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Preface

Positive linear functionals and positive linear maps had been playing important

roles in the theory of operator algebras, which reflect noncommutative order struc-

tures. Such order structures provide basic mathematical frameworks for current

quantum information theory. The main purpose of this lecture note is to introduce

basic notions like separability/entanglement and Schmidt numbers from quantum

information theory in terms of positive maps between matrix algebras.

Basic tools are Choi matrices and duality arising from bilinear pairing between

matrices. We begin with concrete examples of positive maps Ads which sends x

to s˚xs, and define separability/entanglement and Schmidt numbers in terms of

Choi matrices. We also use duality to introduce various kinds of positivity, like k-

positivity and complete positivity. Positive maps which are not completely positive

are indispensable tools to detect entanglement through the duality.

In Chapter 1, we introduce the above notions and exhibit nontrivial examples of

positive maps. We also provide a unified argument to recover various known criteria

through ampliation. We will focus in Chapter 2 on the issue how positive maps

detect entanglement. Through the discussion, exposed faces of the convex cones of

all positive maps play important roles. We exhibit three classes of positive maps,

by Choi, Woronowicz and Robertson in 1970’s and 1980’s which generate exposed

extreme rays of the convex cone of all positive linear maps.

This is the collection of lecture notes during the fall semester of 2022, at Seoul

National University, Seoul, Korea. The author tried to minimize preliminaries, re-

quiring only undergraduate linear algebra. The author is grateful to all the audiences

for their feedbacks on the notes. Special thanks are due to Kyung Hoon Han for

his careful reading of the drafts. Nevertheless, any faults in this lecture notes are

responsibility of the author.

February 2023
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Chapter 1

Positive Maps and Bi-partite
States

In this chapter, we introduce various kinds of positive maps between matrix algebras

together with the corresponding notions for the tensor products of matrix algebras.

We begin with the most elementary positive maps Ads for given matrices s, which

send x to s˚xs. These maps give rise to important classes of positive maps according

to the ranks of s, by taking convex combinations. Positive maps arising in this

way with matrices whose ranks are at most k are called k-superpositive maps, and

all of them make the class of completely positive maps which play crucial roles.

Another important positive map is given by the transpose, which makes the class of

decomposable positive maps together with completely positive maps.

For a given linear map between matrix algebras, we assign a matrix in the

tensor product of matrices, or equivalently a block matrix, which is called the Choi

matrix. The block matrices corresponding to completely positive maps are precisely

positive (semi-definite) matrices, which represent bi-partite states after normalizing

by the trace. The class of 1-superpositive maps corresponds to separable states.

Nonseparable states are called entanglement, which is now recognized as one of the

most important resources in the current quantum information theory.

Another main tool is the bilinear pairing between matrices which gives rise to

the bilinear pairing between linear maps through the Choi matrices. The dual

notion of k-superpositivity by this bilinear pairing is k-positivity, which has been

studied among operator algebraists since Stinespring’s representation theorem in the

1950’s. The usual positivity of linear maps coincides with 1-positivity arising in this

way. Therefore, the positivity of linear maps between matrix algebras is just the

dual notion of separability of bi-partite states, and this is why positive maps play

important roles to detect entanglement.

After we fix notations together with several preliminaries in Section 1.1, we show

in Section 1.2 that the map Ads generates an extreme ray of the convex cone of all
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positive linear maps, and introduce the notion of k-superpositive maps and decom-

posable maps. In Section 1.3, we show that all positive maps are decomposable in

low dimensional cases like maps between 2 ˆ 2 matrices. In Section 1.4, we define

Choi matrices through which we introduce various kinds of bi-partite states, under

the name of Schmidt numbers. We define the bilinear pairing between linear maps in

Section 1.5 and get the notion of k-positivity which is dual to k-superpositivity. Dur-

ing the discussion, we see that complete positivity of maps corresponds to positivity

of block matrices through the Choi matrices. Sections 1.6 and 1.7 will be devoted

to introduce various examples which distinguish k-superpositivity and k-positivity

of maps together with the corresponding states which include Werner states and

isotropic states. We also see concrete examples of indecomposable positive maps.

Finally, we introduce the notion of mapping cones in Section 1.8 with which we

obtain various characterizations of aforementioned notions in terms of ampliation

which is the tensor product with the identity map. Our exposition of topics reverses

historical development in parts, and this is why we add historical remarks in Section

1.9.

1.1 Preliminaries

1.1.1 Vectors and matrices

A vector in the vector space Cn over the complex field is denoted by a ket |vy, which

may be understood as a column vector or an nˆ 1 matrix;

|vy “

¨

˚

˚

˚

˝

v1

v2

...
vn

˛

‹

‹

‹

‚

P Cn.

The adjoint of ket |vy is denoted by a braxv|, that is,

xv| “ pv̄1, v̄2, ¨ ¨ ¨ , v̄nq P Cn.

For given two vectors |vy and |wy in Cn, we have

xv|wy “ v̄1w1 ` v̄2w2 ` ¨ ¨ ¨ ` v̄nwn,

and so xv|wy is the standard inner product of Cn which is linear in the second

variable and conjugate-linear in the first variable. So, xv| may be considered as the

linear functional on Cn which sends |wy to xv|wy. On the other hand, we see that

|vyxw| “

¨

˚

˚

˚

˝

v1w̄1 v1w̄2 ¨ ¨ ¨ v1w̄n
v2w̄1 v2w̄2 ¨ ¨ ¨ v2w̄n
...

...
. . .

...
vmw̄1 vmw̄2 ¨ ¨ ¨ vmw̄n

˛

‹

‹

‹

‚
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is an mˆ n matrix of rank one, for |vy P Cm and |wy P Cn. This is nothing but

|vyxw| : |uy ÞÑ |vyxw|uy “ xw|uy|vy P Cm, |uy P Cn,

as a linear map from Cn into Cm with the one dimensional range space spanned by

|vy. The set Mmˆn of all m ˆ n matrices is a vector space over the complex field.

When m “ n, we use the notation Mn, which is usually called the matrix algebra

since two square matrices with the same size can be multiplied.

The vectors appearing in the standard orthonormal basis tei : i “ 1, 2, . . . , nu of

Cn are denoted by

|iy “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0
...
0
1
0
...
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Ð i-th,

so we may write |vy “
řn
i“1 vi|iy. If |iy P Cm and |jy P Cn then

|iyxj|

is the mˆn matrix whose entries are zeros except for pi, jq-entry 1. So, the collection

t|iyxj| : i “ 1, 2, . . . ,m, j “ 1, 2, . . . , nu

is the standard matrix units. The mˆ n matrix A “ raijs may be written by

A “
ÿ

i,j

aij|iyxj| “

¨

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1n

a21 a22 ¨ ¨ ¨ a2n

...
...

. . .
...

am1 am2 ¨ ¨ ¨ amn

˛

‹

‹

‹

‚

.

When we consider concrete examples, we sometimes use notations |0y, |1y, . . . , be-

ginning with |0y for orthonormal basis. In this case, we have

|0y “

ˆ

1
0

˙

P C2, |1y “

ˆ

0
1

˙

P C2

for the two dimensional case.

1.1.2 Positive matrices

A self-adjoint nˆ n matrix A is called positive semi-definite or just positive if

xx|A|xy ě 0 (1.1)
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for every |xy P Cn. Every |xy P Cn gives rise to the rank one matrix |xyxx|, which is

positive since

xy|xyxx|yy “ |xx|yy|2 ě 0

for every |yy P Cn. If |xy is a unit vector then |xyxx| is the projection onto the one

dimensional space spanned by |xy. By the spectral decomposition, we know that

every positive matrix can be written by

ÿ

ι

|xιyxxι|

with a finite family t|xιyu of vectors. It should be noted that this expression is far

from being unique. By another application of the spectral decomposition, we know

that a positive matrix is the square of a matrix. We write A ď B for Hermitian

matrices A and B if B ´ A is positive.

For two matrices A “ raijs and B “ rbijs with the same sizes, we define

xA,By “ Tr pABT
q “

ÿ

i,j

aijbij,

where BT and Tr pABTq denote the transpose of B and the trace of ABT, respec-

tively. This is a bilinear pairing which is non-degenerate, that is, satisfies

xA,By “ 0 for every B ðñ A “ 0.

It should be noted that xA,Ay may be negative. For an example, we take a self-

adjoint

A “

ˆ

0 i
´i 0

˙

,

to get xA,Ay “ ´2 ă 0. We have the following relations

xA,BCy “ xACT, By “ xBTA,Cy,

whenever the sizes of matrices are given so that the above relation is meaningful.

We also note that the identity

|xyxy|T “ xy|T|xyT “ |ȳyxx̄|

holds with the notation |x̄y “
ř

i x̄i|iy. Therefore, we also have

xA, |x̄yxȳ|y “ Tr pA|x̄yxȳ|Tq

“ Tr pA|yyxx|q

“ Tr pxx|A|yyq “ xx|A|yy.

(1.2)

Especially, we have

xx|A|xy “ xA, |x̄yxx̄|y

10



for every A P Mn and |xy P Cn. Therefore, we see that A P Mn is positive if and

only if xA,By ě 0 for every positive B.

We note that every linear functional % on the space Mn is of the form

% : A ÞÑ xA,B%y, A PMn, (1.3)

for an n ˆ n matrix B%. Then % is positive, that is, sends a positive matrix to a

nonnegative real numbers if and only if B% is positive. Furthermore, it is easily seen

that % is unital, that is, sends the identity matrix to 1, if and only if B% is of trace

one. A positive matrix % of trace one is called a density matrix, or a state, which is

of the form

% “
ÿ

i

pi|ξiyxξi|, (1.4)

for a probability distribution tpiu with
ř

i pi “ 1 and a family t|ξiyu of unit vectors.

We note that the set, denoted by Dn, of all states in Mn is a convex set whose

elements are convex combinations of one dimensional projections t|ξyxξ|u with unit

vectors t|ξyu, which are called pure states. Sometimes, a positive matrix itself is

called an (unnormalized) state.

1.1.3 Tensor products

An mˆ n matrix A “
ř

i,j aij|iyxj| corresponds to the vector

xÃ| “
ÿ

i,j

aijxi|xj| P Cm
b Cn, (1.5)

where we usually delete the tensor notation in xi| b xj| to write as xi|xj|, or even as

xij|. If we endow txi|xj|u with the lexicographic order then xÃ| is the concatenation

xÃ| “ pa11, . . . , a1n, a21, . . . , a2n, . . . , . . . , am1, . . . , amnq P Cmn

of row vectors of the matrix A.

The tensor product AbB of two matrices A and B is defined by

AbB “

˜

ÿ

ij

aij|iyxj|

¸

b

˜

ÿ

k

bk`|kyx`|

¸

“
ÿ

i,j,k,`

aijbk`|iy|kyxj|x`|.

If we endow t|iy|kyu and t|jy|`yu with the lexicographic orders again, then A b B

has the matrix form. For example, when both A and B are 2ˆ 2 matrices, we have

AbB “

¨

˚

˚

˝

a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

˛

‹

‹

‚

.
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In this way, a matrix in Mm b Mn may be identified as an m ˆ m block matrix

whose entries are n ˆ n matrices. So, we may identify Mm bMn with MmpMnq.

Especially, ImbB is the mˆm diagonal block matrix whose diagonal block is given

by B P Mn, where Im denotes the m ˆ m identity matrix. Sometimes, we denote

by I for the identity matrix. On the other hand, Ab In is the mˆm block matrix

whose pi, jq block is given by aijIn PMn. Note that

pAbBq|jy|`y “
ÿ

i,k

aijbk`|iy|ky

“

˜

ÿ

i

aij|iy

¸

b

˜

ÿ

k

bk`|ky

¸

“ A|jy bB|`y,

and so AbB sends |jy|`y to A|jy bB|`y as a linear map from Cm b Cn into itself.

The following identities are easily checked;

pC bDqT “ CT
bDT,

pAbBqpC bDq “ AC bBD,

Tr pAbBq “ Tr pAqTr pBq,

whenever they are defined. Suppose that A and C are m ˆ n matrices, and B,D

are k ˆ ` matrices. Using the above relations, we also have the identity

xAbB,C bDy “ xA,CyxB,Dy. (1.6)

For linear maps φ1 : Mm1 ÑMn1 and φ2 : Mm2 ÑMn2 , we define the linear map

φ1 b φ2 : Mm1 bMm2 ÑMn1 bMn2

as follows: Every element of Mm1 bMm2 is given by A “
řm1

i,j“1 |iyxj| b Aij with

Aij PMm2 in a unique way. We define

pφ1 b φ2qpAq “
m1
ÿ

i,j“1

φ1p|iyxj|q b φ2pAijq PMn1 bMn2 .

Then we see that φb ψ sends AbB PMm1 bMm2 to φpAq b ψpBq PMn1 bMn2 .

1.1.4 Singular value decomposition

Let A be an arbitrary m ˆ n matrix. Then A˚A is an n ˆ n positive matrix with

eigenvalues

λ1 ě λ2 ě ¨ ¨ ¨ ě λr ą 0 “ λr`1 “ ¨ ¨ ¨ “ λn,

with r ď m and r ď n. Denoting by D the r ˆ r diagonal matrix with the diagonal

entries λ1, . . . , λr, we have

V ˚pA˚AqV “

ˆ

D 0
0 0

˙
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for an n ˆ n unitary matrix V . We write V “
`

V1 V2

˘

with the n ˆ r matrix V1

and the nˆ pn´ rq matrix V2. Then we have

V ˚1 pA
˚AqV1 “ D PMr, V ˚2 pA

˚AqV2 “ 0 PMn´r.

Define the mˆ r matrix U1 by U1 “ AV1D
´1{2 with the obvious meaning for D´1{2.

Then we have

U˚1U1 “ D´1{2V ˚1 A
˚AV1D

´1{2
“ Ir,

and so we can take an m ˆ pm ´ rq matrix U2 so that U “
`

U1 U2

˘

is an m ˆm

unitary. We have

U˚1AV1 “ U˚1AV1D
´1{2D1{2

“ U˚1U1D
1{2
“ D1{2,

U˚2AV1 “ U˚2AV1D
´1{2D1{2

“ U˚2U1D
1{2
“ 0.

From V ˚2 pA
˚AqV2 “ 0, we also have AV2 “ 0, and so we have

U˚AV “

ˆ

U˚1AV1 U˚1AV2

U˚2AV1 U˚2AV2

˙

“

ˆ

D1{2 0
0 0

˙

,

as mˆ n matrices.

Therefore, the mˆ n matrix A is written by

A “ UΣV ˚, (1.7)

with the matrix Σ given by

Σ “
r
ÿ

k“1

λ
1{2
k |kyxk| PMmˆn,

and unitary matrices U P Mm and V P Mn. This is known as the singular value

decomposition of A, and λ
1{2
1 , . . . , λ

1{2
r are called the singular values of A. By the

identity

Σ “

ˆ

D1{2 0
0 0

˙

“

ˆ

Ir 0
0 0

˙ˆ

D1{2 0
0 In´r

˙

,

we also see that A can be written as

A “ U

ˆ

Ir 0
0 0

˙

W, (1.8)

with invertible matrices U PMm and W PMn. This can be also obtained from row

and column elementary operations.

References: [11]
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1.1.5 Ranks

For a matrix A, we denote by ImA the range space which is the span of column

vectors. The span of the conjugates of row vectors is the orthogonal complement

of the kernel space kerA. By the dimension theorem, the span of columns and the

span of rows share the same dimension, which is called the rank of A and is denoted

by rankA. We see that kerA˚A “ kerA which implies rankA “ rankA˚A, and so

the number r in the singular value decomposition (1.7) is the rank of A.

When A “
ř

i,j aij|iyxj|, the j-th column vector is given by

A|jy “
ÿ

i

aij|iy.

Take any basis t|ξky : k “ 1, 2, . . . , rankAu of ImA and write A|jy “
ř

k sjk|ξky,

then we have

A “ AIn “
n
ÿ

j“1

A|jyxj| “
ÿ

k

|ξky

˜

ÿ

j

sjkxj|

¸

.

Therefore, we have

A “
rankA
ÿ

k“1

|ξkyxηk| (1.9)

with xηk| “
ř

j sjkxj|, and we see that it is possible to express A with the sum

of a family of rank one matrices with the cardinality rankA. In the singular value

decomposition (1.7), we take column vectors t|ξiyu and t|ηjyu of the unitary matrices

U and V , respectively. Then we have

A “ p
ř

i |ξiyxi|q
´

ř

k λ
1{2
k |kyxk|

¯´

ř

j |ηjyxj|
¯˚

“ p
ř

i |ξiyxi|q
´

ř

k λ
1{2
k |kyxk|

¯´

ř

j |jyxηj|
¯

“

rankA
ÿ

k“1

λ
1{2
k |ξkyxηk|.

Therefore, vectors t|ξkyu and t|ηkyu in (1.9) can be chosen to be orthogonal.

A vector of the form |ξy b |ηy in Cm b Cn is called a product vector which

corresponds to the mˆ n matrix |ξyxη̄| of rank one under the correspondence (1.5).

The Schmidt rank of a vector |ζy P Cm b Cn, denoted by SR |ζy, is the smallest

number of product vectors whose sum is |ζy. By the correspondence (1.5) and

the expression (1.9), we see that the Schmidt rank coincides with the rank of the

corresponding matrix.

1.1.6 Boundary of a convex set

Suppose that C is a nonempty convex set in a real vector space Rν . A point x of C

is called a relative interior point or just an interior point of C if for each y P C there

14
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Figure 1.1: If the line segment from an interior point x0 to y can be extended, then
the line segment from any point z to y also can be extended

is t ą 1 such that p1 ´ tqy ` tx P C. This means that the line segment from every

y P C to x may be extended within C. The set of all interior points of C will be

denoted by intC, which coincides with the relative interior of C with respect to the

affine manifold generated by C. From this, one may see that intC is nonempty for

any nonempty convex set C. A point y P C which is not an interior point is called

a boundary point, and the set of all boundary points of C is denoted by BC.

We fix an interior point x0 of a convex set C. Suppose that y P C satisfies the

condition suptt : p1´ tqx0` ty P Cu “ 1. That is, we suppose that the line segment

from x0 to y cannot be extended within C. Then it is clear that y is a boundary

point of C. Suppose that y does not satisfy the condition. Then there is t ą 1

such that p1 ´ tqx0 ` ty P C. For an arbitrary z P C we can take s ă 0 such that

p1 ´ sqx0 ` sz P C since x0 is an interior point. Put r “ spt´1q
t´s

. Then we see that

r ă 0 and

p1´ rqy ` rz “
1´ s

t´ s
rp1´ tqx0 ` tys `

t´ 1

t´ s
rp1´ sqx0 ` szs P C.

This shows that y is an interior point of C. See Figure 1.1. Therefore, we conclude

that y is an interior point of C if and only if the line segment from a single interior

point x0 to y can be extended within C.

A nonempty convex subset F of a convex set C is called a face of C if the

following property

x0, x1 P C, 0 ă t ă 1, p1´ tqx0 ` tx1 P F ùñ x0, x1 P F

holds. This means that if an interior point of a line segment in C belongs to F

then the line segment itself is contained in F . An extreme point is nothing but a

face consisting of a single point. A face F of a convex set C is called proper if it

is a proper subset of C. If a point of a face F is an interior point of C then we

see that F “ C. Therefore, a proper face must be contained in the boundary. The

intersection of an arbitrary family of faces is again a face whenever it is nonempty,

and so every point x of a convex set has the smallest face F containing the point.
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We see that x is an interior point of F , and a convex set is completely partitioned

into interiors of faces.

Suppose that C is a compact convex set. If x P C is not an extreme point then it

is an interior point of a line segment. We extend this line segment until it meets the

boundary, and so we see that x is a convex combination of two boundary points. If

one of them is not an extreme point and contained in a proper face then we express

it as a convex combination of two boundary points of the face. We continue this

process to see that every point of a compact convex set in a finite dimensional space

is a convex combination of extreme points. Carathéodory theorem tells us that every

point of a d-dimensional convex set is the convex combination of extreme points with

the cardinality at most d` 1. An important consequence is that the convex hull of

a compact set in a finite dimensional space is again compact. It should be noted

that this is not the case for infinite dimensional spaces.

References: [99], [127], [74]

1.1.7 convex cones

Recall that a subset of a real vector space is called a convex cone if it is closed under

summations and scalar multiplications by nonnegative numbers. A point x0 P K is

said to generate an extreme ray of a convex cone K or to be extremal in K if the

ray ttx0 : t ě 0u itself is a face of K. This is the case if and only if x0 “ x1 ` x2

with x1, x2 P K implies that x1 is a nonnegative scalar multiplication of x0. In this

case, the ray ttx0 : t ě 0u is called an extreme ray. Sometimes, the point x0 itself is

called extreme.

The set of all n ˆ n positive matrices, denoted by M`
n , is a closed convex cone

in the real vector space Mh
n of all Hermitian matrices. We note that a positive

matrix generates an extreme ray of M`
n if and only if it is of rank one. We see that

A P M`
n is an interior point of M`

n if and only if rankA “ n, or equivalently A is

non-singular. Especially, the identity matrix In is an interior point of M`
n . The ray

generated by In may be considered to be located at the center of the convex cone

M`
n . In fact, if we take a projection P onto a proper subspace then we have

sup

"

t P R : p1´ tqP ` t ¨
1

2
In ě 0

*

“ 2.

If we extend the line segment from P to 1
2
In until the line meets the boundary of

M`
n , then the line segment meets at the orthogonal complement In ´ P , and 1

2
In is

located at the center of the line segment.

For a positive matrix A, we consider the range vectors of A and take the convex

cone F generated by t|ξyxξ| : |ξy P ImAu, then A is an interior point of F . Especially,
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for any |ξy P ImA there exists t ą 1 such that p1 ´ tq|ξyxξ| ` tA is positive. The

convex cone F is the smallest face containing A, and every face of M`
n arises in this

way.

We note that a convex cone K itself has no extreme point except zero. The setDn
of all density matrices is the intersection of the convex cone M`

n and the hyperplane

determined by the condition that the trace is one. If we take a hyperplane H which

does not contain zero but meets an extreme ray of K then the intersection is just a

single point which is an extreme point of the convex set K XH.

1.2 Positive maps

We first note that every positive map between matrix algebras is sitting in the real

vector space of all Hermiticity preserving maps. We will show that the map Ads
defined by Adspxq “ s˚xs generates an extreme ray of the convex cone P1 of all

positive linear maps. Using those maps together with the transpose map, we define

the notions of k-superpositivity and decomposability for positive maps.

1.2.1 Positive maps between matrix algebras

The vector space of all linear maps from Mm into Mn will be denoted by LpMm,Mnq

which is of m2n2 dimension over the complex field. A linear map φ : Mm Ñ Mn

is called Hermiticity preserving if φpaq P Mn is Hermitian whenever a P Mm is

Hermitian. When φ is Hermiticity preserving, we write a “ b ` ic with Hermitian

matrices b and c, then we have

φpa˚q “ φpb´ icq “ φpbq ´ iφpcq “ pφpbq ` iφpcqq˚ “ φpaq˚.

In short, φ satisfies the following relation

φpa˚q “ φpaq˚, a PMm. (1.10)

If φ satisfies the property (1.10) and a is Hermitian then we have φpaq˚ “ φpa˚q “

φpaq, and so φpaq is Hermitian. Therefore, we see that φ is Hermiticity preserving

if and only if it satisfies (1.10). The restriction of a Hermiticity preserving map

φ : Mm ÑMn on Mh
m is a real linear map from Mh

m into Mh
n . Conversely, every real

linear map φ : Mh
m ÑMh

n can be extended to the complex linear map φ̃ : Mm ÑMn

by

φ̃pa` ibq “ φpaq ` iφpbq. (1.11)

The set HpMm,Mnq of all Hermiticity preserving maps is a vector space over the

real field with the real dimension m2n2.
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A linear map φ : Mn Ñ Mm is called positive if it sends positive matrices to

positive matrices. Because every Hermitian matrix is the difference of two positive

matrices, it is clear that every positive linear map is Hermiticity preserving. The

set of all positive maps from Mm into Mn will be denoted by P1rMm,Mns, which is

a closed convex cone in the real vector space HpMm,Mnq.

For a given linear map φ : Mm ÑMn, the adjoint map φ˚ : Mn ÑMm is defined

by

xφ˚pxq, yy “ xx, φpyqy, x PMn, y PMm.

It is easy to see that the following relation

pφ ˝ ψq˚ “ ψ˚ ˝ φ˚

holds whenever the composition φ ˝ ψ is possible. A linear map φ : Mm Ñ Mn is

positive if and only if xφpxq, yy ě 0 for every positive x P Mm and positive y P Mn

if and only if xx, φ˚pyqy ě 0 for every positive x and y if and only if φ˚ : Mn ÑMm

is a positive linear map. In short, we have seen that φ is positive if and only if its

adjoint map φ˚ is positive.

1.2.2 Extremal positive maps

For a given mˆ n matrix s, we define the linear map Ads : Mm ÑMn by

Adspxq “ s˚xs, x PMm.

It is clear that Ads is a positive map for any matrix s. The map Adu is called a

congruence map when u is a unitary. It is easy to see that the following identities

Adst “ Adt ˝Ads, pAdsq
˚
“ AdsT

hold for matrices s and t, whenever st is defined. It is also clear that if s P Mn is

nonsingular then Ads : Mn Ñ Mn is an order isomorphism. Recall that a bijective

map φ : Mn ÑMn is called an order isomorphism when both φ and φ´1 are positive,

that is, φ satisfies

s ď t ðñ φpsq ď φptq. (1.12)

A linear map which generates an extreme ray of the convex cone P1 is called

an extremal positive map. It is clear that φ is extremal positive if and only if so is

φ˚. If φ is extremal positive and σ is a linear order isomorphism then both σ ˝ φ

and φ ˝ σ are also extremal whenever they are defined, because both φ ÞÑ σ ˝ φ and

φ ÞÑ φ ˝ σ define affine isomorphisms between P1rMm,Mns. We will show that the

map Ads is an extremal positive map. To do this, we need the following:

18



Proposition 1.2.1 Suppose that a P Mn commutes every b P Mn. Then a is a

scalar multiple of the identity matrix.

Proof. Write a “
ř

i,j aij|iyxj|. Then |kyx`|a “ a|kyx`| implies

x`|a|ky “ xk|kyx`|a|ky “ xk|a|kyx`|ky “ 0,

when k ‰ `, and so a must be a diagonal matrix. We also have

x`|a|`y “ xk|kyx`|a|`y “ xk|a|kyx`|`y “ xk|a|ky,

for each k, `. ˝

The identity map id “ AdI with the identity matrix I is the key case for the

extremeness of the maps Ads. Sometimes, we denote by idn for the identity map on

Mn.

Lemma 1.2.2 The identity map idn “ AdIn is extremal in P1rMn,Mns.

Proof. Suppose that both φ and idn ´ φ are positive. Then for every unit vector

|ξy P Cn, we have 0 ď φp|ξyxξ|q ď |ξyxξ|, and so there exists λξ with 0 ď λξ ď 1 such

that

φp|ξyxξ|q “ λξ|ξyxξ|,

because |ξyxξ| generates an extreme ray of the convex cone M`
n . We have to show

that λξ “ λη for any unit vectors |ξy and |ηy. We note that φppq ď p for every

projection in Mh
n , which implies pIn ´ pqφppq “ 0. We replace p by In ´ p, to get

pφpIn ´ pq “ 0. Therefore, we have

0 “ pIn ´ pqφppq ´ pφpIn ´ pq “ φppq ´ pφpInq.

Taking the adjoint, we also have

0 “ pφppq ´ pφpInqq
˚
“ φppq ´ φpInqp,

and conclude that φpInq commutes with every projection. Since every matrix is the

linear combination of projections, we see that φpInq “ λIn by Proposition 1.2.1.

Taking an orthonormal basis t|ξiyu, we have

ÿ

i

λξi |ξiyxξi| “
ÿ

i

φp|ξiyxξi|q “ φpInq “ λIn “
ÿ

i

λ|ξiyxξi|.

Putting |ξiy at the right-side of the above identity, we have λξi “ λ, and we conclude

that φ “ λ ¨ idn. This shows that idn is an extremal positive map. ˝
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Lemma 1.2.3 Suppose that m ď n and s is an mˆ n matrix of the form

s “
`

Im 0
˘

PMmˆn

with the m ˆm identity matrix Im in the left corner. If φ : M` Ñ Mm is extremal

positive then Ads ˝φ : M` ÑMn is also extremal.

Proof. Note that σ “ Ads is of the form:

σ : a ÞÑ

ˆ

a 0
0 0

˙

PMn.

We define τ : Mn ÑMm by

τ :

ˆ

a b
c d

˙

ÞÑ a PMm.

Then we have τ ˝ σ “ idm. Suppose that σ ˝ φ “ ψ1 ` ψ2 with ψ1, ψ2 P P1rM`,Mns.

Then we have

φ “ τ ˝ σ ˝ φ “ τ ˝ ψ1 ` τ ˝ ψ2.

Since φ is extremal, there exists λ ě 0 such that τpψ1paqq “ λφpaq for each a PM`.

Because

ψ1paq ď σpφpaqq “

ˆ

φpaq 0
0 0

˙

, a PM`
` ,

we have pσ ˝ τqpψ1paqq “ ψ1paq for a PM`. Therefore, it follows that

ψ1paq “ σpτpψ1paqqq “ σpλφpaqq “ λσpφpaqq,

for each a PMm, and so σ ˝ φ “ Ads ˝φ is extremal. ˝

Theorem 1.2.4 For any m ˆ n matrix s, the linear map Ads : Mm Ñ Mn is

extremal positive.

Proof. By singular value decomposition (1.8), we have s “ upqw with the m ˆ k

matrix p “

ˆ

Ik
0

˙

and k ˆ n matrix q “
`

Ik 0
˘

together with invertible matrices

u,w. Then we have

Ads “ Adw ˝Adq ˝Adp ˝Adu .

By lemma 1.2.3 and Lemma 1.2.2, we see that AdpT “ AdpT ˝id is extremal, and so

Adp “ pAdpTq
˚ is also extremal. Therefore, Adq ˝Adp is extremal by Lemma 1.2.3

again. On the other hand, Adw and Adu are order isomorphisms since w and v are

invertible. Therefore, we conclude that Ads is extremal. ˝
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It is very difficult in general to find out all the extreme rays of the convex

cone P1rMm,Mns, and it is an open problem even for low dimensional cases like

m “ n “ 3. But, it is not so difficult to find boundary points of P1rMm,Mns. We

see that if φpaq is singular for a nonzero a P M`
m then φ must be a boundary point

of P1. Indeed, the following is immediate from the definition of interior points.

Proposition 1.2.5 If φ P intP1rMm,Mns then φ sends every nonzero element in

M`
m to an interior point of M`

n .

Proof. Take a nonzero a P M`
m and b P M`

n , and consider the map ψ : Mm Ñ Mn

given by ψpxq “ Tr pxq
Tr paq

b. Then there exists t ą 1 such that p1 ´ tqψ ` tφ P P1, and

so we have p1´ tqb` tφpaq ě 0. Since b PM`
n was arbitrary, we see that φpaq is an

interior point of M`
n . ˝

We will see later that the converse of Proposition 1.2.5 also holds. See Proposi-

tion 2.3.3. Therefore, φ is on the boundary of P1rMm,Mns if and only if there is a

nonzero a P M`
m such that φpaq P Mn is singular. It is easily seen that the positive

map Ads : Mm Ñ Mn satisfies this property for every s P Mmˆn. Especially, if

s PMnˆn itself is singular then Adspaq is singular for every a PMn.

