3 = 0, we have
(1= [s1)((1 = [s2*)[w2]* + [21]*) = |22*|1 — 5152

for every x1, x5 € C. Taking z; = 0, we have (1 — |s1]?)(1 — [s2]?) = |1 — 5155]?, and
|s1 — s2| = 0. By the same way, we have sy = s3, and s = 0 since s € E. o

References: [25], [19], [29], [42]
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2.2.2 The Choi map and decomposable maps

/!

In the above discussion, we have seen that the smallest exposed face ¢7, meets

nontrivial completely positive maps by Fr. We look for decomposable maps in ¢7, .
We note that if an extreme ray T o Ad; belongs to ¢%, then (T o Adg, Ad;y = 0 for
every t € S, or equivalently (Adg, T o Ad;) = 0 for every t € S. We also note that
T o Adjgyy = Adjeyz. We will see that {{£)(7] : |£){n| € S} spans the whole space,
which implies that there exists no nonzero T o Ad; in ¢7, .

For this purpose, we take

1 1 1 1 1 1
|€1> =11], ‘€2> =|-1] |€3> = L. |€4> =\|-1], |€5> = I |§6> = |-
1 1 1 1 i i

and |n;y = |&) for i = 1,2,3,4,5,6. We also define

1 0 0 0 1 0
€y =10, &= L[, &> = {0, Inep= 0], [ne)= (0], |noy=1|1
0 0 1 1 0 0

Then we have |§)(n;| € S for i = 1,2,...,9. We show that the set {|{ 7] : i =
1,2,...9} is linearly independent. Suppose that B = Z?:1 a;|&Xm;| = 0, and look
at the entries of the matrix B = [B;;]. Then we have

B11=a1+a2+a3+a4+a5+a6=0,
312=a1—a2+a3—ia4+a5—ia6=0,
By =a1 +as +az —as + as —ag = 0,
ng:al—ag—ag—ia4—ia5—a6:0,
Bsi = a1 + ay — ag + a4 — ias — iag = 0,
ngza1+a2+a3+a4—a5—a6=0.
With this relation, we have a; = 0 for ¢ = 1,2,...,6, from which we also have
a7 = ag = ag = 0. Therefore, we have the following:
Theorem 2.2.2 For the Choi map ¢q, : M3z — Ms, we have
DEC n ¢!}, = conv{Ad, : s€ E} c CP,

where E is the 2-dimensional subspace of Msys consisting of all diagonal matrices

with trace zero.

We also note that {|&)|n;) : i =1,2,...,9} spans the whole space C* ® C?, but
their partial conjugates span the 7-dimensional subspace.
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We close this section with a geometric interpretation of Theorem 2.2.1. To begin
with general situations, we suppose that F' is a subset of a closed convex cone C.
For a given z € C, we see that x € F” if and only if (z,y) = 0 for every y € F’ if and
only if (z,yy = 0 for every y € E(F’), where £(C') denotes the set of all extreme rays
of C. Since I’ is a face of C°, we have E(F") = F' n £(C°). Furthermore, we see
that y € F’ if and only if F' < 3. This is also equivalent to F” < 3’ by Proposition
2.1.1. Therefore, we have

F" = ﬂ{y’ Y D F" ye&(C°)} = ﬂ{y' Yy O F, ye £(C7)}

for an arbitrary subset I’ of a closed convex cone C.
We restrict our attention to the case when C' = IP;. We know that every extreme
ray of SP; = PJ is of the form Ady, which is also exposed in SP;. Therefore, we have

F" = ([{Ad, : Ad, > F}. (2.15)

In the next section, we will see that a face is maximal if and only if it is a dual
face of an exposed face which is minimal among all exposed faces. This means that
every maximal face of Py is of the form Ad’, for a rank one matrix s. Therefore, we
see that the smallest exposed face F” containing a subset F' of Py is the intersection
of all maximal faces of P; containing F'.
When F' is a singleton {¢q,}, we see that maximal faces containing ¢, consist
of Ad), with s € S by Theorem 2.2.1 (i). They are also maximal faces containing
”.. On the other hand, a maximal face Ad/, with a rank one matrix s contains the
subset Ff of ¢7, if and only if s belongs to D, with notations in Theorem 2.2.1. We
note that D 2 S. Further, we note that there are rank one matrices in D which
does not belong to S. For example, the maximal face Ad., ., contains Fg, but does
not contain ¢ , since ejp € D\S.

References: [19]

2.3 Maximal faces

In this section, we show that a face is maximal if and only if its dual face is minimal
among all exposed faces. Especially, every maximal face is a dual face. Since we
know all the exposed ray of P} = SP,, we can characterize all maximal faces of the

convex cone Py.

2.3.1 Boundary of convex cones

Suppose that X and Y are finite-dimensional real vector spaces, with a non-degenerate

bilinear pairing ( , » on X x Y. We also suppose that C' is a closed convex cone in

83



X, and the bilinear pairing is non-degenerate on C', that is, the following
reC, (x,yy=0foreachye C° = =0 (2.16)

holds. In the simplest case of X =Y = R? the bilinear pairing {z,y) = z1y1 + T2¥>
is not non-degenerate on the half-plane

C:={xeX:{(z,yo) = 0}, (2.17)

with yo € Y. In this case, the dual cone is given by the single ray {Ayo e Y : A = 0}
generated by yp € Y. In case of X =Y = R", if a closed convex cone C contains
two rays Rtz and R*(—zq) with the opposite directions then the standard bilinear
pairing {(z,y) = >,/ | ;y; is not non-degenerate on C.

If C'is a closed convex cone on which the bilinear pairing is non-degenerate then
for every x € C' with x # 0 there exists y € C° such that {(z,y) > 0. Every finite
dimensional space may be endowed with a norm, and so we may use compactness

argument to conclude that there exists n € C° with the property
xeC, x#0 = (z,n)>0, (2.18)

which is seemingly stronger than (2.16). The bilinear pairings defined in (1.39) and
(1.40) are non-degenerate on any convex cones appearing in (1.45) or (1.47). In fact,
either the identity matrix in M,, ® M,, or the trace map in L(M,,, M,,) play the roles
of 7 in (2.18).

Proposition 2.3.1 Let X and Y be finite-dimensional spaces, and C' a closed con-
vex cone in X on which { , ) is a non-degenerate bilinear pairing. For a given
y € C°, the following are equivalent:

(i) y is an interior point of C°,
(i) {z,y) > 0 for each nonzero x € C.

(iii) (x,y) > 0 for each x € C which generates an extreme ray.

Proof. If y is an interior point of C° then we may take ¢ € [0,1) and z € C° such
that y = (1 — t)n + tz, where n € C° is a point with the property (2.18). Then we
see that

(x,y) = (1 —t)z,n)y +tx,2) >0

for each nonzero x € C. This proves (i) = (ii). It is clear that (ii) and (iii) are
equivalent. Now, we suppose that y € C° satisfies (ii), and take an arbitrary point
ze C° Put C. ={x e C: |z| = €}. Then since C) is compact, o = sup{{z,2) : x €
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C,} is finite, and we see that (x,z) < 1 for each x € Cy/,. By (ii), we also take §
with 0 < § < 1 such that {x,y) > § for each x € Cy/,. Put

(1 L1
w= 1-5)""1=5"

We check (z,w) > 0 for each € Cy/, and so have w € C°. Because z was
an arbitrary point of C°, we conclude that y is an interior point of C°, as it was
required. o

The condition of non-degeneracy of the bilinear pairing on C' is important in
Proposition 2.3.1. In case of the convex cone C' given in (2.17), we note that any
point in C° does not satisfy the condition (ii) of Proposition 2.3.1. But, all the
points of C° = {Ayy : A = 0} is an interior point of C*° except the origin.

Corollary 2.3.2 Let X andY be finite-dimensional spaces, and C' a closed convex
cone in X on which { , ) is a non-degenerate bilinear pairing. Then we have the

following:
(i) If F is a face of C satisfying F' = C° then we have F' = {0},

(ii) If F s a face of C° satisfying F' = {0} then we have F' = C°.

Proof. The statement (i) is a trivial consequence of (2.16). To prove (ii), we suppose
that ' & C°. Then we have F' < dC°, and can take a nonzero y € int F' < 0C°. By
the implication (ii) = (i) of Proposition 2.3.1, there exists a nonzero x € C' such
that (x,y) = 0. Since y € int I, we have x € F”. This shows that F’ is nonzero. o

We apply Proposition 2.3.1 to the duality S; = P, to see that ¢ is an interior
point of Py[M,,, M,] if and only if {p,¢) > 0 for every nonzero ¢ = |(){(] € ;.
Taking [() = |£)|n), we see that ¢ is an interior point of Py if and only if

mnl; (1€)<El)) > 0

for every nonzero [£) € C™ and |n) € C" if and only if ¢(|£)(]) is nonsingular for
every nonzero |£) if and only if ¢(x) is nonsingular for every nonzero x € M, if and
only if ¢(z) is an interior point of M," for every nonzero x € M,". This shows that
the converse of Proposition 1.2.5 holds.

