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DUALITY FOR POSITIVE LINEAR MAPS IN MATRIX
ALGEBRAS

MYOUNG-HOE EOM AND SEUNG-HYEOK KYE

Abstract

We characterize extreme rays of the dual cone of the cone consisting of all s-positive (respec-
tively #-copositive) linear maps between matrix algebras. This gives us a characterization of po-
sitive linear maps which are the sums of s-positive linear maps and r-copositive linear maps,
which generalizes Stermer’s characterization of decomposable positive linear maps in matrix
algebras. With this duality, it is also easy to describe maximal faces of the cone consisting of all
s-positive (respectively r-copositive) linear maps between matrix algebras.

1. Introduction

The structures of the convex cone of positive linear maps between C*-alge-
bras are turned out to be extremely complicated even when the domain and
the range are low dimensional matrix algebras M. Several authors including
[2], [4], [9], [10], [12], [14] and [15] have tried to decompose the cone into
smaller cones consisting of more well-behaved positive linear maps such as
completely positive and completely copositive linear maps. We denote by
B(A) and T () the space of all bounded linear operators and trace class
operators on a Hilbert space J#, respectively. One of the methods to ex-
amine the possibility of decomposition is to use the duality between the
space Z(A,B(#)) of all bounded linear operators from a C*-algebra A4 into
() and the projective tensor product 7 (#)®A given by

(x®y,¢) =Tr(p()xY),  xeT(H), yc 4, € B(A,B(K)),

where Tr and t denote the usual trace and the transpose, respectively. Using
this duality, Woronowicz [15] has shown that every positive linear map from
the matrix algebra M, into M, is the sum of a completely positive linear map
and a completely copositive linear map if and only if n» < 3. The above dua-
lity is also useful to study extendibility of positive linear maps as was con-
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sidered by Stgrmer [13]. We denote by P[4, B] (respectively P°[4, B]) the
convex cone of all s-positive (respectively s-copositive) linear maps from a
C*-algebra 4 into a C*-algebra B. We also denote by P[4, B] (respectively
P>°[4, B]) the cone of all completely positive (respectively completely copo-
sitive) linear maps. The predual cones of P[4, Z(#)] and P[4, B(#)] with
respect to the above pairing has been determined by Itoh [3].

If we restrict ourselves to the cases of matrix algebras, then the above
pairing may be expressed by

(i Pley) ® ez:/) At

ij=1

= (dley),az),

iy=1

(1) (4,¢) = Tr

for 4 = 227/:1 a; ®e; € M, ® M,, and a linear map ¢ : M,, — M,, where
{e;} is the matrix units of M,, and the bilinear form in the right-side is given
by (X, Y) = Tr( YXt) for X, Y € M,. Then (1) defines a bilinear pairing be-
tween the space M, ® M,,,(= M,,,) of all nm x nm matrices over the complex
field and the space £(M,,, M,) of all linear maps from M,, into M,.

In this note, we show that the predual cone of Pi[M,,, M,] with respect
to the pairing (1) is generated by rank one matrices in M,,, whose range
vectors in C"" correspond to m X # matrices of ranks s. The predual cone of
P*[M,,, M,] is obtained by block-transposing that of P [M,,, M,]. With this
information, it is easy to characterize the predual cone of P [M,,, M|+
P[M,,,M,]. As an application, we extend Stgrmer’s result [12] to give a
characterization ol linear maps which are sums of s-positive linear maps and
t-copositive linear maps. We also show that Choi’s examples [1] of non-de-
composable positive linear maps are not the sum of 3-positive linear maps
and 2-copositive linear maps. The second author [6], [7], [8] has modified the
method in [11] to characterize maximal faces of the cones P [M,,, M,] and
P*[M,, M,], and all faces of the cones P, [M,,, M,] and P*[M,,, M,]. Gen-
erally, it turns out that every maximal face of a convex cone in a finite di-
mensional space corresponds to an extreme ray of the predual cone, when-
ever every extreme ray of the predual cone is exposed with respect to the
pairing. This enables us to describe maximal faces of the cones P,[M,,, M,]
and P*[M,,, M,] simultaneously. Compare with [7].

We develop in Section 2 some general aspects of dual cones how maximal
faces of a cone correspond to extreme rays of the dual cone, and characterize
extreme rays of the predual cones of P[M,,, M,] and P*[M,,, M,] in Section
3. We also examine in Section 4 the Choi’s example mentioned above.
Throughout this note, we fix natural numbers » and #, and denote by just Py
(respectively P*) for the cone P [M,,, M,]| (respectively P*[M,,, M,]). Note
that P, = P,,., and P> = P"™" in these notations, where m A n denotes the
minimum of {m, n}.
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This note has been completed during the second author was staying at the
University of Illinois at Urbana-Champaign. He is grateful for the kind
hospitality of Professor Zhong-Jin Ruan and the financial support from the
Yonam Foundation.

2. Duality of convex cones.

Let X and Y be finite dimensional normed space, which are dual each other
with respect to a bilinear pairing { , ). For a subset C of X (respectively D of
Y), we define the dual cone C° (respectively D°) by the set of all y € Y (re-
spectively x € X) such that (x,y) > 0 for each x € C (respectively y € D). It
is clear that C°° is the closed convex cone of X generated by C. It is also
easy to see that the dual cone of the intersection C; N C; of two cones C| and
(s is nothing but the closed cone generated by C} and Cs. In other words,
we have the identities:

) (NG =(CTuG)”, (UG =0NnG,

whenever C; and C, are closed convex cones of X. Indeed, we have
Ci=Cr D (CruCs) fori=1,2, and so C; NG, D (C7 U C5)°, which im-
plies one direction of the first identity. On the other hand, C; C (C; N (5)°
implies (Cy U C5)™ C (€1 N C»)°. The second identity follows from the first
one.