References: [111], [118]

1.2.3 k-superpositive maps

We denote by SPk the convex hull of tAds : rank s ď ku;

SPk :“ conv tAds : rank s ď ku Ă P1,

where convS denotes the convex hull of S. We also use the notation SPkrMm,Mns

when we need to specify the domain and range. If k ă ` ď m ^ n and rank s “ `

then Ads R SPk since it is extremal, where m ^ n denotes the the minimum of m

and n. Therefore, we have the following chain of strict inclusions

SP1 Ř SP2 Ř ¨ ¨ ¨ Ř SPk Ř ¨ ¨ ¨ Ř SPm^n

of convex cones of positive maps. A positive map in SPk is called k-superpositive.

A 1-superpositive map may be called just superpositive.

Proposition 1.2.6 For each k “ 1, 2, . . . ,m ^ n, the convex cone SPk is closed in

HpMm,Mnq.

Proof. We consider the linear functional τ on the space HpMm,Mnq defined by

τpφq “ TrφpImq, φ P HpMm,Mnq.
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Then we have τpAdsq “
ř

ij |sij|
2 for s “

ř

ij sij|iyxj|. Next, we consider the set

Ck :“ ts PMmˆn : rank s ď k,
ř

ij |sij|
2 “ 1u,

which is compact. Then the image of Ck under the continuous map s ÞÑ Ads is a

compact subset of HpMm,Mnq whose convex hull is tφ P SPk : τpφq “ 1u, which is

also compact. Therefore, we conclude that the convex cone SPk is closed. ˝

It is clear that the transpose map T : x ÞÑ xT is a positive map between Mn.

The transpose map is extremal in P1rMn,Mns, since T “ T ˝ id and T is an order

isomorphism. When n ě 2, it is easy to see that T is not a member of the convex

cone SPnrMn,Mns, whose extreme rays consist of Ads. If we assume that T P SPn
then we have T “ Ads for a matrix s “

ř

i,j sij|iyxj|. We have

Adsp|iyxj|q “
ÿ

k,`,p,q

s̄qpsk`|pyxq|iyxj|kyx`| “
ÿ

p,`

s̄ipsj`|pyx`|.

Since Tp|iyxj|q “ |jyxi|, we have s̄ijsji “ 1 for every i, j, especially s has no zero

entries. On the other hand, we have s̄ipsj` “ 0 whenever pp, `q ‰ pj, iq, which is

absurd.

Since the composition of positive maps is positive, we see that

SPk :“ tT ˝ φ : φ P SPku

is a convex cone in P1, and we have another chain of strict inclusions

SP1
Ř SP2

Ř ¨ ¨ ¨ Ř SPk Ř ¨ ¨ ¨ Ř SPm^n (1.13)

of convex cones in P1. By the identity

T ˝ Adspaq “ ps
˚asqT “ sTaTs̄ “ Ads̄pa

T
q “ Ads̄ ˝Tpaq,

we see that φ P SPk if and only if T ˝ φ P SPk if and only if φ ˝ T P SPk.
In the identity Ad|ξyxη|paq “ |ηyxξ|a|ξyxη|, we see that xξ|a|ξy is a scalar and

Tp|ηyxη|q “ |η̄yxη̄|. Therefore, we have T ˝ Ad|ξyxη|paq “ Ad|ξyxη̄|paq, and so get the

identity

T ˝ Ad|ξyxη| “ Ad|ξyxη̄| . (1.14)

Hence, it follows that two convex cones SP1 and SP1 coincide, and we have the

following inclusion:

SP1 Ă SPm^n X SPm^n. (1.15)

Proposition 1.2.7 Suppose that s P Mmˆn is nonzero. Then Ads P SPm^n if and

only if s is of rank one.
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Proof. It remains to prove the ‘only if’ part. Suppose that Ads belongs to the

convex cone SPm^n. Since Ads generates an extreme ray of P1, it also generates an

extreme ray of the smaller cone SPm^n, and so Ads “ Adt ˝T for an m ˆ n matrix

t, which implies that the identity

s˚|ξyxη|s “ t˚|η̄yxξ̄|t

holds for every |ξy and |ηy in Cm. We fix a vector |ηy so that t˚|η̄y ‰ 0 and xη|s ‰ 0.

For arbitrary nonzero |ξy, the left side is a rank one matrix with the range vector

s˚|ξy. On the other hand, the right side is a rank one matrix with the range vector

t˚|η̄y, and so s˚|ξy is a scalar multiple of t˚|η̄y for arbitrary |ξy P Cm. Therefore s˚

is of rank one. ˝

Proposition 1.2.7 tells us that an extreme ray of SPm^n belongs to SPm^n then it

actually belongs to SP1 “ SP1. Note that this does not imply that SPm^n X SPm^n

coincides with SP1. The convex hull of two convex cones K1 and K2 is nothing but

K1 `K2 “ tx1 ` x2 : xi P Kiu.

Now, we have concrete examples of positive maps in SPm^n ` SPm^n. Those maps

in this class, which are called decomposable, can be expressed by the combinations

of Ads and T. One question arises naturally: Does every positive map arise in this

way?

References: [3], [106], [108]

1.3 Positive maps between 2ˆ 2 matrices

In this section, we show that all positive maps between 2 ˆ 2 matrices can be ex-

pressed with Ads and the transpose map. The main step is to realize the congruence

map AdU by a 2ˆ 2 special unitary matrix U as a rotation in the three dimensional

real vector space.

1.3.1 Congruence maps and orthogonal transformations

In order to show that every positive map from M2 into itself is decomposable, we

first look at the 4-dimensional real vector space Mh
2 whose elements may be written

by

% “

ˆ

t` z x´ iy
x` iy t´ z

˙

“ tI2 ` xσx ` yσy ` zσz,

with real numbers t, x, y, z and Pauli matrices

σx “

ˆ

0 1
1 0

˙

, σy “

ˆ

0 ´i
i 0

˙

, σz “

ˆ

1 0
0 ´1

˙

. (1.16)
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The following four matrices

!

1?
2
I2,

1?
2
σx,

1?
2
σy,

1?
2
σz

)

make an orthonormal basis of Mh
2 with respect to the inner product given by

pa, bq “ Tr pab˚q “
ÿ

aij b̄ij, (1.17)

for a, b PMh
2 . We see that % PM`

2 if and only if t ě |z| and t2 ´ z2 ě x2 ` y2 if and

only if t ě 0 and x2` y2` z2 ď t2 holds. Therefore, we see that % P D2 if and only if

x2
` y2

` z2
ď t2, t “

1

2
(1.18)

holds, and so D2 is the three dimensional ball, called the Bloch ball.

We recall that the matrix 1
2
I2 is located at the center of the convex cone M`

2 ,

and consider the distance from % P D2 satisfying (1.18) to

%˚ :“
1

2
I2 P D2.

The distance }x ´ y}HS arising from the inner product (1.17) is called the Hilbert–

Schmidt distance. We have

}%´ %˚}
2
HS “

›

›

›

›

ˆ

z x´ iy
x` iy ´z

˙›

›

›

›

2

HS

“ 2px2
` y2

` z2
q.

Therefore, we see that % P D2 if and only if t, x, y and z satisfy the relation (1.18)

if and only if the inequality

}%´ %˚}HS ď
1
?

2

holds, as it was expected. We also see that % is on the boundary, that is, satisfies

the equality }%˚ ´ %}HS “
1?
2

if and only if % “ |ξyxξ| is of rank one if and only if %

generates an extreme ray of the convex cone M`
2 . The 2-dimensional sphere which

is the boundary of D2 is called the Bloch sphere. We also note that each boundary

point of D2 corresponds to the range vector |ξy P C2 up to scalar multiplications,

which corresponds to a point of the complex projective space CP1.

We say that φ : Mm Ñ Mn is trace preserving if Tr pφpxqq “ Tr pxq for every

x PMm. By the identity Tr a “ xI, ay, we see that φ is trace preserving if and only

if φ˚ is unital. A trace preserving unital positive map between M2 has an interesting

geometric interpretation. We begin with a Hermiticity preserving map φ on Mh
2 ,

which is the orthogonal sum of RI2 and the subspace

Z :“ span tσx, σy, σzu
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of Mh
2 . Suppose that φ is unital and trace preserving. Then both RI2 and Z are

invariant under φ, and φ|Z is a linear transform in the three dimensional space Z

over the real field.

We examine what happens for AdU with a 2ˆ 2 special unitary

U “

ˆ

α ´β̄
β ᾱ

˙

, |α|2 ` |β|2 “ 1.

It is clear that the congruence map AdU is unital and trace preserving. We have

AdUpσxq “

ˆ

ᾱ β̄
´β α

˙ˆ

0 1
1 0

˙ˆ

α ´β̄
β ᾱ

˙

“

ˆ

2Re pαβ̄q ᾱ2 ´ β̄2

α2 ´ β2 ´2Re pαβ̄q

˙

We choose real variables a, b, c, d with α “ a` ib, β “ c` id and a2`b2`c2`d2 “ 1,

then we have
α2
´ β2

“ p1´ 2b2
´ 2c2

q ` ip2ab´ 2cdq,

2αβ̄ “ p2ac` 2bdq ` ip´2ad` 2bcq,

and so, it follows that

AdUpσxq “ p1´ 2b2
´ 2c2

qσx ` p2ab´ 2cdqσy ` p2ac` 2bdqσz.

Similarly, we also have

AdUpσyq “ p´2ab´ 2cdqσx ` p1´ 2b2
´ 2d2

qσy ` p2ad´ 2bcqσz,

AdUpσzq “ p´2ac` 2bdqσx ` p´2ad´ 2bcqσy ` p1´ 2c2
´ 2d2

qσz.

Therefore, the map φ determines a linear transform between three dimensional space

Z spanned by Pauli matrices, which corresponds to the following 3ˆ 3 matrix
¨

˝

1´ 2b2 ´ 2c2 ´2ab´ 2cd ´2ac` 2bd
2ab´ 2cd 1´ 2b2 ´ 2d2 ´2ad´ 2bc
2ac` 2bd 2ad´ 2bc 1´ 2c2 ´ 2d2

˛

‚.

This is an orthogonal matrix with the determinant 1, and sends pd,´c, bqT to itself.

Therefore, it represents the rotation in R3 around the direction pd,´c, bqT P R3. It

rotates by the angles 2θ satisfying cos θ “ a and sin2 θ “ b2 ` c2 ` d2, and every

rotation in R3 arises in this way.

Note that the transpose map T : Mh
2 Ñ Mh

2 is also unital and trace preserving.

Since Tpσxq “ σx, Tpσyq “ ´σy and Tpσzq “ σz, we see that the trace map induces

the reflection
¨

˝

1 0 0
0 ´1 0
0 0 1

˛

‚,

which is an orthogonal matrix with the determinant ´1. We recall that every

orthogonal matrix which is not a rotation can be expressed by the composition of a

25



rotation and the above reflection. We also recall that a linear map φ between Rn is

an isometry, that is, }φpxq} “ }x} for every x, if and only if φ preserves the inner

product if and only if it is represented by an orthogonal matrix. Therefore, we have

the following:

Proposition 1.3.1 Let φ : M2 Ñ M2 is unital and trace preserving. If φ|Z is an

isometry then φ “ AdU or φ “ AdU ˝T for a unitary matrix U .

References: [88], [8], [6], [7]

1.3.2 Decomposability of positive maps

Now, suppose that φ is positive as well as unital and trace preserving. Then φ sends

D2 into itself, that is, we have

% P D2 ùñ φp%q P D2.

For a given % P Z, we have % ` %˚ P D2 if and only if }%}HS ď
1?
2
. By the relation

φp%` %˚q “ φp%q ` %˚, we have

% P Z, }%}HS ď
1
?

2
ùñ }φp%q}HS ď

1
?

2
.

When we identity pZ, } }HSq with the normed space pR3, } }q, we see that φ|Z sends

the unit ball in R3 into itself. Such a linear map is called a contraction. Then, the

map φ|Z belongs to the convex set C3 of all real linear contractions between R3, and

so, φ|Z is a convex combination of extreme points of C3. It is easy to see that φ P C3

is an extreme point of C3 if and only if φ is an isometry.

Proposition 1.3.2 Let Cn be the convex set of all contractions between Rn. A linear

map φ P Cn is an extreme point of Cn if and only if φ is an isometry.

Proof. By the singular value decomposition, φ is the composition of isometries and

a diagonal map δ P Cn. If φ is extreme in Cn then δ is also extreme in Cn. It is

evident that a diagonal map which is extreme in Cn is an isometry. For the converse,

we suppose that φ is an isometry of Rn and φ “ p1 ´ tqφ0 ` tφ1 with φ0, φ1 P Cn.

When }x} “ 1, we have p1´ tqφ0pxq ` tφ1pxq “ φpxq is an extreme point of the unit

ball. Therefore, it follows that φ0pxq “ φ1pxq “ φpxq for every x with }x} “ 1, and

we conclude that φ “ φ0 “ φ1. ˝

By Proposition 1.3.1 and Proposition 1.3.2, we conclude that every unital trace

preserving positive map between 2ˆ 2 matrices is decomposable. For general cases,

we begin with a map in the interior of P1. We recall that if φ P intP1rMm,Mns then
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φ sends every nonzero element in M`
m to an interior point of M`

n by Proposition

1.2.5. In short, φpaq is nonsingular whenever a is nonzero. It is easy to see that φ

is an interior point of P1 if and only if φ˚ is an interior point of P1.

Proposition 1.3.3 Let φ be an interior point of the convex cone P1rMn,Mns. Then

there exist nonsingular a, b P M`
n such that the map φ̃ :“ Ada ˝φ ˝ Adb is positive,

unital and trace preserving.

Proof. We note that φ̃ is unital if and only if aφpb2qa “ I if and only if the identity

φpb2
q
´1
“ a2 (1.19)

holds, and φ̃ is trace preserving if and only if AdbT ˝φ
˚ ˝AdaT is unital if and only if

φ˚pa2T
q
´1
“ b2T, (1.20)

where a2T “ pa2qT “ paTq2 has the obvious meaning. We define the map f from Dn
into itself by

fpsq “
1

Trφrφ˚psTq´Ts´1
φrφ˚psT

q
´T
s
´1, s P Dn,

which is a continuous self map on the compact convex set Dn. By Brower’s fixed

point theorem, there exists s0 P Dn such that fps0q “ s0. We take a, b PM`
n so that

a2
“ s0, b2

“ φ˚pa2T
q
´T.

The second identity tells us that a and b satisfy (1.20), and so φ̃ is trace preserving.

Furthermore, we have

a2
“ s0 “

1

t
φrφ˚pa2T

q
´T
s
´1
“

1

t
φpb2

q
´1

with t “ Trφrφ˚pa2Tq´Ts´1, which implies In “ taφpb2qa “ tφ̃pInq. Because φ̃ is

trace preserving, we have t “ 1. Therefore, we conclude that φ̃ is unital by (1.19).

˝

Therefore, we conclude that every interior point φ of the convex cone P1rM2,M2s

is decomposable. By the exactly same argument as in Proposition 1.2.6, it is easily

seen that the convex cone SPm^n ` SPm^n is also closed. Therefore, we have the

following:

Theorem 1.3.4 Every positive map in P1rM2,M2s is decomposable.

From this, we see that every extremal positive map between 2ˆ 2 matrices is of

the form Ads or Ads ˝T for a 2 ˆ 2 matrix s. It is known [129] that every positive

map in P1rM2,M3s and P1rM3,M2s is also decomposable. We will see in Section

1.5 that this is not the case for P1rM3,M3s. Concrete examples of indecomposable

positive linear maps will be given in Section 1.6.

References: [111], [129], [6], [7]
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1.4 Choi matrices and separable states

For a given linear map φ from Mm into Mn, we associate the Choi matrix Cφ in the

tensor product Mm bMn which plays a central role throughout the topics. With

this isomorphism φ ÞÑ Cφ, 1-superpositive maps correspond to separable states, and

composition with the transpose map corresponds to taking the partial transpose.

1.4.1 Choi matrices

We note that a linear map φ : Mm Ñ Mn is completely determined by φp|iyxj|q for

i, j “ 1, 2, . . . ,m, because t|iyxj| : i, j “ 1, . . . ,mu is a basis of Mm. We define the

Choi matrix Cφ of a linear map φ P LpMm,Mnq by

Cφ “

m
ÿ

i,j“1

|iyxj| b φp|iyxj|q PMm bMn.

Then it is clear that

φ ÞÑ Cφ : LpMm,Mnq ÑMm bMn

is a linear isomorphism, which is called the Jamio lkowski–Choi isomorphism. By

the relation
ř

i,jxa, |iyxj|yφp|iyxj|q “ φpaq, we have

xab b,Cφy “
ÿ

i,j

xa, |iyxj|yxb, φp|iyxj|qy “ xb, φpaqy (1.21)

for a P Mm and b P Mn. The identity (1.21) may be used as the definition of the

Choi matrix, because it determines the entries of the Choi matrix when a “ |iyxj|

and b “ |kyx`|.

If φ maps from Mm into Mn then φ˚ interchanges the domain and the range,

and so Cφ˚ belongs to Mn bMm. For given a PMm and b PMn, we have

xbb a,Cφ˚y “ xa, φ
˚
pbqy “ xφpaq, by “ xab b,Cφy. (1.22)

Therefore, Cφ˚ PMn bMm is the flip of Cφ PMm bMn, where the flip operation is

defined by xb y ÞÑ y b x.

Now, we look for properties of the Choi matrices which correspond to Hermiticity

preserving maps and positive maps.

Proposition 1.4.1 A linear map φ : Mm Ñ Mn is Hermiticity preserving if and

only if Cφ is Hermitian.
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Proof. By the definition of Choi matrix, we see that Cφ is Hermitian if and only if

the following

φp|iyxj|q˚ “ φp|jyxi|q, i, j “ 1, 2, . . . ,m (1.23)

holds. Recall that φ is Hermiticity preserving if and only if φpaq˚ “ φpa˚q for every

a PMm, which implies (1.23). Conversely, the relation (1.23) implies

φpaq˚ “ φ p
ř

aij|iyxj|q
˚
“
ř

āijφp|iyxj|q
˚ “

ř

āijφp|jyxi|q “ φpa˚q,

for a “
ř

aij|iyxj| PMm. ˝

A matrix % PMm bMn is called block-positive when

xζ|%|ζy ě 0

holds for every product vector |ζy P Cm b Cn. Compare with the definition (1.1)

of positive matrices. The convex cone of all block-positive matrices is denoted by

BP1rMm bMns or just by BP1.

Proposition 1.4.2 A linear map φ : Mm Ñ Mn is positive if and only if Cφ is

block-positive in Mm bMn.

Proof. We note that φ is positive if and only if φp|ξyxξ|q is positive in Mn for every

|ξy P Cm if and only if

x|ηyxη|, φp|ξyxξ|qy “ x|ξyxξ| b |ηyxη|,Cφy “ x|ξy|ηyxξ|xη|,Cφy “ xξ̄|xη̄|Cφ|ξ̄y|η̄y

is nonnegative for every |ξy P Cm and |ηy P Cn, where we used (1.2). ˝

For an mˆ n matrix s “
ř

i,j sij|iyxj|, we have

CAds “
ř

p,q |pyxq| b
´

ř

k,` s̄`k|kyx`|
¯

|pyxq|
´

ř

i,j sij|iyxj|
¯

“

´

ř

k,` s̄`k
ř

px`|py|py|ky
¯´

ř

i,j sij
ř

qxq|iyxq|xj|
¯

“

´

ř

k,` s̄`k|`y|ky
¯´

ř

i,j sijxi|xj|
¯

.

Therefore, we see that

CAds “ |s̃yxs̃|, (1.24)

under the correspondence between s P Mmˆn and the vector |s̃y P Cm b Cn given

by (1.5). It is worthwhile to write down the Choi matrix of the map Ads when

s “

ˆ

a b
c d

˙

. We have xs̃| “ pa, b, c, dq, and

CAds “ |s̃yxs̃| “

¨

˚

˚

˝

|a|2 āb āc ād
b̄a |b|2 b̄c b̄d
c̄a c̄b |c|2 c̄d
d̄a d̄b d̄c |d|2

˛

‹

‹

‚

.
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We also have xĂsT| “ pa, c, b, dq, and

CpAdsq˚ “ CAd
sT
“

¨

˚

˚

˝

|a|2 āc āb ād
c̄a |c|2 c̄b c̄d
b̄a b̄c |b|2 b̄d
d̄a d̄c d̄b |d|2

˛

‹

‹

‚

,

which is the flip of CAds . On the other hand, we have x rs˚| “ pā, c̄, b̄, d̄q, and so we

see that CAds˚
is the conjugation of the flip of CAds .

References: : [32], [67], [21],

1.4.2 Schmidt numbers and entanglement

The identity (1.24) tells us that the Choi matrix of the map Ads is of rank one

mnˆmn positive matrix onto the vector in CmbCn whose Schmidt rank coincides

with the rank of the matrix s. We define

SkrMm bMns : “ tCφ PMm bMn : φ P SPkrMm,Mnsu

“ conv t|ζyxζ| PMm bMn : |ζy P Cm
b Cn, SR |ζy ď ku,

for k “ 1, 2, . . . ,m^n. Then we see that % P Sk if and only if % is an (unnormalized)

state of the form

% “
ÿ

i

|ζiyxζi|

with SR |ζiy ď k. Furthermore, a linear map φ belongs to SPm^n if and only if

Cφ is positive. Because a positive matrix generates an extreme ray of the cone

pMm bMnq
` if and only if it is of rank one, we see that Ads generates an extreme

ray of the cone SPm^n. The point of Theorem 1.2.4 is that Ads generates an extreme

ray of the much larger convex cone P1. We may summarize in the following diagram:

LpMm,Mnq : SP1 Ř SPk Ř SPm^n Ř P1

Ó JC Ó Ó Ó Ó

Mm bMn : S1 Ř Sk Ř pMm bMnq
` Ř BP1

(1.25)

A state % P SkzSk´1 is called to have Schmidt number k. A state of Schmidt

number one is also called separable, and a state which is not separable is called

entangled. Recall that a vector in Cm b Cn with Schmidt rank one is called a

product vector. Then, a state in pMm bMnq
` is separable if and only if it is the

convex combination of rank one projections onto product vectors. In other words,
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a state % is separable if and only if there exists a finite family of product vectors

t|ξiy|ηiyu satisfying

% “
ÿ

i

|ξiy|ηiyxξi|xηi|. (1.26)

If we restrict ourselves to the case of normalized states with trace one, then we have

% “
ÿ

i

pi|ξiy|ηiyxξi|xηi|

with unit vectors |ξiy, |ηiy and probability distribution tpiu. A state in the tensor

product Mm bMn is called a bi-partite state, or more precisely an m b n state to

emphasize the size of matrices.

We denote by M`
m bM`

n the convex cone generated by a b b with a P M`
m and

b PM`
n ;

M`
m bM

`
n :“ conv tab b PMm bMn : a PM`

m, b PM
`
n u.

Since |ξy|ηyxξ|xη| “ |ξyxξ| b |ηyxη| belongs to M`
m bM`

n , we have S1 Ă M`
m bM`

n .

Conversely, if a “
ř

p |ξpyxξp| PM
`
m and b “

ř

q |ηqyxηq| PM
`
n then we have

ab b “
ÿ

p,q

|ξpy|ηqyxξp|xηq|

is separable. Therefore, we have

S1 “M`
m bM

`
n .

In short, a bi-partite state is separable if and only if it is the sum of product states

of the forms a b b with positive a P M`
m and b P M`

n . So, entanglement consists of

the difference

pMm bMnq
`
zM`

m bM
`
n .

In the case of the space CpXq of all continuous functions on a compact Haus-

dorff space X, the algebraic tensor product CpXq b CpY q consists of finite sums of

functions of separable variables, that is, functions of the form fpxqgpyq. By Stone–

Weierstrass theorem, we see that CpXq b CpY q is dense in CpX ˆ Y q. We write

P :“ CpXq` b CpY q`. Then P ´ P :“ tf ´ g : f, g P P u is a unital subalgebra of

CpX ˆ Y,Rq which separates points in X ˆ Y . Applying the real version of Stone–

Weierstrass theorem, we see that P ´ P is dense in CpX ˆ Y,Rq. Therefore, we

conclude that P “ CpXq` b CpY q` is dense in CpX ˆ Y q`, and there exists no

entanglement in function spaces.

If a state % PMmbMn is of rank one, then it is easy to find its Schmidt number

by the Schmidt rank of its range vector. For example,
¨

˚

˚

˝

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

˛

‹

‹

‚

(1.27)
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is of Schmidt number one, or equivalently separable, because the range vector

p|0y ` |1yq|0y “ p1, 0, 1, 0qT P C2
b C2

corresponds to the 2ˆ 2 matrix
ˆ

1 0
1 0

˙

which is of rank one. On the other hand,

¨

˚

˚

˝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

˛

‹

‹

‚

(1.28)

is of Schmidt number two, and so entangled, because the range vector p1, 0, 0, 1qT

corresponds to

ˆ

1 0
0 1

˙

which is of rank two.

Note that the matrix in (1.28) is the Choi matrix of the identity map on M2.

The Choi matrix

Cid “

n
ÿ

i,j“1

|iyxj| b |iyxj| “ |ωyxω|

of the identity map on Mn with

|ωy “
n
ÿ

i“1

|iy|iy P Cn
b Cn

plays an important role. It is a bi-partite state with the maximal Schmidt number.

In general, a pure state % “ |ζyζ| is called maximally entangled if |ζy “
ř

|ξiy b |ηiy

with orthonomal bases t|ξiyu and t|ηiyu. On the other hand, the identity matrix in

Mm bMn is the Choi matrix of the trace map

Tr : X ÞÑ Tr pXqIn, X PMm.

The trace map may be considered to be located at the center of the convex cone P1

of all positive maps, by the location of the identity matrix in Mm bMn. In fact,

we will see in Section 2.3 that the converse of Proposition 1.2.5 holds, and so the

trace map is an interior point of the convex cone P1rMm,Mns. On the other hand,

the identity map between Mn is located at a corner of the convex cone P1rMn,Mns,

since it generates an extreme ray of P1.

For given complex numbers α, β with modulus one, we take a product vector

|ζy “ p1, αβ̄qT b p1, βqT “ p1, β, αβ̄, αqT P C2
b C2,
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to get the pure separable state

|ζyxζ| “

¨

˚

˚

˝

1 β̄ ᾱβ ᾱ
β 1 ᾱβ2 ᾱβ
αβ̄ αβ̄2 1 β̄
α αβ̄ β 1

˛

‹

‹

‚

.

Taking β “ 1, i,´1,´i, and averaging the corresponding states, we get the following

separable state
¨

˚

˚

˝

1 ¨ ¨ ᾱ
¨ 1 ¨ ¨

¨ ¨ 1 ¨

α ¨ ¨ 1

˛

‹

‹

‚

PM2 bM2. (1.29)

For double indices pi, kq and pj, `q from t1, . . . ,muˆt1, . . . , nu with pi, kq ‰ pj, `q,

we consider the bi-partite state %pi,kq,pj,`qpαq in Mm bMn defined by

%pi,kq,pj,`qpαq “ Imn ` ᾱ|ikyxj`| ` α|j`yxik|,

for a complex number α with modulus one. It is clear that %pi,kq,pj,`qpαq is positive.

If i “ j then the entries α and ᾱ appear in the i-the diagonal block, and so it is

separable. This is also the case when k “ `. In order to deal with the case i ‰ j

and k ‰ `, we consider the product vector

|ζy “ p|iy ` αβ̄|jyq b p|ky ` β|`yq “ |iky ` β|i`y ` αβ̄|jky ` α|j`y. (1.30)

By the exactly same way to get the separable state (1.29), we see that %pi,kq,pj,`qpαq is

separable whenever |α| “ 1, by adding diagonal entries. Now, it is easily seen that

%pi,kq,pj,`qp`1q ´ Imn, %pi,kq,pj,`qp`iq ´ Imn, pImn ` |ikyxik|q ´ Imn

make a linearly independent family with the cardinality pmnq2. Therefore, we con-

clude that S1rMm bMns has nonzero volume in pMm bMnq
`.

References: [128], [34], [124], [40], [106]

1.4.3 Partial transposes

The Choi matrix of the transpose map is given by

CT “

n
ÿ

i,j“1

|iyxj| b T p|iyxj|q “
n
ÿ

i,j“1

|iyxj| b |jyxi|.

When n “ 2, its matrix form is given by

CT “

¨

˚

˚

˝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

˛

‹

‹

‚

,
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which is not positive.

We see that CT PMnpMnq is the block-wise transpose of Cid as an nˆ n matrix

with entries from Mn. Every % PMm bMn is uniquely expressed by

% “
m
ÿ

i,j“1

|iyxj| b %ij

with %ij PMn. We define the partial transpose %Γ by

%Γ
“

m
ÿ

i,j“1

|jyxi| b %ij “
m
ÿ

i,j“1

|iyxj| b %ji.

We note that CT is the partial transpose of Cid. In general, we have

Cφ˝T “
ÿ

i,j

|iyxj| b φp|jyxi|q “ pCφq
Γ. (1.31)

For a given linear map φ : Mm Ñ Mn, we define the linear map φ̄ : Mm Ñ Mn

by

φ̄pxq “ φpx̄q, x PMm,

where x̄ is the matrix whose entries are the conjugates of the corresponding entries

of x. Then, we have

Cφ̄ “ Cφ.

If φ is Hermiticity preserving then we have

φpxT
q
T
“ φpxTq˚ “ φpxT˚q “ φpx̄q “ φ̄pxq.

In short, we have

T ˝ φ ˝ T “ φ̄,

for a Hermiticity preserving map φ. Therefore, we also have

CT˝φ “ Cφ̄˝T “ CΓ
φ̄ “ CΓ

φ, (1.32)

for a Hermiticity preserving map φ. We also note the following identity

pab bqΓ “ aT
b b

holds. If a and b are Hermitian, then we have

pab bqΓ “ aT b b “ a˚ b pb˚qT “ ab bT.

Because S1 “M`
mbM

`
n and the transpose of a positive matrix is again positive,

we have the following:
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Theorem 1.4.3 The partial transpose of a separable state is positive.

A positive matrix is called of positive partial transpose or just PPT if its partial

transpose is positive. Theorem 1.4.3, which is called the PPT criterion for sepa-

rability says that every separable state is of PPT. It is also can be seen from the

inclusion relation (1.15). On the other hand, Proposition 1.2.7 tells us that if a rank

one state in Mm bMn is of PPT then it should be separable. More generally, it is

known [63] that if a PPT state in Mm bMn has rank at most maxtm,nu then it is

separable.

Note that the matrix in (1.27) is of PPT, but the matrix Cid in (1.28) is not of

PPT, from which we may infer that Cid is not separable. In fact, we know that the

positive map id “ AdI is not 1-superpositive, because rank I ą 1. The convex cone

of all mb n PPT state will be denoted by PPT rMm bMns or just by PPT . Then

we have S1 Ă PPT Ă Sm^n “ pMm bMnq
` in the diagram (1.25). The converse of

Theorem 1.4.3 does not hold in general.

References: [24], [94], [63]

1.4.4 Entanglement with positive partial transpose

For given positive matrices a and b, it is easy to see that kerpa ` bq Ă ker a by the

identity xξ|pa ` bq|ξy “ xξ|a|ξy ` xξ|b|ξy. Therefore, we have Im a Ă Im pa ` bq for

a, b PM`
n , and so we also have

Im a` Im b “ Im pa` bq, a, b PM`
n .

This simple fact is useful to show that a given state is not separable, because the

expression % “
ř

|ζiyxζi| gives rise to the restriction |ζiy P Im %. In fact, we note

that the following

Im % “ span t|ζiyu

holds for a positive matrix % “
ř

|ζiyxζi|.