Proposition 2.3.3 A positive linear map ¢ : M,, — M, is an interior point of P,
if and only if ¢(x) is an interior point of M for every nonzero x € M.

References: [34]

85



2.3.2 Maximal faces and minimal exposed faces

We say that L is a minimal exposed face if it is an exposed face and minimal among
all exposed proper faces. It is easy to see that if L is a minimal exposed face of the
cone C' then L' is a maximal face of C°. To see this, we suppose that F'is a face of
C° such that F' > L. Then we have

L=L">F.

Since F” is an exposed face and L is minimal among exposed faces, we have either
F' ={0} or F' = L. If F = {0} then we have F' = C° by Corollary 2.3.2 (ii). In
case of I = L, we have F ¢ F” = L', which implies F' = L’. Therefore, we conclude
that L’ is a maximal face. The following theorem tells us that the converse is also
true. Especially, every maximal face is a dual face.

Theorem 2.3.4 Let X and Y be finite-dimensional normed spaces with a non-
degenerate bilinear pairing { , ) on a closed convexr cone C in X. Then we have the

following:
(i) If L is a minimal exposed face of C' then L' is a mazimal face of C°,

(ii) every mazimal face of C° is the dual face of a unique minimal exposed face of

C.

Proof. It remains to prove (ii). To do this, suppose that F' is a maximal face of C°.
Note that we have F < F” < C°. If F” = C° then we have F' = F"” = (C°) = {0},
and so we have F' = C° by Corollary 2.3.2 (ii), which is not possible. By the
maximality of F, we have F' = (F”)" is the dual face of F’. In order to show that
F’ is minimal among exposed faces, we suppose that L is an exposed face satisfying
L < F'. Then we have F' = F” < L'. By the maximality of F, we have either
L'=For ! =C°. f '’ =Fthen L =L" = F'. If ' = C° then L = {0} by
Corollary 2.3.2 (i). Therefore, F” is minimal among exposed faces. In order to show
the uniqueness, we suppose that L} = L} = F for exposed faces L; and L,. Then
we have
Ly=L{=F =Lj= Ly,

as it was required. o

We recall that Ad, generates an exposed ray of the convex cone SP;° = P;.

Therefore, every m x n matrix ¢ gives rise to a maximal face
conv {Ad, € SP; : rank s = 1,{s,0) = 0}
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Figure 2.1: Line segments are minimal exposed faces. Four points are extreme points
which are not exposed, but they are exposed in the line segments.

of the convex cone SPy[M,,, M,,| by the identity (2.1). The exposed map Ad, oT of
[P, also gives rise to the corresponding maximal face. But, not every maximal face
arises in this way, because there are indecomposable positive map which generates
exposed ray, as we will see later.

We note that an exposed ray of a convex cone is automatically a minimal exposed
face. But the converse is not true. Consider the convex cone whose section looks like
an athletics track which consists of two semicircles and two parallel line segments.
We note that a line segment generates a minimal exposed face. This exposed face
contains an exposed ray in itself, but it is not an exposed ray in the whole convex

cone. See Figure 2.1.

References: [34]

2.3.3 Boundaries of k-positive maps
We apply Theorem 2.3.4 to SP; = P, to see that
(Ady) = {¢ € Py : (¢, Ad,) = 0}

is a maximal face of P, whenever rank s < k, since Ad, generates an exposed ray
of SPy. Furthermore, every maximal face of the convex cone Py[M,,, M, ] is of the
form (Ads)" for an m x n matrix s with rank at most k. Equivalently, we may apply
Theorem 2.3.4 to S; = P, to get the following:

Corollary 2.3.5 For a vector |() e C™ ® C™ with SR|() < k,

Fi[¢] := {¢ € Py : {|OXC], ¢) = 0}

is a maximal face of Pr[M,,, M,]. Conversely, every mazimal face of Py|Mp,, M,]
is of the form Fy[(] for a vector |() with SR|() < k.

By the uniqueness part of Theorem 2.3.4 (ii), the vector |() in the second part
of Corollary 2.3.5 is determined uniquely. This can be also seen as follows: We note
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Figure 2.2: When SR |(2) > ¢, the maximal face Fj[(2] of Py is located inside of P.

that the Choi matrices of the maps in Fj[(] n CP are positive matrices g satisfying
{|¢)XCl, 09 = 0. Therefore, we see that Fy[(] = Fj|w] implies that |¢) and |w) are
parallel. In the case of k = 1, we see that every maximal face of Py is determined
by a product vector () = [£) ® |n) € C™ ® C", and we have

¢l = {o e Py (lo(1E)<EN) |7y = 0}

We consider a maximal face Fi[(] of the convex cone P, with SR|() = s < k,
and investigate how F}[(] is located in the bigger convex cone P, when ¢ < k. In
the case of s < ¢, we have Fy[(] = Fy[(] n Px. Because Fy[(] < 0Pk, we have
Fi[C] = Fi[¢] n 0Pg. Especially, we have Fy[(] < JP,. In general situations, it is
easy to see that if (] is a convex subset of a convex set C, then either C; < 0C or
int C; < int C holds. We show int Fy[(] < int P, in case of s > £. See Figure 2.2.

Proposition 2.3.6 Suppose that SR|() = s with s < k and { < k. Then the
mazximal face Fp[C] of Py satisfies the following:

(i) if s < { then we have Fy[(] = Fy[(] n Py < 0Py,

(i) if ¢ < s then we have int Fi[(] < int Py.

Proof. Tt remains to prove (ii). Assume that there exists ¢ € int Fi[(] such that
¢ ¢ intPy. Then ¢ € 0P, and so there exists |w) with SR |w) < £ such that ¢ € Fy[w].
Since ¢ € int Fi[(] < 0Py, we have ¢ € Fy[w]ndP, = Fi[w] by (i). Now, ¢ € int Fj[(]
implies that two faces Fi[(] and Fi|w] satisfy the relation Fi[(] < Fi[w], and we
have Fy[(] = Fj[w] by maximality. Therefore, we conclude that |¢) and |w) are
parallel to each other, which implies that s < /. o

The rays generated by Ad, and Ad, oT are exposed rays of DEC as well as PP,
since DEC < P;. Because DEC is the convex hull of them, they exhaust all the
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exposed rays of DEC. Since (o, Ads) = {(§|0|5), we see that every maximal face of
PPT is of the form

{oe PPT : {Clel¢y=0} o {o" e PPT : {lel¢) = 0}, (2.19)

for |¢) € C™ ® C™. This faces of PPT correspond to faces Fyy n I, with nota-
tions in (2.5) and (2.6), which are determined by pairs (¢, My xn) and (My,xp, ¢1),
respectively.

References: [74], [75], [76]

2.4 Entanglement detected by positive maps

A self-adjoint matrix W in M,, ® M, is called an entanglement witness if (o, W) = 0
for every separable state o, but {0y, W) < 0 for a state g. In this case, gp must be
an entangled state which is detected by W. An entanglement witness is nothing but
the Choi matrix of a positive map which is not completely positive, or equivalently, a
block-positive matrix which is not positive. In this section, we look for conditions on
positive maps which detect maximal set of entanglement. We will begin with a pair
(C, D) of convex cones satisfying C' ¢ D, motivated by inclusions S; < (M, ® M,,)*
and S; < PPT.

2.4.1 Optimal entanglement witnesses

We recall that a state o is entangled if and only if there exists a positive map ¢
such that (g, ¢) < 0 with respect to the bilinear pairing (1.39). For a given positive
linear map ¢ : M,, — M,, we denote by Wy the set of all (unnormalized) states
0 € (M, ® M,)* such that (p,¢) < 0. If Wy, < Wy, then ¢ is of little use as a
detector of entanglement. In this context, it is natural to seek conditions for a pair
(¢p0, ¢1) so that Wy, and Wy, are comparable.

Let X and Y be real vector spaces with a bilinear pairing. Suppose that C' < D
are closed convex cones in X, with the dual cones D° < C° in Y. Throughout this
section, we also suppose that the bilinear pairing is non-degenerate on both D and
C°. This implies that there exist £ € C' and ny € D° satisfying

$€D7$7&0:><x7770>>07 yecovy¢0:<507y>>07

by (2.18). Then we see that 7, is an interior point of both D° and C° by Proposition
2.3.1, and so we have int D° < int C*°. In the same way, we also see that int C' <
int D.
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Figure 2.3: If (z),y) = 0, then z; is a common interior point of W, and D.

