On the convex set of completely positive linear maps in matrix algebras

By SEUNG-HYEOK KYE*

Department of Mathematics, Seoul National University, Seoul 151-742, Korea
e-mail: kye@math.snu.ac.kr

(Received 2 October 1995; revised 29 January 1996)

Abstract

Let P_i (respectively CP_i) be the convex compact set of all unital positive (respectively completely positive) linear maps from the matrix algebra $M_m(\mathbb{C})$ into $M_n(\mathbb{C})$. We show that maximal faces of CP_i correspond to one dimensional subspaces of the vector space $M_{m,n}(\mathbb{C})$. Furthermore, a maximal face of CP_i lies on the boundary of P_i if and only if the corresponding subspace is generated by a rank one matrix.

1. Introduction

Let M_n be the C^*-algebra of all $n \times n$ matrices over the complex field, and P_i the convex compact set of all unital positive linear maps from M_m into M_n, that is, the maps which send the set of positive semi-definite matrices into itself. The convex structures of P_i are highly complicated even in low dimensions, and several authors [CL, KK, O, R, S, W] have considered the possibility of decomposition of P_i into simpler convex subsets. One of them is the convex set CP_i of all unital completely positive linear maps from M_m into M_n. Every linear map $\phi : M_m \rightarrow M_n$ corresponds to a linear functional $\theta_\phi : M_m \otimes M_n \rightarrow \mathbb{C}$ by the formula

$$\theta_\phi : A \mapsto \frac{1}{n} \sum_{i,j=1}^{n} \langle \phi(A_{ij}) e_j, e_i \rangle, \quad A = \sum_{i,j=1}^{n} A_{ij} \otimes E_{ij} \in M_m \otimes M_n,$$

where $\{E_{ij}\}$ is the usual matrix units for M_n and $\{e_j : j = 1, 2, \ldots, n\}$ is the usual orthonormal basis of \mathbb{C}^n. It is easy to see that every projection $P \in M_m \otimes M_n$ gives rise to a face

$$F_P = \{ \phi \in CP_i : \theta_\phi(P) = 0 \}$$

of the convex set CP_i. It has been shown in [SW] that the map $P \mapsto F_P$ is surjective.

In this note, we find the right inverse of this map which is a lattice isomorphism from the lattice $\mathcal{F}(CP_i)$ of all faces of CP_i into the lattice $\mathcal{E}(M_{m,n})$ of all subspaces of the vector space $M_{m,n}$ of all $m \times n$ complex matrices. With this machinery to hand, we show that maximal faces of CP_i correspond to $(mn-1)$ dimensional subspaces of $M_{m,n}$, or equivalently to one-dimensional subspaces of $M_{m,n}$ with respect to the inner product on $M_{m,n}$ arising from the trace of M_n. Because every maximal face of P_i corresponds to a pair of one-dimensional subspaces in \mathbb{C}^m and \mathbb{C}^n [K], we see that the

* Partially supported by MOE and GARC.
convex set CP_I has many more maximal faces than P_I. We also show that a maximal face of CP_I lies on the boundary of P_I if and only if its corresponding one-dimensional subspace is generated by a rank one matrix.

Throughout this note, we fix the natural numbers m and n. By the interior $\text{int} C$ of a convex set C in \mathbb{R}^r, we mean the relative interior of C with respect to the affine manifold generated by C. The boundary ∂C of C is the set difference $C \setminus \text{int} C$.

2. Faces of CP_I

We define the inner product $\langle , \rangle_{\text{Tr}}$ on the vector space $M_{m,n}$ of all $m \times n$ complex matrices by

$$\langle V, W \rangle = \text{Tr}(W^*V), \quad V, W \in M_{m,n}(\mathbb{C}),$$

where Tr is the usual trace of $n \times n$ matrices. With this inner product, the vector spaces $M_{m,n}$ and $\mathbb{C}^m \otimes \mathbb{C}^n$ are isometrically isomorphic to each other by the following correspondence

$$V \mapsto \sum_{j=1}^n V(j) \otimes e_j,$$

where $V(j)$ is the jth column of V. We confuse these two inner product spaces. We also identify a projection in $M_m \otimes M_n$ and its range space in $M_{m,n} = \mathbb{C}^m \otimes \mathbb{C}^n$.