It is easily seen that the following matrix

% “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 ¨ ¨ ¨ 1 ¨ ¨ ¨ 1
¨ 1

2
¨ 1 ¨ ¨ ¨ ¨ ¨

¨ ¨ 2 ¨ ¨ ¨ 1 ¨ ¨

¨ 1 ¨ 2 ¨ ¨ ¨ ¨ ¨

1 ¨ ¨ ¨ 1 ¨ ¨ ¨ 1
¨ ¨ ¨ ¨ ¨ 1

2
¨ 1 ¨

¨ ¨ 1 ¨ ¨ ¨ 1
2
¨ ¨

¨ ¨ ¨ ¨ ¨ 1 ¨ 2 ¨

1 ¨ ¨ ¨ 1 ¨ ¨ ¨ 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(1.33)
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is a PPT state. In fact, we have %Γ “ %. We see that the range is the 4-dimensional

space which is spanned by

|0y|0y ` |1y|1y ` |2y|2y,

1
?

2
|0y|1y `

?
2|1y|0y,

1
?

2
|1y|2y `

?
2|2y|1y,

1
?

2
|2y|0y `

?
2|0y|2y,

(1.34)

with the corresponding 3ˆ 3 matrices

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚,

¨

˝

0 1?
2

0
?

2 0 0
0 0 0

˛

‚,

¨

˝

0 0 0
0 0 1?

2

0
?

2 0

˛

‚,

¨

˝

0 0
?

2
0 0 0
1?
2

0 0

˛

‚. (1.35)

If % is separable, then the four dimensional space spanned by these four matrices

must contain rank one matrices. In other words, there exist a, b, c, d P C such that

¨

˚

˝

a b?
2

d
?

2

b
?

2 a c?
2

d?
2

c
?

2 a

˛

‹

‚

is of rank one. Considering various 2ˆ 2 submatrices, one see easily that this is not

possible. Therefore, we conclude that % is an entangled state.

A nonzero subspace of Cm b Cn is called entangled when it has no nonzero

product vector. A state is entangled whenever its range space is entangled. We

have seen that the four dimensional subspace of C3bC3 spanned by four vectors in

(1.34) is entangled.

Even though the range space of a state is not entangled, a PPT state % may be

shown to be entangled by considering the range space of the partial transpose %Γ

as well as the range space of % itself. Suppose that % is a separable state with the

expression in (1.26) whose range space is spanned by the product vectors |ξiy|ηiy.

By the relation

|ξy|ηyxξ|xη|Γ “ p|ξyxξ| b |ηyxη|qΓ

“ |ξyxξ|T b |ηyxη|

“ |ξ̄yxξ̄| b |ηyxη| “ |ξ̄y|ηyxξ̄|xη|,

we have the following identity

%Γ
“
ÿ

i

|ξ̄iy|ηiyxξ̄i|xηi|,

for % “
ř

i |ξiy|ηiyxξi|xηi|. If the partial transpose %Γ is positive then we see that

the range space %Γ is spanned by product vectors |ξ̄iy|ηiy. Therefore, we have the

following necessary condition for separability.
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Theorem 1.4.4 Suppose that % is a PPT state. If % is separable then there exists

a finite family t|ξiy|ηiyu of product vectors satisfying

Im % “ span t|ξiy|ηiyu, Im %Γ
“ span t|ξ̄iy|ηiyu.

The vector |ξ̄y|ηy is called the partial conjugate of the product vector |ξy|ηy.

Theorem 1.4.4 is called the range criterion for separability which is especially useful

for PPT states whose range is not full. For an example, we consider the following

PPT state %p defined by

%p “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

p ¨ ¨ ¨ p ¨ ¨ ¨ p
¨ p2 ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨

p ¨ ¨ ¨ p ¨ ¨ ¨ p
¨ ¨ ¨ ¨ ¨ p2 ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ p2 ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨

p ¨ ¨ ¨ p ¨ ¨ ¨ p

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (1.36)

for a positive number p ą 0. The partial transpose is given by

%Γ
p “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

p ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ p2 ¨ p ¨ ¨ ¨ ¨ ¨

¨ ¨ 1 ¨ ¨ ¨ p ¨ ¨

¨ p ¨ 1 ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ p ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ p2 ¨ p ¨

¨ ¨ p ¨ ¨ ¨ p2 ¨ ¨

¨ ¨ ¨ ¨ ¨ p ¨ 1 ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ p

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

We note that ranks of %p and %Γ
p are 7 and 6, respectively. We also note that the

kernels of %p and %Γ
p are spanned by

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
¨

¨

¨

´1
¨

¨

¨

¨

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

¨

¨

¨

¨

1
¨

¨

¨

´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

and

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

¨

´1
¨

p
¨

¨

¨

¨

¨

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

¨

¨

¨

¨

¨

´1
¨

p
¨

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

¨

¨

p
¨

¨

¨

´1
¨

¨

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

respectively.
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If %p is separable then there exists a product vector |ξy|ηy P Im % such that

|ξ̄y|ηy P Im %Γ. We write |ξy “ px1, x2, x3q
T P C3 and |ηy “ py1, y2, y3q

T P C3 then we

have

|ξy|ηy “ px1y1, x1y2, x1y3, x2y1, x2y2, x2y3, x3y1, x3y2, x3y3q
T
P C3

b C3.

Therefore, we have the following system of equations

x1y1 “ x2y2,

x2y2 “ x3y3,

x̄1y2 “ px̄2y1,

x̄2y3 “ px̄3y2,

x̄3y1 “ px̄1y3

(1.37)

We note that this system of equations has four unknowns up to scalar multiplications

and five equations, and so we may expect that there is no nontrivial solution like

|ξy|ηy ‰ 0. In fact, one can easily see that (1.37) has a nontrivial solution only when

p “ 1. Therefore, we conclude that %p is a PPT entangled states for p ‰ 1.
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1.5 Duality and completely positive maps

We define in this section a bilinear pairing between Hermiticity preserving linear

maps through Choi matrices. The dual object of k-superpositivity is nothing but k-

positivity which had been studied since 1950’s. Through the discussion, we naturally

get the correspondence between complete positivity of linear maps and positivity of

their Choi matrices.

1.5.1 Dual cones of convex cones

For finite dimensional vector spaces X and Y , we recall that every linear map

φ P LpX, Y ˚q corresponds to the linear functional Lφ P pX b Y q˚ given by

Lφpxb yq “ φpxqpyq, x P X, y P Y, (1.38)

where X˚ denotes the dual space of X consisting of all linear functionals on X. In

case of matrix algebras, we employ the identification (1.3) between Mn and its dual

M˚
n . If φ : Mm ÑM˚

n then the Choi matrix Cφ plays the role of a linear functional

on Mm bMn by the relation (1.21):

xab b,CφyMmbMn “ xb, φpaqyMn , a PMm, b PMn,
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which is nothing but the reformulation of (1.38) in terms of bilinear pairing between

matrices. Therefore, it is natural to define the bilinear pairing between Mm bMn

and LpMm,Mnq by

xab b, φy1 :“ xb, φpaqy, a PMm, b PMn, φ P LpMm,Mnq. (1.39)

Then we have x%, φy1 “ x%,Cφy by (1.21) for % P Mm bMn and φ P LpMm,Mnq.

Because every % PMmbMn can be written by % “ Cψ for ψ P LpMm,Mnq, it is also

natural to define the bilinear pairing

xψ, φy2 “ xCψ,Cφy, φ, ψ P LpMm,Mnq (1.40)

between mapping spaces. If % “ Cψ, then we have

x%, φy1 “ x%,Cφy “ xCψ,Cφy “ xψ, φy2,

and so we do not distinguish the bilinear pairings x ¨ , ¨ y, x ¨ , ¨ y1 and x ¨ , ¨ y2, and use

the same notation x ¨ , ¨ y for them.

The following identity

xφ, ψy “ xφ˚, ψ˚y (1.41)

is immediate, because Cφ˚ P Mn bMm is the flip of Cφ P Mm bMn by (1.22). For

given linear maps φ P LpMA,MBq, ψ P LpMB,MCq and σ P LpMA,MCq, we also

have

xψ ˝ φ, σy “
ÿ

i,j

xψpφpeijqq, σpeijqy “
ÿ

i,j

xφpeijq, ψ
˚
pσpeijqqy “ xφ, ψ

˚
˝ σy,

which also implies xφ, ψ˚ ˝ σy “ xσ˚ ˝ ψ, φ˚y “ xψ, σ ˝ φ˚y by (1.41). Therefore, we

have

xψ ˝ φ, σy “ xφ, ψ˚ ˝ σy “ xψ, σ ˝ φ˚y. (1.42)

Suppose that X and Y are finite-dimensional real spaces which are dual to

each other through a non-degenerate bilinear pairing x , y, that is, x P X satisfies

xx, yy “ 0 for every y P Y implies x “ 0, and same for y P Y . To be precise, we define

the linear map σX : X Ñ Y ˚; for a given x P X, we define σXpxq P Y
˚ as the linear

functional which sends y to xx, yy. Then non-degeneracy condition tells us that σX
is injective, and so we have dimX ď dimY . By the similar map σY : Y Ñ X˚, we

have dimX “ dimY , and both σX and σY are linear isomorphisms. Throughout

this note, we always assume that a bilinear pairing is non-degenerate.

For a given subset C of X, we define the dual cone C˝ in Y by

C˝ “ ty P Y : xx, yy ě 0 for each x P Cu,
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and the dual cone D˝ Ă X similarly for a subset D of Y . If C is a closed convex

cone in a finite dimensional real vector space X and x0 R C, then it is known that

there exists a linear functional f on X such that fpxq ě 0 for every x P C and

fpx0q ă 0. From this, we have the following:

Proposition 1.5.1 For any subset C of X, the bidual cone C˝˝ is the smallest

closed convex cone containing C.

Proof. We denote by X temporarily the smallest closed convex cone containing C,

then it is clear that X Ă C˝˝. Suppose that x0 R X . Then there exists y P Y such

that xx, yy ě 0 for every x P X but xx0, yy ă 0. Since C Ă X , we have y P C˝. But

the relation xx0, yy ă 0 tells us that x0 R C
˝˝. Therefore, we conclude that C˝˝ “ X .

˝
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1.5.2 k-positive maps and completely positive maps

By Proposition 1.5.1, we see that every closed convex cone C of X is the dual cone

of C˝ Ă Y , that is C˝˝ “ C. This means that C is determined by the intersection

of ‘half-spaces’ tx P X : xx, yy ě 0u given by y P C˝. We are going to determine the

dual cone of the convex cone SPk with respect to the pairing (1.40). This is same

as the dual cone of Sk with respect to the pairing (1.39).

For any |ζy “
řk
i“1 |xiy|yiy P Cm b Cn with SR |ζy ď k, we have

|ζyxζ| “
k
ÿ

i,j“1

|xiyxxj| b |yiyxyj|,

and so, we also have

x|ζyxζ|,Cφy “

k
ÿ

i,j“1

x|yiyxyj|, φp|xiyxxj|qy

“

C

k
ÿ

i,j“1

|iyxj| b |yiyxyj|,
k
ÿ

i,j“1

|iyxj| b φp|xiyxxj|q

G

.

Putting

|ξy “
k
ÿ

i“1

|iy|xiy P Ck
b Cm, |ηy “

k
ÿ

i“1

|iy|yiy P Ck
b Cn,

we see that

x|ζyxζ|,Cφy “ x|ηyxη|, pidk b φqp|ξyxξ|qy. (1.43)

Therefore, we have the following:
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Theorem 1.5.2 A map φ : Mm ÑMn belongs to SP˝k if and only if the map idkbφ

from Mk bMm into Mk bMn is positive.

We say that φ is k-positive if the map idkbφ is positive, and completely positive

if it is k-positive for every k “ 1, 2, . . . . The convex cone of all k-positive maps

(respectively completely positive maps) from Mm into Mn is denoted by PkrMm,Mns

(respectively CPrMm,Mns).

Theorem 1.5.3 For a linear map φ : Mm ÑMn, the following are equivalent:

(i) φ is completely positive,

(ii) idm^n b φ is positive,

(iii) φ belongs to SPm^n,

(iv) Cφ is positive.

Proof. Since the convex cone pMm bMnq
` is self-dual, the equivalences between

(ii), (iii) and (iv) follows from Theorem 1.5.2. By the relation

pidk b Adsqpab bq “ ab ps˚bsq “ pIk b sq
˚
pab bqpIk b sq,

we see that every map in SPm^n is completely positive. ˝

For a “
ř

i,j aij|iyxj| and b “
ř

i,j bij|iyxj| in Mn, the Schur product a˝ b is given

by a ˝ b “
ř

i,j aijbij|iyxj|. For a positive a PM`
n , the map

Σa : x ÞÑ a ˝ x, x PMn (1.44)

is a completely positive map whose Choi matrix is given by

CΣa “
ÿ

i,j

aij|iyxj| b |iyxj| “
ÿ

i,j

aij|iy|iyxj|xj|,

which is positive. Considering the partial transpose CΓ
Σa

, we see that CΣa is separable

if and only if it is diagonal by Theorem 1.4.3.

By the statement (iii) of Theorem 1.5.3, every completely positive map φ is of

the form

φ “
ÿ

iPI

Adsi

for a finite family tsi : i P Iu of mˆn matrices. This is called a Kraus decomposition

of φ. This decomposition is obtained from a decomposition of Cφ “
ř

|ξiyxξi| into

the sum of rank one positive matrices |ξiyxξi|, and so it is far from being unique.

41



If we take t|ξiyu to be linearly independent then we can also take a decomposition

φ “
ř

Adsi so that tsiu is linearly independent mˆ n matrices.

A state % P Mm bMn is called k-block-positive if xζ|%|ζy ě 0 for every vector

|ζy P Cm b Cn with SR |ζy ď k. Since x|ζyxζ|,Cφy “ xζ̄|Cφ|ζ̄y, we also see that φ

is k-positive if and only if Cφ is k-block-positive. The convex cone of all k-block-

positive matrices in Mm bMn is denoted by BPkrMm bMns. We complement the

diagram (1.25) as follows:

LpMm,Mnq : SP1 Ř SPk Ř CP Ř Pk Ř P1

Ó JC Ó Ó Ó Ó Ó

Mm bMn : S1 Ř Sk Ř pMm bMnq
` Ř BPk Ř BP1

(1.45)

In this diagram, SPk and Pk are dual to each others with respect to the pairing

(1.40). On the other hand, the duality relation between Sk and Pk with respect to

the pair (1.39) may be stated as follows:

Theorem 1.5.4 For k “ 1, 2, . . . ,m^ n, we have the following:

(i) A linear map φ : Mm Ñ Mn is k-positive if and only if x%, φy ě 0 for every

state % with Schmidt number ď k,

(ii) A state % P Mm bMn is of Schmidt number ď k if and only if x%, φy ě 0 for

every k-positive map φ : Mm ÑMn.

Compositions of k-positive maps by the transpose map give rise another impor-

tant class of positive maps. We denote by Tk the transpose map on Mk.

Proposition 1.5.5 For a linear map φ : Mm ÑMn, the following are equivalent:

(i) φ ˝ Tm is k-positive,

(ii) Tn ˝ φ is k-positive,

(iii) Tk b φ is positive,

(iv) CΓ
φ is k-block-positive.

Proof. We note that % is k-block-positive if and only if %̄ is k-block-positive, and

so the equivalence between (i), (ii) and (iv) follows from the identities (1.31) and

(1.32). On the other hand, the identity

idk b pTn ˝ φq “ pTk b Tnq ˝ pTk b φq
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tells us that (ii) and (iii) are equivalent, because both Tk b Tm and its inverse are

positive maps. ˝

We say that φ is k-copositive when φ satisfies the conditions in Proposition 1.5.5,

and completely copositive when it is k-copositive for every k “ 1, 2, . . . . The convex

cone of all completely copositive maps will be denoted by CCP, or CCPrMm,Mns

to specify the domain and the range. Then we have

CCPrMm,Mns “ SPm^n,

because CP “ SPm^n. We also see that φ is completely copositive if and only if

φ˝Tm is completely positive if and only if CΓ
φ is positive. We say that % PMmbMn

is copositive when %Γ is positive.

References: [72], [73], [21], [66], [34], [124], [108],

1.5.3 Faces for completely positive maps

Recall that every face of the convex cone pMm bMnq
` is determined by a subspace

of CmbCn; for a subspace V , the set of all positive matrices whose range spaces are

contained in V is a face of pMm bMnq
`, and every face is in this form. Therefore,

every face of the convex cone CPrMm,Mns is also determined by a subspace of the

space Mmˆn of all mˆ n matrices.

Proposition 1.5.6 For a given subspace V of Mmˆn, the set

FV :“ conv tAdsi : si P V u (1.46)

is a face of CPrMm,Mns, and every face arises in this way.

For a given p PM`
n , we denote by CPrMm,Mn; ps the convex set of all completely

positive maps φ with φpIq “ p. We note that φ “
ř

Adsi belongs to CPrMm,Mn; ps

if and only if
ř

s˚i si “ p. For a given completely positive map φ “
ř

iPI Adsi in

CPrMm,Mn; ps, we take the subspace V “ span tsi : i P Iu. Then every map in FV
is of the form ψ “

ř

k Adtk with tk P V . Write tk “
ř

i αiksi. Then we have

ψpxq “
ÿ

k

t˚kxtk “
ÿ

k

˜

ÿ

i

ᾱiks
˚
i

¸

x

˜

ÿ

j

αjksj

¸

“
ÿ

i,j

˜

ÿ

k

ᾱikαjk

¸

s˚i xsj.

We write βij “
ř

k ᾱikαjk. Then we see that ψ P CPrMm,Mn; ps if and only if
ř

i,j βijs
˚
i sj “ p, and φpIq “ ψpIq if and only if

ř

i,jpβij´ δijqs
˚
i sj “ 0, where δij “ 1

43



for i “ j, and δij “ 0 for i ‰ j. If ts˚i sj : i, j P Iu is linearly independent then we

see that ψ “ φ, that is, the the intersection of FV and CPrMm,Mn; ps consists of a

single point tφu. Therefore, we conclude that φ is an extreme point of the convex

set CPrMm,Mn; ps whenever ts˚i sju is linearly independent. The converse is also

true. We will use the following lemma whose simple proof is omitted.

Lemma 1.5.7 Suppose that t|viy : i “ 1, . . . , nu is linearly independent in Cn. Then

t|viyxvj| : i, j “ 1, . . . , nu is linearly independent in Mn.

Theorem 1.5.8 Suppose that p PM`
n and φ “

ř

iPI Adsi with linearly independent

family tsiu of mˆ n matrices with
ř

iPI s
˚
i si “ p. Then φ is an extreme point of the

convex set CPrMm,Mn; ps if and only if ts˚i sj : i, j P Iu is linearly independent.

Proof. Suppose that φ “
ř

Adsi is an extreme point of the convex set CPrMm,Mn; ps

and
ř

i,j αijs
˚
i sj “ 0. We have to show that αij “ 0. We first consider the case when

α “ rαijs is a Hermitian matrix. We may assume that ´I ď rαijs ď I by taking a

scalar multiplication. Define

φ˘pxq “
ÿ

i

Adsipxq ˘
ÿ

i,j

αijs
˚
i xsj, x PMm.

If we write δij `αij “ βij, then we have φ`pxq “
ř

i,j βijs
˚
i xsj. Writing rβijs “ γ˚γ,

we have

φ`pxq “
ÿ

i,j

ÿ

k

γ̄kiγkjs
˚
i xsj “

ÿ

k

t˚kxtk,

with tk “
ř

j γkjsj. Therefore, we see that φ` is completely positive. By the same

way, we also see that φ´ is also completely positive. The relation φ “ 1
2
pφ``φ´q tells

us that φ “ φ` “ φ´. Considering the Choi matrices of the map x ÞÑ
ř

i,j αijs
˚
i xsj,

we conclude that α “ rαijs “ 0 by Lemma 1.5.7. For the general cases, we take

conjugate to get
ř

i,j ᾱjis
˚
i sj “ 0. Then we have

ř

i,jpαij ` ᾱjiqs
˚
i sj “ 0. Since

α` α˚ is self-adjoint, we see that α` α˚ “ 0. By the same reasoning, we also have

iα ´ iα˚ “ 0. Therefore, we conclude that α “ 1
2
pα ` α˚q ` 1

2i
piα ´ iα˚q must be

zero. ˝

References: [21], [76]

1.5.4 Decomposable maps and PPT states

Recall that a map in SPm^n`SPm^n is called decomposable. Then φ is decomposable

if and only if it is the sum of a completely positive map and a completely copositive

map. The convex cone of all decomposable maps will be denoted by DECrMm,Mns

or just by DEC, and the corresponding convex cone of matrices in Mm b Mn is
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denoted by DECpMm bMnq or DEC whose member is the sum of a positive matrix

and a copositive matrix. On the other hand, the linear map corresponding to a

PPT matrix will be also called a PPT map, and the convex cone of all PPT maps

is denoted by PPTrMm,Mns or PPT. A map is a PPT map if and only if it is both

completely positive and completely copositive. We may summarize as follows:

LpMm,Mnq : SP1 Ă PPT Ă CP Ă DEC Ă P1

Ó JC Ó Ó Ó Ó Ó

Mm bMn : S1 Ă PPT Ă pMm bMnq
` Ă DEC Ă BP1

(1.47)

Suppose that C1 and C2 are closed convex cones in a finite dimensional real

vector space X. Then the identity pC1 ` C2q
˝ “ C˝1 X C˝2 is easily seen. We also

have a clear inclusion pC1 X C2q
˝ Ą C˝1 ` C

˝
2 , from which we have

C1 X C2 Ă pC
˝
1 ` C

˝
2q
˝
“ C˝˝1 X C˝˝2 “ C1 X C2.

Hence, we have the relations

pC1 ` C2q
˝
“ C˝1 X C

˝
2 , pC1 X C2q

˝
“ C˝1 ` C

˝
2 , (1.48)

for closed convex cones C1 and C2. Therefore, we see that two convex cones PPT
and DEC are dual to each other with respect to the pairing (1.40). On the other

hand, PPT and DEC are dual with respect to the pairing (1.39).

Theorem 1.5.9 A linear map φ : Mm Ñ Mn is decomposable if and only if the

inequality x%, φy ě 0 holds for every PPT state % PMm bMn.

In view of two diagrams (1.45) and (1.47), it is natural to look for any relations

between PPT and Sk, or equivalently those between DEC and Pk. We first note that

S1rMmbMns “ PPT rMmbMns holds if and only if DECrMm,Mns “ P1rMm,Mns

holds. Theorem 1.3.4 tells us the relation DECrM2,M2s “ P1rM2,M2s holds, by

which we also have

S1rM2 bM2s “ PPT rM2 bM2s.

It was also shown in [129] that the following identities

DECrM2,M3s “ P1rM2,M3s, DECrM3,M2s “ P1rM3,M2s

hold which are equivalent to S1rM2 bM3s “ PPT rM2 bM3s.
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By the example (1.33), we know that the strict inclusion

S1rM3 bM3s Ř PPT rM3 bM3s

holds in M3 bM3, and so we have

DECrM3,M3s Ř P1rM3,M3s.

We will see a concrete example for this strict inclusion in the next section. It was

shown in [18] that the following inclusion

P2rM3,M3s Ă DECrM3,M3s (1.49)

holds for a special class of linear maps, and the equivalent dual inclusion relation

S2rM3 bM3s Ă PPT rM3 bM3s

had been conjectured in [100]. The relation (1.49) was proved in [133], and the

relation Pn´1rMn,Mns Ă DECrMn,Mns is conjectured in [26].

It is also an interesting question to ask how large Schmidt numbers are attained

by PPT states. It is known [17, 65, 14] that PPT states may have arbitrary large

Schmidt numbers when we increase the size of matrices. It is equivalent to look for

indecomposable k-positive maps for large k. See [10]. In the case of m ě 3 and

n “ 4, it is unknown if there exists a PPT state with Schmidt number greater than

2, or equivalently if there exists an indecomposable 2-positive map.

References: [129], [18], [100], [133], [17], [65], [26], [14], [10]

1.6 Nontrivial examples of positive maps

In this section, we exhibit Tomiyama’s examples of linear maps which distinguish

k-positivity for different k’s, by considering the line segment between the trace map

and the identity map, which are located at the center and the boundary of the

convex cone P1, respectively. We also give two examples of indecomposable positive

maps by Choi and Woronowicz.

1.6.1 Tomiyama’s example of k-positive maps

In this section, we will explore examples of positive maps which are not completely

positive. By the strict inclusion (1.13), we also have the following strict inclusions

of convex cones in the space HpMn,Mnq;

CP “ Pn Ř Pn´1 Ř ¨ ¨ ¨Pk Ř ¨ ¨ ¨ Ř P1.
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We first look for explicit examples to distinguish the above convex cones.

We recall that the trace map 1
n
Tr n is located in the center of the convex cone

CP, and the identity map idn generates an extreme ray of P1. We consider the line

segment between these two maps to define

φλ “ p1´ λq
1

n
Tr n ` λ idn, ´8 ă λ ă `8. (1.50)

It is clear that φλ P CP for λ P r0, 1s, and φλ P P1 implies λ ď 1. We have

Cφλ “

n
ÿ

i,j“1

|iyxj| b
1´ λ

n
δijIn ` λ

n
ÿ

i,j“1

|iyxj| b |iyxj|

“
1´ λ

n
In b In ` λ|ωyxω|,

with |ωy “
řn
i“1 |iy|iy P Cn b Cn. We take |ζy “

řk
i“1 |iy|iy with SR |ζy “ k. If

φλ P Pk then we have

0 ď xCφλ , |ζyxζ|y “
1´ λ

n
k ` λk2

“
k

n
r1` λpnk ´ 1qs,

from which we get a necessary condition

´1

nk ´ 1
ď λ ď 1 (1.51)

for φλ P Pk. When λ “ ´1
nk´1

, the map φλ is the scalar multiplication of the map

τn,k “ kTr n ´ idn, k “ 1, 2, . . . , n, (1.52)

whose Choi matrix is given by

Cτn,k “ kIn b In ´ |ωyxω|.

In order to show that (1.51) is also sufficient for φλ P Pk, it suffices to show that τn,k
is k-positive. For this purpose, we need the following:

Proposition 1.6.1 For a linear map φ : Mm ÑMn and k “ 1, 2, . . . , n, the follow-

ing are equivalent:

(i) φ is k-positive,

(ii) Adp ˝φ
˚ is completely positive for every rank k projection p in Mm,

(iii) pIn b pqCφ˚pIn b pq P Mn bMm is positive for every rank k projection p in

Mm.

(iv) ppb InqCφppb Inq PMmbMn is positive for every rank k projection p in Mm.
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(v)
řk
i,j“1 |ξ̄iyxξ̄j|bφp|ξiyxξj|q PMmbMn is positive for every orthornormal family

tξi : i “ 1, 2, . . . , ku in Cm.

(vi)
řk
i,j“1 |iyxj| b φp|ξiyxξj|q PMk bMn is positive for every orthornormal family

tξi : i “ 1, 2, . . . , ku in Cm.

Proof. In order to prove (i) ùñ (ii), we suppose that φ is k-positive and p P Mm

is a rank k projection. Take a unitary u PMm which sends Ck ˆ t0u Ă Cm onto the

range of p. Then Adu ˝Adp ˝φ
˚ is a k-positive map from Mn into Mk, and so it is

completely positive by Theorem 1.5.3. Therefore, we see that Adp ˝φ
˚ is completely

positive. For the reverse direction, we suppose that (ii) holds, and s is arbitrary

rank k matrix in Mmˆn. Take a projection p PMm such that rank p ď k and ps “ s,

to see that

xφ,Adsy “ xφ,Adpsy “ xφ,Ads ˝Adpy “ xAdsT ˝φ,Adpy “ xAdsT ,Adp ˝φ
˚
y.

By the assumption, Adp ˝φ
˚ is completely positive, and so we have xφ,Adsy ě 0 and

conclude that φ is k-positive. The equivalence (ii) ðñ (iii) also comes out from

Theorem 1.5.3, since the Choi matrix of Adp ˝φ
˚ is just pIn b pqCφ˚pIn b pq. Since

Cφ˚ is the flip of Cφ, we see that (iii) and (iv) are equivalent.

We take arbitrary projection p of rank k, and write p “
řk
i“1 |ξ̄iyxξ̄i| for or-

thonormal family t|ξiy : i “ 1, 2, . . . , ku of Cm. Then we have

ppb InqCφppb Inq “
m
ÿ

s,t“1

p|syxt|p b φp|syxt|q

“

m
ÿ

s,t“1

k
ÿ

i,j“1

|ξ̄iyxξ̄i|syxt|ξ̄jyxξ̄j| b φp|syxt|q

“

k
ÿ

i,j“1

|ξ̄iyxξ̄j| b φ

˜

m
ÿ

s,t“1

xξ̄i|sy|syxt|xt|ξ̄jy

¸

“

k
ÿ

i,j“1

|ξ̄iyxξ̄j| b φp|ξiyxξj|q,

which shows (iv) ðñ (v). The remaining equivalence between (v) and (vi) is easily

seen by considering the isometry from Ck into Cm which sends |iy to |ξ̄iy. ˝

Proposition 1.6.2 For k “ 1, 2, . . . , n, the map τn,k : Mn ÑMn is k-positive.

Proof. In order to apply Proposition 1.6.1 (vi), we take an orthonormal family

t|ξiy : i “ 1, 2, . . . , ku of vectors in Cn. Then we have τn,kp|ξiyxξj|q “ kδijIn´|ξiyxξj|,
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and so it follows that
k
ÿ

i,j“1

|iyxj| b φp|ξiyxξj|q “ k
k
ÿ

i“1

|iyxi| b In ´
k
ÿ

i,j“1

|iyxj| b |ξiyxξj|

“ kIk b In ´ |ξyxξ|,

with |ξy “
řk
i“1 |iy|ξiy P CkbCn. Now, we conclude that kIkb In´ |ξyxξ| ě 0 holds

since xξ|ξy “ k. ˝

Theorem 1.6.3 For k “ 1, 2, . . . , n, the map φλ : Mn Ñ Mn is k-positive if and

only if λ satisfies the inequality

´1

nk ´ 1
ď λ ď 1.

We note that φλ is completely copositive if and only if pCφλq
Γ is positive if and

only if 1´λ
n
ě |λ| if and only if

´1

n´ 1
ď λ ď

1

n` 1
.

Summarizing, we have the following:

Proposition 1.6.4 The linear φλ in (1.50) satisfies the following:

(i) φλ is positive if and only if ´1
n´1

ď λ ď 1,

(ii) φλ is completely positive if and only if ´1
n2´1

ď λ ď 1,

(iii) φλ is completely copositive if and only if ´1
n´1

ď λ ď 1
n`1

.

Therefore, φλ is either completely positive or completely copositive whenever it

is positive. Especially, there is no indecomposable positive maps among φλ’s.

References: [20], [125], [120], [126]

1.6.2 The Choi map between 3ˆ 3 matrices

In the case of n “ 3, the map τ3,1 “ 2φ´1{2 is located at the end point of the interval

on which φλ is positive, and its Choi matrix is given by

Cτ3,1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

¨ ¨ ¨ ¨ ´1 ¨ ¨ ¨ ´1
¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨

´1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ´1
¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨

´1 ¨ ¨ ¨ ´1 ¨ ¨ ¨ ¨

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
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In order to get an example of indecomposable positive map, we adjust the diagonal

part of Cτ3,1 as follow:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 ¨ ¨ ¨ ´1 ¨ ¨ ¨ ´1
¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

´1 ¨ ¨ ¨ 1 ¨ ¨ ¨ ´1
¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

´1 ¨ ¨ ¨ ´1 ¨ ¨ ¨ 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (1.53)

Note that neither the above matrix nor its partial transpose is positive. This is the

Choi matrix of the map defined by

φchpxq “

¨

˝

x11 ` x33 ´x12 ´x13

´x21 x22 ` x11 ´x23

´x31 ´x32 x33 ` x22

˛

‚“ ψpxq ´ x, (1.54)

for x “ rxijs PM3, with

ψpxq “

¨

˝

2x11 ` x33 ¨ ¨

¨ 2x22 ` x11 ¨

¨ ¨ 2x33 ` x22

˛

‚.