For a face F of a closed convex cone C of X, we define the subset F’ of C°
by

F ={yeC®:{x,y)=0 for each x € F}.

Tt is then clear that F’ is a closed face of C°. If we take an interior point xy of
F then we see that

F ={yeC:(x,y) =0}

Recall that a point xy of a convex set C is said to be an interior point if for
any x € C there is ¢ > 1 such that (1 — #)x + txo € C. If C is a convex subset
of a finite dimensional space then the set C of all interior points of C is
nothing but the relative interior of C with respect to the affine manifold
generated by C.

It is clear that F C F” for any face F of C. Therefore, we have
F' D F"” > F', and so it follows that F' = F"". We say that a face F of a
closed convex cone C is exposed with respect to the pairing ( , ) if there ex-
ists yo € C° such that F = {x € C: (x,y) = 0}. If a face F is exposed by
yo € C° then take a face G of C° such that y; is an interior point of G. Then
F=(G,andso F" = " = ¢ = F. Therefore, we have the following:
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LemMma 2.1. Let F be a closed face of a closed convex cone C. Then F is
exposed if and only if F = F". The set F" is the smallest exposed face con-
taining F.

If all closed faces of C and C° are exposed with respect to the pairing,
then it is clear [rom Lemma 2.1 that the correspondence F+—F’ is an order
reversing one-to-one mapping from the complete lattice # (C) of all closed
faces of C onto the complete lattice # (C°). From this, it is easily seen that
this map is an order reversing lattice isomorphism. Indeed, it is clear that

FIVFE <(FIAF),  FIAF,>(FVE).
Then it follows that
FIVE=F/VF <(FIAE) <(FVE)" =FVE,
and so, we have
(3) FIVF =(FIAF), FAF,=(FVE).

From now on throughout this section, we assume that C is a closed con-
vex cone of X on which the pairing is non-degenerate, that is,

4) x€C, (x,y) =0foreach ye C° = x=0.

This assumption guarantees the existence of a point n € C° with the prop-
erty:

(5) xeC, x£0= {(x,n) >0,

which is seemingly stronger than (4). Indeed, we take for each x € C a
neighborhood U, of x and a point y, € C° such that {z, y,) > 0 for z € U,.
Put C. = {x € C: ||x|| = €} for € > 0. Then since C; is compact, we see that

there exist xi,...,x, € C; such that U, U...UU, > C,. We may put
n=yy + -+ yy,- As an another immediate consequence of (4), we also
have

(6) FeZ(C), Fl'=C = F={0}.

LemMaA 2.2. For a given point y € C°, the following are equivalent:
(1) y is an interior point of C°.

(ii) (x,) > 0 for each nonzero x € C.

(iii) (x,y) > O for each x € C which generates an extreme ray.

Proor. If y is an interior point of C° then we may take r < 1 and z € C°
such that y = (1 — #)n+ ¢z, where n € C° is a point with the property (5).
Then we see that

oy =010 —t)lx,n) +t{x,z) >0
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for each nonzero x € C. It is clear that (ii) and (iii) are equivalent. Now, we
assume (ii), and take an arbitrary point z € C°. Then since C; is compact,
a = sup{(x,z) : x € C,} is finite, and we see that (x,z) <1 for each x € C,.
We also take 6 with 0 < 6 < 1 such that (x,y) > 6 for each x € Cy,. Put

(o).,
W= 1-6)°T1-6"

Then we see that (x,w) > 0 for each x € Cy/,, and so w € C°. Since z was an

arbitrary point of C° and 15 > 1, we see that y is an interior point of C°.

Lemma 2.3, If F is a maximal face of C° then there is an extreme ray L of C
such that F = L.

Proor. Note that F lies in the boundary of C°. If we take an interior
point yy of F then there is xy € C which generates an extreme ray L such
that (xp, o) = 0 by Lemma 2.2. Since xy is an interior point of L, we see that
yo € L' N int F, from which we infer that F ¢ L'. Because L’ ; C° by (6), we
have F = L.

Since (L") = F in the above lemma, we see that every maximal face of C°
is of the form G’ for a unique nonzero exposed face G. Note that L” need not
be minimal even among nonzero exposed faces.

LEMMA 2.4. If L is an exposed face of C which is minimal among nonzero
exposed faces, then L' is a maximal face of C°.

ProoF. Assume that L' is not maximal, and take a maximal face F of C°
such that I/ G F. Then there exists a nonzero exposed face M of C such that
F=Mand so L=L">F = M". Since L is minimal among nonzero ex-
posed faces, we have L = M and I' = M’ = F, which is a contradiction.

Now, we summarize as follows:

THEOREM 2.5. Let X and Y be finite-dimensional normed spaces with a
non-degenerate bilinear pairing { , ) on a closed convex cone C in X. Assume
that every extreme ray of C is exposed with respect to the pairing. Then L' is a
maximal face of C° for each extreme ray L of C. Conversely, every maximal
face of C° is of the form L for a unique extreme ray L of C.

We will see that there is an extreme ray in P,[M3, M3] which is not ex-
posed, while every extreme ray of the dual cone of Py (respectively P¥) is ex-
posed.
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3. Positive linear maps.

In this section, every vector in the space C" will be considered as an » x 1
matrix. The usual orthonormal basis of C" and matrix unit M, will be de-
noted by {e;:i=1,...,r} and {e; : i,j = 1,...r} respectively, regardless of
the dimension r. For a matrix 4 = Z[J:l X; ® e; € M, ® M,,, we denote by
AT the block-transpose Ef”/:l x;; ® e; of A. Every vector z € C" ® C"” may be

written in a unique way as z =Y ', z;® ¢; with z; € C" for i =1,2,... . m.
We say that z is an s-simple vector in C"® C” if the linear span of
{z1,..., 2} has the dimension < s.