We know that x € X does not belong to C' if and only if there exists y € C° such
that (z,y) < 0. For a given y € C°, we define

W,[D;C]|:={xe D :{x,yy <0}

which is a convex subset of D\C'. We use the notation W), if there is no confusion.
When z € W, we say that y is a witness for x € D\C, or z is detected by y. We
note that W, is nonempty if and only if y ¢ D°. In this case, we take z; € int W,
zo € intC' < int D, and consider the line segment z; = (1 — t)zg + tz;. Since
{xo,y) > 0 and {x1,y) < 0, there exists A € (0,1) such that {(x),y) = 0. Then we
see that x; is a common interior point of W, and D for every t € (A, 1), and so we
see that int W, < int D. See Figure 2.3.

Furthermore, the set W, [ D; C] has nonzero volume in D whenever it is nonempty.
To see this, it suffices to show that D is contained in the affine manifold generated
by W,[D;C]. If z; € D with (z1,y) > 0 then we take zy € W,[D;C] and put
2z = (1 —t)z9 + tz1. Then (z,y) = (1 —t){z0,y) + t{z1,y) < 0 for sufficiently small

t > 0, and so we see that z; = 1z, — 1=tz belongs to the affine manifold generated

t t
by W,[D; C1.

We take yo,y1 € C°\D° and consider the line through y;, = (1 — t)yo + ty;. If
this line touches the convex set D° then the intersection with D° must be on either
(Y—o0s Yo) O (Yo,%1) Or (Y1,Y+0), With the obvious meanings of notations. Suppose
that the intersection is on (y_o, %), that is, there exists z € D° such that yq is
between z and y;. If we take x € D, then we have (x, z) > 0. Therefore, (x,y9) <0
implies {(z,y;) < 0, that is W,, < W,,. In short, we can say that the further y is
from D°, the bigger W, is. See Figure 2.4. We show that the converse also holds up
to scalar multiplications of yy. We begin with the following simple lemma.

Lemma 2.4.1 Suppose that W,, < W,,. If x € D and (x,yo) = 0, then (x,y;1) < 0.

Proof.  Assume that there exists x € D such that {(z,yy) = 0 and {z,y;) > 0. If
we take 2’ € Wy, then (&’ + Az,y9) < 0 for every real number X\. But, we have
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Figure 2.4: The further y is from D°, the bigger W, is.

(@’ + Ax,y1) = 0 for sufficiently large A. This shows that W, is not contained in
Wyl' o
The author is grateful to Yoonje Jeong for simplification of the proof for the

statement (i) in the following proposition.

Proposition 2.4.2 Let X and Y be real vector spaces with a bilinear pairing.
Suppose that C < D are closed convex cones X, and the bilinear pairing is non-
degenerate on C° and D. For yo,y; € C°\D°, we have the following:

(i) Wy, < W, holds if and only if there exists X > 0 and z € D° such that
)\yO =y + 2z

(ii) Wy, = Wy, holds if and only if there exists A > 0 such that \yo = y1,

(i) Wy, & Wy, holds if and only if there exists A > 0 and nonzero z € D° such
that \yg = y1 + 2.

Proof.  For the statement (i), it remains to show the ‘only if’ part. Suppose that
Wy, € Wy,. For x € D and 2’ € W, we have {(z,yo)z" — (&', yo)z,yo) = 0, and so

we also have

@, yo )Xo, y1) = <& yo )Xo, 1) = (x, yo)a’ — (@ yoya, 1) <0,
by Lemma 2.4.1. Therefore, we have

<$,> y1> > <3$, y1>

T,y >0, 2’ e W, = > . 2.20
@507 . @\yoy| — <@ o) (2:20)
Define ,
A = inf @y ca' e Wy p
<I‘l, y0>

Taking £ € C such that (£, y) > 0 for every nonzero y € C°, we see that \ > zgzg,
and so we have A > 0. By (2.20), we have

/\<l‘7 y0> - <l’, y1> = 07 (221)
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whenever z € D satisfies (x,yo) > 0. By definition of A\, we also have (2.21) for
x € D with {z,y9) < 0. If {x,y9) = 0 then we also have (2.21) by Lemma 2.4.1.
Therefore, we have A\yy — y; € D°, which completes the proof of (i).

To prove (ii), suppose that W,, = W,,. Then by (i), there exists A\, u > 0 and
z,w € D° such that A\yp = y; + z and py; = yo + w, and so AM(uy; — w) = y; + 2.
Therefore, we have (Au — 1)y; = Aw + z. Because Aw + z € D° and y; € C°\D° is
nonzero, we have Ay — 1 = 0 and w = z = 0. The converse is clear.

Finally, the statement (iii) is an immediate consequence of (i) and (ii). o

For yo and g, in Proposition 2.4.2, we note that y, = {x € C' : {x,y;) = 0} for
i = 0,1. The condition of Proposition 2.4.2 (i) shows that Az, yo) = {(z, 1)+ {x, 2)
for every x € C, and so we see that W,, ¢ W, implies y{, < y;. If W, = W,,, then
Yo = y; by Proposition 2.4.2 (ii). It should be noted that y;, = y; does not imply
Wy, = W,,. Indeed, we consider the pair S; < (M,, ® M,)" with the dual pair
CP c P, and the map ¢/, = %% + %¢Ch with ¢ in (2.14). We see that ¢’1/2 = ¢y,
but Wy, , & W, by Proposition 2.4.2 (iii), because ¢y € CP.

Theorem 2.4.3 Suppose that C' < D are closed convex cones in a real vector space
X, and Y is a real vector space with a bilinear pairing on X x 'Y which is non-
degenerate on C° and D. For yy € C°\D°, the following are equivalent:

(i) Wy, is mazimal among {W, : y € C°\D"},
(i) the smallest face of C° containing yo has no nontrivial intersection with D°.

Proof. We denote by F' the smallest face of C° containing o, then g, is an interior
point of F. Suppose that there exists a nonzero z € F' n D°. Then there exist ¢t < 0
such that y, :== (1 —t)yo + tz € F < C°. This implies (1 — t)yo = y; + (—t)z with
(—t)z € D°, and we have W,, & W,, by Proposition 2.4.2 (iii). This tells us that
Wy, is not maximal. For the converse, suppose that W, is not maximal, and there
exists y; € C° such that W,, & W,,. Then there exist A > 0 and nonzero z € D°
such that A\yg = y; + z, which implies z € F'. Therefore, we conclude that F' n D° is

nontrivial. o

For a given yy € C°, we consider the hyperplane H,, = {r € X : {(z,yo) = 0}.
The relations between the set Wy, [D; C], the hyperplane H,, and the convex cone
D depend on the location of yy. See Figure 2.5. We recall that D° < C°.

e If y, is an interior point of D° then H,, has no nontrivial intersection with D
and W, [D; C] is empty.

e If y, is a boundary point of D° then H,, n D is nontrivial but W, [D;C] is
still empty.
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Figure 2.5: The location of the hyperplane H,, depends on the location of y, € C°

e When we take y, € int C°\D°, the set W, [D;C] is nonempty and int (H,, N
D) cint D. But Hy, n C is still trivial.

o If we take yo € 0C°\D° then y{, = H,, n C is nontrivial. In this case, we take
the smallest face F' < 0dC° of C° containing 9. Theorem 2.4.3 tells us that

the set W, is maximal if and only if F' n D° is trivial.

In order to detect entangled states, we first apply Theorem 2.4.3 to the pair of
convex cones S & (M, ® M,)* with the dual pair CP & P; of linear maps, or
equivalently (M, ® M, )" & BP;. We say that a positive map ¢ or its Choi matrix
Cy is optimal if the set Wy[(M,, ® M,,)*;S1] is maximal. Theorem 2.4.3 tells us
that ¢ is optimal if and only if the smallest face of P; containing ¢ has no nonzero
completely positive map. We see that the Choi map ¢, is optimal by Theorem 2.2.1
(iv). Every extremal positive map is optimal if it is not completely positive, and
so the completely copositive maps Ad, oT are optimal whenever rank s > 2. Such
optimal positive maps are actually of little use to detect entanglement, because they
can detect only non-PPT states. If we want to detect PPT entanglement then we
have to use the pair §; ¢ PPT with the dual pair DEC < P;. In this case, we see
that the set W,[PPT;S1] is maximal if and only if the smallest face of Py containing
¢ has no nontrivial decomposable maps.
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2.4.2 Spanning properties

Because we do not know the facial structures of the convex cone Py, it is not so easy
to determine if a given positive map is optimal or not. We consider a slightly stronger
condition than Theorem 2.4.3 (ii); the smallest exposed face ¢” of P; containing ¢
has no nonzero completely positive maps, that is, " n CP = {0}.