In order to show that φch is positive, we begin with the following:

Proposition 1.6.5 Let A be an nˆ n nonsingular positive matrix, and |ξ0y a unit

vector. Then A ě |ξ0yxξ0| if and only if xξ0|A
´1|ξ0y ď 1.

Proof. We have A ě |ξ0yxξ0| if and only if I ě A´1{2|ξ0yxξ0|A
´1{2 if and only if

}A´1{2|ξ0y} ď 1 if and only if xξ0|A
´1|ξ0y ď 1. ˝

Now, we see that φch is positive if and only if ψp|ξ0yxξ0|q ě |ξ0yxξ0| for every unit

vector |ξ0y if and only if

xξ0|ψp|ξ0yxξ0|q
´1
|ξ0y ď 1

for every unit vector |ξ0y if and only if the inequality

α

2α ` γ
`

β

2β ` α
`

γ

2γ ` β
ď 1 (1.55)

holds for all positive real numbers α, β and γ.

Lemma 1.6.6 The inequality (1.55) holds for all positive real numbers α, β and γ.
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Proof. Taking x “ γ
α

, y “ α
β

and z “ β
γ
, it suffices to show the inequality

1

2` x
`

1

2` y
`

1

2` z
ď 1,

or equivalently xy ` yz ` zx ě 3 under the constraint xyz “ 1. This comes out by

comparing the arithmetic and geometric means. ˝

Therefore, we conclude that the map φch is a positive map. One may check that

the bilinear pairing of the matrix (1.53) with the PPT matrix in (1.33) is strictly

negative, and so we also conclude that φch is not decomposable. This is another way

to see that the PPT state in (1.33) is entangled. The map φch in (1.54) is usually

called the Choi map.

Theorem 1.6.7 The Choi map φch defined in (1.54) is a positive map which is not

decomposable.

The Choi map φch had been extended in higher dimensions in various directions

[121, 89, 18, 132, 90, 41]. See also Section 2.5.

References: [22], [25], [23], [121], [89], [18], [132], [90], [41]

1.6.3 The Woronowicz map from 2ˆ 2 matrices to 4ˆ 4 ma-
trices

We also give an example of an indecomposable positive map from M2 into M4. We

define the linear map φwo from M2 into M4 by

φwo :

ˆ

x y
z w

˙

ÞÑ

¨

˚

˚

˝

4x´ 2y ´ 2z ` 3w ´2x` 2z ¨ ¨

´2x` 2y 2x z ¨

¨ y 2w ´2z ´ w
¨ ¨ ´2y ´ w 4x` 2w

˛

‹

‹

‚

. (1.56)

Then the map φwo sends the rank one matrix

pα “

ˆ

1 ᾱ
α |α|2

˙

to
¨

˚

˚

˝

|α ´ 2|2 ` 2|α|2 ´2` 2α ¨ ¨

´2` 2ᾱ 2 α ¨

¨ ᾱ 2|α|2 ´2α ´ |α|2

¨ ¨ ´2ᾱ ´ |α|2 4` 2|α|2

˛

‹

‹

‚

.

The k ˆ k principal submatrix of the left–upper corner has the determinant ∆k as

follows:
∆1 “ 2|α|2 ` |α ´ 2|2,

∆2 “ 2|α|2 ` 4,

∆3 “ |α|
2
|α ` 2|2,

∆4 “ 0.
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Therefore, we see that φwoppαq is positive when α ‰ 0,´2. For α “ 0, α “ ´2

and α “ 8, the map φwo sends

p0 “

ˆ

1 ¨

¨ ¨

˙

, p´2 “

ˆ

1 ´2
´2 4

˙

and p8 “

ˆ

¨ ¨

¨ 1

˙

to the matrices
¨

˚

˚

˝

4 ´2 ¨ ¨

´2 2 ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ 4

˛

‹

‹

‚

,

¨

˚

˚

˝

24 ´6 ¨ ¨

´6 2 ´2 ¨

¨ ´2 8 ¨

¨ ¨ ¨ 20

˛

‹

‹

‚

and

¨

˚

˚

˝

3 ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ 2 ´1
¨ ¨ ´1 2

˛

‹

‹

‚

,

respectively, which are positive. Therefore, we see that the map φwo is a positive

map. We note that φppαq is of rank three for every α P C Y t8u. The map φwo is

called the Woronowicz map. The Choi matrix of φwo is given by

Cφwo “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

4 ´2 ¨ ¨ ´2 ¨ ¨ ¨

´2 2 ¨ ¨ 2 ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ 1 ¨ ¨

¨ ¨ ¨ 4 ¨ ¨ ´2 ¨

´2 2 ¨ ¨ 3 ¨ ¨ ¨

¨ ¨ 1 ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ´2 ¨ ¨ 2 ´1
¨ ¨ ¨ ¨ ¨ ¨ ´1 2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

We will see in Section 2.6 that the map φwo in (1.56) is an extremal positive

map. If φwo is decomposable, then it must be of the form Ads or T ˝ Ads, and so

the Choi matrix is of rank one or its partial transpose is of rank one. We see that

neither is the case, and so φwo is not decomposable.

References: [130], [49]

1.7 Isotropic states and Werner states

We continue to look for conditions for k-superpositivity of the maps by Tomiyama in

the last section, or equivalently, determine the Schmidt numbers of the corresponding

Choi matrices and their partial transposes. These are isotropic states and Werner

states, respectively.

1.7.1 Isotropic states

We return to the map φλ defined in (1.50) which is completely positive if and only

if ´1
n2´1

ď λ ď 1 by Theorem 1.6.3. In this case, we have the state

%λ :“ Cφλ “
1´ λ

n
In b In ` λ|ωyxω| “

1´ λ

n
CTr ` λCid (1.57)
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which is called the isotropic state. We recall that the vector |ωy was defined by

|ωy “
řn
i“1 |iiy. We have already seen in Proposition 1.6.4 that %Γ

λ is positive if and

only if φλ is completely copositive if and only if ´1
n´1

ď λ ď 1
n`1

, and so %λ is a PPT

state if and only if
´1

n2 ´ 1
ď λ ď

1

n` 1
holds.

When λ “ ´1
n2´1

, one can show that

%λ “
n

n2 ´ 1
In b In ´

1

n2 ´ 1
|ωyxω| (1.58)

is separable. In fact, we modify the vector |ζy given in (1.30) to define

|ζiky “ p|iy ` β|kyq b p|iy ´ β̄|kyq “ |iiy ´ β̄|iky ` β|kiy ´ |kky

with a complex number β of modulus one, and put

%ik “
1

4

ÿ

β“˘1,˘i

|ζikyxζik|

“ |iiyxii| ` |ikyxik| ` |kiyxki| ` |kkyxkk| ´ |iiyxkk| ´ |kkyxii|

for each ordered pair pi, kq with i ‰ k and i, k “ 1, 2, . . . , n. Summing up all of

them, we get the separable state

2pn´ 1q
n
ÿ

i“1

|iiyxii| ` 2
ÿ

i‰k

|ikyxik| ´ 2

˜

|ωyxω| ´
n
ÿ

i“1

|iiyxii|

¸

“2n
n
ÿ

i“1

|iiyxii| ` 2
ÿ

i‰k

|ikyxik| ´ 2|ωyxω|.

Adding the separable state 2pn´1q
řn
i‰j |ijyxij|, we finally get the state %λ in (1.58)

up to scalar multiplication. Therefore, we see that %λ P Sn if and only if %λ P S1, in

case of λ ă 0.

We proceed to determine the Schmidt number of the state %λ, or equivalently

look for the condition on λ for which φλ is k-superpositive. In order to determine

the Schmidt number of the state %λ, we consider the bilinear pairing with φµ for

µ “ ´1
nk´1

. We compute

x%λ, %µy “ n

ˆ

1´ λ

n
` λ

˙ˆ

1´ µ

n
` µ

˙

` pn2
´ nq

1´ λ

n

1´ µ

n
` pn2

´ nqλµ

“ λµpn2
´ 1q ` 1.

Therefore, %λ P Sk implies that x%λ, %µy ě 0 with µ “ ´1
nk´1

, which holds only when

λ ď nk´1
n2´1

. Therefore, we have the following necessary condition

´1

n2 ´ 1
ď λ ď

nk ´ 1

n2 ´ 1
. (1.59)
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for φλ P Sk. Since
nk ´ 1

n2 ´ 1
“

´1

n2 ´ 1
`
k

n

ˆ

1´
´1

n2 ´ 1

˙

,

we see that λk :“ nk´1
n2´1

divides the interval
“

´1
n2´1

, 1
‰

into n subintervals with the

same lengths.

In order to get sufficient conditions for φλ P SPk, we will use special kinds of

symmetries of the identity map idn and its Choi matrix Cid. We call U b V acting

on CmbCn a local unitary when both U and V are unitaries acting on Cm and Cn,

respectively. It is clear that both pU b V q|ζy and |ζy P Cm b Cn share the same

Schmidt ranks, and so it follows that both states

AdUbV p%q “ pU
˚
b V ˚q%pU b V q

and % have the same Schmidt numbers. For a linear map φ : Cm Ñ Cn, we have

xab b,AdUbV pCφqy “ xAdUTbV Tpab bq,Cφy

“ xAdUTpaq b AdV Tpbq,Cφy

“ xAdV Tpbq, φ ˝ AdUTpaqy

“ xb,AdV ˝φ ˝ AdUTpaqy

“ xab b,CAdV ˝φ˝Ad
UT
y,

and so it follows that

AdUbV pCφq “ CAdV ˝φ˝Ad
UT
. (1.60)

Two nˆn unitaries U and V satisfy AdUbV pCidq “ Cid if and only if AdV ˝AdUT “ id

if and only if UTV “ λIn with |λ| “ 1. Especially, we have

AdUbŪpCidq “ Cid,

for every unitary U .

Now, we look for linear maps φ P LpMn,Mnq satisfying AdUbŪpCφq “ Cφ for

every unitary U . This holds if and only if AdŪ ˝φ ˝ AdUT “ φ if and only if

x|kyx`|, φp|iyxj|qy “ xU |kyx`|U˚, φpŪ |iyxj|UT
qy. (1.61)

Now, we suppose that φ satisfies (1.61) for every unitary U , and proceed to determine

the pk, `q entry

x|kyx`|, φp|iyxj|qy

of φp|iyxj|q for those φ. We first consider the case when one of i, j, k and `, say i, is

different from others. In this case, we take the unitary U satisfying U |iy “ ´|iy and

U |ιy “ |ιy for ι “ j, k and `, to see that x|kyx`|, φp|iyxj|qy “ 0. Therefore, it remains

to determine

x|iyxj|, φp|iyxj|qy, x|jyxi|, φp|iyxj|qy, x|kyxk|, φp|iyxi|qy, x|iyxi|, φp|iyxi|qy,
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with i ‰ j and i ‰ k. Taking the unitary U with U |iy “ |iy and U |jy “ i|jy, we see

that x|jyxi|, φp|iyxj|qy “ 0. Taking the unitaries permuting |iy’s, we also see that the

values of

α :“ x|kyxk|, φp|iyxi|qy, β :“ x|iyxj|, φp|iyxj|qy

are independent on the choices of i, j and i, k, respectively. Now, we take the unitary

U with U |iy “ 1?
2
p|iy ` |jyq and U |jy “ 1?

2
p|iy ´ |jyq to see that

α ` β “ x|iyxj|, φp|iyxj|qy ` x|jyxj|, φp|iyxi|qy

“
1

2
px|iyxi|, φp|iyxi|qy ` x|jyxj|, φp|jyxj|qyq

for i ‰ j. Taking finally the unitary U with U |iy “ |jy and U |jy “ |iy for i ‰ j, we

have

x|iyxi|, φp|iyxi|qy “ x|jyxj|, φp|jyxj|qy,

for i ‰ j, and so we also have

x|iyxi|, φp|iyxi|qy “ α ` β

for every i. Therefore, we have the following:

Proposition 1.7.1 For a map φ : Mn ÑMn, the following are equivalent:

(i) AdUbŪpCφq “ Cφ for every unitary U ,

(ii) AdŪ ˝φ ˝ AdUT “ φ for every unitary U ,

(iii) φ “ αTr n ` β idn for complex numbers α and β.

For a given φ P P1rMn,Mns, we define the linear map

T rφs :“

ż

Upnq

AdŪ ˝φ ˝ AdUT dU,

where the integration is taken over the unitary group Upnq of all nˆn unitaries with

respect to the Haar measure. More precisely, this map is defined by the relation

xT rφs, ψy “

ż

Upnq

xAdŪ ˝φ ˝ AdUT , ψy dU, ψ P LrMn,Mns.

Because φ is k-superpositive if and only if AdŪ ˝φ˝AdUT is k-superpositive for every

unitary U , we see that if φ is k-superpositive then T rφs is also k-superpositive. It

is also clear that T rφs satisfies the condition (ii) of Proposition 1.7.1, and so we
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have T rφs “ αTr n ` βidn for complex numbers α and β. In order to determine the

coefficients α and β, we first note the relations

xAdŪ ˝φ ˝ AdUT ,Tr y “ xφ,AdU˚ ˝Tr ˝ AdUy “ xφ,Tr y

xAdŪ ˝φ ˝ AdUT , idy “ xφ,AdU˚ ˝id ˝ AdUy “ xφ, idy,

from which we have

xφ, idy “ xT rφs, idy “ xαTr ` βid, idy “ nα ` n2β

xφ,Tr y “ xT rφs,Tr y “ xαTr ` βid,Tr y “ n2α ` nβ.

Solving this equations, we have

α “
1

n2 ´ 1
xφ,Tr n ´

1
n
idny, β “

1

n2 ´ 1
xφ, idn ´

1
n
Tr ny. (1.62)

We summarize as follows:

Proposition 1.7.2 For a linear map φ : Mn Ñ Mn, we define complex numbers α

and β by (1.62). Then we have T rφs “ αTr n ` βidn.

We take the positive map φ whose Choi matrix is given by Cφ “
n
k
|ζyxζ| with

|ζy “
řk
i“1 |iiy P CnbCn. Then Cφ has Schmidt number k, and φ is k-superpositive.

We also have

α “
n´ k

n2 ´ 1
, β “

nk ´ 1

n2 ´ 1

and T rφs “ φλk with λk “
nk´1
n2´1

. Therefore, we conclude that φλk is k-superpositive.

We have already seen that %λ with λ “ ´1
n2´1

is separable, and so it belongs to Sk for

every k “ 1, 2, . . . , n. Therefore, we conclude that (1.59) gives rise to the necessary

and sufficient condition for %λ P Sk, and summarize as follows:

Theorem 1.7.3 The linear map φλ defined by (1.50) is k-superpositive if and only

if the isotropic state %λ in (1.57) belongs to Sk if and only if λ satisfies

´1

n2 ´ 1
ď λ ď

nk ´ 1

n2 ´ 1
.

References: [128], [59], [124], [9], [55]

1.7.2 Werner states

It remains to look for conditions on λ for which %λ P Sk, or equivalently, %Γ
λ P Sk.

We recall that %Γ
λ is positive if and only if ´1

n´1
ď λ ď 1

n`1
. For those λ’s, the state

%Γ
λ is called the Werner state, which is given by

%Γ
λ “ pCφλq

Γ
“ Cφλ˝T “ Cψλ ,
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where the map ψλ : Mn ÑMn is defined by

ψλ :“ φλ ˝ T “ p1´ λq
Tr

n
` λT.

Note that ψλ is positive if and only if φλ is positive if and only if ´1
n´1

ď λ ď 1.

We also recall that %Γ
λ is separable if and only if %λ is separable if and only if

´1
n2´1

ď λ ď 1
n`1

by Theorem 1.7.3.

In order to determine the Schmidt number of %Γ
λ, we take |ζijy “ |ijy ´ |jiy P

Cn b Cn with Schmidt rank two. Summing up all of them, we have

ÿ

iăj

|ζijyxζij| “
ÿ

i‰j

p|ijyxij| ´ |ijyxji|q “ CTr ´ CT,

which is the Choi matrix of the map

ψ´1{pn´1q “ φ´1{pn´1q ˝ T “

ˆ

1´
´1

n´ 1

˙

1

n
Tr n `

´1

n´ 1
Tn,

up to a scalar multiple.

Theorem 1.7.4 For k “ 2, 3, . . . , n, the Werner state %Γ
λ belongs to Sk if and only

if ψλ is k-superpositive if and only if if and only if the following

´1

n´ 1
ď λ ď

1

n` 1

holds.

Proof. Suppose that %Γ
λ P Sk. Then the positivity of %Γ

λ implies the condition.

When λ “ ´1
n´1

, we have seen that %Γ
λ P S2 Ă Sk. For λ “ 1

n`1
, we know that

%Γ
λ P S1 Ă Sk. ˝

Therefore, we see that the state %Γ
λ has Schmidt number two whenever it is not

separable. We exhibit the properties of Werner states corresponding to isotropic

states. By the relation (1.60), we have

AdUbUpCTq “ CT.

This property actually characterizes the Werner states as follows:

Proposition 1.7.5 For a map ψ : Mn ÑMn, the following are equivalent:

(i) AdUbUpCψq “ Cψ for every unitary U ,

(ii) AdU ˝ψ ˝ AdUT “ ψ for every unitary U ,

(iii) ψ “ αTr n ` βTn for complex numbers α and β.
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Proof. We replace φ in Proposition 1.7.1 by ψ “ T ˝ φ to get the condition (iii).

From Proposition 1.7.1 (ii), we also have

ψ “ T ˝ φ “ T ˝ AdŪ ˝φ ˝ AdUT “ AdU ˝T ˝ φ ˝ AdUT “ AdU ˝ψ ˝ AdUT ,

which is (ii). This is equivalent to (i) by (1.60). ˝

For a given ψ P P1rMn,Mns, we define the linear map

W rψs :“

ż

Upnq

AdU ˝ψ ˝ AdUT dU,

as the definition of T rφs. Then we have

W rψs “ αTr n ` βTn,

with

α “
1

n2 ´ 1
xψ,Tr n ´

1
n
Tny, β “

1

n2 ´ 1
xψ,Tn ´

1
n
Tr ny

by the exactly same method as that of Proposition 1.7.2. We take |ζy “ |12y´|21y P

Cn b Cn with SR |ζy “ 2. We also take ψ P LpMn,Mnq with Cψ “ |ζyxζ|. Then we

have xψ,Tny “ ´2 and xψ,Tr ny “ 2, and so, we see that the following linear map

npn` 2q

2pn´ 1q
W rψs “

1

n´ 1
pTr ´ Tq “ ψ´1{pn´1q

is 2-superpositive, which recovers the Schmidt number of the corresponding Werner

states.

Finally, we determine λ for which φλ is k-copositive, or equivalently, ψλ is k-

positive, for k “ 2, 3, . . . , n. Suppose that ψλ P Pk. Then we have

0 ď xψλ, ψ´1{pn´1qy “ ´pn` 1qλ` 1,

and so λ ď 1
n`1

. This implies that ψλ is completely positive by Proposition 1.6.4,

and so k-positive. Because φ´1{pn´1q is both 1-copositive and completely copositive,

we have the following:

Theorem 1.7.6 For k “ 2, 3, . . . , n, the map φλ is k-copositive if and only if ψλ is

k-positive if and only if the following inequality

´1

n´ 1
ď λ ď

1

n` 1

holds.

Together with Theorem 1.7.5, we see that 2-superpositivity and 2-positivity co-

incide for the linear maps ψλ’s. We summarize in Figure 1.2.

References: [126], [128]

58



λ

SP2
“ CCP “ P2

SP1

SPk
CP

Pk
P1

´1
n´1

´1
nk´1

´1
n2´1

1
n`1

nk´1
n2´1

1
q q q r0 q q r

Figure 1.2: Various kinds of positivity of the map φλ “ p1´ λq
1
n
Tr n ` λidn

1.8 Mapping cones and tensor products

Various convex cones of positive maps considered so far are invariant under compo-

sitions by completely positive maps. This property implies further characterizations

of various kinds of positive maps in terms of composition, ampliation and tensor

products. In order to explain them in a unified framework, we exhibit an iden-

tity which relates compositions and tensor products of linear maps between matrix

algebras.

In this section, we use the notations MA and MB for matrix algebras which

are acting on the finite dimensional spaces CA and CB, respectively, in order to

emphasize the roles of parties in the tensor product. The convex cone CPrMA,MBs

will be abbreviated by CPAB, sometimes just by CP; the identity map on MA will

be denoted by idA. For sets K1 and K2 of linear maps, K1 ˝K2 will denote the set

of all φ1 ˝ φ2 with φi P Ki for i “ 1, 2. We also denote by CK the set of of all Cφ

with φ P K.

1.8.1 Mapping cones of positive maps

A closed convex cone K of positive linear maps in HpMA,MBq is called a right

mapping cone if K ˝ CPAA Ă K, and a left mapping cone if CPBB ˝ K Ă K. A

closed convex cone K is also called a mapping cone when CPBB ˝ K ˝ CPAA Ă K

holds. Since idA P CPAA and idB P CPBB, it is clear that K is a mapping cone if

and only if it is both left and right mapping cones. The following proposition is an

immediate consequence of the identity (1.42);

xψ ˝ φ, σy “ xφ, ψ˚ ˝ σy “ xψ, σ ˝ φ˚y.

Proposition 1.8.1 Suppose that K is a closed convex cone satisfying the relation

SP1 Ă K Ă P1. Then K is a right mapping cone if and only if K˝ is a right mapping

cone.
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Proof. Note that K is a right mapping cone if and only if xφ ˝ σ, ψy ě 0 for every

φ P K, σ P CPAA and ψ P K˝. By the identity (1.42), this is the case if and only if

xφ, ψ ˝ σ˚y ě 0 for every φ P K, σ P CPAA and ψ P K˝ if and only if K˝ is a right

mapping cone, since pCPAAq˚ “ CPAA. ˝

It is clear that SPk is a mapping cone, and so all the convex cones in the mapping

space HpMA,MBq appearing in the diagrams (1.45) are mapping cones. If K1 and

K2 are mapping cones then their intersection K1XK2 and their convex hull K1`K2

are also mapping cones. Therefore, all the convex cones of HpMA,MBq appearing

in (1.47) are also mapping cones. We note that K Ă K ˝ CP holds automatically,

and so we have pK ˝ CPq˝ Ă K˝ in general.

Proposition 1.8.2 A closed convex cone K of positive maps in HpMA,MBq is a

left mapping cone if and only if K˝ “ pCPBB ˝ Kq˝, and it is a right mapping

cone if and only if K˝ “ pK ˝ CPAAq˝. It is a mapping cone if and only if K˝ “

pCPBB ˝K ˝ CPAAq˝.

As another application of the identity (1.42), we see that φ P pK ˝ CPq˝ if and

only if xφ, ψ ˝ σy ě 0 for every ψ P K and σ P CP if and only if xψ˚ ˝ φ, σy ě 0 for

every ψ P K and σ P CP if and only if ψ˚ ˝ φ P CP for every ψ P K. In short, we

have

pK ˝ CPq˝ “ tφ P HpMm,Mnq : ψ˚ ˝ φ P CP for every ψ P Ku,

which coincide with K˝ if and only if K is a right mapping cone by Proposition

1.8.2. Therefore, we see that the dual cone of a mapping cone K can be described

in terms of composition as well as bilinear pairing, and this is possible only when K

is a one-sided mapping cone. We summarize as follows:

Theorem 1.8.3 For a closed convex cone K of positive maps in the space HpMA,MBq,

the following are equivalent:

(i) K is a right mapping cone,

(ii) φ P HpMA,MBq belongs to K˝ if and only if ψ˚ ˝ φ is completely positive for

every ψ P K.

The following are also equivalent:

(iii) K is a left mapping cone,

(iv) φ P HpMA,MBq belongs to K˝ if and only if φ ˝ ψ˚ is completely positive for

every ψ P K.

References: [114], [116], [106], [107], [117], [36]
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MA2
- MB2

MA1 -� MB1

?

σ

φ˚1

φ1

φ2
?

φ2 ˝ σ ˝ φ
˚
1φ1 b φ2 --

Figure 1.3: The map φ1 b φ2 sends Cσ to Cφ2˝σ˝φ
˚
1
.

1.8.2 Tensor products and compositions of linear maps

So far, we have described pK ˝CPq˝ and pCP˝Kq˝ in terms of compositions. We are

going to describe them in terms of tensor products of linear maps. To do this, we

need an identity which connects compositions and tensor products of linear maps.

For given linear maps φi : MAi Ñ MBi with i “ 1, 2, we note that every element of

the domain MA1 bMA2 of the map φ1bφ2 can be written as the Choi matrix Cσ of

a linear map σ : MA1 Ñ MA2 , and Cφ2˝σ˝φ
˚
1

belongs to the range MB1 bMB2 . See

Figure 1.3.

For every b1 PMB1 and b2 PMB2 , we have

xb1 b b2,Cφ2˝σ˝φ
˚
1
yB1B2 “ xb2, φ2pσpφ

˚
1pb1qqqyB2

“ xσ˚pφ˚2pb2qq, φ
˚
1pb1qyA1

“
ř

i,jxσ
˚pφ˚2pb2qq, e

A1
i,j yA1xφ

˚
1pb1q, e

A1
i,j yA1

“
ř

i,jxb2, φ2pσpe
A1
i,j qqyB2xb1, φ1pe

A1
i,j qyB1

“
ř

i,jxb1 b b2, φ1pe
A1
i,j q b φ2pσpe

A1
i,j qqyB1B2 ,

where teAi,ju denotes the matrix units of MA. Therefore, we have

Cφ2˝σ˝φ
˚
1
“
ř

i,j φ1pe
A1
i,j q b φ2pσpe

A1
i,j qq “

ř

i,jpφ1 b φ2qpe
A1
i,j b σpe

A1
i,j qq,

which gives rise to the following:

Theorem 1.8.4 For linear maps φi : MAi ÑMBi for i “ 1, 2 and σ : MA1 ÑMA2,

we have the identity

Cφ2˝σ˝φ
˚
1
“ pφ1 b φ2qpCσq. (1.63)

Since AdUbV “ AdU bAdV , we see that the identity (1.60) is, in fact, a special

case of (1.63).

References: [80]
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1.8.3 Roles of ampliation

We are going to describe the dual cones in terms of ampliation idA b φ or φb idB.

To do this, we consider the following diagrams

MA
idA
ÝÝÝÑ MA

§

§

đ
σ˚

MA
φ

ÝÝÝÑ MB

MA
φ

ÝÝÝÑ MB
§

§

đ

ψ

MB
idB
ÝÝÝÑ MB

which will give us formulae involving idA b φ and φb idB. Indeed, we have

xφ, ψ ˝ σy “ xφ ˝ σ˚, ψy “ xCφ˝σ˚ ,Cψy “ xpidA b φqpCσ˚q,Cψy,

xφ, σ ˝ ψy “ xψ ˝ φ˚, σ˚y “ xCψ˝φ˚ ,Cσ˚y “ xpφb idBqpCψq,Cσ˚y.

From the first line, we see that φ P pK ˝CPAAq˝ if and only if the ampliation idAbφ

sends pMAbMAq
` to CK˝ . We also see that φ P pCPBB ˝Kq˝ if and only if φb idB

sends CK to pMB bMBq
` from the second line. Therefore, we have the following:

Theorem 1.8.5 For a closed convex cone K Ă HpMA,MBq of positive maps, the

following are equivalent:

(i) K is a right mapping cone,

(ii) φ P K˝ if and only if idA b φ sends positive matrices to CK˝.

The following are also equivalent:

(iii) K is a left mapping cone,

(iv) φ P K˝ if and only if φb idB sends CK to positive matrices.

When K˝ is given by the mapping cone SP1, the statement (ii) of Theorem 1.8.5

tells us that φ P SP1rMA,MBs if and only if idAbφ sends every state in MAbMB to

a separable state. In this context, a 1-superpositive map is also called entanglement

breaking. On the other hands, the statement (iv) with K˝ “ DEC and K˝ “ Pk
gives rise to following:

Corollary 1.8.6 For φ : MA ÑMB, we have the following:

(i) φ is decomposable if and only if φb idB sends PPT states to positive matrices,

(ii) φ is k-positive if and only if φ b idB sends states with Schmidt numbers ď k

to positive matrices.
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Every vector |ζy “
ř`
i“1 |ξiy|ηiy P CA b CA has Schmidt number ď k whenever

` ď k. Therefore, we see that φ is k-positive if and only if

pφb idAqp|ζyxζ|q “
ÿ̀

i,j“1

φp|ξiyxξj|q b |ηiyxηj|

is positive whenever ` ď k if and only if
ř`
i,j“1 |ηiyxηj| bφp|ξiyxξj|q is positive when-

ever ` ď k. Compare with the conditions (v) and (vi) of Proposition 1.6.1.

The dual cone of a mapping cone can be also explained in terms of Choi matrices

of maps in the dual cone. To do this, we consider the following diagrams

MA
idA
ÝÝÝÑ MA

§

§

đ

φ

MB
ψ˚

ÝÝÝÑ MA

MA
ψ

ÝÝÝÑ MB
§

§

đ

φ

MB
idB
ÝÝÝÑ MB

to get the identities

xφ, ψ ˝ σy “ xψ˚ ˝ φ, σy “ xpidA b ψ
˚
qpCφq,Cσy,

xφ, σ ˝ ψy “ xφ ˝ ψ˚, σy “ xpψ b idBqpCφq,Cσy.

Therefore, we see that φ P pK ˝CPAAq˝ if and only if idAbψ
˚ sends Cφ to a positive

matrix for every ψ P K, and φ P pCPBB ˝Kq˝ if and only if ψ b idB sends Cφ to a

positive matrix for every ψ P K.

Theorem 1.8.7 For a closed convex cone K Ă HpMA,MBq of positive maps, the

following are equivalent:

(i) K is a right mapping cone,

(ii) φ P K˝ if and only if pidA b ψ
˚qpCφq ě 0 for every ψ P K.

Furthermore, the following are also equivalent:

(iii) K is a left mapping cone,

(iv) φ P K˝ if and only if pψ b idBqpCφq ě 0 for every ψ P K.

When we take K “ SP˝k, this gives us the following characterization of Schmidt

numbers of states:

Corollary 1.8.8 A state % PMAbMB belongs to Sk if and only if pidAbψqp%q ě 0

for every k-positive map ψ : MB Ñ MA if and only if pψ b idBqp%q ě 0 for every

k-positive map ψ : MA ÑMB.
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The most important case occurs when k “ 1; a state % is separable if and only

if pψ b idBqp%q ě 0 for every positive map ψ : MA Ñ MB. If we take ψ “ T, the

transpose map, then we have the PPT criterion; if % is separable then pTbidqp%q ě 0.

We see that x%,Ty ě 0 if and only if x%Γ,Cidy ě 0. This condition tells us that the

sum of some coefficients of %Γ is nonnegative. Therefore, we see that the condition

pψ b idBqp%q ě 0 is much stronger than x%, ψy ě 0 to detect entanglement.

References: [70], [113], [114], [60], [34], [124], [27], [36], [80],

1.8.4 Tensor products of positive maps

The dual cone may be also described in terms of state Cid with the maximal Schmidt

number. For this purpose, we consider the following diagrams

MA
φ

ÝÝÝÑ MB
§

§

đ

idA

MA
ψ

ÝÝÝÑ MB

MB
φ˚

ÝÝÝÑ MA
§

§

đ

idB

MB
ψ˚

ÝÝÝÑ MA

together with the identity

xφ, σ ˝ ψy “ xφ˚, ψ˚ ˝ σ˚y “ xψ ˝ φ˚, σ˚y “ xpφb ψqpCidAq,Cσ˚y,

xφ, ψ ˝ σy “ xψ˚ ˝ φ, σy “ xpφ˚ b ψ˚qpCidBq,Cσy,

to get the following:

Theorem 1.8.9 Suppose that K is a closed convex cone of positive maps in HpMA,MBq.