For an s-simple vector z=) " z;®¢ € C'®C", take a generator

{ur,ua, ... ,us} of the linear span of {z;,z3,...,2,} in C", and define ay € C,
a €C"ucC'®Candw c C" ® C’ by

s
Zi:ZaikukGC", i=1,2,...,m,
k=1

"
ak:ZaikeiEC’”, k=1,2,....s,
=1
™)

U= e € C'® C

s
k=1

W = ar ® e, € C" e C

s

k=1

where #;, denotes the vector whose entries are conjugates of those of the vector
* m * H N — KA

ur. Then zz* = Zi,/:l 22} ® € € My @ My, 2;2] = ZH:I agajuiu;, € M,, and

so we have

m

(22, 0) = > (ley).ziz})

ij=1

= Z Z apdje{ple;), uruy)

ij=1k,(=1

=D > an{ples)ie, i)

ij=1k=1

m 3
=> Y arap((¢leg) ® exe)u, u)grces

i—1 k(=1

for a linear map ¢: M,, — M,. We also have ww* = Z;K:l ard; ® ey
S Mm & Msa and
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s

(pRid)ww") = > dlara)) @ e = Y > auaus(ey) © e

ki1 k=1 ij=1
Therefore, it follows that
(8) (zz%,¢) = (¢ ® idy) (WW" )1, 1) o o 5

where id; denotes the identity map of M.
With the exactly same calculation as above, we also have

©) {(z27)7,¢) = (& @ tp) (" )u, ) ey

for an s-simple vector z € C" ® C” and a linear map ¢ : M,, — M,,, where tp,
denotes the transpose map of M.

THEOREM 3.1. For a linear map ¢ : M,, — M, we have the following.
(1) The map ¢ is s-positive if and only if (zz*, ¢} > 0 for each s-simple vector
zeC'w C".
(i) The map ¢ is s-copositive if and only if {(zz*)7,¢) > 0 for each s-simple
vector z € C" @ C".

PrOOF. Assume that ¢ is s-positive and take an s-simple vector
z=>",2,®¢ € C"® C". Then the identity (8) shows that (zz*,¢) > 0. For
the converse, assume that {zz*, ¢) > 0 for each s-simple vector z € C" @ C™.
Foreachw e C" ® C'and u € C" ® C’, we take ax € C" and z; € C" as in the
relations (7). Then we see that (¢ ® id,)(ww*) is positive semidefinite by (8),
and so ¢ ®id; is a positive linear map. The exactly same argument may be
applied lor the second statement il we use the identity (9).

For s =1,2,...,m A n, we define convex cones V, and V* in M, ® M,, by

VM, ® M) ={zz":z is an s-simple vector in C"® C"}*,
VM, ® M,,) = {(zz*)" : z is an s—simple vector in C" @ C"}*°.
Then Theorem 3.1 and the identity (2) say that the following pairs
(10) (Vs, Py), V', P, (Vs NV Py + P
are dual each other, for 5,7 = 1,2,...,m A n. We note that V,,.,(M, @ M,,) is

nothing but the cone (M, ® Mm)+ of all positive semi-definite matrices in
Mn & Mm-

COROLLARY 3.2. A linear map ¢ : M,, — M, is the sum of an s-positive
linear map and a t-copositive linear map if and only if (A,¢) >0 for each
AecV,nV.

Stgrmer [12] characterized the decomposable positive maps among linear
maps from a C*-algebra into #(#). For a linear map ¢ : M,, — M,, this
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tells us that ¢ is the sum of a completely positive linear map and a com-
pletely copositive linear map if and only if the following

(11) (¢ ®id,)(V, NVP(M,, ® M) C (M, @ M,)".

holds for p = 1,2,.... In order to generalize this result for the sums of s-po-
sitive and r-copositive linear maps, we use block-wise Hadamard product.
For two  block  matrices X = ZIZ i) Xkt D egp € M, @ M, and
Y = Zig:l Ve @ exe € M, © M, we define the block-wise Hadamard product
by

»
XOY =) xu®yuweMM,.
k=1
Then for every linear map ¢ : M,, — M, we see that the following identity

P
((p®idy)( = Z O(Vke)s Xre)

k,l—1

y <¢ €j); Z (kavelfi>xk€>

=1 kf—1

P
Z yk€7611 xk€®ellv¢>
k,f—1

Y,¢)

holds, using the relation yz, = Z” 1 (Vkes ee;. For A e M, @ M, we de-
note by 47 € M,, ® M, the shuffle of A, that is, (x® )’ = y® x. Then it is
easy to see that

(12)

i

=

ij=

= (X

©

AeV(M,® M,)<=A" eV (M, ® M,),

13
(13) AeVi(M,®M,)=A4° eV (M, & M,).

Let y=>% ,m®eeC"®C’ be an s-simple vector with
Ve= oy braueC" fork =1,2,...,p. Then we have

]
WY; =Y brabisua

a,3—1
3 m _

= E g brabeg(uatiy, ej)e;
a,B3=1ij=1

s

Z Z b/ca/5€3<ua’7 e»Wey-

o 8=l ij=1
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For an arbitrary given x = %_| x ® e, € C"® C, put

bkuxkeC", a=12...s,

P
ZU[ -
k=1

P
wi:Z<ua,e,~>za€C", i=1,2,...,m,

a—l

"

W= Z w,®e € C'® C".

i=1

Then we have

xxX*Oyy = XX ® ViV

e

o
Il

s

m
Z Z brabis(uia, €i){us, €;) xkX; & e

1on,B—1iy—1

[
M’w

k

=T

wiw; ® ey = ww'",

N
which belongs to V.(M, ® M,,), since w is an s-simple vector of C" ® C".
Therefore, we see that

(14) XM, M), YEV(M, 2 M,)=X oY €V (M, ®M,).