We begin with general situations. We compare the definition of W,[D; C with
y' = {x e C:{x,y) = 0}, which must be considered as a face of C', not a face of D
since y € C°\D°.

Proposition 2.4.4 Suppose that C = D are closed convex cones in a real vector
space X, and Y is a real vector space with a bilinear pairing on X x Y. For yy €

C°\D°, the following are equivalent:

(1) the smallest exposed face of C° containing yo has no nontrivial intersection
with D°, that is, y, n D° = {0},

(i) inty) < int D.

Proof. For the convex subset y, of D, there are two possibilities; either int y;, < int D
or y, < 0D. We will show that y{, < dD if and only if yj n D° # {0}. Suppose that
yo < 0D. This happens if and only if the face y{ is contained in a maximal face y
of D for a point y; € D°. We see that y, < y; if and only if ¢ < yg if and only if
y1 € yo. This implies y; € yj N D°. Conversely, if y; € yj n D° is nonzero then we
have y, c y; < ¢D. o

The location of the nontrivial face y, = H,, n C with yo € 0C°\D° depends on
the exposed face yj. Proposition 2.4.4 tells us that yj is located inside of D if and
only if yj does not touch D° except zero. Whenever this is the case, the set W, is
maximal. See Figure 2.6.

Now, we look for positive maps ¢ satisfying ¢” n CP = {0}. Since a completely
positive map is the sum of Ad,’s, we see that ¢ n CP # {0} holds if and only if
there exists s € M,,«, such that Ad, € ¢”, which is equivalent to the following:

SRIC) =1, {[0X¢l @) =0 = ([¢)X¢l, Ads) = 0. (2.22)

Motivated by this, we define the set

Plo]:=H{I0) = [©)n) e C" @ C" : {|(){C], ) = 0},

for a positive map ¢. Then, we see that ¢” has no nonzero completely positive map

if and only if P[¢] spans the whole space, by the relation {|(){(|, Ad,) = [{¢|3)|?
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Figure 2.6: y{ touches D°, but y4 does not.

as in (2.1). A positive map ¢ satisfying this property is said to have the spanning
property. We note that

(Ol € Plo] <= (o, Adjgyy) =0 < (lo(|EXEDIm) =0 (2.23)

by (2.11). It is clear that a positive map with the spanning property is optimal.
We have seen in Theorem 2.2.1 that the Choi map ¢, does not have the spanning
property. By Proposition 2.4.4, we see that a positive linear map ¢ : M,,, — M, has
the spanning property if and only if int ¢/ < int (M,, ® M,)".

For a product vector |() = [£)|n) € C™ ® C™, we recall the identity

OXCIT = 1E)Im<Ell.

If we replace Adg by Ad;oT in (2.22), then we have

{JOXCL Ads oT) = {|OXCT, Ady).

Therefore, we see that the following are equivalent;
e ¢" has no nonzero completely copositive maps,
e the partial conjugates of P[¢] spans the whole space,

A positive map with such properties is called to have the co-spanning property. It
is clear that ¢ has the spanning property if and only if ¢ o T has the co-spanning
property. Theorem 2.2.2 tells us that the Choi map ¢, has the co-spanning property.

We say that a positive map ¢ is co-optimal when the smallest face of IP; contain-
ing ¢ has no nonzero completely copositive map, or equivalently ¢ o T is optimal.
We also say that a positive map is bi-optimal if it is both optimal and co-optimal.
We note that ¢ is bi-optimal if and only if the smallest face of P; containing ¢ has
no nonzero decomposable map, and so we have the following by Theorem 2.4.3.
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Proposition 2.4.5 For a positive map ¢ : M,, — M, the following are equivalent:
(i) ¢ is bi-optimal,
(i) the smallest face of Py containing ¢ has no decomposable map,

(iii) ¢ detects a mazimal set of PPT entanglement.

Therefore, an bi-optimal positive map should be indecomposable automatically.
On the other hand, a positive map ¢ has the bi-spanning property when it has both
the spanning property and the co-spanning property. We apply Proposition 2.4.4 to
the pair §; < PPT to get the following:

Theorem 2.4.6 For a positive linear map ¢, the following are equivalent:
(i) ¢ has the bi-spanning property,
(ii) @” has no nonzero decomposable maps,

(iii) int ¢’ < int PPT.

The property (iii) of Theorem 2.4.6 is useful to find PPT entanglement. If we
take a finite family Z of product vectors in P[¢] so that both they and their partial
conjugates span the whole space, then the average g1 of {|(;){((;| : i € Z} lies on the
boundary of &1, but in the interior of PPT. If we take any gy in the interior of &
then the line segment gy = (1 — A)go + A1 extends to PPT entanglement.

A positive map with the the bi-spanning property must be indecomposable by the
condition (ii) of Theorem 2.4.6. An indecomposable positive map which generates
an exposed ray has automatically the bi-spanning property. The following shows

implication relations among various notions we have discussed so far.

exposed indecomposable =  bi-spanning = spanning

U U U
extreme indecomposable — bi-optimal = optimal
U
indecomposable

References: [123], [82], [45], [77]
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2.5 Positive maps of Choi type

We exhibit in this section variants of the Choi map between 3 x 3 matrices. Among
them, we find positive maps with the bi-spanning property, and indecomposable
positive maps with the spanning property without bi-optimality. Motivated by these
examples, we briefly discuss the length of a separable state p, which is the smallest

number of pure products states whose sum gives rise to p.

2.5.1 Choi type positive maps between 3 x 3 matrices

For a given triplet (a, b, ¢) of nonnegative real numbers and a 3 x 3 matrix X = [z;;],

we define
axriq + bl’gg + CI33 —T12 —x13
Plabc] (X) = —T21 cx1y + argy + brss —T23
—I31 —XI39 b.’L’H + CXoo + QX33

Note that ¢y 0,1) is nothing but the Choi map ¢, defined in (1.54), and the map 73 1,
in (1.52) is given by @p_1,k4- Especially, we have seen in Section 1.6 that ¢p o9
is a 2-positive map which is not completely positive, and ¢y 1,1] is a completely
copositive map which is not 2-positive. The Choi matrix of the map ¢y, is given
by

Oapg = -1 - -+ a - - - =11 (2.24)

Note that ¢4, is completely positive if and only if g, is positive if and only
if the following

a=2
holds. For example, the map

¢[2,0,0] = Ad611*622 + Adezrﬁss + Adessfeu

has been discussed in (2.14), where we use {e;;} for the standard matrix units. On
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the other hand, ¢4 is completely copositive if and only if

a :
c - =1
b : -1
-1 b
Q{a,b,c] = a ’
. c —1
1 c .
-1 b
a
is positive if and only if
bc > 1.

The completely copositive map ¢j,1,1; may be written by
¢[0,171] =To (Ad612*6’21 + Ad623*€32 + Ad631*€13) .
We note that the map ¢pq 5 may be expressed by

¢[a,b,c] = ¢[a,b,c] — ids

with the map 1[4, which sends x = [z;;] to the diagonal matrix with the diagonal

entries
(a + 1)%’11 + biL‘QQ + CZ33,

cxri1 + (CL + 1).1'22 + bx33,
br1y + cxoe + (a + 1)xs3.
We apply Proposition 1.6.5, to see that ¢pqp ) is positive if and only if

Vlabiel ([§0)CE0]) = [€0){&ol

for every unit vector |£p) if and only if

o W[a,b,C] (1€0)¢80 |)_1 |€0) < 1

for every unit vector [£) if and only if the inequality

a B gl
N + <1 (225
(a+1a+b8+cy (a+1)B+by+ca  (a+1)y+ba+cB (225)

holds for all positive real numbers «, § and 7.
Wetakea =8 =v=1toget a+b+c=>2 Wealsotake 3 =a ! and vy — 0,
then we have
caa + (a* =1+ bc)a® +ab =0
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for each positive a. If @ > 1 then this is true. If 0 < a < 1 then this implies
a>—=1+bc=0 or (a*>—1+bc)*—4bca® <0,
which implies bc > (1 — a)?. Therefore, we get necessary conditions
a+b+c=2, 0<a<1l-—bc=(1—a)? (2.26)

where p — ¢ means that p implies q. Proving the following lemma, we may conclude
that the map ¢, is positive if and only if the conditions in (2.26) are satisfied.

Lemma 2.5.1 If nonnegative numbers a, b and ¢ satisfy the conditions in (2.26)
then inequality (2.25) holds for all positive «, 3,7 .