Then the following are equivalent:

(i) K is a left mapping cone,

(ii) φ P K˝ if and only if pφb ψqpCidAq ě 0 for every ψ P K.

Furthermore, the following are also equivalent:

(iii) K is a right mapping cone,

(iv) φ P K˝ if and only if pφ˚ b ψ˚qpCidBq ě 0 for every ψ P K.

We note that the dual cones are described in terms of images of Cid under the

tensor product φ b ψ in Theorem 1.8.9. Finally, we explore properties of φ b ψ

themselves in terms of dual cones. To do this, we put arbitrary τ in the places of

idA to get

MA
φ

ÝÝÝÑ MB
§

§

đ

τ

MA
ψ

ÝÝÝÑ MB
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together with the identity

xσ˚ ˝ ψ ˝ τ, φy “ xψ ˝ τ, σ ˝ φy “ xψ ˝ τ ˝ φ˚, σy “ xpφb ψqpCτ q,Cσy.

Then we see that φ P pCPBB ˝K ˝CPAAq˝ if and only if φbψ sends positive matrices

to positive matrices for every ψ P K, that is, φbψ is a positive map for every ψ P K.

Therefore, we have the following:

Theorem 1.8.10 For a given closed convex cone K Ă HpMA,MBq of positive

maps, the following are equivalent:

(i) K is a mapping cone,

(ii) φ P K˝ if and only if φb ψ is a positive map for every ψ P K.

When K “ SPk, Theorem 1.8.10 tells us that ψ b φ is positive for every k-

superpositive map ψ if and only if idk b φ is positive. Noting that idk is a typical

example of SPk, one may ask if idk in the definition of k-positivity may be replaced

by another k-superpositive map. When we fix a matrix s with rank k, it is easily

seen that the map idkbφ is positive if and only if Adsbφ is positive, using singular

value decomposition of s.

We also put two identity maps in the diagram as follows:

MA
idA
ÝÝÝÑ MA

§

§

đ

idA

MA
φ

ÝÝÝÑ MB

Then we get the identity pidA b φqpCidAq “ Cφ, and have the following:

Proposition 1.8.11 A linear map φ : MA Ñ MB belongs to a convex cone K if

and only if pidA b φqpCidAq belongs to CK.

References: [117], [80]

1.8.5 Entanglement breaking maps

It is worthwhile to collect applications of results in this section for K˝ “ SPk to

get equivalent conditions for k-superpositivity of a map φ, or equivalently Schmidt

numbers of the state Cφ.

Corollary 1.8.12 For a linear map φ : MA ÑMB, the following are equivalent:

(i) φ is k-superpositive, that is, φ “
ř

i Adsi with rank si ď k,
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(ii) Cφ belongs to Sk, that is, has the Schmidt numbers ď k,

(iii) ψ˚ ˝ φ is completely positive for every k-positive map ψ : MA ÑMB,

(iv) φ ˝ ψ˚ is completely positive for every k-positive map ψ : MA ÑMB,

(v) idA b φ sends every state into Sk,

(vi) φb idB sends every matrix in BPk to a positive matrix,

(vii) pidA b ψqpCφq ě 0 for every k-positive map ψ : MB ÑMA,

(viii) pψ b idBqpCφq ě 0 for every k-positive map ψ : MA ÑMB,

(ix) pφb ψqpCidAq ě 0 for every k-positive map ψ : MA ÑMB,

(x) pφ˚ b ψ˚qpCidBq ě 0 for every k-positive map ψ : MA ÑMB,

(xi) φb ψ is positive for every k-positive map ψ : MA ÑMB.

(xii) pidA b φqpCidAq belongs to Sk.

If s “ |ξyxη| is of rank one, then we have

Adspaq “ |ηyxξ|a|ξyxη| “ xξ|a|ξy |ηyxη| “ xa, |ξ̄yxξ̄|y |ηyxη|.

Therefore, we see that φ is 1-superpositive if and only if φ is of the following form

φpaq “
ÿ

k

xa, vkyuk (1.64)

with positive matrices uk and vk. This is called the Holevo form.

References: [114], [56], [61], [3], [27], [36], [80]

1.9 Historical remarks

Positive linear maps have played crucial roles in the theory of operator algebras

since the Gelfand–Naimark–Segal construction in the 1940’s, by which positive linear

functionals give rise to ˚-representations of abstract C˚-algebras. This construction

was extended for completely positive linear maps into operators in the 1955 paper

by Stinespring [110], where a linear map φ was defined to be completely positive

when idk b φ is positive for every k “ 1, 2, . . . . Note that a linear functional on a

matrix algebra into scalars is completely positive if and only if it is just positive by

Theorem 1.5.3. See also [125] for more general situations. Stinespring representation
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theorem tells us that every completely positive map is of the form V ˚πp ¨ qV for a

˚-homomorphism π and a bounded linear map V . See [92].

Størmer defined the notion of decomposability in his paper [111] of 1963 by maps

of the form V ˚πp ¨ qV with Jordan homomorphisms π which preserve Hermiticity and

square of Hermitian elements. It was shown later in [112] that a map is decomposable

in this sense if and only if it is the sum of a completely positive map and a completely

copositive map. In the paper [111], extremeness of the map Ads in Theorem 1.2.4

had been considered in more general situations, and all the extreme points of the

convex set P1rM2,M2, Is of all unital positive maps between 2ˆ2 matrices have been

found explicitly, from which Theorem 1.3.4 follows. We followed [118] and [6, 7] for

the proofs of Theorem 1.2.4 and Theorem 1.3.4, respectively. The maps Ads also

play important roles in matrix theory. Suppose that a map φ : Mn Ñ Mn satisfies

φp0q “ 0 and (1.12). If we suppose further that φ is bijective or continuous then it

is known [109, 87, 104] that φ “ Ads or φ “ Ads ˝T for a nonsingular s PMn.

Choi matrices have been introduced by de Pillis [32] in 1967, where Proposition

1.4.1 was shown. Propositions 1.4.2 and Theorem 1.5.3 were given by Jamio lkowski

[67] in 1972 and Choi [21] in 1975, respectively, after whom the one-to-one cor-

respondence φ ÞÑ Cφ is now called the Jamio lkowski–Choi isomorphism. Kraus

decomposition of completely positive maps were found independently [72, 73]. We

note that the matrix
ř

i,j |jyxi| b φp|iyxj|q has been considered in [32] and [67],

instead of Cφ “
ř

i,j |iyxj| b φp|iyxj|q. Recall that the notions of Hermitcity and

1-block-positivity are invariant under taking partial transposes. Further variants

has been considered in [93, 80, 79, 54]. The Choi matrix can be defined for infi-

nite dimensional cases [57, 58, 84, 119, 35, 50, 85, 37] in various situations, and

multi-linear maps between matrix algebras [78, 52, 53]. Since Arveson’s extension

theorem for completely positive maps [4] and Choi’s Theorem 1.5.3 on the corre-

spondence between completely positivity of maps and positivity of Choi matrices,

it has been widely accepted by operator algebraists that completely positive maps

serve as morphisms for operator algebras reflecting noncommutative order struc-

tures, and important notions like nuclearity and injectivity have been described in

terms of completely positive maps. See the survey article [33]. Theorem 1.5.8 on

the extreme points of unital completely positive maps is also taken from [21].

The notion of duality between tensor products and linear maps in (1.39) goes

back to the work of Woronowicz [129] in 1976, where he showed that every positive

maps between M2 and M3 are decomposable. For this purpose, he utilized the

duality to get the equivalent claim that for any PPT state % P M2 b M3 there

exists a product vector |ξy|ηy P Im % such that |ξ̄y|ηy P Im %Γ. This is equivalent in

principle to the claim that every 2b 3 PPT state in M2bM3 is separable, as it was

noticed later by Horodecki’s in the paper [60] of 1996, where the duality between
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S1 and P1 was also given. Theorem 1.5.4 (i) on the duality between k-positivity

and states of Schmidt number ď k was obtained in [34]. The duality between linear

maps through (1.40) was defined in [107]. Duality between separability of states and

positivity of maps can be extended for infinite dimensional cases [115].

The linear map τn,n´1 in (1.52) with k “ n ´ 1, which was given by the 1972

paper of Choi [20], is the first concrete example of a linear map which distinguishes

complete positivity and k-positivity. The equivalent condition (iv) of Proposition

1.6.1 to the k-positivity is implicit in [20] and stated in [120] clearly. The condition

(vi) of Proposition 1.6.1 together with Theorem 1.6.3 is due to Tomiyama [126].

After the first example of indecomposable positive map in [22], Choi and Lam [25]

constructed the Choi map φch in (1.54), which is known to be extreme [42]. The

linear map from M2 into M4 given by (1.56) was constructed by Woronowicz [130] in

the contexts of non-extendibility which has a close relationship with extremeness of

positive maps. There are other examples [122] of indecomposable maps between M2

and M4. See also [112] for infinite family of indecomposable positive maps in other

dimensions. Further interesting properties of two maps by Choi and Woronowicz

will be discussed in the next chapter.

The notion of entanglement had been originated from the work by Einstein,

Podolsky and Rosen in the 1930’s. It was defined for general mixed states by Werner

[128] in 1989 under the name of Einstein-Podolsky-Rosen correlation. Separable

states, which were defined as convex combinations of product states, were called

to be classically correlated in the paper. The notion of Schmidt numbers of bi-

partite states has been considered in [34] under the name k-simple vectors following

Woronowicz’ terminology [129], together with Theorem 1.5.2. The term Schmidt

numbers were introduced in [124], where Corollary 1.8.8 was shown. It was shown

in [40] that every state in the unit ball around the identity Imn P Mm bMn with

respect to the norm } ¨ }HS is separable. It is very hard in general to prove that

a given state is entangled, since we have to show that some kinds of expressions

are not possible. In fact, it is now known [39] that it is an NP hard problem in

general to decide if a given state is separable or entangled. Positive maps play

crucial roles in this problem by duality: A state % is entangled if and only if there

exists a positive map φ such that x%, φy ă 0. This will be the main topic of the

next chapter. Theorem 1.4.3, which is now called the PPT criterion, was presented

by Choi [24] in 1980 together with the example (1.33) of a PPT entangled state,

and rediscovered by Peres [94] in 1996. We note that the first example of a PPT

entangled state was given by Woronowicz [129] in 1976 among 2 b 4 states in the

context of decomposability of positive maps. For more criteria for separability, we

refer to survey articles [38, 64]

The Werner states had been introduced by Werner [128] together with Proposi-
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tion 1.7.5 and the technique using the integration over the unitary group to show

that a given state is separable. It is another problem to look for decomposition

into finitely many product states. See [91]. On the other hands, Horodecki’s [59]

introduced the isotropic states and gave the condition for separability using the cor-

responding invariant properties in Proposition 1.7.1. Theorem 1.7.3 on the Schmidt

numbers of isotropic states was obtained in [124]. The k-copositivity of the map φλ,

or equivalently k-positivity of ψλ in Theorem 1.7.6 was obtained in [126] by another

application of Proposition 1.6.1.

The notion of superpositive maps has arisen more recently, even though positive

maps of the form (1.64) had been considered by Størmer [114] in 1980’s. In the paper

[61], a map φ was called entanglement breaking when φ satisfies the the condition

(v) of Corollary 1.8.12 with k “ 1, and it was shown that conditions (i), (iii), (iv)

and (xii) are equivalent to (v) in Corollary 1.8.12 together with the Holevo form

[56] in (1.64). On the other hand, a map was called superpositive in [3] when its

Choi matrix is separable. See [5] for the characteristic property of unital completely

positive maps which is not entanglement breaking. Equivalent conditions (ii), (iii)

and (v) of Corollary 1.8.12 for k-superpositive maps were given in [27]. We follow

[106, 108] for the definition of k-superpositivity. We note that Theorem 1.5.2 on the

dual of k-superpositivity recovers the definition of k-positivity.

Mapping cones were introduced by Størmer [114] in the 1980’s in more general

contexts to study the extension problem of positive maps. It was known [107, 117]

that the dual cones of mapping cones can be described in terms of compositions and

tensor products; φ P K˝ if and only if φ ˝ψ is completely positive for every ψ P K if

and only if ψbφ is positive for every ψ P K if and only if pψbφqpCidq ě 0 for every

for every ψ P K. One-sided mapping cone was introduced quite recently in [36] to see

that some of the above equivalences hold only when K is a one-sided mapping cone.

Results in Section 1.8, which were taken from [36] and [80], recover many known

results in a systematic way. For examples, statements (i) and (ii) of Corollary 1.8.6

were given in [70, 113] and [34], respectively. On the other hand, Corollary 1.8.8 with

k “ 1 gives rise to the Horodecki’s separability criterion [60]; a state % is separable

if and only if pψb idBqp%q ě 0 for every positive map ψ : MA ÑMB. The analogous

characterization of states in Sk in terms of k-positive maps is due to [124]. See also

[115] for an infinite dimensional analogue for Horodecki’s separability criterion.
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Chapter 2

Detecting Entanglement by
Positive Maps

We will focus in this chapter on the duality between positive maps and separable

states: A bi-partite state % P Mm bMn is separable if and only if x%, φy ě 0 holds

for every positive map φ from Mm into Mn. It is clear that this is the case if and

only if the inequality holds for every positive map which generates an extreme ray

of the convex cone P1 of all positive maps. But, it is not so easy to find extremal

positive maps, because we do not know facial structures of the convex cone P1. In

fact, it is enough to check the inequality for positive maps which generate exposed

rays of P1, by Straszewicz’s Theorem which tells us that the set of exposed points

of a compact convex set is dense among all extreme points.

We will also consider the question how much entanglement a given positive map

may detect. A positive map will be called optimal when it detects a maximal set of

entanglement. It turns out that the notion of optimality involves facial structures of

P1 again; a positive map is optimal if and only if the smallest face containing it has

no completely positive map. We give a sufficient condition on positive maps which

detect maximal set of entanglement, in terms of exposed faces. This condition,

called the spanning property, is much easier to check, and this explains why we

are interested in exposed faces. We also note that the boundary of a convex cone

consists of maximal faces which are always exposed.

A face is exposed with respect to the bilinear pairing if and only if it is a dual face,

which is determined by a hyperplane given by an element of the dual cone. In order

to detect entangled states with positive partial transposes, we need indecomposable

positive maps, and so it is important to find indecomposable exposed positive maps,

in this contexts. We will exhibit such positive maps in low dimensional cases.

We will see in Section 2.1 that a face F is exposed in the convex if and only if it

coincides with the bidual face F 2. We also see that every face for completely positive

maps turns out to be exposed, and this is also the case for PPT states. Especially,
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we show that the map Ads is exposed in the convex cone P1 consisting of all positive

maps. In Section 2.2, we show that the Choi map φch has very special properties; the

smallest face containing φch is not exposed; the smallest exposed face φ2ch containing

φch has a nontrivial intersection with completely positive maps, but has the trivial

intersection with completely copositive maps. We will show in Section 2.3 that a

face is maximal if and only if its dual face is minimal among exposed faces. With

this, we can understand relative locations of convex cones Pk of all k-positive maps.

Section 2.4 will be devoted to explain optimality and spanning properties of positive

maps, and explain them in terms of faces and exposed faces, respectively.

In the remaining part, we will exhibit several examples of indecomposable pos-

itive maps in low dimensions. In Section 2.5, we exhibit parameterized examples

of indecomposable positive maps between 3ˆ 3 matrices, which are variants of the

Choi map. We will find positive maps among them which distinguish various kinds

of optimality. We also provide in Section 2.6 a sufficient condition for exposedness

of a positive map which is not so difficult to check, and we show that the Woronow-

icz map from M2 into M4 is exposed. We will work with parameterized examples.

Finally, we exhibit in Section 2.7 an example of indecomposable exposed positive

map between 4ˆ 4 matrices, which was constructed by Robertson.

2.1 Exposed faces

A face is exposed if and only if it is a dual face. We will see that every face for

completely positive maps is exposed. This is also the case for PPT states. We also

show that the map Ads generates an exposed ray of the convex cone of all positive

maps.

2.1.1 Dual faces

Suppose that X and Y are finite dimensional vector spaces with a non-degenerate

bilinear pairing between them. For a subset F of a closed convex cone C of X, we

define the subset F 1 of C˝ by

F 1 “ ty P C˝ : xx, yy “ 0 for each x P F u Ă C˝ Ă Y.

It is then clear that F 1 is a face of C˝, which is said to be the dual face of F . For

an arbitrary subset F of X, we have F Ă F 2, from which we also have F3 Ă F 1.

Therefore, we have F 1 “ pF 2q1 in general, and we see that every dual face is the dual

face of a face. If F is a face with an interior point x0 then it is also easy to see that

F 1 “ ty P C˝ : xx0, yy “ 0u.
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When tx0u is a singleton, tx0u
1 is denoted just by x10.

We say that a face F of a closed convex cone C in X is an exposed face if it is a

dual face of a subset in Y . This means that the face is determined by the hyperplane

tx P X : xx, y0y “ 0u in X given by a point y0 P C
˝. In other words, we have

F “ C X tx P X : xx, y0y “ 0u.

Proposition 2.1.1 For a subset F of a convex cone C in X, we have the following:

(i) F 2 is the smallest exposed face containing F ,

(ii) F is an exposed face if and only if F “ F 2.

Proof. Suppose that an exposed face S 1 satisfies the relation F Ă S 1 Ă F 2. Then

we have F3 Ă S2 Ă F 1, and so F 1 “ S2 and S 1 “ F 2. This proves (i). The second

statement (ii) follows form (i). ˝

We recall that every face of the closed convex cone CPrMm,Mns is of the form

FV “ conv tAds : s P V u

for a subspace V of Mmˆn. By the relation

xAds,Adty “ x|s̃yxs̃|, |t̃yxt̃|y “ x
¯̃t|s̃yxs̃|¯̃t y “ |xs̃|¯̃t y|2 “ |xs, ty|2, (2.1)

we see that pFV q
2 “ FV , and we have the following:

Proposition 2.1.2 Every face of the convex cone CP is exposed.

We proceed to show that every face of the convex cone PPT of all PPT states

is also exposed. We begin with more general situations. Recall that we have the

relations (1.48);

pC1 ` C2q
˝
“ C˝1 X C

˝
2 , pC1 X C2q

˝
“ C˝1 ` C

˝
2 ,

for closed convex cones C1 and C2. Suppose that Fi is a subset of Ci for i “ 1, 2.

Then it is easy to see that the following identity

pF1 ` F2q
1
“ F 11 X F

1
2 (2.2)

holds, where pF1 ` F2q
1 is a face of the convex cone pC1 `C2q

˝ “ C˝1 XC
˝
2 and F 1i is

a face of C˝i for i “ 1, 2.

Now, we suppose that Fi is a face of a convex set Ci for i “ 1, 2. Then it is clear

that F1XF2 is a face of the convex set C1XC2 whenever it is not empty. Conversely,

suppose that F is a face of C1XC2. Take an interior point x of F . We also take the
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face Fi of Ci in which x is an interior point for i “ 1, 2. Then x is also an interior

point of F1 X F2, which is a face of C1 X C2. Because x is an interior point of both

faces F and F1 X F2 of C1 X C2, we conclude that F “ F1 X F2. In short, we have

F “ F1 X F2, intF Ă intF1, intF Ă intF2. (2.3)

It is clear that faces Fi of Ci satisfying (2.3) are uniquely determined.

Proposition 2.1.3 Suppose that Ci is a closed convex cone in a finite dimensional

space, for i “ 1, 2. For every face F of C1 X C2, there exist unique faces F1 and F2

of C1 and C2, respectively, satisfying (2.3). In this case, we have

F 1 “ F 11 ` F
1
2, F 2 “ F 21 X F

2
2 .

Proof. The inclusion F 11 `F
1
2 Ă F 1 follows from F 1i Ă F 1. For the reverse inclusion,

take y P F 1. Since y P pC1XC2q
˝ “ C˝1 `C

˝
2 , we may write y “ y1` y2 with yi P C

˝
i

for i “ 1, 2. If we take an interior point x of F1 X F2, then x P intFi Ă Ci by (2.3),

and xx, yiy ě 0 for i “ 1, 2. By the relation

0 “ xx, yy “ xx, y1y ` xx, y2y,

we see that xx, yiy “ 0 and yi P F
1
i , since x is an interior point of Fi. Therefore, we

have y P F 11 ` F 12. This proves the first identity. The second identity follows from

(2.2). ˝

Because every face of CP is of the form FV “ tAds : s P V u2 for a subspace V

of Mmˆn, we see that every face of CCP is of the form

F V :“ tAds ˝T : s P V u2.

Therefore, every face of PPT “ CPX CCP must be of the form

FV X F
W , (2.4)

for a pair pV,W q of subspaces of Mmˆn. Note that the intersection of two exposed

faces is exposed again by (2.2). By Proposition 2.1.2 and Proposition 2.1.3, we have

the following:

Proposition 2.1.4 Every face of the convex cone PPT is exposed.

Every face of pMm bMnq
` is also of the form

FV “ t% P pMm bMnq
` : Im % Ă V u (2.5)
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for a subspace of Cm b Cn, with the same notation as in (1.46), and so every face

of the convex cone PPT of all PPT states is also of the form

FV X F
W ,

for a pair pV,W q of subspaces Cm b Cn, with

FW
“ t%Γ : % P FW u. (2.6)

It is not so easy in general to determine if FV XF
W is nontrivial or not. If we denote

by V the subspace of C3 b C3 spanned by vectors in (1.34), then we see that the

PPT state % defined by (1.33) belongs to the face FV X F
V .

As for the convex cone P1 of all positive maps, not every face is exposed even

in the low dimensional cases like P1rM2,M2s “ DECrM2,M2s. See [13]. It is not

known whether every face of the convex cone S1 is exposed or not.

References: [76], [34], [13], [43]

2.1.2 Exposed positive maps

A ray ttx0 : t ě 0u of a closed convex cone C generated by x0 P C is called an

exposed ray if it is an exposed face. In this case, we say that x0 is exposed in C.

We proceed to show that an extreme ray Ads is exposed in P1 as well as in CP for

every s P Mmˆn. Recall that the dual cone of P1 is SP1, and so φ P P1 belongs to

pAdσq
2 if and only if the following

s PMmˆn, rank s “ 1, xAdσ,Adsy “ 0 ùñ xφ,Adsy “ 0 (2.7)

holds. In order to show that Adσ generates an exposed ray of the convex cone P1,

we have to show that the condition (2.7) implies that φ is a scalar multiple of Adσ
by Proposition 2.1.1 (ii).

In the following discussion, we identify Mm bMn with MmpMnq “ Mmn, and

the entries of Cφ P Mmn will be denoted by cpi,kq,pj,`q with i, j “ 1, . . . ,m and

k, ` “ 1, . . . , n, where pi, kq’s and pj, `q’s are endowed with the lexicographic orders.

Therefore,

cpi,kq,pj,`q “ x|ikyxj`|,Cφy “ x|iyxj| b |kyx`|,Cφy “ x|kyx`|, φp|iyxj|qy

is the pk, `q entry of the pi, jq block of Cφ PMmpMnq.

By singular value decomposition, every m ˆ n matrix is of the form uσv˚ with

invertible matrices u PMm, v PMn and

σ “
r
ÿ

i“1

|iyxi| PMmˆn. (2.8)
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Note that Aduσv˚ “ Adv˚ ˝Adσ ˝Adu, and

φ ÞÑ Adv˚ ˝φ ˝ Adu

is an affine isomorphism between HpMm,Mnq. Therefore, we see that Aduσv˚ is

exposed in P1rMm,Mns if and only if Adσ is exposed in P1rMm,Mns. We note that

the entries of CAdσ are 0 or 1, and the pi, kq, pj, `q entry is 1 if and only if i “ k and

j “ ` with i, j “ 1, . . . , r.

From now on, we will prove that Adσ is exposed in P1rMm,Mns when σ is given

by (2.8). For this purpose, we suppose that φ P pAdσq
2. We first consider the mˆn

matrix s “ |iyxk| in (2.7), to see that the diagonal entries of Cφ are given by

cpi,kq,pi,kq “ 0, pi, kq P t1, . . . ,mu ˆ t1, . . . nuztp1, 1q, . . . , pr, rqu. (2.9)

When J is a subset of t1, 2, . . . ,muˆt1, 2, . . . , nu, we denote by AJ the principal

submatrix of A by taking pi, kq rows and columns for pi, kq P J . In order to determine

off-diagonal entries cpi,kq,pj,`q of Cφ with pi, kq ‰ pj, `q, we consider

J “ tpi, kq, pi, `q, pj, kq, pj, `qu, (2.10)

and the principal submatrix of rCφsJ of Cφ. If i “ j or k “ ` then rCφsJ is a

positive 2 ˆ 2 matrix and so cpi,kq,pj,`q “ 0 by considering the diagonal entries in

(2.9). Otherwise, rCφsJ is a block matrix in M2 bM2 “ M2pM2q. We proceed to

show that this is a block-positive matrix.

Suppose that m “ 2, 3, . . . and i, j “ 1, 2, . . . ,m with i ‰ j. We consider the

linear map λmi,j : M2 ÑMm defined by

λmi,j :

ˆ

a11 a12

a21 a22

˙

ÞÑ a11|iyxi| ` a12|iyxj| ` a21|jyxi| ` a22|jyxj| PMm.

Then it is easily seen that the adjoint map pλmk,`q
˚ : Mm ÑM2 is given by

pλmk,`q
˚ :

m
ÿ

i,j“1

aij|iyxj| ÞÑ

ˆ

akk ak`
a`k a``

˙

PM2.

If φ : Mm ÑMn then pλnk,`q
˚ ˝φ ˝λmi,j is a map from M2 into M2, whose Choi matrix

is given by just rCφsJ with J in (2.10). Therefore, we see that if Cφ is block-positive

then rCφsJ is also block-positive in M2 bM2.

Lemma 2.1.5 Suppose that % P BP1rM2 bM2s has at most one nonzero diagonal

entry. Then all the other entries of % are zero.
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Proof. We first consider the case when all the diagonal entries are zero except

for the left upper corner. Then by the definition of block-positivity, the 2 ˆ 2

principal submatrices %tp1,1q,p1,2qu, %tp2,1q,p2,2qu, %tp1,1q,p2,1qu and %tp1,2q,p2,2qu are positive.

Therefore, we see that % is of the form

Cφ “

¨

˚

˚

˝

a ¨ ¨ α
¨ ¨ β ¨

¨ β̄ ¨ ¨

ᾱ ¨ ¨ ¨

˛

‹

‹

‚

PM2pM2q,

with a ě 0 and α, β P C. Take xξ| “ p1, x, y, xyq P C2 b C2 whose Schmidt rank is

one. Then we have

0 ď x%, |ξyxξ|y “ a` 2Re rypxα ` x̄βqs

for every y P C. This implies that xα ` x̄β “ 0 for every x P C, and so it follows

that α “ β “ 0. The remaining cases can be done in the same way. ˝

Therefore, we see that cpi,kq,pj,`q ‰ 0 only when J contains at least two nonzero

diagonal entries of rCφsJ . By diagonal entries given in (2.9), this happens only for

cpi,iq,pj,jq and cpi,jq,pj,iq with i, j “ 1, 2, . . . , r and i ‰ j. In this case, J is given by

J “ tpi, iq, pi, jq, pj, iq, pj, jqu

and the corresponding principal submatrices of CAdσ and Cφ are of the forms

Cid2 “

¨

˚

˚

˝

1 ¨ ¨ 1
¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

1 ¨ ¨ 1

˛

‹

‹

‚

and %a,b,α,β “

¨

˚

˚

˝

a ¨ ¨ α
¨ ¨ β ¨

¨ β̄ ¨ ¨

ᾱ ¨ ¨ b

˛

‹

‹

‚

,

respectively, with a, b ě 0 and α, β P C. They are Choi matrices of the maps

pλni,jq
˚ ˝ Adσ ˝λ

m
i,j and pλni,jq

˚ ˝ φ ˝ λmi,j, respectively.

We proceed to show that pλnk,`q
˚ ˝ φ ˝ λmi,j belongs to ppλnk,`q

˚ ˝ Adσ ˝λ
m
i,jq

2 in

P1rM2,M2s. To do this, we suppose that s P M2ˆ2 is of rank one matrix satisfying

the relation xpλnk,`q
˚˝Adσ ˝λ

m
i,j,Adsy “ 0. Then we have xAdσ, λ

n
k,`˝Ads ˝pλ

m
i,jq

˚y “ 0.

Since λnk,` is completely positive, we see that λnk,` ˝ Ads ˝pλ
m
i,jq

˚ belongs to SP1. In

fact, it is easily seen that λnk,` ˝ Ads ˝pλ
m
i,jq

˚ “ Adŝ, with

ŝ “ s11|iyxk| ` s12|iyx`| ` s21|jyxk| ` s22|jyx`| PMmˆn,

which is of rank one. Therefore, we have

0 “ xλnk,` ˝ Ads ˝pλ
m
i,jq

˚, φy “ xAds, pλ
n
k,`q

˚
˝ φ ˝ λmi,jy,

to see that pλnk,`q
˚ ˝ φ ˝ λmi,j belongs to ppλnk,`q

˚ ˝ Adσ ˝λ
m
i,jq

2 in P1rM2,M2s. The

following two lemmas will show that the Choi matrix of pλni,jq
˚ ˝ φ ˝ λmi,j must be a

scalar multiple of Cid2 .
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Lemma 2.1.6 Suppose that a, b ě 0 and α, β P C. Then %a,b,α,β P M2pM2q is

block-positive if and only if |α| ` |β| ď
?
ab.

Proof. Suppose that %a,b,α,β is block-positive, and take xξ| “ pp, peiτ , qeipθ´τq, qeiθq

in C2 b C2 with real numbers p, q. Note that SR xξ| “ 1. Then we have

0 ď x%a,b,α,β, |ξyxξ|y “ p2a` q2b` 2pqRe
“

eiθ
pα ` βe´2iτ

q
‰

for every p, q P R. Therefore, we have

ˇ

ˇRe
“

eiθ
pα ` βe´2iτ

q
‰
ˇ

ˇ

2
ď ab

for every θ and τ , which implies the condition. For the converse, we put

a1 “
|α|a

|α| ` |β|
, a2 “

|β|a

|α| ` |β|
, b1 “

|α|b

|α| ` |β|
, b2 “

|β|b

|α| ` |β|
.

Then we see that %a,b,α,β “ %a1,b1,α,0` %a2,b2,0,β is the Choi matrix of a decomposable

map. ˝

Lemma 2.1.7 The identity map id2 on M2 is exposed in P1rM2,M2s.

Proof. Suppose that φ P id22. Taking s “ |iyxj| P M2ˆ2 with i ‰ j in (2.7), we see

that Cφ must be of the form %a,b,α,β. We also take s “

ˆ

1 eiθ

´e´iθ ´1

˙

in (2.7), to see

that

0 “ x|s̃yxs̃|, %a,b,α,βy “ a` b´ 2Re pα ` βe´2iθ
q,

for every θ. Therefore, we have β “ 0, and we also have

0 “ a` b´ 2Reα ě a` b´ 2|α| ě 2
?
ab´ 2|α| ě 0,

by Lemma 2.1.6. This happens only when a “ b “ α. ˝

Now, we return to the discussion before Lemma 2.1.6, to see that the Choi matrix

of pλni,jq
˚ ˝φ˝λmi,j must be a scalar multiple of Cid2 , and it is clear that all the choices

i, j share a common scalar multiple. Therefore, we see that Cφ is a scalar multiple

of CAdσ , and conclude that Adσ is exposed. Using singular value decomposition

s “ uσv˚, we have the following theorem which provides another proof of Theorem

1.2.4, because an exposed positive map must be extremal.

Theorem 2.1.8 For every s PMmˆn, the map Ads is exposed in P1rMm,Mns.