For a family $\mathscr{F} = \{V_k : k = 1, 2, \ldots, s\}$ of $m \times n$ matrices, we define the linear map $\phi_{\mathscr{F}} : M_m \to M_n$ by

$$\phi_{\mathscr{F}} : X \mapsto \sum_{k=1}^s V_k^* XV_k, \quad X \in M_m.$$

We recall that $\phi_{\mathscr{F}}$ is completely positive, and every completely positive linear map arises in this way with a linearly independent family \mathscr{F}. In order to compute $\theta_{\phi_{\mathscr{F}}}(Q)$ for a projection $Q \in M_m \otimes M_n$, we choose an orthonormal basis $\{W_l \in \mathbb{C}^m \otimes \mathbb{C}^n = M_{m,n} : l = 1, 2, \ldots, r\}$ of the range space of Q. Then we have

$$Q = \sum_{l=1}^r \sum_{i,j=1}^n W_l(i) W_l(j)^* \otimes E_{ij},$$

and so it follows that

$$\theta_{\phi_{\mathscr{F}}}(Q) = \frac{1}{n} \sum_{l=1}^r \sum_{i,j=1}^n \|\phi_{\mathscr{F}}(W_l(i) W_l(j)^*) e_j e_i\|^2$$

$$= \frac{1}{n} \sum_{l=1}^r \sum_{i,j=1}^s \sum_{k=1}^n \langle V_k^* W_l(i) W_l(j)^* V_k e_j, e_i \rangle$$

$$= \frac{1}{n} \sum_{l=1}^r \sum_{i,j=1}^s \sum_{k=1}^n \langle W_l(j)^* V_k e_j, W_l(i)^* V_k e_i \rangle$$

$$= \frac{1}{n} \sum_{l=1}^r \sum_{i,j=1}^s \langle \sum_{j=1}^n W_l(j)^* V_k(j) \sum_{i=1}^n W_l(i)^* V_k(i) \rangle$$

$$= \frac{1}{n} \sum_{l=1}^r \sum_{i,j=1}^s \langle V_l, W_k \rangle_{\text{Tr}}^2.$$

Therefore, we have the following:
Proposition 2.1. Let Q be a projection in $M_m \otimes M_n$, and \mathcal{V} a finite subset of $M_{m,n}$. Then the following are equivalent:

(i) $\theta_{\phi_{\mathcal{V}}}(Q) = 0$,

(ii) The span of \mathcal{V} and the range space of Q are orthogonal to each other.

For a subspace E of $M_{m,n}$, we define $\Psi(E) = F_{E^{\perp}}$. Then by Proposition 2.1, we see that

\[\Psi(E) = \{ \phi_\mathcal{V} \in CP_1 : \text{span } \mathcal{V} \subseteq E \}. \]

(2.1)

Because span $\mathcal{V} \subseteq E_1 \wedge E_2$ if and only if span $\mathcal{V} \subseteq E_i$ for $i = 1, 2$, we have the following:

Proposition 2.2. The map $E \mapsto \Psi(E)$ is a meet homomorphism from the subspace lattice $\mathcal{E}(M_{m,n})$ of $M_{m,n}$ into the face lattice $\mathcal{F}(CP_1)$ of CP_1.

Now, we proceed to find the right inverse of Ψ.

Proposition 2.3. Let $\mathcal{W} = \{ V_k : k = 1, 2, \ldots, s \}$ and $\mathcal{U} = \{ W_l : l = 1, 2, \ldots, r \}$ be linearly independent subsets of $M_{m,n}$ such that $\phi_\mathcal{W}, \phi_\mathcal{U} \in CP_1$. Then the following are equivalent:

(i) span $\mathcal{U} \subseteq$ span \mathcal{W},

(ii) There is a real number $t > 1$ such that $(1-t)\phi_\mathcal{W} + t\phi_\mathcal{U} \in CP_1$.