Proof.  Suppose that a, b and ¢ satisfy (2.26), and «, 8 and 7 are positive numbers.
Put

bB + cy by + ca ba + cf3
xr = ) y = Y z = )
o B gl
and consider the system of linear equations
rxa—bp —cy =0,
—ca+yp —by =0,
—ba —cB+ 2y =0,
with unknowns «,  and 7. This system of equations has already a nontrivial

solution, and so we have
zyz —be(z +y + 2) — (0* + %) = 0. (2.27)

On the other hand, the left-side of (2.25) becomes

1 1 1
+ + ,
a+l+z a+1l4+y a+1+2

and so, it suffices to show the inequality
F(x,y,2) =ayz +alzy+yz+zx) + (&> = Dz +y+2) + (a+1)*(a—2) =0
holds under the condition (2.27). To see this, we slice the surface (2.27) by the plane
ry+z=d (2.28)

We first note that the surface (2.27) and the plane (2.28) has nonempty inter-
section if and only if d = 3(b + ¢). When d = 3(b + ¢), the intersection is the one
point (b+ ¢, b+ ¢,b+ ¢). When d > 3(b + ¢), the intersection is a compact curve.
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One can show that if (z,y,2) is a critical point of F' under the constraints (2.27)
and (2.28) then
r=vY, Y=z Or Zz=01. (2.29)

Therefore, it suffices to find minimum of F' on the curve given by (2.27) and (2.29).
In case of x = y, the curve is given by (2% —bc)z = 2bcx +b® + ¢® from which we have
x > +/bc, and F becomes a function of one variable x. By a direct computation, we

have
1

b |
x [z — (b+ o)][az® + (a® — 1 + be)x + abcl.

F'(z) = ? + (b+ )z + (b —be + )]

The first two factors are nonnegative, and the last factor is also nonnegative by the
second conditions in (2.26). Now, we conclude that F' has the minimum at x = b+c,
which implies y = z = b+ ¢ by (2.27) and x = y. Therefore, we have

F=3ab+c)+3a®—=1+bc)(b+c)+ ((a+1)3(a—1)+b+c)
=(a+b+c—2)(a+b+c+1)*=0,

by the first condition of (2.26). The cases of y = z and z = x can be done in the

same way. o

In order to deal with decomposability of the map ¢, ], we consider the PPT
state g, defined in (1.36) We take bilinear pairing with g[as¢ to get

0 < (0p, Plap,) = 3[cp” + (a— 2)p + b]

for every p > 0. Therefore, we get the following necessary condition

2_ 2
O<a<2—>bc>< 2“). (2.30)

Compare with the condition (2.26). Now, we show that the condition (2.30) implies
that the map ¢, is decomposable. If a > 2 or bc > 1 then there is nothing to
prove since ¢, is completely positive or completely copositive in each case. In
case of 0 < a < 2 and bc < 1, we have

¢[a,b,c] = (1 - \/%) ¢[a,0,0] + \/%qb[ﬂ,\/%,\/dib]’

a

with a = —t=. We note that v > 2 by (2.30), and 50 ¢[q.0,07 is completely positive.

Since gb[o’ NCENED is completely copositive, we have seen that ¢, is decompos-
able. We summarize as follows:

Theorem 2.5.2 Let a,b and ¢ be nonnegative real numbers. Then the linear map

¢[a,b,c] 18
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(i) positive if and only ifa+b+c=>2 and 0 <a<1—bc> (1 —a)?
(i1) completely positive if and only if a = 2,
(iii) completely copositive if and only if be > 1,

(iv) decomposable if and only if 0 < a <2 — bc = (2;—“)2

For further examples of Choi type positive linear maps in various directions, see
Section 7 of the survey paper [30] and references there. See also [71, 105] for recent
development.

References: [18], [30], [71], [105]

2.5.2 Spanning properties of Choi type positive maps

In order to figure out the region given by (2.26), we look at the curve given by
0<a<l, a+b+c=2, be = (1 —a)’.
We parameterize by t = ﬁ. Then 0 < t < o0, and we have

at+b=t, (1—tla+c=2-t, a+ct=1, (2.31)

from which we have

A1) = (alt). b(t), (1)) = ( -0 _ ¢ 1 ) |

1—t+t2 1—t+1t2" 1—t+1t2

One may easily check that v makes a part of the circle centered at (%, %, %) with the
radius \/g See Figure 2.7. When ¢ = 0, we have v(0) = (1,0, 1) gives rise to the
Choi map ¢g,, and we also get the completely copositive map ¢po1,1] at t = 1. We
write

Ot 1= Pla(t),b(t)e(t)] 0<t<oo.

Now, we use (2.23) to look for product vectors in P[¢;]. We write |£) =
(z,y,2)T € C*. When |z| = |y| = |2| = 1, we see that

2 —xy —xz
oI = |~z 2 —yz
—2T —zy 2
has the kernel vector |7) = (z,y,2)" € C3. Therefore, we have

@ = (a,8,7)" ®(@,8,7)" € Plgr], (2.32)
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®o = ¢p01] =

$[2,0,0]

Figure 2.7: Two surfaces a + b + ¢ = 2 and bc = (1 — a)? make a circle.

whenever |a| = |B] = |y| = 1. When one of z,y, z, say z = 0, the determinant
det ¢, ([€)(]) is given by
(Blal® + cly[*) (aclz|* + |2 |y*a® + |2[*|y|*be + ably|" — [y|*|=[*)
(t—1)°

CETESE (%)= + [y*) (= [yt + |2]*)?,

which becomes zero when |x| = v/t and |y| = 1. In this case,

at+b —xy 0

o(JE) = | —yz ct+a 0
0 0 bt + ¢

has the kernel vector |17) = (x,ty,0)T € C3. Therefore, we have
©®n) = (Via, 3,0)" @ (Via, t5,0)" € Pley]. (2.33)

By the same way, we also have

& ®[n) = (0,Vta, 5)" ® (0, Vita,t5)" e P,
@ n) = (8,0, Vta,)" ® (5,0,vta)" € P],
with |a| = |5] = 1.
Among them, we take ten product vectors with real coefficients as follows: We
first take

(2.34)

‘€1>®‘771> (17171> (171,1)T7

‘€2>®‘772> (171’_1) ®(1717_1)Ta

|€3>®|773> (17—171)T®<1>_ 1)T7
(- 1

1 (2.35)
|£4>®|774>: 17 ) ) ®<_1717 )T7

Y
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among product vectors in (2.32). They span 4-dimensional space whose orthogonal

complement is spanned by
[12) = [21), |23)—[32), [31)—[13), [11)—[22), [22)—(33).
Next, we also take

&) ® |n5) = (VE,1,0)" @ (Vi,1,0)",

|£6> & |776> = (\/%7 _17 O>T ® (ﬁﬂ —t, 0)T7 (236)
among (2.33), and
‘€7>® ‘7]7> = (07 \/%7 1) (O \/7 t)
‘€8>® |7]8> = (07 \/%7 ) ( \/%7 _t> ) (237)
[€0) ® o) = (1,0, VD) @ (£,0,V1)",
[£10) ® [moy = (—1,0,Vt)" @ (—£,0,v)",

among (2.34). These six vectors span a 6-dimensional space whose orthogonal com-
plement is spanned by

112) — #21),  [23) — #[32), [31) — #/13). (2.38)

It is easily seen that the above ten product vectors span the whole space C* @ C?
unless ¢ # 1. Therefore, we have the following:

Theorem 2.5.3 The positive map @ap has the bi-spanning property, whenever
(a,b, c) satisfies

0<a<l, a+b+c=2, be = (1 —a)’.

In fact, it is known [47] that the maps in Theorem 2.5.3 generates an exposed
ray of the convex cone P;.

Now, we turn our attention to the surface bc = (1 — a)? with 0 < a < 1 in the
condition (2.26) of positivity of the map ¢, 4. To do this, we fix t > 0 with ¢ # 1,

and consider the line segment

S t
PN P Y (R PR T}
! {t(s) W) T iy S }

which is a part of the line segment from (1,0,0) to §(t) := (0,¢, ;). Precisely, it is
the line segment between two points between y(t) and 6(¢). It is easily seen that this
line segment is contained in the surface bc = (1 —a)? in (2.26). See Figure 2.8. We
note that L;(1) = 6(t) = (0, ¢, %) gives rise the the completely copositive map ¢[0,t,%]7
and so it is clear that maps on the line segment L; do not satisfy the co-optimal
property. Nevertheless, we will show that they satisfy the spanning property.
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Figure 2.8: The surface bc = (1 — a)? consists of line segments.

Theorem 2.5.4 The positive map ¢ := Pap has the spanning property, whenever
(a,b,c) satisfies

0<a<l, a+b+c>2, be = (1 —a)?.

Proof. We define vectors in C? as follows;
€8> =0, %, 7T, k> —(0, 6 (be) )T,
16550 =(7e%,0,%D )T g ) =(e77b12,0, 7 (be) )T,
65, (04,7 0T, g, =(e(6) e, 0.