References: [134], [86], [53], [81]
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2.2 The Choi map revisited

In this section, we consider the bidual of the Choi map φch, which is the smallest

exposed face of P1 containing φch. Especially, we determine completely positive

maps and decomposable maps which belong to this bidual.

2.2.1 The Choi map and completely positive maps

In order to calculate the dual face of a positive map with respect to the duality

between SP1 and P1, we take an extreme ray Ads in SP1 with s “ |ξyxη| PMmˆn. If

we write |ξy “
řm
i“1 ξi|iy and |ηy “

řn
j“1 ηj|jy then we have s “

ř

i,j ξiη̄j|iyxj|, and

so we have xs̃| “
ř

i,j ξiη̄jxi|xj| and

CAd|ξyxη| “ |s̃yxs̃| “
ÿ

i,j,k,`

ξ̄iηjξkη̄`|iy|jyxk|x`|

“

˜

ÿ

i,k

ξ̄iξk|iyxk|

¸

b

˜

ÿ

j,`

ηj η̄`|jyx`|

¸

“ |ξ̄yxξ̄| b |ηyxη|.

Therefore, we have

xAds, φy “ x|ξ̄yxξ̄| b |ηyxη|, φy “ x|ηyxη|, φp|ξ̄yxξ̄|qy “ xη̄|φp|ξ̄yxξ̄|q|η̄y. (2.11)

We first find all |ξ̄y’s such that φp|ξ̄yxξ̄|q is singular, and find the kernel |η̄y of

φp|ξ̄yxξ̄|q, to get extreme rays Ads in the dual face φ1 in SP1.

We apply the above method to the Choi map φch : M3 Ñ M3 defined in (1.54).

For given |ξ̄y “ px, y, zqT P C3, we calculate to get

detφchp|ξ̄yxξ̄|q “ |x|
4
|y|2 ` |y|4|z|2 ` |z|4|x|2 ´ 3|xyz|2.

This is nonnegative by arithmetic-geometric inequality, and this may give rise to

another proof for positivity of the Choi map. It vanishes when and only when two

of variables are zero or |x| “ |y| “ |z|. Therefore, φchp|ξ̄yxξ̄|q is singular if and only

if |ξ̄y is one of the following:

|ξ̄1y “ p1, 0, 0q
T, |ξ̄2y “ p0, 1, 0q

T, |ξ̄3y “ p0, 0, 1q
T, |ξ̄4y “ pe

ia, eib, eic
q
T,

and the corresponding kernel vectors of φchp|ξ̄yxξ̄|q are given by

|η̄1y “ p0, 0, 1q
T, |η̄2y “ p1, 0, 0q

T, |η̄3y “ p0, 1, 0q
T, |η̄4y “ pe

ia, eib, eic
q
T,

respectively, up to scalar multiplications. Then the dual face φ1ch is the convex

cone generated by superpositive maps Ads’s with following 3ˆ 3 rank one matrices

s “ |ξyxη|:
¨

˝

0 0 1
0 0 0
0 0 0

˛

‚,

¨

˝

0 0 0
1 0 0
0 0 0

˛

‚,

¨

˝

0 0 0
0 0 0
0 1 0

˛

‚, sα,β,γ “

¨

˝

1 α γ
α 1 β

γ β 1

˛

‚,
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where αβγ “ 1 with |α| “ |β| “ |γ| “ 1. We denote

S “ te21, e32, e13u Y tsα,β,γ : αβγ “ 1, |α| “ |β| “ |γ| “ 1u, (2.12)

with matrix units. Then the convex cone φ1ch is generated by tAds : s P Su.

We note that matrices in S belong to the 7-dimensional subspace

D “ traijs PM3 : a11 “ a22 “ a33u. (2.13)

We also see that the following four matrices
¨

˝

1 1 1
1 1 1
1 1 1

˛

‚,

¨

˝

1 ´1 1
´1 1 ´1
1 ´1 1

˛

‚,

¨

˝

1 1 ´1
1 1 ´1
´1 ´1 1

˛

‚,

¨

˝

1 ´1 ´1
´1 1 1
´1 1 1

˛

‚

together with e21, e32, e13 are linearly independent rank one matrices belonging to D.

Therefore, we conclude that S spans the 7-dimensional space D defined by (2.13).

We note that all maps in FD, which is a face of CP, do not belong to SP1. We also

note φ1ch Ř FDXSP1, because there are rank one matrices in D which do not belong

to S.

We proceed to show that the smallest face Fφch of P1 containing φch is strictly

smaller than the bidual face φ2ch of the Choi map φch P P1rM3,M3s. From this, we

will conclude that Fφch is not exposed face. We see that Ads P φ
2
ch if and only if

xs, ty “ 0 for every t P S if and only if xs, ty “ 0 for every t P D if and only if s

belongs to the 2-dimensional subspace

E “ ts PM3ˆ3 : s is diagonal, Tr s “ 0u.

Therefore, we conclude that φ2ch X CP “ FE. We consider three matrices

s1 “

¨

˝

1 ¨ ¨

¨ ´1 ¨

¨ ¨ ¨

˛

‚, s2 “

¨

˝

¨ ¨ ¨

¨ 1 ¨

¨ ¨ ´1

˛

‚ s3 “

¨

˝

´1 ¨ ¨

¨ ¨ ¨

¨ ¨ 1

˛

‚

in E, and take

φ0 “ Ads1 `Ads2 `Ads3 P φ
2
ch. (2.14)

We put φt “ p1´ tqφ0 ` tφch then we have

φtpxq “

¨

˝

p3´ tqx11 ` tx33 ¨ ¨

¨ p3´ tqx22 ` tx11 ¨

¨ ¨ p3´ tqx33 ` tx22

˛

‚´ rxijs,

for x “ rxijs P M3. By Proposition 1.6.5, we see that φt is a positive map if and

only if 0 ď t ď 3 and

α

p3´ tqα ` tγ
`

β

p3´ tqβ ` tα
`

γ

p3´ tqγ ` tβ
ď 1
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for every positive α, β and γ. We take β “ 1
α

and γ Ñ 0, to get a necessary condition

p2´ tqtα2
` p3´ tqp1´ tq ě 0, α ą 0

for positivity of φt. Therefore, we see that φt is positive only when 0 ď t ď 1. This

tells us that φch is on the boundary of the convex cone φ2ch, and the smallest face

Fφch determined by φch is strictly smaller than φ2ch. Especially, we conclude that the

face Fφch of P1 is not exposed. One can also show that Fφch contains no completely

positive map. In fact, it is known [42] that the Choi map φch generates an extreme

ray of P1. We summarize as follows:

Theorem 2.2.1 We define the subset S of M3ˆ3 by (2.12), and put

D “ spanS, E “ tt PM3ˆ3 : xs, ty “ 0 for every s P Su.

The smallest exposed face φ2ch and the smallest face Fφch of P1 containing the Choi

map φch have the following properties;

(i) rank s “ 1 and Ads P φ
1
ch if and only if s P S,

(ii) φ1ch is generated by tAds : s P Su, and φ1ch Ř FD X SP1,

(iii) Fφch Ř φ2ch and φ2ch X CP “ FE.

(iv) Fφch has no nontrivial completely positive map.

Proof. It remains to prove (iv). If a completely positive map belongs to Fφch , then

there is s P E such that Ads P Fφch . Since φch is an interior point of Fφch , there is

λ ą 1 such that p1´ λqAds`λφch is a positive map. Multiplying a scalar, we may

assume that φch´Ads is a positive map. Comparing the 2ˆ2 principal submatrices

of the inequality φchp|xyxx|q ě Adsp|xyxx|q, we have

ˆ

|x1|
2 ` |x3|

2 ´x1x̄2

´x2x̄1 |x2|
2 ` |x1|

2

˙

ě

ˆ

|s1|
2|x1|

2 ´s̄1s2x1x̄2

´s̄2s1x2x̄1 |s2|
2|x2|

2

˙

for every x1, x2, x3 P C, where s1, s2, s3 are diagonal entries of s P M3. Taking

x3 “ 0, we have

p1´ |s1|
2
qpp1´ |s2|

2
q|x2|

2
` |x1|

2
q ě |x2|

2
|1´ s̄1s2|

2

for every x1, x2 P C. Taking x1 “ 0, we have p1´ |s1|
2qp1´ |s2|

2q ě |1´ s̄1s2|
2, and

|s1 ´ s2| “ 0. By the same way, we have s2 “ s3, and s “ 0 since s P E. ˝

References: [25], [19], [29], [42]
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2.2.2 The Choi map and decomposable maps

In the above discussion, we have seen that the smallest exposed face φ2ch meets

nontrivial completely positive maps by FE. We look for decomposable maps in φ2ch.

We note that if an extreme ray T ˝ Ads belongs to φ2ch then xT ˝ Ads,Adty “ 0 for

every t P S, or equivalently xAds,T ˝ Adty “ 0 for every t P S. We also note that

T ˝ Ad|ξyxη| “ Ad|ξyxη̄|. We will see that t|ξyxη̄| : |ξyxη| P Su spans the whole space,

which implies that there exists no nonzero T ˝ Ads in φ2ch.

For this purpose, we take

|ξ1y “

¨

˝

1
1
1

˛

‚, |ξ2y “

¨

˝

1
´1
1

˛

‚, |ξ3y “

¨

˝

1
1
´1

˛

‚, |ξ4y “

¨

˝

1
´i
1

˛

‚, |ξ5y “

¨

˝

1
1
´i

˛

‚, |ξ6y “

¨

˝

1
´i
´i

˛

‚

and |ηiy “ |ξiy for i “ 1, 2, 3, 4, 5, 6. We also define

|ξ7y “

¨

˝

1
0
0

˛

‚, |ξ8y “

¨

˝

0
1
0

˛

‚, |ξ9y “

¨

˝

0
0
1

˛

‚, |η7y “

¨

˝

0
0
1

˛

‚, |η8y “

¨

˝

1
0
0

˛

‚, |η9y “

¨

˝

0
1
0

˛

‚.

Then we have |ξiyxηi| P S for i “ 1, 2, . . . , 9. We show that the set t|ξiyxη̄i| : i “

1, 2, . . . 9u is linearly independent. Suppose that B “
ř9
i“1 ai|ξiyxη̄i| “ 0, and look

at the entries of the matrix B “ rBijs. Then we have

B11 “ a1 ` a2 ` a3 ` a4 ` a5 ` a6 “ 0,

B12 “ a1 ´ a2 ` a3 ´ ia4 ` a5 ´ ia6 “ 0,

B22 “ a1 ` a2 ` a3 ´ a4 ` a5 ´ a6 “ 0,

B23 “ a1 ´ a2 ´ a3 ´ ia4 ´ ia5 ´ a6 “ 0,

B31 “ a1 ` a2 ´ a3 ` a4 ´ ia5 ´ ia6 “ 0,

B33 “ a1 ` a2 ` a3 ` a4 ´ a5 ´ a6 “ 0.

With this relation, we have ai “ 0 for i “ 1, 2, . . . , 6, from which we also have

a7 “ a8 “ a9 “ 0. Therefore, we have the following:

Theorem 2.2.2 For the Choi map φch : M3 ÑM3, we have

DECX φ2ch “ conv tAds : s P Eu Ă CP,

where E is the 2-dimensional subspace of M3ˆ3 consisting of all diagonal matrices

with trace zero.

We also note that t|ξiy|ηiy : i “ 1, 2, . . . , 9u spans the whole space C3 b C3, but

their partial conjugates span the 7-dimensional subspace.
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We close this section with a geometric interpretation of Theorem 2.2.1. To begin

with general situations, we suppose that F is a subset of a closed convex cone C.

For a given x P C, we see that x P F 2 if and only if xx, yy “ 0 for every y P F 1 if and

only if xx, yy “ 0 for every y P EpF 1q, where EpCq denotes the set of all extreme rays

of C. Since F 1 is a face of C˝, we have EpF 1q “ F 1 X EpC˝q. Furthermore, we see

that y P F 1 if and only if F Ă y1. This is also equivalent to F 2 Ă y1 by Proposition

2.1.1. Therefore, we have

F 2 “
č

ty1 : y1 Ą F 2, y P EpC˝qu “
č

ty1 : y1 Ą F, y P EpC˝qu

for an arbitrary subset F of a closed convex cone C.

We restrict our attention to the case when C “ P1. We know that every extreme

ray of SP1 “ P˝1 is of the form Ads, which is also exposed in SP1. Therefore, we have

F 2 “
č

tAd1s : Ad1s Ą F u. (2.15)

In the next section, we will see that a face is maximal if and only if it is a dual

face of an exposed face which is minimal among all exposed faces. This means that

every maximal face of P1 is of the form Ad1s for a rank one matrix s. Therefore, we

see that the smallest exposed face F 2 containing a subset F of P1 is the intersection

of all maximal faces of P1 containing F .

When F is a singleton tφchu, we see that maximal faces containing φch consist

of Ad1s with s P S by Theorem 2.2.1 (i). They are also maximal faces containing

φ2ch. On the other hand, a maximal face Ad1s with a rank one matrix s contains the

subset FE of φ2ch if and only if s belongs to D, with notations in Theorem 2.2.1. We

note that D Ś S. Further, we note that there are rank one matrices in D which

does not belong to S. For example, the maximal face Ad1e12 contains FE, but does

not contain φ2ch, since e12 P DzS.

References: [19]

2.3 Maximal faces

In this section, we show that a face is maximal if and only if its dual face is minimal

among all exposed faces. Especially, every maximal face is a dual face. Since we

know all the exposed ray of P˝k “ SPk, we can characterize all maximal faces of the

convex cone Pk.

2.3.1 Boundary of convex cones

Suppose thatX and Y are finite-dimensional real vector spaces, with a non-degenerate

bilinear pairing x , y on X ˆ Y . We also suppose that C is a closed convex cone in
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X, and the bilinear pairing is non-degenerate on C, that is, the following

x P C, xx, yy “ 0 for each y P C˝ ùñ x “ 0 (2.16)

holds. In the simplest case of X “ Y “ R2, the bilinear pairing xx, yy “ x1y1`x2y2

is not non-degenerate on the half-plane

C :“ tx P X : xx, y0y ě 0u, (2.17)

with y0 P Y . In this case, the dual cone is given by the single ray tλy0 P Y : λ ě 0u

generated by y0 P Y . In case of X “ Y “ Rn, if a closed convex cone C contains

two rays R`x0 and R`p´x0q with the opposite directions then the standard bilinear

pairing xx, yy “
řn
i“1 xiyi is not non-degenerate on C.

If C is a closed convex cone on which the bilinear pairing is non-degenerate then

for every x P C with x ‰ 0 there exists y P C˝ such that xx, yy ą 0. Every finite

dimensional space may be endowed with a norm, and so we may use compactness

argument to conclude that there exists η P C˝ with the property

x P C, x ‰ 0 ùñ xx, ηy ą 0, (2.18)

which is seemingly stronger than (2.16). The bilinear pairings defined in (1.39) and

(1.40) are non-degenerate on any convex cones appearing in (1.45) or (1.47). In fact,

either the identity matrix in MmbMn or the trace map in LpMm,Mnq play the roles

of η in (2.18).

Proposition 2.3.1 Let X and Y be finite-dimensional spaces, and C a closed con-

vex cone in X on which x , y is a non-degenerate bilinear pairing. For a given

y P C˝, the following are equivalent:

(i) y is an interior point of C˝,

(ii) xx, yy ą 0 for each nonzero x P C.

(iii) xx, yy ą 0 for each x P C which generates an extreme ray.

Proof. If y is an interior point of C˝ then we may take t P r0, 1q and z P C˝ such

that y “ p1 ´ tqη ` tz, where η P C˝ is a point with the property (2.18). Then we

see that

xx, yy “ p1´ tqxx, ηy ` txx, zy ą 0

for each nonzero x P C. This proves (i) ùñ (ii). It is clear that (ii) and (iii) are

equivalent. Now, we suppose that y P C˝ satisfies (ii), and take an arbitrary point

z P C˝. Put Cε “ tx P C : }x} “ εu. Then since C1 is compact, α “ suptxx, zy : x P
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C1u is finite, and we see that xx, zy ď 1 for each x P C1{α. By (ii), we also take δ

with 0 ă δ ă 1 such that xx, yy ě δ for each x P C1{α. Put

w “

ˆ

1´
1

1´ δ

˙

z `
1

1´ δ
y.

We check xx,wy ě 0 for each x P C1{α, and so have w P C˝. Because z was

an arbitrary point of C˝, we conclude that y is an interior point of C˝, as it was

required. ˝

The condition of non-degeneracy of the bilinear pairing on C is important in

Proposition 2.3.1. In case of the convex cone C given in (2.17), we note that any

point in C˝ does not satisfy the condition (ii) of Proposition 2.3.1. But, all the

points of C˝ “ tλy0 : λ ě 0u is an interior point of C˝ except the origin.

Corollary 2.3.2 Let X and Y be finite-dimensional spaces, and C a closed convex

cone in X on which x , y is a non-degenerate bilinear pairing. Then we have the

following:

(i) If F is a face of C satisfying F 1 “ C˝ then we have F “ t0u,

(ii) If F is a face of C˝ satisfying F 1 “ t0u then we have F “ C˝.

Proof. The statement (i) is a trivial consequence of (2.16). To prove (ii), we suppose

that F Ř C˝. Then we have F Ă BC˝, and can take a nonzero y P intF Ă BC˝. By

the implication (ii) ùñ (i) of Proposition 2.3.1, there exists a nonzero x P C such

that xx, yy “ 0. Since y P intF , we have x P F 1. This shows that F 1 is nonzero. ˝

We apply Proposition 2.3.1 to the duality S˝1 “ P1, to see that φ is an interior

point of P1rMm,Mns if and only if x%, φy ą 0 for every nonzero % “ |ζyxζ| P S1.

Taking |ζy “ |ξy|ηy, we see that φ is an interior point of P1 if and only if

x|ηyxη|, φp|ξyxξ|qy ą 0

for every nonzero |ξy P Cm and |ηy P Cn if and only if φp|ξyxξ|q is nonsingular for

every nonzero |ξy if and only if φpxq is nonsingular for every nonzero x PM`
n if and

only if φpxq is an interior point of M`
n for every nonzero x P M`

m. This shows that

the converse of Proposition 1.2.5 holds.

Proposition 2.3.3 A positive linear map φ : Mm Ñ Mn is an interior point of P1

if and only if φpxq is an interior point of M`
n for every nonzero x PM`

m.

References: [34]
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2.3.2 Maximal faces and minimal exposed faces

We say that L is a minimal exposed face if it is an exposed face and minimal among

all exposed proper faces. It is easy to see that if L is a minimal exposed face of the

cone C then L1 is a maximal face of C˝. To see this, we suppose that F is a face of

C˝ such that F Ą L1. Then we have

L “ L2 Ą F 1.

Since F 1 is an exposed face and L is minimal among exposed faces, we have either

F 1 “ t0u or F 1 “ L. If F 1 “ t0u then we have F “ C˝ by Corollary 2.3.2 (ii). In

case of F 1 “ L, we have F Ă F 2 “ L1, which implies F “ L1. Therefore, we conclude

that L1 is a maximal face. The following theorem tells us that the converse is also

true. Especially, every maximal face is a dual face.

Theorem 2.3.4 Let X and Y be finite-dimensional normed spaces with a non-

degenerate bilinear pairing x , y on a closed convex cone C in X. Then we have the

following:

(i) If L is a minimal exposed face of C then L1 is a maximal face of C˝,

(ii) every maximal face of C˝ is the dual face of a unique minimal exposed face of

C.

Proof. It remains to prove (ii). To do this, suppose that F is a maximal face of C˝.

Note that we have F Ă F 2 Ă C˝. If F 2 “ C˝ then we have F 1 “ F3 “ pC˝q1 “ t0u,

and so we have F “ C˝ by Corollary 2.3.2 (ii), which is not possible. By the

maximality of F , we have F “ pF 1q1 is the dual face of F 1. In order to show that

F 1 is minimal among exposed faces, we suppose that L is an exposed face satisfying

L Ă F 1. Then we have F “ F 2 Ă L1. By the maximality of F , we have either

L1 “ F or L1 “ C˝. If L1 “ F then L “ L2 “ F 1. If L1 “ C˝ then L “ t0u by

Corollary 2.3.2 (i). Therefore, F 1 is minimal among exposed faces. In order to show

the uniqueness, we suppose that L11 “ L12 “ F for exposed faces L1 and L2. Then

we have

L1 “ L21 “ F 1 “ L22 “ L2,

as it was required. ˝

We recall that Ads generates an exposed ray of the convex cone SP1
˝
“ P1.

Therefore, every mˆ n matrix σ gives rise to a maximal face

conv tAds P SP1 : rank s “ 1, xs, σy “ 0u
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Figure 2.1: Line segments are minimal exposed faces. Four points are extreme points
which are not exposed, but they are exposed in the line segments.

of the convex cone SP1rMm,Mns by the identity (2.1). The exposed map Adσ ˝T of

P1 also gives rise to the corresponding maximal face. But, not every maximal face

arises in this way, because there are indecomposable positive map which generates

exposed ray, as we will see later.

We note that an exposed ray of a convex cone is automatically a minimal exposed

face. But the converse is not true. Consider the convex cone whose section looks like

an athletics track which consists of two semicircles and two parallel line segments.

We note that a line segment generates a minimal exposed face. This exposed face

contains an exposed ray in itself, but it is not an exposed ray in the whole convex

cone. See Figure 2.1.

References: [34]

2.3.3 Boundaries of k-positive maps

We apply Theorem 2.3.4 to SP˝k “ Pk to see that

pAdsq
1
“ tφ P Pk : xφ,Adsy “ 0u

is a maximal face of Pk whenever rank s ď k, since Ads generates an exposed ray

of SPk. Furthermore, every maximal face of the convex cone PkrMm,Mns is of the

form pAdsq
1 for an mˆn matrix s with rank at most k. Equivalently, we may apply

Theorem 2.3.4 to S˝k “ Pk to get the following:

Corollary 2.3.5 For a vector |ζy P Cm b Cn with SR |ζy ď k,

Fkrζs :“ tφ P Pk : x|ζyxζ|, φy “ 0u

is a maximal face of PkrMm,Mns. Conversely, every maximal face of PkrMm,Mns

is of the form Fkrζs for a vector |ζy with SR |ζy ď k.

By the uniqueness part of Theorem 2.3.4 (ii), the vector |ζy in the second part

of Corollary 2.3.5 is determined uniquely. This can be also seen as follows: We note
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Figure 2.2: When SR |ζ2y ą `, the maximal face Fkrζ2s of Pk is located inside of P`.

that the Choi matrices of the maps in Fkrζs XCP are positive matrices % satisfying

x|ζyxζ|, %y “ 0. Therefore, we see that Fkrζs “ Fkrωs implies that |ζy and |ωy are

parallel. In the case of k “ 1, we see that every maximal face of P1 is determined

by a product vector |ζy “ |ξy b |ηy P Cm b Cn, and we have

F1rζs “ tφ P P1 : xη̄|φp|ξyxξ|q|η̄y “ 0u.

We consider a maximal face Fkrζs of the convex cone Pk with SR |ζy “ s ď k,

and investigate how Fkrζs is located in the bigger convex cone P` when ` ă k. In

the case of s ď `, we have Fkrζs “ F`rζs X Pk. Because Fkrζs Ă BPk, we have

Fkrζs “ F`rζs X BPk. Especially, we have Fkrζs Ă BP`. In general situations, it is

easy to see that if C1 is a convex subset of a convex set C, then either C1 Ă BC or

intC1 Ă intC holds. We show intFkrζs Ă intP` in case of s ą `. See Figure 2.2.

Proposition 2.3.6 Suppose that SR |ζy “ s with s ď k and ` ă k. Then the

maximal face Fkrζs of Pk satisfies the following:

(i) if s ď ` then we have Fkrζs “ F`rζs X BPk Ă BP`,

(ii) if ` ă s then we have intFkrζs Ă intP`.

Proof. It remains to prove (ii). Assume that there exists φ P intFkrζs such that

φ R intP`. Then φ P BP`, and so there exists |ωy with SR |ωy ď ` such that φ P F`rωs.

Since φ P intFkrζs Ă BPk, we have φ P F`rωsXBPk “ Fkrωs by (i). Now, φ P intFkrζs

implies that two faces Fkrζs and Fkrωs satisfy the relation Fkrζs Ă Fkrωs, and we

have Fkrζs “ Fkrωs by maximality. Therefore, we conclude that |ζy and |ωy are

parallel to each other, which implies that s ď `. ˝

The rays generated by Ads and Ads ˝T are exposed rays of DEC as well as P1,

since DEC Ă P1. Because DEC is the convex hull of them, they exhaust all the
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exposed rays of DEC. Since x%,Ads̄y “ xs̃|%|s̃y, we see that every maximal face of

PPT is of the form

t% P PPT : xζ|%|ζy “ 0u or t%Γ
P PPT : xζ|%|ζy “ 0u, (2.19)

for |ζy P Cm b Cn. This faces of PPT correspond to faces FV X FW , with nota-

tions in (2.5) and (2.6), which are determined by pairs pζK,Mmˆnq and pMmˆn, ζ
Kq,

respectively.

References: [74], [75], [76]

2.4 Entanglement detected by positive maps

A self-adjoint matrix W in MmbMn is called an entanglement witness if x%,W y ě 0

for every separable state %, but x%0,W y ă 0 for a state %0. In this case, %0 must be

an entangled state which is detected by W . An entanglement witness is nothing but

the Choi matrix of a positive map which is not completely positive, or equivalently, a

block-positive matrix which is not positive. In this section, we look for conditions on

positive maps which detect maximal set of entanglement. We will begin with a pair

pC,Dq of convex cones satisfying C Ă D, motivated by inclusions S1 Ă pMmbMnq
`

and S1 Ă PPT .

2.4.1 Optimal entanglement witnesses

We recall that a state % is entangled if and only if there exists a positive map φ

such that x%, φy ă 0 with respect to the bilinear pairing (1.39). For a given positive

linear map φ : Mm Ñ Mn, we denote by Wφ the set of all (unnormalized) states

% P pMm bMnq
` such that x%, φy ă 0. If Wφ0 Ă Wφ1 then φ0 is of little use as a

detector of entanglement. In this context, it is natural to seek conditions for a pair

pφ0, φ1q so that Wφ0 and Wφ1 are comparable.

Let X and Y be real vector spaces with a bilinear pairing. Suppose that C Ă D

are closed convex cones in X, with the dual cones D˝ Ă C˝ in Y . Throughout this

section, we also suppose that the bilinear pairing is non-degenerate on both D and

C˝. This implies that there exist ξ0 P C and η0 P D
˝ satisfying

x P D, x ‰ 0 ùñ xx, η0y ą 0, y P C˝, y ‰ 0 ùñ xξ0, yy ą 0,

by (2.18). Then we see that η0 is an interior point of both D˝ and C˝ by Proposition

2.3.1, and so we have intD˝ Ă intC˝. In the same way, we also see that intC Ă

intD.
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Figure 2.3: If xxλ, yy “ 0, then xt is a common interior point of Wy and D.

We know that x P X does not belong to C if and only if there exists y P C˝ such

that xx, yy ă 0. For a given y P C˝, we define

WyrD;Cs :“ tx P D : xx, yy ă 0u

which is a convex subset of DzC. We use the notation Wy if there is no confusion.

When x P Wy, we say that y is a witness for x P DzC, or x is detected by y. We

note that Wy is nonempty if and only if y R D˝. In this case, we take x1 P intWy,

x0 P intC Ă intD, and consider the line segment xt “ p1 ´ tqx0 ` tx1. Since

xx0, yy ą 0 and xx1, yy ă 0, there exists λ P p0, 1q such that xxλ, yy “ 0. Then we

see that xt is a common interior point of Wy and D for every t P pλ, 1q, and so we

see that intWy Ă intD. See Figure 2.3.

Furthermore, the setWyrD;Cs has nonzero volume inD whenever it is nonempty.

To see this, it suffices to show that D is contained in the affine manifold generated

by WyrD;Cs. If z1 P D with xz1, yy ě 0 then we take z0 P WyrD;Cs and put

zt “ p1´ tqz0 ` tz1. Then xzt, yy “ p1´ tqxz0, yy ` txz1, yy ă 0 for sufficiently small

t ą 0, and so we see that z1 “
1
t
zt ´

1´t
t
z0 belongs to the affine manifold generated

by WyrD;Cs.

We take y0, y1 P C
˝zD˝ and consider the line through yt “ p1 ´ tqy0 ` ty1. If

this line touches the convex set D˝ then the intersection with D˝ must be on either

py´8, y0q or py0, y1q or py1, y`8q, with the obvious meanings of notations. Suppose

that the intersection is on py´8, y0q, that is, there exists z P D˝ such that y0 is

between z and y1. If we take x P D, then we have xx, zy ě 0. Therefore, xx, y0y ă 0

implies xx, y1y ă 0, that is Wy0 Ă Wy1 . In short, we can say that the further y is

from D˝, the bigger Wy is. See Figure 2.4. We show that the converse also holds up

to scalar multiplications of y0. We begin with the following simple lemma.

Lemma 2.4.1 Suppose that Wy0 Ă Wy1. If x P D and xx, y0y “ 0, then xx, y1y ď 0.

Proof. Assume that there exists x P D such that xx, y0y “ 0 and xx, y1y ą 0. If

we take x1 P Wy0 then xx1 ` λx, y0y ă 0 for every real number λ. But, we have
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Figure 2.4: The further y is from D˝, the bigger Wy is.

xx1 ` λx, y1y ě 0 for sufficiently large λ. This shows that Wy0 is not contained in

Wy1 . ˝

The author is grateful to Yoonje Jeong for simplification of the proof for the

statement (i) in the following proposition.

Proposition 2.4.2 Let X and Y be real vector spaces with a bilinear pairing.

Suppose that C Ă D are closed convex cones X, and the bilinear pairing is non-

degenerate on C˝ and D. For y0, y1 P C
˝zD˝, we have the following:

(i) Wy0 Ă Wy1 holds if and only if there exists λ ą 0 and z P D˝ such that

λy0 “ y1 ` z,

(ii) Wy0 “ Wy1 holds if and only if there exists λ ą 0 such that λy0 “ y1,

(iii) Wy0 Ř Wy1 holds if and only if there exists λ ą 0 and nonzero z P D˝ such

that λy0 “ y1 ` z.

Proof. For the statement (i), it remains to show the ‘only if’ part. Suppose that

Wy0 Ă Wy1 . For x P D and x1 P Wy0 , we have xxx, y0yx
1 ´ xx1, y0yx, y0y “ 0, and so

we also have

xx, y0yxx
1, y1y ´ xx

1, y0yxx, y1y “ xxx, y0yx
1
´ xx1, y0yx, y1y ď 0,

by Lemma 2.4.1. Therefore, we have

xx, y0y ą 0, x1 P Wy0 ùñ

ˇ

ˇ

ˇ

ˇ

xx1, y1y

xx1, y0y

ˇ

ˇ

ˇ

ˇ

ě
xx, y1y

xx, y0y
. (2.20)

Define

λ :“ inf

"
ˇ

ˇ

ˇ

ˇ

xx1, y1y

xx1, y0y

ˇ

ˇ

ˇ

ˇ

: x1 P Wy0

*

.

Taking ξ P C such that xξ, yy ą 0 for every nonzero y P C˝, we see that λ ě xξ,y1y
xξ,y0y

,

and so we have λ ą 0. By (2.20), we have

λxx, y0y ´ xx, y1y ě 0, (2.21)
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whenever x P D satisfies xx, y0y ą 0. By definition of λ, we also have (2.21) for

x P D with xx, y0y ă 0. If xx, y0y “ 0 then we also have (2.21) by Lemma 2.4.1.

Therefore, we have λy0 ´ y1 P D
˝, which completes the proof of (i).