By the same argument, we also have

(15) XM, @M,)", Y eV (M, ®M,)=X0®Y cV (M, M,).

THEOREM 3.3. For a linear map ¢ : M,, — M, we have the following:
() ¢ is s-positive if and only if (¢ ®id,)(Vo(My & M) C (M, @ M,)".
(ii) ¢ is t-copositive if and only if (¢ ®id,)(V'(M,, & M,)) € (M, ® M,)™.
(iii) ¢ is the sum of an s-positive linear map and a t-copositive linear map if
and only if (¢ ®id,) (Vs NV (M,, @ M,))) € (M, © M,)*.

Proor. If ¢ is s-positive and Y € V(M,, ® M,) with p =1,2,.., then we
have
((p®idp)(Y), X) = (X O V,¢) 20
for each X € (M,,®Ml,,)+ by (14) and the duality between V; and P,.

Therefore, (¢®id,)(Y) € (M, ® M,)". For the converse, note that every
A e M, M, is written by

A:AQJm:JnQAﬂz
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where J, =37 _ e;®e; € M, ® M, for r=1,2,.... Therefore, for each
A e VM, M,), we have

(4,0) = (Jn© 4%, 6) = (¢ ®1d,)(47),Ju) = 0

by (13). This proves (i). The exactly same argument also proves (ii) and (iii)
il we use (15) and (13).

We note that the trace map X —Tr(X )/ (respectively the identity matrix)
is a typical interior point of the cones P,,., and P™" (respectively V). It is
also easy to see that these play the roles of n in (5) for any pairs of dual
cones in (10).

We also note that every face of V,,,, 1s exposed with respect to the pairing.
To see this, take a face F of V,,, and an interior point 4 of F. Then F con-
sists of all positive semi-delinite matrices whose range spaces are contained in
the range space of A. If we take a positive semi-definite matrix B whose range
space is orthogonal to that of 4 and a linear map ¢ : M, — M,, such that
227/:1 o(e;) ® e; = B, then we see that ¢ is completely positive, and F is ex-
posed by ¢. In this way, we see that every face of P,,,, corresponds to a face
of V,uan, Which is determined by the range space of an interior point. There-
fore, every face of P, corresponds to a subspace of C" ® C”, in the order-
reversing way. For an order preserving lattice isomorphism between faces of
P.uan and subspaces of C" ® C" = M,,,,, we refer to [8].

Since every extreme ray of V; is an extreme ray of V,,,, and Py is larger
than P,,,,, it follows that every extreme ray of V; is exposed with respect to
the pairing. The same argument holds for the pair (V*, P*), because the block
transpose map A +— A" is linear. Therefore, we may apply Theorem 2.5 to get
the following:

THEOREM 3.4. Let P (respectively P*) be the convex cone of all s-positive
(respectively s-copositive) linear maps from M, into M,. For each s-simple
vector z € C" @ C", the set

{¢p € P;:(zz",¢) =0} (respectively {¢ € P°: ((zz")",¢) = 0})

is a maximal face of P, (respectively P*). Conversely, every maximal face of Py
(respectively P°) arises in this form for an s-simple vector z € C" @ C".

4. Examples

The first example of an indecomposable positive linear map between M3 was
given by Choi [1] by considering a positive semi-definite biquadratic form
which is not the sum of the squares of bilinear forms. This example
¢ : M3 — Ms is defined by
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X1 X2 X13 X1 —X12 —X13 x3 0 0
¢ | x0 x» X3 || —xa X —xa | +pl O xui 0 |,
X3l X3 X33 —X31 —X3 X33 0 0 Xx»

where p1 > 1. Later, Stgrmer [12] showed that the above map is not decom-
posable by the condition (11). In order to apply Corollary 3.2, we modify the
matrix in [12] to define

aer + alexn + ex ae ae3
A= ey e1] + aern + alexs e € Mz R My,
)
aes) aesn acey) + exn + aess

where « is a nonnegative real number. It is easy to see that 4 is positive
semi-definite whenever o > 0, and 4 € V3. If we put

Z] = ey +eq, IZp = eg+ ey, zZ3=e7+ ;3

then we see that

3
A = E ziz; + afer€] + eses + evey),

i=1
and so 4 € V2, whenever o > 0. A direct calculation shows that
(4,¢) =3a(pa — 1),

which is negative if & = 1/2 for example. Therefore, we see that the map ¢
is not the sum of a 3-positive linear map and a 2-copositive linear map. The
authors were not able to determine whether the above matrix A belongs to
V,. If this is the case then we may conclude that ¢ is not the sum of a 2-po-
sitive linear map and a 2-copositive linear map. See [14] for the case of
i = 1. Actually, we could not find an explicit example of 3* x 3> matrix
which lies in V> N2 \ Vi, although we know that this set is nonempty since
there are examples of positive linear maps between M3 which are not the
sums of 2-positive linear maps and 2-copositive linear maps. See [5], [9] and
[14]. The following proposition says that we must consider matrices whose
ranks are at least two, in order to find examples in V> N V2 \ V.

PROPOSITION 4.1. Let x € C"® C". Then the rank one matrix xx* &
M, ® M, lies in V,,,, N V™ if and only if it lies in V.

ProOOF. Put x =" x;®¢; € C"® C". If xx* €V, then x is a 1-simple
vector, and so we may write x=) ., AyRe € C'®C". If we put
x=Y",\y®e then we have (xx*)" = %%, and so xx* € V"™ For the
converse, we may assume that x; #0 without loss of generality. For
a=Y1",a®e €C"®C", note that
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m

"
a(xx)a=Y axpxia =Y (x,a){x,a).

ij=1 ij=1
Ifwetakea=x, ®Re; — x; Qe for k=2,3,...,m, then
2 2 2
a (xx*)a = 2(|(x1, x| — [lx 7M7)

which should be nonnegative. Therefore, we see that x; is a scalar multiple
of x| for each k = 2,3,...,m, and so x is a 1-simple vector.