Proof. For the direction (i) \Rightarrow (ii), we write

\[W_l = \sum_{k=1}^{s} a_{lk} V_k, \quad l = 1, 2, \ldots, r. \]

Then we have

\[\phi_\mathcal{U}(X) = \sum_{l=1}^{r} \left(\sum_{k=1}^{s} a_{lk} V_k \right)^* \left(\sum_{j=1}^{s} a_{lj} V_j \right) \]

\[= \sum_{k,j=1}^{s} \left(\sum_{l=1}^{r} a_{lk} a_{lj} \right) V_k^* V_j. \]

We write A the $r \times s$ matrix whose (l,k)-entry is a_{lk}. Then there is $t > 1$ such that $(1-t)A^*A + tI$ is positive semi-definite, which will be denoted by B^*B, with an $s \times s$ matrix $B = [b_{lk}]$. Then we have

\[[(1-t)\phi_\mathcal{W} + t\phi_\mathcal{U}](X) = \sum_{k,j=1}^{s} \left(\sum_{l=1}^{r} b_{lk} b_{lj} \right) V_k^* V_j \]

\[= \sum_{l=1}^{r} \left(\sum_{k=1}^{s} b_{lk} V_k \right)^* X \left(\sum_{j=1}^{s} b_{lj} V_j \right), \]

and so it follows that $(1-t)\phi_\mathcal{W} + t\phi_\mathcal{U}$ is completely positive.

For the converse, assume that $(1-t)\phi_\mathcal{W} + t\phi_\mathcal{U}$ is completely positive linear map for a real $t > 1$. We denote this map by $\phi_{\mathcal{V}'}$ with a subset \mathcal{V}' of $M_{m,n}$. Then $\phi_{\mathcal{V}'}$ is a convex combination of $\phi_\mathcal{W}$ and $\phi_\mathcal{U}$. By [C, remark 4], we see that each W_l lies in span \mathcal{V}'.

Recall that a point x of a convex set C is an interior point of C if and only if for
each $y \in C$ there is a real number $t > 1$ such that $(1-t)y + tx \in C$. Let F be a non-empty face of CP_1. If $\phi_\psi \in \text{int} F$ and $\phi_x \in F$ then we have $\text{span} \psi \subseteq \text{span} \phi$ by Proposition 2.3. Therefore, we see that $\text{span} \phi = \text{span} \psi$ whenever ϕ_ψ and ϕ_x are interior points of F. For a face F of CP_1, we define $\Phi(F) = \text{span} \phi$ with an interior point ϕ_ψ of F. For the empty face \emptyset, we define $\Phi(\emptyset) = \{0\}$.

Corollary 2.4. If ν is a finite subset of $M_{m,n}$ and F is a face of CP_1 then the following are equivalent:

(i) $\phi_\psi \in F$.

(ii) $\text{span} \psi \subseteq \Phi(F)$.

Proof. The direction (i) \Rightarrow (ii) is clear. For the converse, assume that $\text{span} \psi \subseteq \Phi(F)$, and choose an interior point ϕ_ψ of F. Then $\text{span} \psi \subseteq \text{span} \phi$ implies that there is $t > 1$ such that $\psi = (1-t) \phi_\psi + t \phi_y \in CP_1$ by Proposition 2.3. Therefore, we see that $\phi_y \in F$ is a non-trivial convex combination of ϕ_ψ and ϕ. Since F is a face, we conclude that $\phi_\psi \in F$.

Theorem 2.5. For each $F \in \mathcal{F}(CP_1)$, we have $\Psi(\Phi(F)) = F$.

Proof. Apply Corollary 2.4 and relation (2.1).

Proposition 2.6. The map $F \mapsto \Phi(F)$ is a join homomorphism from the lattice $\mathcal{F}(CP_1)$ into the lattice $\mathcal{E}(M_{m,n})$.