To prove (ii), suppose that Wy0 “ Wy1 . Then by (i), there exists λ, µ ą 0 and

z, w P D˝ such that λy0 “ y1 ` z and µy1 “ y0 ` w, and so λpµy1 ´ wq “ y1 ` z.

Therefore, we have pλµ ´ 1qy1 “ λw ` z. Because λw ` z P D˝ and y1 P C
˝zD˝ is

nonzero, we have λµ´ 1 “ 0 and w “ z “ 0. The converse is clear.

Finally, the statement (iii) is an immediate consequence of (i) and (ii). ˝

For y0 and y1 in Proposition 2.4.2, we note that y1i “ tx P C : xx, yiy “ 0u for

i “ 0, 1. The condition of Proposition 2.4.2 (i) shows that λxx, y0y “ xx, y1y` xx, zy

for every x P C, and so we see that Wy0 Ă Wy1 implies y10 Ă y11. If Wy0 “ Wy1 then

y10 “ y11 by Proposition 2.4.2 (ii). It should be noted that y10 “ y11 does not imply

Wy0 “ Wy1 . Indeed, we consider the pair S1 Ă pMm bMnq
` with the dual pair

CP Ă P1, and the map φ1{2 “
1
2
φ0 `

1
2
φch with φ0 in (2.14). We see that φ11{2 “ φ1ch,

but Wφ1{2 Ř Wφch by Proposition 2.4.2 (iii), because φ0 P CP.

Theorem 2.4.3 Suppose that C Ă D are closed convex cones in a real vector space

X, and Y is a real vector space with a bilinear pairing on X ˆ Y which is non-

degenerate on C˝ and D. For y0 P C
˝zD˝, the following are equivalent:

(i) Wy0 is maximal among tWy : y P C˝zD˝u,

(ii) the smallest face of C˝ containing y0 has no nontrivial intersection with D˝.

Proof. We denote by F the smallest face of C˝ containing y0, then y0 is an interior

point of F . Suppose that there exists a nonzero z P F XD˝. Then there exist t ă 0

such that yt :“ p1 ´ tqy0 ` tz P F Ă C˝. This implies p1 ´ tqy0 “ yt ` p´tqz with

p´tqz P D˝, and we have Wy0 Ř Wyt by Proposition 2.4.2 (iii). This tells us that

Wy0 is not maximal. For the converse, suppose that Wy0 is not maximal, and there

exists y1 P C
˝ such that Wy0 Ř Wy1 . Then there exist λ ą 0 and nonzero z P D˝

such that λy0 “ y1` z, which implies z P F . Therefore, we conclude that F XD˝ is

nontrivial. ˝

For a given y0 P C
˝, we consider the hyperplane Hy0 “ tx P X : xx, y0y “ 0u.

The relations between the set Wy0rD;Cs, the hyperplane Hy0 and the convex cone

D depend on the location of y0. See Figure 2.5. We recall that D˝ Ă C˝.

• If y0 is an interior point of D˝ then Hy0 has no nontrivial intersection with D

and Wy0rD;Cs is empty.

• If y0 is a boundary point of D˝ then Hy0 X D is nontrivial but Wy0rD;Cs is

still empty.

92



.

........................

.......................

.....................

....................

..................

.................

..................
....................

.....................
....................... ........................ . ........................ ....................... .....................

...................
.

..............
....

...........
......

..........
........

.........
.........
..

.........
.........
...

.........

.........

.....

........

........

........

. ................................... ................................ .............................. ...................................................
..................

..............
..

..........
...

.........
....

.........
.....

.........

.....
.

........................

.......................

.....................

....................

..................

.................

..................
....................

.....................
....................... ........................ . ........................ ....................... .....................

...................
.

..............
....

...........
......

..........
........

.........
.........
..

.........
.........
...

.........

.........

.....

........

........

........

. ................................... ................................ .............................. ...................................................
..................

..............
..

..........
...

.........
....

.........
.....

.........

.....

PP
PP

PP
PP

P

D C
Hy0

C˝ D˝

r
y0

.

........................

.......................

.....................

....................

..................

.................

..................
....................

.....................
....................... ........................ . ........................ ....................... .....................

...................
.

..............
....

...........
......

..........
........

.........
.........
..

.........
.........
...

.........

.........

.....

........

........

........

. ................................... ................................ .............................. ...................................................
..................

..............
..

..........
...

.........
....

.........
.....

.........

.....
.

........................

.......................

.....................

....................

..................

.................

..................
....................

.....................
....................... ........................ . ........................ ....................... .....................

...................
.

..............
....

...........
......

..........
........

.........
.........
..

.........
.........
...

.........

.........

.....

........

........

........

. ................................... ................................ .............................. ...................................................
..................

..............
..

..........
...

.........
....

.........
.....

.........

.....

PP
PP

PP
PP

P

D C

Hy0

C˝ D˝

ry0

.

........................

.......................

.....................

....................

..................

.................

..................
....................

.....................
....................... ........................ . ........................ ....................... .....................

...................
.

..............
....

...........
......

..........
........

.........
.........
..

.........
.........
...

.........

.........

.....

........

........

........

. ................................... ................................ .............................. ...................................................
..................

..............
..

..........
...

.........
....

.........
.....

.........

.....
.

........................

.......................

.....................

....................

..................

.................

..................
....................

.....................
....................... ........................ . ........................ ....................... .....................

...................
.

..............
....

...........
......

..........
........

.........
.........
..

.........
.........
...

.........

.........

.....

........

........

........

. ................................... ................................ .............................. ...................................................
..................

..............
..

..........
...

.........
....

.........
.....

.........

.....

PP
PP

PP
PP

P

D C

Hy0

C˝ D˝

r
y0

.

........................

.......................

.....................

....................

..................

.................

..................
....................

.....................
....................... ........................ . ........................ ....................... .....................

...................
.

..............
....

...........
......

..........
........

.........
.........
..

.........
.........
...

.........

.........

.....

........

........

........

. ................................... ................................ .............................. ...................................................
..................

..............
..

..........
...

.........
....

.........
.....

.........

.....
.

........................

.......................

.....................

....................

..................

.................

..................
....................

.....................
....................... ........................ . ........................ ....................... .....................

...................
.

..............
....

...........
......

..........
........

.........
.........
..

.........
.........
...

.........

.........

.....

........

........

........

. ................................... ................................ .............................. ...................................................
..................

..............
..

..........
...

.........
....

.........
.....

.........

.....D C

PP
PP

PP
PP

P

Hy0

C˝ D˝
ry0

Figure 2.5: The location of the hyperplane Hy0 depends on the location of y0 P C
˝

• When we take y0 P intC˝zD˝, the set Wy0rD;Cs is nonempty and int pHy0 X

Dq Ă intD. But Hy0 X C is still trivial.

• If we take y0 P BC
˝zD˝ then y10 “ Hy0 X C is nontrivial. In this case, we take

the smallest face F Ă BC˝ of C˝ containing y0. Theorem 2.4.3 tells us that

the set Wy0 is maximal if and only if F XD˝ is trivial.

In order to detect entangled states, we first apply Theorem 2.4.3 to the pair of

convex cones S1 Ř pMm b Mnq
` with the dual pair CP Ř P1 of linear maps, or

equivalently pMm bMnq
` Ř BP1. We say that a positive map φ or its Choi matrix

Cφ is optimal if the set WφrpMm bMnq
`;S1s is maximal. Theorem 2.4.3 tells us

that φ is optimal if and only if the smallest face of P1 containing φ has no nonzero

completely positive map. We see that the Choi map φch is optimal by Theorem 2.2.1

(iv). Every extremal positive map is optimal if it is not completely positive, and

so the completely copositive maps Ads ˝T are optimal whenever rank s ě 2. Such

optimal positive maps are actually of little use to detect entanglement, because they

can detect only non-PPT states. If we want to detect PPT entanglement then we

have to use the pair S1 Ă PPT with the dual pair DEC Ă P1. In this case, we see

that the set WφrPPT ;S1s is maximal if and only if the smallest face of P1 containing

φ has no nontrivial decomposable maps.
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References: [123], [82], [102]

2.4.2 Spanning properties

Because we do not know the facial structures of the convex cone P1, it is not so easy

to determine if a given positive map is optimal or not. We consider a slightly stronger

condition than Theorem 2.4.3 (ii); the smallest exposed face φ2 of P1 containing φ

has no nonzero completely positive maps, that is, φ2 X CP “ t0u.
We begin with general situations. We compare the definition of WyrD;Cs with

y1 “ tx P C : xx, yy “ 0u, which must be considered as a face of C, not a face of D

since y P C˝zD˝.

Proposition 2.4.4 Suppose that C Ă D are closed convex cones in a real vector

space X, and Y is a real vector space with a bilinear pairing on X ˆ Y . For y0 P

C˝zD˝, the following are equivalent:

(i) the smallest exposed face of C˝ containing y0 has no nontrivial intersection

with D˝, that is, y20 XD
˝ “ t0u,

(ii) int y10 Ă intD.

Proof. For the convex subset y10 ofD, there are two possibilities; either int y10 Ă intD

or y10 Ă BD. We will show that y10 Ă BD if and only if y20 XD
˝ ‰ t0u. Suppose that

y10 Ă BD. This happens if and only if the face y10 is contained in a maximal face y11
of D for a point y1 P D

˝. We see that y10 Ă y11 if and only if y21 Ă y20 if and only if

y1 P y
2
0. This implies y1 P y

2
0 XD˝. Conversely, if y1 P y

2
0 XD˝ is nonzero then we

have y10 Ă y11 Ă BD. ˝

The location of the nontrivial face y10 “ Hy0 X C with y0 P BC
˝zD˝ depends on

the exposed face y20. Proposition 2.4.4 tells us that y10 is located inside of D if and

only if y20 does not touch D˝ except zero. Whenever this is the case, the set Wy0 is

maximal. See Figure 2.6.

Now, we look for positive maps φ satisfying φ2 X CP “ t0u. Since a completely

positive map is the sum of Ads’s, we see that φ2 X CP ‰ t0u holds if and only if

there exists s PMmˆn such that Ads P φ
2, which is equivalent to the following:

SR |ζy “ 1, x|ζyxζ|, φy “ 0 ùñ x|ζyxζ|,Adsy “ 0. (2.22)

Motivated by this, we define the set

P rφs :“ t|ζy “ |ξy|ηy P Cm
b Cn : x|ζyxζ|, φy “ 0u,

for a positive map φ. Then, we see that φ2 has no nonzero completely positive map

if and only if P rφs spans the whole space, by the relation x|ζyxζ|,Adsy “ |xζ|¯̃sy|2
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Figure 2.6: y21 touches D˝, but y22 does not.

as in (2.1). A positive map φ satisfying this property is said to have the spanning

property. We note that

|ξy|ηy P P rφs ðñ xφ,Ad|ξ̄yxη|y “ 0 ðñ xη̄|φp|ξyxξ|q|η̄y “ 0 (2.23)

by (2.11). It is clear that a positive map with the spanning property is optimal.

We have seen in Theorem 2.2.1 that the Choi map φch does not have the spanning

property. By Proposition 2.4.4, we see that a positive linear map φ : Mm ÑMn has

the spanning property if and only if intφ1 Ă int pMn bMnq
`.

For a product vector |ζy “ |ξy|ηy P Cm b Cn, we recall the identity

|ζyxζ|Γ “ |ξ̄y|ηyxξ̄|xη|.

If we replace Ads by Ads ˝T in (2.22), then we have

x|ζyxζ|,Ads ˝Ty “ x|ζyxζ|
Γ,Adsy.

Therefore, we see that the following are equivalent;

• φ2 has no nonzero completely copositive maps,

• the partial conjugates of P rφs spans the whole space,

A positive map with such properties is called to have the co-spanning property. It

is clear that φ has the spanning property if and only if φ ˝ T has the co-spanning

property. Theorem 2.2.2 tells us that the Choi map φch has the co-spanning property.

We say that a positive map φ is co-optimal when the smallest face of P1 contain-

ing φ has no nonzero completely copositive map, or equivalently φ ˝ T is optimal.

We also say that a positive map is bi-optimal if it is both optimal and co-optimal.

We note that φ is bi-optimal if and only if the smallest face of P1 containing φ has

no nonzero decomposable map, and so we have the following by Theorem 2.4.3.
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Proposition 2.4.5 For a positive map φ : Mm ÑMn, the following are equivalent:

(i) φ is bi-optimal,

(ii) the smallest face of P1 containing φ has no decomposable map,

(iii) φ detects a maximal set of PPT entanglement.

Therefore, an bi-optimal positive map should be indecomposable automatically.

On the other hand, a positive map φ has the bi-spanning property when it has both

the spanning property and the co-spanning property. We apply Proposition 2.4.4 to

the pair S1 Ă PPT to get the following:

Theorem 2.4.6 For a positive linear map φ, the following are equivalent:

(i) φ has the bi-spanning property,

(ii) φ2 has no nonzero decomposable maps,

(iii) intφ1 Ă intPPT .

The property (iii) of Theorem 2.4.6 is useful to find PPT entanglement. If we

take a finite family I of product vectors in P rφs so that both they and their partial

conjugates span the whole space, then the average %1 of t|ζiyxζi| : i P Iu lies on the

boundary of S1, but in the interior of PPT . If we take any %0 in the interior of S1

then the line segment %λ “ p1´ λq%0 ` λ%1 extends to PPT entanglement.

A positive map with the the bi-spanning property must be indecomposable by the

condition (ii) of Theorem 2.4.6. An indecomposable positive map which generates

an exposed ray has automatically the bi-spanning property. The following shows

implication relations among various notions we have discussed so far.

exposed indecomposable ùñ bi-spanning ùñ spanning

ó ó ó

extreme indecomposable ùñ bi-optimal ùñ optimal

ó

indecomposable

References: [123], [82], [45], [77]
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2.5 Positive maps of Choi type

We exhibit in this section variants of the Choi map between 3ˆ 3 matrices. Among

them, we find positive maps with the bi-spanning property, and indecomposable

positive maps with the spanning property without bi-optimality. Motivated by these

examples, we briefly discuss the length of a separable state %, which is the smallest

number of pure products states whose sum gives rise to %.

2.5.1 Choi type positive maps between 3ˆ 3 matrices

For a given triplet pa, b, cq of nonnegative real numbers and a 3ˆ3 matrix X “ rxijs,

we define

φra,b,cspXq “

¨

˝

ax11 ` bx22 ` cx33 ´x12 ´x13

´x21 cx11 ` ax22 ` bx33 ´x23

´x31 ´x32 bx11 ` cx22 ` ax33

˛

‚.

Note that φr1,0,1s is nothing but the Choi map φch defined in (1.54), and the map τ3,k

in (1.52) is given by φrk´1,k,ks. Especially, we have seen in Section 1.6 that φr1,2,2s
is a 2-positive map which is not completely positive, and φr0,1,1s is a completely

copositive map which is not 2-positive. The Choi matrix of the map φra,b,cs is given

by

%ra,b,cs :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a ¨ ¨ ¨ ´1 ¨ ¨ ¨ ´1
¨ c ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ b ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ b ¨ ¨ ¨ ¨ ¨

´1 ¨ ¨ ¨ a ¨ ¨ ¨ ´1
¨ ¨ ¨ ¨ ¨ c ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ c ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ b ¨

´1 ¨ ¨ ¨ ´1 ¨ ¨ ¨ a

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.24)

Note that φra,b,cs is completely positive if and only if %ra,b,cs is positive if and only

if the following

a ě 2

holds. For example, the map

φr2,0,0s “ Ade11´e22 `Ade22´e33 `Ade33´e11

has been discussed in (2.14), where we use teiju for the standard matrix units. On
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the other hand, φra,b,cs is completely copositive if and only if

%Γ
ra,b,cs “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ c ¨ ´1 ¨ ¨ ¨ ¨ ¨

¨ ¨ b ¨ ¨ ¨ ´1 ¨ ¨

¨ ´1 ¨ b ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ a ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ c ¨ ´1 ¨

¨ ¨ ´1 ¨ ¨ ¨ c ¨ ¨

¨ ¨ ¨ ¨ ¨ ´1 ¨ b ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ a

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

is positive if and only if

bc ě 1.

The completely copositive map φr0,1,1s may be written by

φr0,1,1s “ T ˝ pAde12´e21 `Ade23´e32 `Ade31´e13q .

We note that the map φra,b,cs may be expressed by

φra,b,cs “ ψra,b,cs ´ id3

with the map ψra,b,cs, which sends x “ rxijs to the diagonal matrix with the diagonal

entries
pa` 1qx11 ` bx22 ` cx33,

cx11 ` pa` 1qx22 ` bx33,

bx11 ` cx22 ` pa` 1qx33.

We apply Proposition 1.6.5, to see that φra,b,cs is positive if and only if

ψra,b,csp|ξ0yxξ0|q ě |ξ0yxξ0|

for every unit vector |ξ0y if and only if

xξ0|ψra,b,csp|ξ0yxξ0|q
´1
|ξ0y ď 1

for every unit vector |ξ0y if and only if the inequality

α

pa` 1qα ` bβ ` cγ
`

β

pa` 1qβ ` bγ ` cα
`

γ

pa` 1qγ ` bα ` cβ
ď 1 (2.25)

holds for all positive real numbers α, β and γ.

We take α “ β “ γ “ 1 to get a` b` c ě 2. We also take β “ α´1 and γ Ñ 0,

then we have

caα4
` pa2

´ 1` bcqα2
` ab ě 0
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for each positive α. If a ě 1 then this is true. If 0 ď a ď 1 then this implies

a2
´ 1` bc ě 0 or pa2

´ 1` bcq2 ´ 4bca2
ď 0,

which implies bc ě p1´ aq2. Therefore, we get necessary conditions

a` b` c ě 2, 0 ď a ď 1 Ñ bc ě p1´ aq2, (2.26)

where pÑ q means that p implies q. Proving the following lemma, we may conclude

that the map φra,b,cs is positive if and only if the conditions in (2.26) are satisfied.

Lemma 2.5.1 If nonnegative numbers a, b and c satisfy the conditions in (2.26)

then inequality (2.25) holds for all positive α, β, γ.

Proof. Suppose that a, b and c satisfy (2.26), and α, β and γ are positive numbers.

Put

x “
bβ ` cγ

α
, y “

bγ ` cα

β
, z “

bα ` cβ

γ
,

and consider the system of linear equations

xα ´ bβ ´ cγ “ 0,

´cα ` yβ ´ bγ “ 0,

´bα ´ cβ ` zγ “ 0,

with unknowns α, β and γ. This system of equations has already a nontrivial

solution, and so we have

xyz ´ bcpx` y ` zq ´ pb3
` c3

q “ 0. (2.27)

On the other hand, the left-side of (2.25) becomes

1

a` 1` x
`

1

a` 1` y
`

1

a` 1` z
,

and so, it suffices to show the inequality

F px, y, zq “ xyz ` apxy ` yz ` zxq ` pa2
´ 1qpx` y ` zq ` pa` 1q2pa´ 2q ě 0

holds under the condition (2.27). To see this, we slice the surface (2.27) by the plane

x` y ` z “ d. (2.28)

We first note that the surface (2.27) and the plane (2.28) has nonempty inter-

section if and only if d ě 3pb ` cq. When d “ 3pb ` cq, the intersection is the one

point pb ` c, b ` c, b ` cq. When d ą 3pb ` cq, the intersection is a compact curve.
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One can show that if px, y, zq is a critical point of F under the constraints (2.27)

and (2.28) then

x “ y, y “ z or z “ x. (2.29)

Therefore, it suffices to find minimum of F on the curve given by (2.27) and (2.29).

In case of x “ y, the curve is given by px2´bcqz “ 2bcx`b3`c3 from which we have

x ą
?
bc, and F becomes a function of one variable x. By a direct computation, we

have

F 1pxq “
1

px2 ´ bcq2
“

x2
` pb` cqx` pb2

´ bc` c2
q
‰

ˆ rx´ pb` cqsrax2
` pa2

´ 1` bcqx` abcs.

The first two factors are nonnegative, and the last factor is also nonnegative by the

second conditions in (2.26). Now, we conclude that F has the minimum at x “ b`c,

which implies y “ z “ b` c by (2.27) and x “ y. Therefore, we have

F ě 3apb` cq3 ` 3pa2
´ 1` bcqpb` cq ` ppa` 1q2pa´ 1q ` b3

` c3
q

“ pa` b` c´ 2qpa` b` c` 1q2 ě 0,

by the first condition of (2.26). The cases of y “ z and z “ x can be done in the

same way. ˝

In order to deal with decomposability of the map φra,b,cs, we consider the PPT

state %p defined in (1.36) We take bilinear pairing with %ra,b,cs to get

0 ď x%p, φra,b,csy “ 3rcp2
` pa´ 2qp` bs

for every p ą 0. Therefore, we get the following necessary condition

0 ď a ď 2 Ñ bc ě

ˆ

2´ a

2

˙2

. (2.30)

Compare with the condition (2.26). Now, we show that the condition (2.30) implies

that the map φra,b,cs is decomposable. If a ě 2 or bc ě 1 then there is nothing to

prove since φra,b,cs is completely positive or completely copositive in each case. In

case of 0 ď a ă 2 and bc ă 1, we have

φra,b,cs “ p1´
?
bcqφrα,0,0s `

?
bc φ

r0,
?
b{c,
?
c{bs
,

with α “ a
1´
?
bc

. We note that α ě 2 by (2.30), and so φrα,0,0s is completely positive.

Since φ
r0,
?
b{c,
?
c{bs

is completely copositive, we have seen that φra,b,cs is decompos-

able. We summarize as follows:

Theorem 2.5.2 Let a, b and c be nonnegative real numbers. Then the linear map

φra,b,cs is
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(i) positive if and only if a` b` c ě 2 and 0 ď a ď 1 Ñ bc ě p1´ aq2,

(ii) completely positive if and only if a ě 2,

(iii) completely copositive if and only if bc ě 1,

(iv) decomposable if and only if 0 ď a ď 2 Ñ bc ě
`

2´a
2

˘2
.

For further examples of Choi type positive linear maps in various directions, see

Section 7 of the survey paper [30] and references there. See also [71, 105] for recent

development.

References: [18], [30], [71], [105]

2.5.2 Spanning properties of Choi type positive maps

In order to figure out the region given by (2.26), we look at the curve given by

0 ď a ă 1, a` b` c “ 2, bc “ p1´ aq2.

We parameterize by t “ b
1´a

. Then 0 ă t ă 8, and we have

at` b “ t, p1´ tqa` c “ 2´ t, a` ct “ 1, (2.31)

from which we have

γptq “ paptq, bptq, cptqq “

ˆ

p1´ tq2

1´ t` t2
,

t2

1´ t` t2
,

1

1´ t` t2

˙

.

One may easily check that γ makes a part of the circle centered at p2
3
, 2

3
, 2

3
q with the

radius
b

2
3
. See Figure 2.7. When t “ 0, we have γp0q “ p1, 0, 1q gives rise to the

Choi map φch, and we also get the completely copositive map φr0,1,1s at t “ 1. We

write

φt :“ φraptq,bptq,cptqs, 0 ă t ă 8.

Now, we use (2.23) to look for product vectors in P rφts. We write |ξy “

px, y, zqT P C3. When |x| “ |y| “ |z| “ 1, we see that

φtp|ξyxξ|q “

¨

˝

2 ´xȳ ´xz̄
´yx̄ 2 ´yz̄
´zx̄ ´zȳ 2

˛

‚

has the kernel vector |η̄y “ px, y, zqT P C3. Therefore, we have

|ξy b |ηy “ pα, β, γqT b pᾱ, β̄, γ̄qT P P rφts, (2.32)
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Figure 2.7: Two surfaces a` b` c “ 2 and bc “ p1´ aq2 make a circle.

whenever |α| “ |β| “ |γ| “ 1. When one of x, y, z, say z “ 0, the determinant

detφtp|ξyxξ|q is given by

pb|x|2 ` c|y|2qpac|x|4 ` |x|2|y|2a2
` |x|2|y|2bc` ab|y|4 ´ |y|2|x|2q

“
pt´ 1q2

pt2 ´ t` 1q3
pt2|x|2 ` |y|2qp´|y|2t` |x|2q2,

which becomes zero when |x| “
?
t and |y| “ 1. In this case,

φtp|ξyxξ|q “

¨

˝

at` b ´xȳ 0
´yx̄ ct` a 0

0 0 bt` c

˛

‚

has the kernel vector |η̄y “ px, ty, 0qT P C3. Therefore, we have

|ξy b |ηy “ p
?
tα, β, 0qT b p

?
tᾱ, tβ̄, 0qT P P rφts. (2.33)

By the same way, we also have

|ξy b |ηy “ p0,
?
tα, βqT b p0,

?
tᾱ, tβ̄qT P P rφts,

|ξy b |ηy “ pβ, 0,
?
tα, qT b ptβ̄, 0,

?
tᾱqT P P rφts,

(2.34)

with |α| “ |β| “ 1.

Among them, we take ten product vectors with real coefficients as follows: We

first take
|ξ1y b |η1y “ p1, 1, 1q

T
b p1, 1, 1qT,

|ξ2y b |η2y “ p1, 1,´1qT b p1, 1,´1qT,

|ξ3y b |η3y “ p1,´1, 1qT b p1,´1, 1qT,

|ξ4y b |η4y “ p´1, 1, 1qT b p´1, 1, 1qT,

(2.35)
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among product vectors in (2.32). They span 4-dimensional space whose orthogonal

complement is spanned by

|12y ´ |21y, |23y ´ |32y, |31y ´ |13y, |11y ´ |22y, |22y ´ |33y.

Next, we also take

|ξ5y b |η5y “ p
?
t, 1, 0qT b p

?
t, t, 0qT,

|ξ6y b |η6y “ p
?
t,´1, 0qT b p

?
t,´t, 0qT,

(2.36)

among (2.33), and

|ξ7y b |η7y “ p0,
?
t, 1qT b p0,

?
t, tqT,

|ξ8y b |η8y “ p0,
?
t,´1qT b p0,

?
t,´tqT,

|ξ9y b |η9y “ p1, 0,
?
tqT b pt, 0,

?
tqT,

|ξ10y b |η10y “ p´1, 0,
?
tqT b p´t, 0,

?
tqT,

(2.37)

among (2.34). These six vectors span a 6-dimensional space whose orthogonal com-

plement is spanned by

|12y ´ t|21y, |23y ´ t|32y, |31y ´ t|13y. (2.38)

It is easily seen that the above ten product vectors span the whole space C3 b C3

unless t ‰ 1. Therefore, we have the following:

Theorem 2.5.3 The positive map φra,b,cs has the bi-spanning property, whenever

pa, b, cq satisfies

0 ă a ă 1, a` b` c “ 2, bc “ p1´ aq2.

In fact, it is known [47] that the maps in Theorem 2.5.3 generates an exposed

ray of the convex cone P1.

Now, we turn our attention to the surface bc “ p1 ´ aq2 with 0 ď a ď 1 in the

condition (2.26) of positivity of the map φra,b,cs. To do this, we fix t ą 0 with t ‰ 1,

and consider the line segment

Lt :“

"

Ltpsq “
´

1´ s, st,
s

t

¯

:
t

1´ t` t2
ď s ď 1

*

,

which is a part of the line segment from p1, 0, 0q to δptq :“ p0, t, 1
t
q. Precisely, it is

the line segment between two points between γptq and δptq. It is easily seen that this

line segment is contained in the surface bc “ p1´ aq2 in (2.26). See Figure 2.8. We

note that Ltp1q “ δptq “ p0, t, 1
t
q gives rise the the completely copositive map φr0,t, 1

t
s,

and so it is clear that maps on the line segment Lt do not satisfy the co-optimal

property. Nevertheless, we will show that they satisfy the spanning property.
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p2, 0, 0q

p1, 0, 1q

γptq

p1, 1, 0q

t
δptq

Figure 2.8: The surface bc “ p1´ aq2 consists of line segments.

Theorem 2.5.4 The positive map φ :“ φra,b,cs has the spanning property, whenever

pa, b, cq satisfies

0 ď a ă 1, a` b` c ą 2, bc “ p1´ aq2.

Proof. We define vectors in C3 as follows;

|ξ1
θ,σy “p0, e

iθb1{4, eiσc1{4
q
T, |η1

θ,σy “p0, e
´iθ
pbcq1{4, e´iσb1{2

q
T,

|ξ2
θ,σy “pe

iσc1{4, 0, eiθb1{4
q
T, |η2

θ,σy “pe
´iσb1{2, 0, e´iθ

pbcq1{4qT,

|ξ3
θ,σy “pe

iθb1{4, eiσc1{4, 0qT, |η3
θ,σy “pe

´iθ
pbcq1{4, e´iσb1{2, 0qT.

It is easily checked that

xξkθ,σ|xη
k
θ,σ|Cφ|ξ

k
θ,σy|η

k
θ,σy “ ´2p1´ aqbc1{2

` 2b3{2c “ 0

for k “ 1, 2, 3. Therefore, the vectors |ξkθ,σy|η
k
θ,σy belong to P rφra,b,css for k “ 1, 2, 3.

We take σ1 “ 0, σ2 “ π{2 and σ3 “ π, and consider the 9ˆ 9 matrix whose columns

consist of nine vectors |ξk0,σ`y|η
k
0,σ`
y for k, ` “ 1, 2, 3. Then the absolute value of the

determinant is given by 128 b
9
2 c

9
4 which is nonzero. ˝

Therefore, every triplet pa, b, cq in Theorem 2.5.4 gives rise to an indecomposable

positive map φ :“ φra,b,cs with the following properties;

104



.

.................................

...............................

.............................

...........................

.........................

.......................

......................

....................

.....................

......................
.......................

......................... .......................... . ................. ................. .................
.............

....

..........
.......

..........
..........
.

..........
..........
..........
.....

.........
.........
.........
.........
.

.........
.........
.........
.........
....

.........
.........
.........
.........
......

.........
.........
.........
.........
........

...................................................................................
...............
..

...........
....

..........
......

.........
.........

.........
.........
.

........

........

....

........

........

.....

........

........

........

.........

.........

.........

.

.......................................

.....................................

...................................

.................................

...............................

.............................

...........................

.........................

.......................

......................

.......................

........................
.........................

.......................... ........................... ........................... .............................. . ......................
................

......

............
..........

..........
..........
...

..........
..........
......

..........
..........
.........

.........
.........
.........
.....

.........
.........
.........
........

.........
.........
.........
.........
..

.........
.........
.........
.........
.....

.........
.........
.........
.........
........

........
........
........
........
........
......

XXXXXXXXXXXXXXXX

PPT S1

pM3 bM3q
`

r
φ1

Hφ

Figure 2.9: Entanglement WφrpMmbMnq
`,S1s detected by φ is maximal, but PPT

entanglement WφrPPT ,S1s detected by φ is not maximal.

• φ has the spanning properties, so it is optimal and detects a maximal set

WφppM3bM3q
`,S1pM3bM3qq of entanglement. The interior of the face φ1 of

S1 is sitting in the interior of pM3 bM3q
` by Proposition 2.4.4.

• φ does not have co-optimal properties, especially the smallest face of P1 con-

taining φ has a nonzero decomposable map, so it does not detect a maximal set

WφpPPT rM3 bM3s,S1pM3 bM3qq of PPT entanglement by Theorem 2.4.3.

The face φ1 of S1 is sitting on the boundary of PPT by Proposition 2.4.4. See

Figure 2.9.