Note that the map ¢ with 1 = 1 generates an extreme ray as was shown in
[2]. We remark that this ray is not exposed. To see this, first note that if
n®¢eC’® Clis a 1-simple vector then

(n® (@), ) = Trlp(e”) ()] = (3(€")m, 7).

So, if ((n® &)(n® £)", ¢) = 0 then by a direct calculation we see that the pair
(&,7) is one of the following:

(16) (e1,e3), (e e1), (e3,€), (&usMa)s

where &, = (¢4,e?,e), n, = (€7, e7",¢7) and « = (a,b,c) runs through
R3. Therefore, if we denote by L the extreme ray generated by ¢ then we
have

L = {xx* S V1(M3 ®M3) x=eRe, xR e3, 3R €1, Mo ®€a (a S R3)}oo.
By the arguments in Section 5 of [6], we see that L ; L.

ADDED IN PROOF. It was shown in the paper [16] by Kil-Chan Ha that the
map ¢ in section 4 is not the sum of a 2-positive map and a 2-copositive
map.
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INVARIANT FUNDAMENTAL SOLUTIONS AND
SOLVABILITY FOR GL(#, C)/U(p, q)

NILS BYRIAL ANDERSEN

0. Introduction

Let G/H be a reductive symmetric space and let D : C°(G/H) — C>*(G/H)
be a non-trivial G-invariant differential operator. An invariant fundamental
solution for D is a left-H-invariant distribution £ on G/H solving the dif-
ferential equation:

DE =3,

where § is the Dirac measure at the origin of G/H.

Consider now the reductive symmetric space G/H = GL(n, C)/U(p, ¢).
Let a, be a fundamental Cartan subspace for G/H (the ‘most compact’
Cartan subspace) and let 4, be the associated Cartan subset of G/H, iden-
tified with a real abelian subgroup of . For every non-trivial G-invariant
differential operator D we let y,(D) be the differential operator with constant
coefficients on 4, defined via the Harish-Chandra isomorphism. We use the
Plancherel formula for GL(»n, C)/U(p, q), obtained by Bopp and Harinck in
[4], to construct invariant fundamental solutions for G-invariant differential
operators D on G/H for which the differential operator y,(D) has a funda-
mental solution, i.e. a distribution T, on 4, solving the differential equation:

Ye(D)Ty = &y,

where 8, is the Dirac measure at the origin of 4,.

This result is similar to the results obtained by Benabdallah and Rouviére
for semisimple Lie groups, see [2, Théoréme 1]. Their and our approach can
be seen as a generalization of the method used by Hoérmander to find (un-
damental solutions for non-zero differential operators with constant coeffi-
cients on R”, see [7, p.189f].

Received June 16, 1997.
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We remark, since G/H is a split symmetric space, that the existence of an
invariant fundamental solution for a G-invariant differential operator D on
G/H implies solvability of D, in the sense that DC®(G/H) = C™(G/H), see
e.g.[1, p. 3011].

1. Structure of X = GL(n,C)/U(p,q)

Most of the contents of this section (and some of the next) are taken from [3]
and [4]. Note though, that our notation may be different.

Let p and g be two integers such that 0 < g <pandletn=p+q. Let J be
the diagonal matrix in M, (C) defined by:

_( O
=5 %)

where I, (I,) is the identity element of M,(C) (M,(C)). Let G= GL(xn, C).
Define an involution o¢ of G by:

o6(g) =J(g) ' J, g€ G,

where g* denotes the conjugated transpose of g. The classical Cartan in-
volution is given by: 8(g) = (¢*) ', and we observe that the two involutions
commute. Let H = U(p, ¢), respectively K = U(n), be the subgroup of fixed
elements of og, respectively of 6. Then G/H is a reductive symmetric space
of type G¢/Gr (i.e. G complex and H a real form of G).

Define a map ¢ of G into G by:

o(g) = gogle) ' =glg'J, g € G.

We deduce, since H is the subgroup of fixed elements of o, that ¢ induces
an injection, also denoted ¢, from G/H into G. The image of ¢, denoted by
X, is a closed submanifold of G, see [8,p.402], and ¢ is seen to be a G-iso-
morphism from G/H onto X, equipped with the G-action: g - x = gxog(g) ',
x € X, g € G. We will in the following use this realization of G/H. We note
that the action of H on X is given by the adjoint action of H on X C G, since:
hex=hxh!, xeX heH.

Let g = M,(C) denote the Lie algebra of G and let g, denote the involu-
tion on g given by the differential of o, i.e.:

og(X)=—JX*J, X € g.

Let g = h @ q be the decomposition of g into the *1-eigenspaces of oy,
where:
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Ae M,(C)and4™ = —4
B

b= (X € My(C)|X = y(X)} = (g‘* C) B e M,,,(C) ,
CeMy(CandC" = -C

is the Lie algebra of H, and:
q={X € M(O)lX = —gy(X)} = ib.

Let x e X, then x = gog(e)™' =gJg*J for some ge G, whence og(x) =
—J(gJg*N'J = —gJg*J = —x, and we see that X C q. We conclude by
dimension considerations, that X is an open subset of q, and that we can
consider X C g as an open submanifold of q, equipped with the inherited
differential structure.

The classical Cartan involution 6 on g is given by: 8(X) = —X*, X € g.
The Cartan decomposition of g into the +1-eigenspaces of 6 is given
by: g=¢®p, where &= {X € g|6(X) = X} is the Lie algebra of K, and
p = (X € glo(X) = —X).

Let exp denote the (matrix-)exponential map of g= M,(C) into
G =GL(#, C).