It is easily checked that

<£§,U’<ng,a‘c¢’€§,a>’n5,a> = _2(1 - a)bcl/2 + 263/20 =0

for k = 1,2,3. Therefore, the vectors [£5 |15 > belong to Pl¢ap.q] for k =1,2,3.
We take o1 = 0, 09 = 7/2 and 03 = 7, and consider the 9 x 9 matrix whose columns
consist of nine vectors &, )0t ,,» for k, £ =1,2,3. Then the absolute value of the
determinant is given by 128 b3c1 which is nonzero. o

Therefore, every triplet (a, b, ¢) in Theorem 2.5.4 gives rise to an indecomposable

positive map ¢ := ¢4, With the following properties;
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¢/
Hg
PPT (

Figure 2.9: Entanglement Wy[(M,, ® M,,)", S1] detected by ¢ is maximal, but PPT
entanglement W,[PPT,S;] detected by ¢ is not maximal.

e ¢ has the spanning properties, so it is optimal and detects a maximal set
We((Ms® Ms)*, S1(Ms® Ms)) of entanglement. The interior of the face ¢ of
S, is sitting in the interior of (M3 ® Mj3)* by Proposition 2.4.4.

e ¢ does not have co-optimal properties, especially the smallest face of P; con-
taining ¢ has a nonzero decomposable map, so it does not detect a maximal set
Wy(PPT[M; ® Ms],S1(Ms ® Ms)) of PPT entanglement by Theorem 2.4.3.
The face ¢’ of Sy is sitting on the boundary of PPT by Proposition 2.4.4. See
Figure 2.9.

References: [31], [44], [45], [46], [47], [48]

2.5.3 Lengths of separable states

We return to the ten product vectors |(;) := |;)|n;) listed in (2.35), (2.36) and
(2.37). We note that

a - 1 1
vo-o 1
. B - 1
10 . 1 . /6 . . . . .
o= 0= 1 e
i=1 A
1 Coy
1 - B
1 1 e
with (
2t% + 2 t+2 3+ 2
o= o b=55 T= oo
12+ 2 12+ 2 12+ 2

up to scalar multiplications. So far, we have seen that g; is a separable state on the
boundary of §;. Furthermore, g; is in the interior of PPT unless ¢t = 1. In fact, one
may see both g; and o} have full ranks when ¢ # 1.
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We have found product vectors |{)[n) € P[¢:] in (2.32), (2.33) and (2.34). It is
known [46] that they are all product vectors in P[¢;], and there is no more product
vectors in P[¢;]. Now, we consider the map

V= ¢+ PpoT, t>0,t#1.

Then |£)|n) € P[vy] if and only if [€)n) € P[¢y] and [£)n) € P[¢,] if and only if
|€)|n) is one of ten product vectors |(1), ..., |Cio) listed in (2.35), (2.36) and (2.37),
with |(;) = &) ® |ni). Therefore, the convex cone generated by ten product states
|G (G| with ¢ =1,...,10 is a face of Sj, which is the dual face

Yy = ¢ 0 (G o T) (2.39)

of the positive map ;. Because these ten product vectors span the whole space
C? ®@ C3, we see that the map 1y has the bi-spanning property for ¢ # 1. Note that
1y does not generate an extreme ray of P.

Even though ten vectors |(y),...,[(1o) are linearly dependent in C* ® C?, the
corresponding ten states are linearly independent in M3 ® Ms. To see this, we
suppose that 311% ;|G| = 0. Take |w) € C* ® C* among vectors in (2.38), then

we have
10 4

0= al¢iXGilwy = ) ailGilw)lG)-
i=1 i=1

Because {|¢;) : i = 1,2,3,4} is linearly independent, we have «o;{(;lw) = 0, and
a; =0fori=1,23,4. Since {|(;): 1 =5,6,...,10} is also linearly independent, we
have a; = 0 for 2 = 5,6,...,10.

Therefore, the separable state o; with £ # 1 is decomposed into the sum of pure
product states in a unique way. Especially, we need ten pure product states in order
to express o; as the sum of them. The length of a separable state p is defined as
the smallest number of pure product states whose convex sum is p. We see that the
length of the separable state o; is 10, which is strictly greater than 9 = 3 - 3. It is
known [101, 15] that the lengths of 2® 2 and 2 ® 3 separable states are less than or
equal to 4 and 6, respectively.

Linear independence of {|(;){¢;| : i = 1,2,...,10} has a geometric interpretation.
We restrict ourselves on the normalized states. Then the face ¢} in (2.39) is the 9-
dimensional simplex with the ten extreme points which is normalized states | ){(;]
with ¢ = 1,2,...,10. All the states in this face has also a unique decomposition into

the convex sum of pure product states.

References: [101], [1], [106], [2], [15], [46], [16], [47], [48]
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2.6 Exposed positive maps by Woronowicz

In this section, we exhibit positive linear maps from Ms to M, which generate
exposed rays of the convex cone Py of all positive maps. For this purpose, we also
provide a sufficient condition for exposedness which is relatively easy to check.

2.6.1 A dimension condition for exposed positive maps

For a linear map ¢ : M,,, — M,,, we define the linear map ngS : M, ® C" — C" by

~

pa®¢) = ¢(a)§),  ae My, £€C,
and the subspace Ny in M,, ® C" by
Ny = span {a ® [n) € M, ® C" : ¢(a)|n) = 0}.
Then we have Ny < ker (;AS, in general. By the relation (2.11), we have

[EXEI® ) e Ny = [© @) € Plg],
for |€) e C™ and |n) e C™.
Because 8 is generated by M} ® M,F, we see that ¢ € ¢" is equivalent to

ae M), |neC", (a®nnl,¢) =0 = {a® n)n|,¢) =0, (2.40)

with the duality between &; and P;. By the identity

(le(a)ln) = <|m)]il, d(a)) = La @ [m)ill, ¢,

we also see that a ® |7)(7]| € ¢’ if and only if a ® |n) € Ny for a € M} and |n) e C™.
Therefore, we see that
e g’ < Ngyc Ny.
If ¢ satisfies the condition
ker ¢ = Ny, (2.41)

then we have ker ¢ = Ny < Ny < ker . Therefore, we conclude that there exists
a linear map X : C" — C” such that 1[1 = Xo gz@, or equivalently, there exists
X € M, such that i(a)|n) = X¢(a)|n) for each a € M,, and |n) € C™. This implies
Y(a) = X¢(a). Therefore, if a positive linear map ¢ : M,, — M, satisfies the
condition (2.41) together with the following condition

(C) If X € M,, and a — X ¢(a) is positive then X is a scalar matrix,

then we conclude that ¢ is exposed. Because (X¢(a))* = X¢(a*) if and only if
Xo¢(a) = ¢p(a)X*, we see that the following two conditions
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(Cp) If X € M,, and X¢(a) = ¢(a)X* for every a € M,, then X is a scalar matrix,
(CL) If X € M,, and a — X ¢(a) is Hermiticity preserving then X is a scalar matrix

are equivalent. It is clear that (Cy) or equivalent condition (Cj) implies (C).

For a subset S of M,,, we define the commutant S’ by
S":={a€ M, :ax = xa for every x € S}.

Proposition 1.2.1 tells us that the commutant of M, itself is trivial, that is, consists
of scalar matrices. It is clear that S’ is a subalgebra of M,,, and it is a =-subalgebra
if S is =-invariant, that is, x € S implies * € S. It is also clear that S < S” and
S = S"”. A positive linear map ¢ : M,, — M, is called irreducible if the range
&(M,,) of ¢ has the trivial commutant. Note that the range of a positive map
¢ M,, — M, is a =-invariant subspace, and so its commutant is a =-subalgebra of
M,,. Suppose that the range of an irreducible positive map ¢ contains the identity.
If we take a € M, with ¢(a) = I, then X¢(a) = ¢(a)X* implies that X = X* and
so the irreducibility implies the condition (Cy). Therefore, we have the following:

Theorem 2.6.1 (Woronowicz [131]) Suppose that ¢ : M, — M, is an irreducible
positive linear map satisfying the condition (2.41). If the range of ¢ contains the
identity then ¢ generates an exposed ray of the convex cone Py of all positive maps.

If the range of ¢ contains the idnetity then we see that the map gE is surjective.
Therefore, we have dim ker ¢ = n(m?—1), and so the condition ker ¢ = N, in (2.41)

holds in Theorem 2.6.1 if and only if the following dimension condition
dim N, = n(m? — 1) (2.42)

is satisfied. We call this the Woronowicz dimension condition.

