실해석(대학원) 시험

2001 년 6 월 16 일

1. State 'Monotone Convergence Theorem', 'Fatou Lemma', and 'Lebesgue Dominated Convergence Theorem'. Prove that if $\langle f_n \rangle$ is a sequence in $L^1(\mu)$ with $\sum_{n=1}^{\infty} ||f_n||_1 < \infty$ then $\sum_{n=1}^{\infty} f_n$ converges in $L^1(\mu)$.

2. Let
$$f(x,y) = \frac{xy}{(x^2 + y^2)^2}$$
 for $x, y \in [0,1]$.
(i) Show that $\int_0^1 \int_0^1 f(x,y) dx dy = \int_0^1 \int_0^1 f(x,y) dy dx$.
(ii) Show that f is not integrable on $[0,1] \times [0,1]$.

- 3. Show that there exists no inner product on $L^1[0,1]$ with $\langle f, f \rangle = ||f||_1^2$.
- 4. Assume that a function g on [0, 1] has the property:

$$h \in L^q[0,1] \implies gh \in L^1[0,1],$$

where $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Show that $g \in L^p[0,1].$

- 5. Let μ be a measure on \mathbb{R} defined by $\mu(E) = \int_E f \, dm$ for every Lebesgue measurable subset E of \mathbb{R} , where f is a nonnegative function in $L^1(\mathbb{R})$, and m is the Lebesgue measure. Show that $\int_{\mathbb{R}} g \, d\mu = \int_{\mathbb{R}} gf \, dm$ for every $g \in L^1(\mu)$.
- 6. Investigate all the possible implications between the following statements for continuous functions $f, f_n \in C[0, 1]$:

(a)
$$f_n(x) \to f(x)$$
 as $n \to \infty$ for each $x \in [0, 1]$.
(b) $||f_n - f||_{\sup} \to 0$ as $n \to \infty$.
(c) $\int_0^1 f_n d\mu \to \int_0^1 f d\mu$ as $n \to \infty$ for each $\mu \in M[0, 1]$.
(d) $\int_0^1 f_n(x)g(x)dx \to \int_0^1 f(x)g(x)dx$ as $n \to \infty$ for each $g \in L^1[0, 1]$

7.

- (i) Show that the Banach algebra $L^1(\mathbb{T})$ under the convolution has no identity element.
- (ii) Give the definition of the Fejér kernel $\langle K_n \rangle$ in $L^1(\mathbb{T})$.
- (iii) Show that the Dirac measure $\delta_0 \in M(\mathbb{T})$ is the identity element under the convolution of $M(\mathbb{T})$.
- (iv) Explain how can we say that the Fejér kernel converges to δ_0 .

8.

(i) Show the identity
$$\widehat{fg}(n) = \widehat{f} * \widehat{g}(n)$$
 holds for every $g, h \in L^2(\mathbb{T})$ and $n \in \mathbb{Z}$.

- (ii) Show that $\{\widehat{f}: f \in L^1(\mathbb{T})\} = \{a * b : a, b \in \ell^2(\mathbb{Z})\}.$
- 9. Draw the graph of the function $f_k = \chi_{(-k,k)} * \chi_{(-1,1)}$, and find the Fourier transform \hat{f}_k of f_k , where $k = 1, 2, \ldots$ Show that the range of the Fourier transform is a proper subset of $C_0(\mathbb{R})$.
- 10. Write down anything.