Cartan subalgebras and Cartan subspaces

A Cartan subspace a for X is defined (cf.[8,§1]) as a maximal abelian
subspace of q consisting of semisimple elements. We see, since b is a real
form of g, that a is a Cartan subspace for X if and only if /a is a Cartan
subalgebra of f. The Cartan subset 4 of X associated to a Cartan subspace a
for X, is defined (cf.[8, §1]) as the centralizer of a in X, 4 = Zx(a), under the
adjoint action of X considered as a subset of G.

There exist ¢ + 1 H-conjugacy classes of Cartan subspaces for X. A family

.....

u o

Uy Qk
1
a, = H(t,u,0) = . ,
T2k

—Ok g

—6 u

where t = (t1, ..., ti2) €R"™, u=(u,...,u) e R¥ and 6= (6, ...,6;,) € R~.

We note that det H(z, u, ) = ]_[/'.';12]‘ 7 TTr_, 3 4 63) = 0, for H(t,u,6) € ay.

REMARKS. We see that the (maximal split) Cartan subspace ay is contained
in pNgq, so X= G/H is a split symmetric space. The intersection a, N € is a
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maximal abelian subspace of €N q, hence a, is by definition a fundamental
Cartan subspace for X = G/H (the ‘most compact’ Cartan subspace).

The Cartan subsets 4, = Zx(az), k € {0, ..., g}, are, since X C q, given by:
A =XNag (let aeX, then: a € Zx(ay) & Ad(a)X =aXa™' = X, VX € a;
< aX = Xa, VX € a; © a € q; (by maximality ol a;)) and are thus open
subsets of ay. It is easily seen that 4, is a closed subgroup of G, hence a real
abelian Lie subgroup of G with Lie algebra a;. There are "Jrqq:,fk> con-
nected components of Ay, see [4, p.51] for further details, with identity com-
ponent given by exp ay.

We denote by X, = Z(g, a;) the root system of the pair (g, az¢c), where

e =a;+ iy Let H(t,u,0) € a; and let Xy, ..., %, be the eigenvalues of
the matrix H(¢, u, 6) € M,(C) ordered as below:
uy F 001, .. G, e Eog, Uy — 1Bk, ..., 1 — 10

The roots of 3; are given by the applications:
e ={H(t u,0) 1= A — ML £}
We define the positive roots, denoted by =, of T as:
Ezr = {H(t,u,0)— r — M|l > j}.

We say that a root & € Xy is real, respectively imaginary or complex, if it
is real-valued, respectively imaginary-valued, or neither real- nor imaginary-
valued, on the Cartan subspace ay. The set of real roots, positive real roots,
imaginary roots, positive imaginary roots, complex roots and positive com-
plex roots are denoted by X r, X} g, ks, T/, Tpc and T respectively.
The positive real roots, EzR, are given by the applications:

EZR = {H(t,u,—t; — ;|1 <j <1 <n—2k}.

Let W denote the Weyl group associated to the root system Z;. We
identify W with the permutation group &,, acting on the n eigenvalues of
elements in a;. Let D(X) denote the algebra of G-invariant differential op-
erators on X, let S(ay) be the symmetric algebra of the complexification of
a, and let T(ax) = S(ax)”* be the subalgebra of Wj-invariants hereof. The
two algebras D(X) and I(a;) are isomorphic for all k €({0,...,q}, see
[4, Théoreme2.1] for details. We let y; denote the isomorphism from D(X)
onto I(ay) defined on [4, p.59].

The algebra S(az) can be identified with the algebra of differential opera-
tors on the Lie group 4; with constant coefficients, by means of the action
generated by:

d
Xf(a) = Ef(exp tX - @)=

for X € a;, where f € C™(4;) and a € 4.
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We extend the Killing form B on s/(n, C) to g by: B(X, Y) =2nTrXY, for
X, Y € g. This gives a canonical isomorphism between the algebra a; ¢ and
the complex dual aj . of a;. For every root o € %y, we let H, be the element
of ai ¢ corresponding to the coroot «¥ = 2o/(e, ). Consider in particular
the real root o€ X;r given by the application H(¢,u, )—1t; —¢;. Then
Hy = Eiy 1541 — Eryjry, where E,, € M,(C) is the matrix with a 1 in the
(a, b)’th entry and zeroes otherwise.

The Cartan decomposition of X = GL(n, C)/U(p, q)
Let x € X. The characteristic polynomial of the C-linear endomorphism
Ad(x) — I on g = qc = he can be written as:

det c((1 + 2)I — Ad(x)) = 2" Dx(x) mod z,

for all z € C. The function Dyx is an H-invariant analytic function on X. An
element x in X is called regular (cf.[8, §1]) if Dx(x) # 0, and the set of regular
elements in any subset U C X will be denoted by U’.

PROPOSITION 1.1 Let a € A, C ay, then:

a(a)
Dxtay = | (detay "

wEXy

PRrROOF. [4,p.55].

Put H[U] = Uy hUR™" (the H-orbit of U) for any subset U C X. We
note that Zg(ay) = Zy(Ay) (and Ny(ag) = Ng(Ay)), since expay, C Ax C a
for all k € {0, ..., g}. The quotients Ng(ay)/Zu(a;) and Ng(Ar)/Za(Ay) are
thus equal and finite. We also note that Zgz(a;) = Zy(a) for a € A}, since ia
can be viewed as a (g-)regular element of the Cartan subalgebra ia; of §.
The subgroup Zg(ay) = Zu(Ax) of H is in fact a Cartan subgroup of H.

THEOREM 1.2 (The Cartan decomposition of X = GL(», C)/U(p, q¢)). The
open and dense subset X' of regular elements of X is the disjoint union of the H-
orbits of 4}:

g

X = Lq) Hl4) = hapn .
k=0

k=0 heH

The map from H/Zyp(Ay) x A} into X defined by (hZp(Ay), ay—hah™" for
h e H and a € A, is an everywhere regular |NH(A/C)/ZH(A/C)|-t0-0ne map into
X.