It is easy to see that the condition (Cy) of a positive map ¢ implies irreducibility.
To see this, we suppose that ¢ satisfies (Cp,) and X¢(a) = ¢(a)X for every a € M,,.
Because the range of the positive map ¢ is =invariant, we also have X*¢(a) =
¢(a)X* for every a € M,,. If we write Y = $(X + X*) and Z = (X — X*),
then we have Y¢(a) = ¢(a)Y = ¢(a)Y™, which implies that Y is a scalar matrix by
condition (Cyp). By the same argument, we also see that Z is a scalar matrix, and
so we conclude that ¢ is irreducible. It should be noted that irreducibility does not
imply the condition (C) in general. To see this, we define ¢ : My — My by

a b a a
¢:<c d)H(a a+d>’
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which is easily seen to be irreducible. But, we have

Go)(ata)= (o) -(uta) (o)

and so we see that ¢ violates the condition (Cy) as well as (C). It is straightforward
to check that the Woronowicz map ¢y, given by (1.56) satisfies the condition (Cy,),
and so it is irreducible.

In the remainder of this section, we show that the identity map id,, : M,, — M,
satisfies the dimension condition (2.42). This will give rise to an another proof of

Theorem 2.1.8. We fix 1 = 2,3,...,n for a moment, and put

&) = (17a27"-,@i,...,&n)Te(Cn,
In> = (a,0,...,0,-1,0,...,0)" e C",

with —1 at the i-th entry. Then we have |£)(&|®|n;) € Niq,. We identity [£){&|® |n)
in M, ®C" and |£) ® |€) ® |n) in C" ® C" ® C" to count dimensions. For each
1 =2,...,n, we define the space V; by

Vi =span{|6) @O @ |n:) : ag,3,...,0, e C} c C"RC" @ C".

Lemma 2.6.2 The set {o*a’ : k, 0 =0,1,2,...} of monomials is linearly indepen-
dent.

Proof.  Suppose that P(«) is a linear combination of finitely many monomials
among ofa’. Then P(ta) is a polynomial with respect to the variable ¢ whose
coefficients are homogeneous polynomials in the variables a and @. Therefore, it is
enough to show that homogeneous polynomials with a fixed degree n are linearly
independent. We multiply o to all of homogeneous polynomials of degree n, and

use the identity theorem on the unit circle, to get the conclusion. o

Because monomials with variables 1, a; and &;, ¢+ = 2,3,...,n, are linearly
independent, we see that the dimension of V; is the number of monomials which
appear in the entries of [¢) ® |€) ® |n;). Noting that |¢) and |n;) have n and 2
variables and the variable &; appears two times, we see that |£) ® |n;) has 2n — 1

monomials in the entries, and
dimV; = n(2n — 1), i=2,...,n.
The orthogonal complement V;* is spanned by orthogonal vectors

‘]11>+ |jflz>7 j: 1727"'7n7 (2 43)
lzyz), ry=12,...,n, z=2,...,i—1,i+1,...,n, '
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whose cardinality is n + n?*(n — 2) = n® — n(2n — 1).
In order to count the dimension of Ng = V3" nVi- n -+ n Vil we write down
the generators of V.- as follows

Vb 111 4 (122), [211) +(222), ..., |[n11) + [n22),  |zy3), |zyd), - - -, |zyn),
Vb 111 + (133, [211) + |233), ..., [n11) + [n33),  |xy2), |zyd), - -, |xyn),
V111 + [1nn), [211) + [2nn), ..., [n11) + [nnn),  |zy2), |zy3), -, |zy(n — 1)).
Then we see that V- n V5~ -+ n VL is spanned by following n orthogonal vectors
|C1) :=[111) + [122) + |133) + - - - + |1nn),
|Co) :=[211) + [222) + [233) + - - - + |2nn),

|Gy :=|n11) + |n22) + |n33) + - - - + |nnn).

3

Therefore, we have dim Nig, = n®> —n which coincides with the dimension of ker ﬁn.

By Theorem 2.6.1, we conclude that the identity map id,, is exposed.
References: [130], [131], [49], [81]

2.6.2 Exposed positive maps between 2 x 2 and 4 x4 matrices

The Woronowicz map ¢y, in (1.56) can be parameterized as follows: We first take
positive numbers a, b, ¢ and d with ab > 1, and we define positive numbers e, f, g, h
and k by the relations

(ab—1) (;) = a(c+d) <2> . g*=acd, h=be—c* k=>bf—d. (244)

We define ¢ : My — M, by

hx —cd(y + z) + kw —gx + gz 0 0
T oy\ —gx + gy ax z 0
¢ <z w) N 0 y bw —cz —dw |’ (2.45)
0 —cy —dw ex + fw

If (a,b,¢,d) = (2,2,2,1), then we get the Woronowicz map ¢ye.

For each complex number «, we consider the following positive rank one matrix

el = (o o)

onto the vector |£,) = (1,a)T € C? and consider the determinant A;(a) of right-
below i x ¢ submatrix of ¢(|€,)(&.|) for each i = 1,2,3,4. By a direct calculation,
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we have
Ai(a) = e+ flaf?,

(@)
As(a) = |al? [h — cd(o + @) + k|of?],
As(a) = acd|al?|1 — af?,
Ay(a) = 0.
By the relations between e, f, g, h and k in (2.44), we see that

Al(Oé) > O7 AQ(O() > O, Ag(Oé) > O, A4(Oé) =0

for any complex numbers o # 0,1, and so, we see that ¢(|¢,){(€,]) is positive for
a # 0,1. We also have

h —g 0 0
=9 a 00
0 0 0 e
and
h—2cd+k 0O 0 0
0 a 1 0
o(|61)<&l) = 0 1 b —c—d
0 0 —c—d e+ f
We write |£,) := (0,1)" € C?, then we have
k0O 0 0
00 0 O
¢(|§oo><§oo|) “lo o b —d
0 0 —d f

Since @(|€4){&a|) is positive for every a € C u {00}, we conclude that ¢ is a positive
map from M into Mjy.
It is straightforward to see that ¢ satisfies the condition (Cp). Take a matrix

o = [04j] € My, and suppose that

loi] ¢ (i 3)) =¢ (i i/}) [5:]

for every z,y, z,w € C. Compare the entries of both sides, one may check that o is
a scalar matrix.
We also see that ¢(|€,){(€,]) € My has the one dimensional kernel space which is
generated by
ga(l —a)

| alh—cdla+a)+ klal?]
|7]a>'_ —e—f\a\Q

—a(c+ da)

e C* (2.46)
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for ae € C, and the kernel of ¢(|€,)(€x]) is spanned by

n> = (0,1,0,0)".

Now, we proceed to determine the dimension of the space Ny, or equivalently,
the dimension of the space

span {|Co) == € ® |€0) @ [Nay : @€ C U {o0}} =« C2 @ C* ® C*.

We first note that each entries of |(,) are linear combinations of the following 12

monomials
1, o, &, a?, aa, &, o®, o’a, ad?, ola, o’a?, oal. (2.47)
In order to show that ¢ satisfies the condition (2.42), we consider the vector

(fi(a), f2(), ..., fu(a)) e C, (2.48)

for complex functions fi,..., f,. In order to find the dimension of the span of the
vectors in (2.48) through « € C, it suffices to consider the rank of the ‘coefficient
matrix’. The coefficient matrix of |£,)[€,) is given by

1

1
with respect to the monomials 1, «a, &, a?, aa,a@?, ..., which is rank four. On the
other hand, the coefficient matrix for |n,) is given by

g - —g L

h - —cd —cd - - k
S —f
—c —d

3 o%a,.... This is of rank 4, which

with respect to monomials 1, o, &, o?, ad, &2, o
means that the set {|n,) : @ € C} spans the whole space C*. Now, one may produce
the coefficient matrix of |(,) 1= |£4) ® |€4) ® |1a) With respect to the monomials in
(2.47) which is 16 x 12 matrix, and check that this matrix has rank 12. This shows
that the map ¢ satisfies the Woronowicz dimension condition (2.42), and we have

the following;:

Theorem 2.6.3 The map ¢ : My — M, defined by (2.44) and (2.45) is an inde-
composable exposed positive map for every positive a, b, ¢ and d with ab > 1.

Proof. 1t remains to show that the map ¢ is not decomposable. If it were decom-
posable, then ¢ = Ad, or ¢ = Ad;oT. Then either C, or Cg is of rank one, which
is not the case. o

References: [49]
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2.7 Exposed positive maps by Robertson

In this section, we exhibit the Robertson map between 4 x 4 matrices which is an
indecomposable positive map generating an exposed ray. The construction use the

notion of Jordan homomorphisms.

2.7.1 Robertson’s positive maps between 4 x 4 matrices

In this section, we construct an example of indecomposable exposed positive map
between 4 x 4 matrices. We begin with the map 7 ;

T2.1 :Tl"g—ldg <?; g) = (_57 _046>

between 2 x 2 matrices, as it was defined in (1.52). This is an anti-automorphism of
order two, that is, it satisfies 7o 1 (zy) = 721(y)721(x) for ,y € My and 710701 = id,
as well as it is a completely copositive map.