References: [31], [44], [45], [46], [47], [48]

2.5.3 Lengths of separable states

We return to the ten product vectors |ζiy :“ |ξiy|ηiy listed in (2.35), (2.36) and

(2.37). We note that

%t :“
10
ÿ

i“1

|ζiyxζi| “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

α ¨ ¨ ¨ 1 ¨ ¨ ¨ 1
¨ γ ¨ 1 ¨ ¨ ¨ ¨ ¨

¨ ¨ β ¨ ¨ ¨ 1 ¨ ¨

¨ 1 ¨ β ¨ ¨ ¨ ¨ ¨

1 ¨ ¨ ¨ α ¨ ¨ ¨ 1
¨ ¨ ¨ ¨ ¨ γ ¨ 1 ¨

¨ ¨ 1 ¨ ¨ ¨ γ ¨ ¨

¨ ¨ ¨ ¨ ¨ 1 ¨ β ¨

1 ¨ ¨ ¨ 1 ¨ ¨ ¨ α

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

with

α “
2t2 ` 2

t2 ` 2
, β “

t` 2

t2 ` 2
, γ “

t3 ` 2

t2 ` 2
,

up to scalar multiplications. So far, we have seen that %t is a separable state on the

boundary of S1. Furthermore, %t is in the interior of PPT unless t “ 1. In fact, one

may see both %t and %Γ
t have full ranks when t ‰ 1.
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We have found product vectors |ξy|ηy P P rφts in (2.32), (2.33) and (2.34). It is

known [46] that they are all product vectors in P rφts, and there is no more product

vectors in P rφts. Now, we consider the map

ψt :“ φt ` φt ˝ T, t ą 0, t ‰ 1.

Then |ξy|ηy P P rψts if and only if |ξy|ηy P P rφts and |ξ̄y|ηy P P rφts if and only if

|ξy|ηy is one of ten product vectors |ζ1y, . . . , |ζ10y listed in (2.35), (2.36) and (2.37),

with |ζiy “ |ξiy b |ηiy. Therefore, the convex cone generated by ten product states

|ζiyxζi| with i “ 1, . . . , 10 is a face of S1, which is the dual face

ψ1t “ φ1t X pφt ˝ Tq1 (2.39)

of the positive map ψt. Because these ten product vectors span the whole space

C3 b C3, we see that the map ψt has the bi-spanning property for t ‰ 1. Note that

ψt does not generate an extreme ray of P1.

Even though ten vectors |ζ1y, . . . , |ζ10y are linearly dependent in C3 b C3, the

corresponding ten states are linearly independent in M3 b M3. To see this, we

suppose that
ř10
i“1 αi|ζiyxζi| “ 0. Take |ωy P C3 b C3 among vectors in (2.38), then

we have

0 “
10
ÿ

i“1

αi|ζiyxζi|ωy “
4
ÿ

i“1

αixζi|ωy|ζiy.

Because t|ζiy : i “ 1, 2, 3, 4u is linearly independent, we have αixζi|ωy “ 0, and

αi “ 0 for i “ 1, 2, 3, 4. Since t|ζiy : i “ 5, 6, . . . , 10u is also linearly independent, we

have αi “ 0 for i “ 5, 6, . . . , 10.

Therefore, the separable state %t with t ‰ 1 is decomposed into the sum of pure

product states in a unique way. Especially, we need ten pure product states in order

to express %t as the sum of them. The length of a separable state % is defined as

the smallest number of pure product states whose convex sum is %. We see that the

length of the separable state %t is 10, which is strictly greater than 9 “ 3 ¨ 3. It is

known [101, 15] that the lengths of 2b 2 and 2b 3 separable states are less than or

equal to 4 and 6, respectively.

Linear independence of t|ζiyxζi| : i “ 1, 2, . . . , 10u has a geometric interpretation.

We restrict ourselves on the normalized states. Then the face ψ1t in (2.39) is the 9-

dimensional simplex with the ten extreme points which is normalized states |ζiyxζi|

with i “ 1, 2, . . . , 10. All the states in this face has also a unique decomposition into

the convex sum of pure product states.

References: [101], [1], [106], [2], [15], [46], [16], [47], [48]
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2.6 Exposed positive maps by Woronowicz

In this section, we exhibit positive linear maps from M2 to M4 which generate

exposed rays of the convex cone P1 of all positive maps. For this purpose, we also

provide a sufficient condition for exposedness which is relatively easy to check.

2.6.1 A dimension condition for exposed positive maps

For a linear map φ : Mm ÑMn, we define the linear map φ̂ : Mm b Cn Ñ Cn by

φ̂pab ξq “ φpaq|ξy, a PMm, ξ P Cn,

and the subspace Nφ in Mm b Cn by

Nφ “ span tab |ηy PM`
m b Cn : φpaq|ηy “ 0u.

Then we have Nφ Ă ker φ̂, in general. By the relation (2.11), we have

|ξyxξ| b |ηy P Nφ ðñ |ξy b |η̄y P P rφs,

for |ξy P Cm and |ηy P Cn.

Because S1 is generated by M`
m bM

`
n , we see that ψ P φ2 is equivalent to

a PM`
m, |ηy P Cn, xab |ηyxη|, φy “ 0 ùñ xab |ηyxη|, ψy “ 0, (2.40)

with the duality between S1 and P1. By the identity

xη|φpaq|ηy “ x|η̄yxη̄|, φpaqy “ xab |η̄yxη̄|, φy,

we also see that ab |η̄yxη̄| P φ1 if and only if ab |ηy P Nφ for a PM`
m and |ηy P Cn.

Therefore, we see that

ψ P φ2 ðñ Nφ Ă Nψ.

If φ satisfies the condition

ker φ̂ “ Nφ, (2.41)

then we have ker φ̂ “ Nφ Ă Nψ Ă ker ψ̂. Therefore, we conclude that there exists

a linear map X : Cn Ñ Cn such that ψ̂ “ X ˝ φ̂, or equivalently, there exists

X P Mn such that ψpaq|ηy “ Xφpaq|ηy for each a P Mn and |ηy P Cm. This implies

ψpaq “ Xφpaq. Therefore, if a positive linear map φ : Mm Ñ Mn satisfies the

condition (2.41) together with the following condition

(C) If X PMn and a ÞÑ Xφpaq is positive then X is a scalar matrix,

then we conclude that φ is exposed. Because pXφpaqq˚ “ Xφpa˚q if and only if

Xφpaq “ φpaqX˚, we see that the following two conditions
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(Ch) If X PMn and Xφpaq “ φpaqX˚ for every a PMm then X is a scalar matrix,

(C1h) If X PMn and a ÞÑ Xφpaq is Hermiticity preserving then X is a scalar matrix

are equivalent. It is clear that (Ch) or equivalent condition (C1h) implies (C).

For a subset S of Mn, we define the commutant S 1 by

S 1 :“ ta PMn : ax “ xa for every x P Su.

Proposition 1.2.1 tells us that the commutant of Mn itself is trivial, that is, consists

of scalar matrices. It is clear that S 1 is a subalgebra of Mn, and it is a ˚-subalgebra

if S is ˚-invariant, that is, x P S implies x˚ P S. It is also clear that S Ă S2 and

S 1 “ S3. A positive linear map φ : Mm Ñ Mn is called irreducible if the range

φpMmq of φ has the trivial commutant. Note that the range of a positive map

φ : Mm Ñ Mn is a ˚-invariant subspace, and so its commutant is a ˚-subalgebra of

Mn. Suppose that the range of an irreducible positive map φ contains the identity.

If we take a PMm with φpaq “ Im then Xφpaq “ φpaqX˚ implies that X “ X˚, and

so the irreducibility implies the condition (Ch). Therefore, we have the following:

Theorem 2.6.1 (Woronowicz [131]) Suppose that φ : Mm Ñ Mn is an irreducible

positive linear map satisfying the condition (2.41). If the range of φ contains the

identity then φ generates an exposed ray of the convex cone P1 of all positive maps.

If the range of φ contains the idnetity then we see that the map φ̂ is surjective.

Therefore, we have dim ker φ̂ “ npm2´1q, and so the condition ker φ̂ “ Nφ in (2.41)

holds in Theorem 2.6.1 if and only if the following dimension condition

dimNφ “ npm2
´ 1q (2.42)

is satisfied. We call this the Woronowicz dimension condition.

It is easy to see that the condition (Ch) of a positive map φ implies irreducibility.

To see this, we suppose that φ satisfies (Ch) and Xφpaq “ φpaqX for every a PMm.

Because the range of the positive map φ is ˚-invariant, we also have X˚φpaq “

φpaqX˚ for every a P Mm. If we write Y “ 1
2
pX ` X˚q and Z “ 1

2i
pX ´ X˚),

then we have Y φpaq “ φpaqY “ φpaqY ˚, which implies that Y is a scalar matrix by

condition (Ch). By the same argument, we also see that Z is a scalar matrix, and

so we conclude that φ is irreducible. It should be noted that irreducibility does not

imply the condition (C) in general. To see this, we define φ : M2 ÑM2 by

φ :

ˆ

a b
c d

˙

ÞÑ

ˆ

a a
a a` d

˙

,
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which is easily seen to be irreducible. But, we have

ˆ

1 0
1 0

˙ˆ

a a
a a` d

˙

“

ˆ

a a
a a

˙

“

ˆ

a a
a a` d

˙ˆ

1 1
0 0

˙

,

and so we see that φ violates the condition (Ch) as well as (C). It is straightforward

to check that the Woronowicz map φwo given by (1.56) satisfies the condition (Ch),

and so it is irreducible.

In the remainder of this section, we show that the identity map idn : Mn ÑMn

satisfies the dimension condition (2.42). This will give rise to an another proof of

Theorem 2.1.8. We fix i “ 2, 3, . . . , n for a moment, and put

|ξy “ p1, α2, . . . , αi, . . . , αnq
T
P Cn,

|ηiy “ pᾱi, 0, . . . , 0,´1, 0, . . . , 0qT P Cn,

with ´1 at the i-th entry. Then we have |ξyxξ|b |ηiy P Nidn . We identity |ξyxξ|b |ηy

in Mn b Cn and |ξy b |ξ̄y b |ηy in Cn b Cn b Cn to count dimensions. For each

i “ 2, . . . , n, we define the space Vi by

Vi “ span t|ξy b |ξ̄y b |ηiy : α2, α3, . . . , αn P Cu Ă Cn
b Cn

b Cn.

Lemma 2.6.2 The set tαkᾱ` : k, ` “ 0, 1, 2, . . . u of monomials is linearly indepen-

dent.

Proof. Suppose that P pαq is a linear combination of finitely many monomials

among αkᾱ`. Then P ptαq is a polynomial with respect to the variable t whose

coefficients are homogeneous polynomials in the variables α and ᾱ. Therefore, it is

enough to show that homogeneous polynomials with a fixed degree n are linearly

independent. We multiply αn to all of homogeneous polynomials of degree n, and

use the identity theorem on the unit circle, to get the conclusion. ˝

Because monomials with variables 1, αi and ᾱi, i “ 2, 3, . . . , n, are linearly

independent, we see that the dimension of Vi is the number of monomials which

appear in the entries of |ξy b |ξ̄y b |ηiy. Noting that |ξ̄y and |ηiy have n and 2

variables and the variable ᾱi appears two times, we see that |ξ̄y b |ηiy has 2n ´ 1

monomials in the entries, and

dimVi “ np2n´ 1q, i “ 2, . . . , n.

The orthogonal complement V Ki is spanned by orthogonal vectors

|j11y ` |jiiy, j “ 1, 2, . . . , n,

|xyzy, x, y “ 1, 2, . . . , n, z “ 2, . . . , i´ 1, i` 1, . . . , n,
(2.43)
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whose cardinality is n` n2pn´ 2q “ n3 ´ np2n´ 1q.

In order to count the dimension of NK
idn
“ V K2 X V K3 X ¨ ¨ ¨ X V Kn , we write down

the generators of V Ki as follows

V K2 : |111y ` |122y, |211y ` |222y, . . . , |n11y ` |n22y, |xy3y, |xy4y, ¨ ¨ ¨ , |xyny,

V K3 : |111y ` |133y, |211y ` |233y, . . . , |n11y ` |n33y, |xy2y, |xy4y, ¨ ¨ ¨ , |xyny,

¨ ¨ ¨

V Kn : |111y ` |1nny, |211y ` |2nny, . . . , |n11y ` |nnny, |xy2y, |xy3y, ¨ ¨ ¨ , |xypn´ 1qy.

Then we see that V K2 X V
K

2 X ¨ ¨ ¨ X V
K
n is spanned by following n orthogonal vectors

|ζ1y :“|111y ` |122y ` |133y ` ¨ ¨ ¨ ` |1nny,

|ζ2y :“|211y ` |222y ` |233y ` ¨ ¨ ¨ ` |2nny,

¨ ¨ ¨

|ζny :“|n11y ` |n22y ` |n33y ` ¨ ¨ ¨ ` |nnny.

Therefore, we have dimNidn “ n3´n which coincides with the dimension of ker xidn.

By Theorem 2.6.1, we conclude that the identity map idn is exposed.

References: [130], [131], [49], [81]

2.6.2 Exposed positive maps between 2ˆ2 and 4ˆ4 matrices

The Woronowicz map φwo in (1.56) can be parameterized as follows: We first take

positive numbers a, b, c and d with ab ą 1, and we define positive numbers e, f, g, h

and k by the relations

pab´ 1q

ˆ

e
f

˙

“ apc` dq

ˆ

c
d

˙

, g2
“ acd, h “ be´ c2, k “ bf ´ d2. (2.44)

We define φ : M2 ÑM4 by

φ

ˆ

x y
z w

˙

“

¨

˚

˚

˝

hx´ cdpy ` zq ` kw ´gx` gz 0 0
´gx` gy ax z 0

0 y bw ´cz ´ dw
0 0 ´cy ´ dw ex` fw

˛

‹

‹

‚

, (2.45)

If pa, b, c, dq “ p2, 2, 2, 1q, then we get the Woronowicz map φwo.

For each complex number α, we consider the following positive rank one matrix

|ξαyxξα| “

ˆ

1 ᾱ
α |α|2

˙

onto the vector |ξαy “ p1, αq
T P C2, and consider the determinant ∆ipαq of right-

below i ˆ i submatrix of φp|ξαyxξα|q for each i “ 1, 2, 3, 4. By a direct calculation,
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we have
∆1pαq “ e` f |α|2,

∆2pαq “ |α|
2
“

h´ cdpα ` ᾱq ` k|α|2
‰

,

∆3pαq “ acd|α|2|1´ α|2,

∆4pαq “ 0.

By the relations between e, f, g, h and k in (2.44), we see that

∆1pαq ą 0, ∆2pαq ą 0, ∆3pαq ą 0, ∆4pαq “ 0

for any complex numbers α ‰ 0, 1, and so, we see that φp|ξαyxξα|q is positive for

α ‰ 0, 1. We also have

φp|ξ0yxξ0|q “

¨

˚

˚

˝

h ´g 0 0
´g a 0 0
0 0 0 0
0 0 0 e

˛

‹

‹

‚

and

φp|ξ1yxξ1|q “

¨

˚

˚

˝

h´ 2cd` k 0 0 0
0 a 1 0
0 1 b ´c´ d
0 0 ´c´ d e` f

˛

‹

‹

‚

.

We write |ξ8y :“ p0, 1qt P C2, then we have

φp|ξ8yxξ8|q “

¨

˚

˚

˝

k 0 0 0
0 0 0 0
0 0 b ´d
0 0 ´d f

˛

‹

‹

‚

.

Since φp|ξαyxξα|q is positive for every α P CY t8u, we conclude that φ is a positive

map from M2 into M4.

It is straightforward to see that φ satisfies the condition (Ch). Take a matrix

σ “ rσijs PM4, and suppose that

rσijsφ

ˆ

x y
z w

˙

“ φ

ˆ

x y
z w

˙

rσ̄jis

for every x, y, z, w P C. Compare the entries of both sides, one may check that σ is

a scalar matrix.

We also see that φp|ξαyxξα|q PM4 has the one dimensional kernel space which is

generated by

|ηαy :“

¨

˚

˚

˝

gαp1´ αq
α rh´ cdpα ` ᾱq ` k|α|2s

´e´ f |α|2

´ᾱpc` dαq

˛

‹

‹

‚

P C4 (2.46)
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for α P C, and the kernel of φp|ξ8yxξ8|q is spanned by

|η8y “ p0, 1, 0, 0q
T.

Now, we proceed to determine the dimension of the space Nφ, or equivalently,

the dimension of the space

span t|ζαy :“ |ξαy b |ξ̄αy b |ηαy : α P CY t8uu Ă C2
b C2

b C4.

We first note that each entries of |ζαy are linear combinations of the following 12

monomials

1, α, ᾱ, α2, αᾱ, ᾱ2, α3, α2ᾱ, αᾱ2, α3ᾱ, α2ᾱ2, α3ᾱ2. (2.47)

In order to show that φ satisfies the condition (2.42), we consider the vector

pf1pαq, f2pαq, . . . , fnpαqq P Cn, (2.48)

for complex functions f1, . . . , fn. In order to find the dimension of the span of the

vectors in (2.48) through α P C, it suffices to consider the rank of the ‘coefficient

matrix’. The coefficient matrix of |ξαy|ξ̄αy is given by
¨

˚

˚

˝

1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨

¨ 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨

˛

‹

‹

‚

with respect to the monomials 1, α, ᾱ, α2, αᾱ, ᾱ2, . . . , which is rank four. On the

other hand, the coefficient matrix for |ηαy is given by
¨

˚

˚

˝

¨ g ¨ ´g ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ h ¨ ´cd ´cd ¨ ¨ k ¨ ¨ ¨ ¨

´e ¨ ¨ ¨ ´f ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ´c ¨ ´d ¨ ¨ ¨ ¨ ¨ ¨ ¨

˛

‹

‹

‚

with respect to monomials 1, α, ᾱ, α2, αᾱ, ᾱ2, α3, α2ᾱ, . . . . This is of rank 4, which

means that the set t|ηαy : α P Cu spans the whole space C4. Now, one may produce

the coefficient matrix of |ζαy :“ |ξαy b |ξ̄αy b |ηαy with respect to the monomials in

(2.47) which is 16ˆ 12 matrix, and check that this matrix has rank 12. This shows

that the map φ satisfies the Woronowicz dimension condition (2.42), and we have

the following:

Theorem 2.6.3 The map φ : M2 Ñ M4 defined by (2.44) and (2.45) is an inde-

composable exposed positive map for every positive a, b, c and d with ab ą 1.

Proof. It remains to show that the map φ is not decomposable. If it were decom-

posable, then φ “ Ads or φ “ Ads ˝T. Then either Cφ or CΓ
φ is of rank one, which

is not the case. ˝

References: [49]
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2.7 Exposed positive maps by Robertson

In this section, we exhibit the Robertson map between 4 ˆ 4 matrices which is an

indecomposable positive map generating an exposed ray. The construction use the

notion of Jordan homomorphisms.

2.7.1 Robertson’s positive maps between 4ˆ 4 matrices

In this section, we construct an example of indecomposable exposed positive map

between 4ˆ 4 matrices. We begin with the map τ2,1

τ2,1 “ Tr 2 ´ id2 :

ˆ

α β
γ δ

˙

ÞÑ

ˆ

δ ´β
´γ α

˙

between 2ˆ 2 matrices, as it was defined in (1.52). This is an anti-automorphism of

order two, that is, it satisfies τ2,1pxyq “ τ2,1pyqτ2,1pxq for x, y PM2 and τ2,1˝τ2,1 “ id,

as well as it is a completely copositive map.

We recall that quaternion numbers may be expressed as

H “
"ˆ

α β
´β̄ ᾱ

˙

PM2pCq : α, β P C
*

. (2.49)

In other words, the quaternion a` bi` cj` dk P H corresponds to

a` bi` cj` dk ÐÑ

ˆ

a` ib c` id
´c` id a´ ib

˙

PM2pCq.

It is worthwhile to note the following correspondences

iØ

ˆ

i 0
0 ´i

˙

“ iσz, jØ

ˆ

0 1
´1 0

˙

“ iσy, kØ

ˆ

0 i
i 0

˙

“ iσx,

in terms of Pauli matrices in (1.16).

We define the linear map π : M4pCq ÑM4pCq by

π “
1

2
pid4 ` T2 b τ2,1q,

that is, we define

π

ˆ

x y
z w

˙

“
1

2

ˆ

x` τ2,1pxq y ` τ2,1pzq
z ` τ2,1pyq w ` τ2,1pwq

˙

,

ˆ

x y
z w

˙

PM4pCq.

Then π is a positive map since τ2,1 is completely copositive. With the expression

(2.49), we have

H “ tx PM2pCq : τ2,1pxq “ x˚u,
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and one may check that the range of Mh
4 pCq under π is

Mh
2 pHq “

"ˆ

x y
y˚ w

˙

: x, y P HXMh
2 pCq, w P H

*

“

$

’

’

&

’

’

%

¨

˚

˚

˝

a 0 α β
0 a ´β̄ ᾱ
ᾱ ´β b 0
β̄ α 0 b

˛

‹

‹

‚

: a, b P R, α, β P C

,

/

/

.

/

/

-

ĂMh
4 pCq,

(2.50)

and π|Mh
2 pHq is the identity. In short, π is a positive projection from Mh

4 pCq onto

Mh
2 pHq, which is a six dimensional subspace of the real space Mh

4 pCq.
We note that Mh

2 pHq is a JC-subalgebra of M4pCq, that is, it is a real subspace

of Hermitian matrices in Mh
4 pCq which is closed under the binary operation

a ˝ b “
1

2
pab` baq.

By the relation

a ˝ b “
1

2
rpa` bq2 ´ a2

´ b2
s,

we see that a real subspace of Hermitian matrices is a JC-algebra if and only if it

is closed under the operation of square. Furthermore, a linear map φ between JC-

algebras is a Jordan homomorphism, that is, φpa ˝ bq “ φpaq ˝ φpbq if and only if it

preserves the operation of square. Because a Hermitian matrix is positive if and only

if it is the square of a Hermitian matrix, we see that every Jordan homomorphism

defined on the full matrix algebra is positive.

We define the Jordan automorphism θ : Mh
2 pHq ÑMh

2 pHq by

θ

ˆ

x y
y˚ w

˙

“

ˆ

w y
y˚ x

˙

of order two. This is also positive, since the 4ˆ 4 matrix in (2.50) is positive if and

only if ab ě |α|2 ` |β|2. Finally, we define the map

φrb :“ θ ˝ π

on Mh
4 pCq, which is an extension of θ defined on Mh

2 pHq to the whole Hermitian

parts Mh
4 pCq. See Figure 2.10. We extend the map φrb to the whole matrix algebra

M4pCq by (1.11). Then we have

φrb

ˆ

x y
z w

˙

“
1

2

ˆ

w ` τ2,1pwq y ` τ2,1pzq
z ` τ2,1pyq x` τ2,1pxq

˙

“
1

2

ˆ

Tr 2pwq y ` τ2,1pzq
z ` τ2,1pyq Tr 2pxq

˙

,

(2.51)
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Mh
2 pHq - Mh

2 pHqθ ãÑ Mh
4 pCq

?
π

Mh
4 pCqPPPPPPPPPPPPq

φrb

Figure 2.10: The Robertson map φrb is an extension of Jordan automorphism θ.

for x, y, z and w in M2pCq. This map φrb is called the Robertson map which is a

positive map between M4pCq. It should be noted that the map

ˆ

x y
z w

˙

ÞÑ

ˆ

w y
z x

˙

is not a positive map on the whole matrix algebra M4pCq, although it is positive on

the JC-subalgebra Mh
2 pHq of M4pCq.

The Choi matrix of 2φrb is a 16ˆ 16 matrix, whose first four rows coming from

φrbp|1yxj|q with j “ 1, 2, 3, 4 are given by

»

—

—

–

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ 1 ¨

¨ ¨ ¨ 1

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ 1 ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ 1 ¨ ¨

¨ ¨ ¨ 1
¨ ¨ ¨ ¨

¨ ´1 ¨ ¨

¨ ¨ ¨ ¨

fi

ffi

ffi

fl

.

The next four rows are given by
»

—

—

–

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ 1 ¨

¨ ¨ ¨ 1

¨ ¨ ¨ ¨

¨ ¨ 1 ¨

¨ ¨ ¨ ¨

´1 ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ 1
1 ¨ ¨ ¨

¨ ¨ ¨ ¨

fi

ffi

ffi

fl

.

The other rows are given by
»

—

—

–

¨ ¨ ¨ ¨

¨ ¨ ¨ 1
1 ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ ´1
¨ ¨ ¨ ¨

¨ 1 ¨ ¨

¨ ¨ ¨ ¨

1 ¨ ¨ ¨

¨ 1 ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

fi

ffi

ffi

fl

and
»

—

—

–

¨ ¨ ¨ ¨

¨ ¨ ´1 ¨

¨ ¨ ¨ ¨

1 ¨ ¨ ¨

¨ ¨ 1 ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ 1 ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

1 ¨ ¨ ¨

¨ 1 ¨ ¨

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

fi

ffi

ffi

fl

.

In order to show that φrb is not decomposable, we define

σ1 “

ˆ

0 i
i˚ 0

˙

, σ2 “

ˆ

0 j
j˚ 0

˙

, σ3 “

ˆ

0 k
k˚ 0

˙

, σ4 “

ˆ

0 1
1 0

˙

,
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where 1 is the identity for quaternion. We also put

σ5 “ σ1σ2σ3σ4 “

ˆ

1 0
0 ´1

˙

.

Then we have

φrbpσiq “ σi, i “ 1, 2, 3, 4, φrbpσ5q “ ´σ5.

Now, we define Σ PM4pM4q by

Σ “

¨

˚

˚

˝

0 0 0 σ1

σ4 0 0 0
0 σ3 0 0
0 0 σ2 0

˛

‹

‹

‚

.

Then we have

Σ4
“

¨

˚

˚

˝

σ5 0 0 0
0 ´σ5 0 0
0 0 σ5 0
0 0 0 ´σ5

˛

‹

‹

‚

, Σ8
“ I16,

and eigenvalues of Σ consist of eighth roots of unity. Define

%˘ “ Σ` Σ˚ ˘ Σ4
` p1`

?
2qI16

“

¨

˚

˚

˝

˘σ5 σ˚4 0 σ1

σ4 ¯σ5 σ˚3 0
0 σ3 ˘σ5 σ˚2
σ˚1 0 σ2 ¯σ5

˛

‹

‹

‚

` p1`
?

2qI16,

then we see that

pid4 b φrbqp%`q “ %´

The eigenvalues of %˘ are given by

tω ` ω̄ ˘ ω4
` 1`

?
2 : ω8

“ 1, ω P Cu.

Therefore, we see that %` is of PPT, because the partial transpose of %` is nothing

but its conjugate. We also note that pid4 b φrbqp%`q “ %´ is not positive. By

Corollary 1.8.6 (i), we conclude that φrb is not decomposable.

Theorem 2.7.1 The map φrb defined in (2.51) is an indecomposable positive map.

References: [95], [96], [97], [98], [118]
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2.7.2 Exposedness of the Robertson map

In this section, we show that the Robertson map φrb generates an exposed ray of

he convex cone P1rM4,M4s. First of all, it is straightforward to check that the map

φrb is irreducible.

We write V “

ˆ

I2 0
0 ´I2

˙

PM4. Then we have

AdV ˝φrb

ˆ

x y
z w

˙

“
1

2

ˆ

Tr 2pwq ´y ´ τ2,1pzq
´z ´ τ2,1pyq Tr 2pxq

˙

.

We note that
ˆ

Tr 2pwq ´y ´ τ2,1pzq
´z ´ τ2,1pyq Tr 2pxq

˙

“

ˆ

Tr 2pxq ` Tr 2pwq 0
0 Tr 2pxq ` Tr 2pwq

˙

´

ˆ

x y
z w

˙

´

ˆ

τ2,1pxq τ2,1pzq
τ2,1pyq τ2,1pwq

˙

We also note that τ2,1pxq “ u˚xTu for x P M2, with u “

ˆ

0 1
´1 0

˙

P M2, and so, it

follows that

AdV ˝φrbpXq “
1

2

`

Tr 4pXq ´X ´ U˚XTU
˘

with

U “

ˆ

u 0
0 u

˙

“

¨

˚

˚

˝

¨ 1 ¨ ¨

´1 ¨ ¨ ¨

¨ ¨ ¨ 1
¨ ¨ ´1 ¨

˛

‹

‹

‚

PM4. (2.52)

We note that both φrb and AdV ˝φrb are unital, and the map AdV ˝φrb is also

irreducible. We proceed to show that AdV ˝φrb is also exposed, which implies that

φrb is exposed.

Theorem 2.7.2 For the matrix U in (2.52), the map

φU :“ Tr 4 ´ id4 ´ AdU ˝T (2.53)

is exposed.

Proof. We show that φU satisfies the dimension condition (2.42). We note that

φp|ξyxξ|q “ I4 ´ |ξyxξ| ´ U
˚
|ξ̄yxξ̄|U,

for a unit vector |ξy P C4. Because |ξy and U˚|ξ̄y are mutually orthogonal, we see

that φp|ξyxξq|ηy “ 0 if and only if |ηy belongs to the span of |ξy and U˚|ξ̄y. Therefore,

we have to show that

Nφ “ span t|ξy b |ξ̄y b |ξy, |ξy b |ξ̄y b U˚|ξ̄y P C4
b C4

b C4 : |ξy P C4
u
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is of 60 dimensional subspace of C4 b C4 b C4. To see this, we write |ξy “

p1, α, β, γqT P C4. Then the following 16 monomials

1, α, β, γ,
ᾱ, αᾱ, βᾱ, γᾱ,
β̄, αβ̄, ββ̄, γβ̄,
γ̄, αγ̄, βγ̄, γγ̄

(2.54)

appear to write down the entries of |ξyb |ξ̄y. To list up monomials appearing in the

entries of |ξy b |ξ̄y b |ξy, we multiply the monomials in the first row of (2.54) with

p1, α, β, γqT to get ten monomials

1, α, β, γ, α2, β2, γ2, αβ, βγ, γα.

We also get ten monomials from each row in (2.54), and so we have 40 monomials

in the entries of |ξy b |ξ̄y b |ξy. Therefore, we see that the span V of |ξy b |ξ̄y b |ξy

is of 40 dimension. We have

|ξy|ξ̄y|ξy “ p1, α, β, γqT b p1, ᾱ, β̄, γ̄qT b p1, α, β, γqT,

and so we also see that vectors in the family

t|ijky ´ |kjiy : i, j, k “ 1, 2, 3, 4, i ‰ ku

belong to V K. These 24 vectors, up to scalar multiplications, are easily seen to

be mutually orthogonal, and so we see that it is a basis of V K. The orthogonal

complement WK of the space W spanned by

|ξy b |ξ̄y b U˚|ξ̄y “ p1, α, β, γqT b p1, ᾱ, β̄, γ̄qT b p´ᾱ, 1,´γ̄, β̄qT

has the following 24 vectors

|i11y ` |i22y, |i33y ` |i44y,

|i13y ` |i42y, |i14y ´ |i32y,

|i23y ´ |i41y, |i24y ` |i31y,

with i “ 1, 2, 3, 4. They make a basis of WK.

One may check directly that V K XWK is a four dimensional subspace of C4 b

C4 b C4 which is spanned by the following four vectors

|114y ´ |411y ` |224y ´ |422y ` |231y ´ |132y,

|423y ´ |324y ` |133y ´ |331y ` |144y ´ |441y,

|233y ´ |332y ` |244y ´ |442y ` |314y ´ |413y,

|142y ´ |241y ` |113y ´ |311y ` |223y ´ |322y.
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Hence, we conclude that dimpV `W q “ 60, as it was required. ˝

Therefore, we see that the Robertson map φrb generates an exposed ray of the

convex cone P1rM4,M4s of all positive maps between 4 ˆ 4 matrices. It is known

[28] that the map φU defined in (2.53) is exposed whenever U is a anti-symmetry.

We note that

φU “ τ4,1 ´ AdU ˝T

with the map τ4,1 in (1.51). The map φU is usually called the Breuer–Hall map. For

further related examples of positive maps, see [103] and Section 8 of [30].

References: [12], [51], [28], [103], [30]
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[30] D. Chruściński and G. Sarbicki, Entanglement witnesses: construction, analysis

and classification, J. Phys. A: Math. Theor. 47 (2014), 483001.
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