Proor. See [8, Theorem 2 (ii)].

Tt is well known, since X = G/H is a reductive symmetric space, that there
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exists, up to a constant, a unique G-invariant measure on X. Using the Car-
tan decomposition of X, we can express this measure by means of the in-
variant measures on A, and H/Zg(a;):

THEOREM 1.3. There exist q+ 1 positive constants C, depending on the
choice of the invariant measures da on A, and dh, on H/Zg(ay), k € {0, ..., q},
such that.

q

/fxwdxz Ck/1 Flhal™)| Dy(@)\dady.
X 0 H/Zg(ay) J Ay

fe=l

for all f € C(X).
ProOOF. See [3, p.106-108] for details.

Orbital Integrals
Define a function Dy(a) on 4, by:

D@ =—— [ @)l ] ot

deta)?
( ) weT], we T\,

for a € A, C a;. We note that deta > 0 and that Dk(a)2 = ‘Dx(a)
ae Ak.

, for

DErFINITION 1.4. Let k € {0, ..., g} and let /' € C(X). The orbital integral
Kf’f of f, relative to the Cartan subspace Ay, is the function defined on the
regular elements a € 4) by:

K (@)= Di(a) fChah™"Ydly,
H/Zpn(ay)

where diy, is the invariant measure H/Zy(ay) from above.

REMARKS. Let k€ {0,...,q} and let U C 4} be a compact subset. Since
Dy is an H-invariant continuous function, we conclude from regularity of
the map (hZy(Ay), v—hah™', h € H, a € A, that the subset H[U] is closed
in X. We see in particular that the H-orbit H[a] through any regular element
a € A isclosed in X. So let a € 4" and let /' € C°(X), then supp /' N H[a] € X
is compact, and the above integral converges. We also easily see that
Ky e C(4A').

Let Uc X and Vi, C 4k, k€ {0,...,q}, be compact subspaces, and con-
sider the Fréchet spaces: CiP(X) = {f € C2*(X)| supp f C U} and:

sup |XF(a)| < oo, YX € S(a;) and
C?/ok(A;\) —lFe COO(A;\) aeVynd)
Fl@y=0 for aeA\Vi
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THEOREM 1.5. Let k € {0, ..., q} and let U C X be compact. There exists a
compact subset Vi, C Ay such that Kf’f(a) = 0fora € A\Vy for all [ € CF(X);
and the map: f |—>K]]~‘ is a continuous map from Cg7(X) into C3(Ay).

Proor. We can, since X is an open subset of q = if, define a continuous
injection CF(X) 3 fi>g € C°(h), where the latter space is equipped with the
Schwartz space topology, by:

f—iX) if —iXeX

X)=
&) 0 otherwise

for X € h. We observe again that the algebra iq; is a Cartan algebra of b,
and we identify the root systems of the pairs (b, (fax)c) and (g, ax.c), also
identifying the positive roots. Let X € g. The characteristic polynomial of
the C-linear endomorphism ad(X) on g = b = g, can be written as:

det c(zI — ad(X)) = z"Dy(X) mod 2",

for all z € C. An element X in g is called g-regular if Dy(X) # 0, and the set
of g-regular elements in any subset # C g is denoted u9 "%, Let in particular
X € aic, then Dy(X) = [[ e, (X)), see [9,p.9], s0 A} = A} "8 C af ™.

wETy

The orbital integral ‘Ifii of g, relative to the Cartan subalgebra ia; of b, is
the function defined on the regular elements X € ia} "% by:

‘1’§(X ) = di(X) g(AdMX)dhy,
H/Zp(ay)
where di(X) = sign(]_[aezb o X)) HanZﬁ o X), see [9,p.35] for details. We
thus see that: ’

. +y >+
(—z)‘zk\ u’ i
a1 \P’g(za),

Kjf?(a) =
(deta)?

forae A) C a} ™

Let S(ia ") be the Schwartz space on ia} "® (we can regard af " as
an open subspace of a; = R"). The map: fi—gi— ¥, CF(X) — F(ial ™),
1s, by [9, Lemmal.3.6] and the remarks made on [9, p.40], continuous, and
there exists a compact subset W} C a;, depending only on U, such that \Ifij is
identically zero on iaf "“*\iW). We observe, since A) is an open subset of
ai "%, that C}(4)) is naturally embedded in Z(iaf ™), so letting
Vi = Wi N Ay gives the result.

—reg

Using the notion of orbital integrals, we can now rewrite the integration
formula introduced before. Let ® be any locally integrable H-invariant
function on X and let /" € C2°(X), then we get by Fubini’s Theorem:
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(1) / O(x)f (x)dx = Z Ci / Kf (@) Dy(a)®(a)da.

2. Spherical distributions

Denote the the space of distributions on X, i.e. the continuous functionals on
C22(X), by D'(X). We note that a functional on C°(X) is in D'(X) if and only
if it is continuous on CFP(X) for all compact subsets U C X. The group G acts
naturally on D'(X) via the contragredient representation, and we denote the
space of H-invariant distributions under this action by D/(X)7.

DEerFINITION 2.1 An H-invariant distribution 7" on X is called a spherical
distribution il and only il there exists a character y of D(X) such that
DT = x(D)T for all D € D(X).

The spherical distributions on X are characterized in [4, §2.3], they are in
particular determined by locally integrable functions ® on X, whose restric-
tions to X' are H-invariant analytic (unctions, [4, Théoréme?2.8] (and sa-
tisfying some other conditions). The Dirac measure, § € D'(X)”, at the origin
1 of X can be decomposed as a direct integral of certain spherical distribu-
tions on X (The Plancherel formula for X, see Theorem 2.4), which will be
constructed below.