We recall that quaternion numbers may be expressed as

H = {(_‘)‘B g) e My(C):a, B e (C} . (2.49)

In other words, the quaternion a + bi + ¢j + dk € H corresponds to

a+ib c+1id

a+bi+cj+dk «— <—c+id 0—ib

> € MQ((C)
It is worthwhile to note the following correspondences

.(_)iOi. .(_)017. k(_)Oii.
i 0 —i) =19 J 1 o) = low i o) =%

in terms of Pauli matrices in (1.16).
We define the linear map 7 : My(C) — My(C) by

L,
mw = 5(1(].4 + T2 ®T271),
that is, we define
(Y _ e+ ma(x) y+7a(2) ’ Ty e M,(C).
zZ w 2\ z+11(y) w4+ m1(w) z w
Then 7 is a positive map since 7o ; is completely copositive. With the expression

(2.49), we have
H = {z € My(C) : 7p1(x) = z*},
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and one may check that the range of M} (C) under 7 is

Mb(H) = {(m i) L2,y e Hn MYC), weH}

Y

8 2 _aB g (2.50)
= & _B b 0 ZCL,bER, O{,BE(C CM}E(C%

B a 0 b

and 7|y is the identity. In short, 7 is a positive projection from M}E(C) onto
M2 (H), which is a six dimensional subspace of the real space M} (C).

We note that MI(H) is a JC-subalgebra of M,(C), that is, it is a real subspace
of Hermitian matrices in M} (C) which is closed under the binary operation

1
aob= §(ab+ba).

By the relation
1
aob= 5[(a+b)2—a2—b2],

we see that a real subspace of Hermitian matrices is a JC-algebra if and only if it
is closed under the operation of square. Furthermore, a linear map ¢ between JC-
algebras is a Jordan homomorphism, that is, ¢(a o b) = ¢(a) o ¢(b) if and only if it
preserves the operation of square. Because a Hermitian matrix is positive if and only
if it is the square of a Hermitian matrix, we see that every Jordan homomorphism
defined on the full matrix algebra is positive.

We define the Jordan automorphism 6 : M} (H) — M2 (H) by

()= 2)

of order two. This is also positive, since the 4 x 4 matrix in (2.50) is positive if and
only if ab > |a]? + |8|*. Finally, we define the map

G =00

on M} (C), which is an extension of @ defined on MY (H) to the whole Hermitian

parts MPE(C). See Figure 2.10. We extend the map ¢,;, to the whole matrix algebra
M,4(C) by (1.11). Then we have

(D)3 )

1
2

2.51
1 (251)
2



M(H) L~ MPH) — M}(C)
Figure 2.10: The Robertson map ¢}, is an extension of Jordan automorphism 6.

for z, y, z and w in My(C). This map ¢,y is called the Robertson map which is a
positive map between M,(C). It should be noted that the map

z y\ (v y

Z w z x
is not a positive map on the whole matrix algebra M, (C), although it is positive on
the JC-subalgebra MY (H) of My(C).

The Choi matrix of 2¢,;, is a 16 x 16 matrix, whose first four rows coming from
& (|1)(]) with j = 1,2, 3,4 are given by

I |

The next four rows are given by

The other rows are given by

and

1 - - - .1
In order to show that ¢, is not decomposable, we define
o — 0 i oo — 0 j S 0 k oy —
1 — i* 0 ) 2 — j* O ) 3 = k* 0 ) 4 —
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where 1 is the identity for quaternion. We also put

1 0
O = 01020304 = 0 —1)/°

Then we have

bu(oy) =05, i=1,2,3,4, dun(05) = —03.

Now, we define ¥ € M,(M,) by

0O 0 0 o
~fos O 0 O
x 0 o3 0 O
0 0 o9 O
Then we have
o5 0 0 0
4 |0 —o5 O 0
3t = 0 0 o 0 ) D _I167

0 0 0 -—os

and eigenvalues of X consist of eighth roots of unity. Define

Qi22+2*i24+<1+\/§)116

tos oy 0 o1
oy TFos 0; 0
- 1 2)1
O 03 i0'5 O'; +( + \/>) 16,
o 0 o9 Fos

then we see that
(ids ® ¢u)(04) = 0-

The eigenvalues of o4 are given by
(wWro+tw+14++v2: 0 =1,weC}.

Therefore, we see that g, is of PPT, because the partial transpose of g, is nothing
but its conjugate. We also note that (idy ® ¢)(0+) = o is not positive. By
Corollary 1.8.6 (i), we conclude that ¢y, is not decomposable.

Theorem 2.7.1 The map ¢n, defined in (2.51) is an indecomposable positive map.

References: [95], [96], [97], [98], [118]
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2.7.2 Exposedness of the Robertson map

In this section, we show that the Robertson map ¢, generates an exposed ray of
he convex cone P [ My, My]. First of all, it is straightforward to check that the map
¢p 1s irreducible.

We write V' = ([2 0

0 —1I

roy) 1 Tro(w) —y — T21(2)
Ady ogn (z w) S 2 (—Z —na(y)  Trao(z) )7
We note that

Tro(w) —y — 121(2)
(—z —1a(y)  Tro(x) >
- (TrQ(x) E el Tro(z) 4(2 Tr 2(w)> N (j g’) - (Zig; :2211((5)))

0 1
-1 0

) € M,. Then we have

We also note that 751(z) = u*zTu for z € My, with u = ( ) € M, and so, it

follows that

Ady 0¢y,(X) = = (Tro(X) — X — U*X D)

N —

with
1

u 0 -1 - -
U:(O u): o |em (2.52)
—1
We note that both ¢,, and Ady o¢,, are unital, and the map Ady o¢,, is also

irreducible. We proceed to show that Ady o¢,, is also exposed, which implies that
O 1s exposed.

Theorem 2.7.2 For the matriz U in (2.52), the map

¢y = Try —idy — Ady oT (2.53)
s exposed.
Proof.  We show that ¢ satisfies the dimension condition (2.42). We note that

AEXEN = 1o — [€)XE] = U*|EXEIT,

for a unit vector [€) € C*. Because |¢) and U*|¢) are mutually orthogonal, we see
that ¢(|€)(€)|n) = 0 if and only if |) belongs to the span of |¢) and U*|¢). Therefore,
we have to show that

Ny = span{[) @O ® 1), )R |HQ@U*E) e C'@C'RC* : [¢) e CY}

117



is of 60 dimensional subspace of C* ® C* ® C*. To see this, we write &) =
(1,a, 3,7)T € C*. Then the following 16 monomials

a’ /67 77
aa, fa, ya,
af, BB, VB,
ay, By, 7Y

(2.54)

] JQ;\ QO

appear to write down the entries of |€)® |€). To list up monomials appearing in the
entries of [£) ® |£) ® |£), we multiply the monomials in the first row of (2.54) with
(1,a, 3,7)T to get ten monomials

1, «a B, v o, B ¥ aB, By, o

We also get ten monomials from each row in (2.54), and so we have 40 monomials
in the entries of |£) ® ) ®|¢). Therefore, we see that the span V of [£)® [£) ® |€)
is of 40 dimension. We have

OIOIE = (La, 8,7 @ (1,a,8,7)" @ (1, e, 8,7)",
and so we also see that vectors in the family

belong to V+. These 24 vectors, up to scalar multiplications, are easily seen to
be mutually orthogonal, and so we see that it is a basis of V+. The orthogonal
complement W+ of the space W spanned by

©®IOBU ) = (10,87 ®(1,a,5,9) ®(-a,1,-7,8)"
has the following 24 vectors
li11) + i22),  [i33) + |i44),
i13) + |i42),  |il4) — |i32),
i23) — |id1),  [i24) + [i31),
with i = 1,2,3,4. They make a basis of W+.
One may check directly that V+ n W+ is a four dimensional subspace of C* ®
C* ® C* which is spanned by the following four vectors
|114) — |411) + [224) — |422) + |231) — |132),
|423) — [324) + [133) — |331) + |144) — |441),
1233) — [332) + [244) — |442) + |314) — |413),
[142) — |241) + [113) — |311) + |223) — |322).
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Hence, we conclude that dim(V + W) = 60, as it was required. o

Therefore, we see that the Robertson map ¢,;, generates an exposed ray of the
convex cone Py[My, My] of all positive maps between 4 x 4 matrices. It is known
[28] that the map ¢y defined in (2.53) is exposed whenever U is a anti-symmetry.
We note that

ou = T41 — Ady oT

with the map 747 in (1.51). The map ¢y is usually called the Breuer-Hall map. For
further related examples of positive maps, see [103] and Section 8 of [30].

References: [12], [51], [28], [103], [30]
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