Define a function bk(a) on A, as:

D@ = —— [ at@.

(de a) e E;

for a € A; C a;. We note that Bk(a)2 = (—l)yzﬂDx(a), for a € Ay.

Fix k € {0,..., ¢} . We define for all (i, ¢, m) € "% x C¥ x Z¥ such that
Wi — 1 ¢ %Z for 1 <j <I<n—2k, an H-invariant function ¢*(u, ¢, m) on
X' by:

¢ (. c.m)(@) =0

ifae A, r<korifae A\expa,, r> k; and otherwise by:

k .
ar|li—, sign 6;
@ F e ma) = iz S8 6
D"(a)l_[1</<l<n o Hpkr — 147)
r—k
X Z Z g(()—) l_[e“}”r(ﬂz cos(m, T(/))l_[el(liam+ua<n+1 —j=2k) M (j k)
ocS,_y €S, Jj=l J=1

n—k—r

X 1_[ oMo livk—r HCOSh((Ma(/) - Ma(n+lﬁ/72k))(|9r(/+k)| —))
k1 i1 sinh((io() — Mot t1—j—26))7)
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fora=expH(t,u,8) € A,, r = k, with |6;| < w for j € {1, ..., r}, where ¢, is
*C1ye

a constant given by: ¢;, =

Define for all (i, ¢, m) € C"%* x C* x C* anelement Y, = Yi(ue, c,m) € O c

by:
n—2k
(Yi, H(t,u, 0)) = Z it + Z(c,u, + m;6)),
=
for H(t,u,6) € a;. This defines an isomorphism between C" 2 x C* x CF
and aj ., with which we will often identify the two spaces. The norm of Yy is
defined as the Euclidean norm of (u, ¢, m):
n—2k

|Yel? = Z|u/|2+2|c/|2+|m/

THEOREM 2.2. Let k € {0, ..., q} and let (u,c,m) € R"* x R* x Z* such
that py # w; for 1 < j <1< n—2k. The function & (u, ¢, m) defines a spherical
distribution with character given by:

D¢F (1, e, m) = y(DYE Y (i, ¢, m),
Jfor all D € D(X).

ProoOF. The function ¢*(u, ¢, m) is according to [4, p.86] the local expres-
sion for the spherical distribution on X defined in [4, Définition 4.6], satisfy-
ing the above.

Let ¢>0 and define the open tube QF c C" % xCfxZt as:
QF = R;’*Zk X RIS‘ x ZF, where: R, =R+i]—¢,¢[c C. By a holomorphic
function in QF, we mean a function that is holomorphic in the n —k first
variables for all m e Z~.

Fix again k € {0, ..., ¢} and define for all (i, ¢, m) € Q’l‘/4 an H-invariant
function on X' by (normalizing):

3 Yo =diem= [ i¥e H) [ il¥e, H-o)¢' (. ¢, m).

+ +
aezk‘R ae,

We note that ]_[D/Ezm Yi, H)) = ]_[/#l(m 1), so all the poles of ¢*(u, ¢, m)
in the open tube S2 1,4 1€ cancelled by the normalization factor. The function
d/‘(u, c, m) 0bV10usly defines a spherical distribution for all (x, ¢, m) € R"™
ka x Z such that p; # w; for 1 <j <1 < n— 2k, with the same character
as ¢*(u, ¢, m).

THEOREM 2.3. Let 0 <e <3, let k€({0,...,q} and let [ € C(X). The
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Sfunctions ¢f§(u, ¢, m) define spherical distributions for all (i1, ¢, m) in the open
tube Q’g with characters given by:

D¢k, e, m) = y(DYE Yk (w, ¢, m),

for all D € D(X). The map: (i1, ¢, m) — (¢>’0‘(u, ¢, m), ) is a rapidly decreasing
holomorphic function in the open tube Qi‘

ProoF. Letk € {0, ..., q}, assume that r > k andlet a = exp H(t, u,6) € 4,
with 8| < w forj € {1,..., r}. We have the inequality:
k 2k
|#5(Yi@)Di(a)] < PRy S 3T (e H
o€, o4 €&, |acT}

ﬁ [ cosh((1o(j) — Morr1—j—200 )18y | — )

[ sinh((tto(y — Hotnt1—j—20)7)

J=1

k r—k n—k—r
% l_[ el l_[ Mo Fitotmr 120 Wiy 1_[ e toe—rl
Jj=1 Jj=1 J=r—k+1

Fix o € &, _» and 17 € &,. The fractions:

’

—
1_[ |a) — Potnti—j—26)|| COSh((La(y) — Hotnt1—j—20))|Or(jtiy| — 7))
i (14 | )| sinh((ttog) — Hogr1—j—20))]

and:
Macs: (e, 1)
—k 2 ’
[TV o) — Mo —jam (1 + 1 Yi D" rk

are bounded for all y € RZ*Zk (note that ‘HanI(Yk’ H,)| < C + |Yk|)|2ﬂ,
for some constant C > 0, and |} | = n(n — 1)/2 < 1?), so there exists a con-
stant C > 0, not depending on the choice of a € 4, made before, such that:

k
4 (YO(@D(@)] < C(1+ | Yi)" [ ool

J=l1

(4) r—k n—k—r
Imi P 4y W) Implon i t—r
X He| (Ha(n Motnt1—f 2M) r(;+/q| 1_[ €| Mot ik zl’
Jj=l1 J=r—k+1

for all (i1, ¢, m) € QF.

Fix (i, ¢, m) € QQ We see, from (2) and (3), that (/)Io‘(u, ¢, m)y € C™(4.)
and that d)fj(u, ¢, m) - Dy 4, can be extended to a continuous function on each
of the connected components of A, (identically zero on 4,\expa,). Let