Proof. Let $F_i \in \mathcal{F}(CP_1)$ with an interior point ϕ_ψ for $i = 1, 2$. Then $\frac{1}{2}(\phi_\psi + \phi_\psi)$ is an interior point of $F_1 \lor F_2$ by [K, proposition 2.4]. Therefore, we have

$$\Phi(F_1 \lor F_2) = \text{span} \{\psi_1, \psi_2\} = \text{span} \psi_1 \lor \text{span} \psi_2 = \Phi(F_1) \lor \Phi(F_2).$$

If $f: L_1 \rightarrow L_2$ is a join homomorphism and $g: L_2 \rightarrow L_1$ is a meet homomorphism between lattices L_1 and L_2 such that $g \circ f$ is the identity, then both $f: L_1 \rightarrow f(L_1)$ and $g: f(L_1) \rightarrow L_1$ are lattice isomorphisms. Indeed, if $x, y \in L_1$ and $f(x) \land f(y) = f(z)$ for some $z \in L_1$ then $z = g(f(z)) = g(f(x) \land f(y)) = g(f(x)) \land g(f(y)) = x \land y$, and so $f: L_1 \rightarrow f(L_1)$ is a meet homomorphism. Similarly, we have

$$g(f(x) \lor f(y)) = g(f(x) \lor y) = x \lor y = g(f(x)) \lor f(f(y)),$$

which shows that $g: f(L_1) \rightarrow L_1$ is a join homomorphism. We denote by \mathcal{E}_{CP_1} the range of the map $\Phi: \mathcal{F}(CP_1) \rightarrow \mathcal{E}(M_{m,n})$. Then we see that Φ is a lattice isomorphism from $\mathcal{F}(CP_1)$ onto \mathcal{E}_{CP_1} and Ψ is a lattice isomorphism from \mathcal{E}_{CP_1} onto $\mathcal{F}(CP_1)$, by Propositions 2.2 and 2.6.

Proposition 2.7. Let E be a non-zero subspace of $M_{m,n}$. Then the following are equivalent:

(i) $E \in \mathcal{E}_{CP_1}$

(ii) There is a subset $\nu = \{V_k: k = 1, \ldots, s\}$ of $M_{m,n}$ such that $\text{span} \nu = E$ and $\sum_{k=1}^s V_k = 0$ is a scalar multiple of the identity.

Proof. If there is a face F of CP_1 such that $\Phi(F) = E$ then take ϕ_ψ in the interior of F. Then ν satisfies the conditions in (ii). Conversely, assume that there is a subset
Then we have \(\Phi(F) = \text{span} \, \mathcal{V} = E \).

Note that not every subspace of \(M_{m,n} \) belongs to \(\mathcal{E}_{CP} \). Indeed, if \(V \in M_{m,n} \) then the one dimensional space spanned by \(V \) belongs to \(\mathcal{E}_{CP} \) if and only if \(V^* \) is a scalar multiple of the identity, that is, \(V \) or \(V^* \) is a scalar multiple of an isometry.

3. Maximal faces of \(CP \)

In this section, we show that every \((mn-1)\) dimensional subspace of \(M_{m,n} \) belongs to \(\mathcal{E}_{CP} \). To do this, we construct for each \(V \in M_{m,n} \) a family \(\{V_i\}_i \) of \(m \times n \) matrices which spans \(V^\perp \) and such that \(\sum_i V_i^* \) is a scalar multiple of the identity. Our construction depends on the rank of \(V \). If \(V \) is a rank one matrix then \(V \) is of the form \(\eta \xi^* \), where \(\xi \in \mathbb{C}^m \) and \(\eta \in \mathbb{C}^n \) may be assumed to be unit vectors. We choose orthonormal bases \(\{\xi_i : i = 1, \ldots, m\} \) and \(\{\eta_j : j = 1, \ldots, n\} \) including \(\xi \) and \(\eta \), respectively. Then

\[
(\xi_i \eta_i^*)(\xi_j \eta_j^*) = \eta_j \xi_i^* \xi_j \eta_i^* = \delta_{ij} \eta_j \eta_i^*,
\]

and so \(\langle \xi_i \eta_i^*, \xi_j \eta_j^* \rangle = \delta_{ij} \text{Tr}(\eta_j \eta_i^*) = \delta_{ij} \delta_{ji} \). Denote \(S = \{(i,j) : i = 2, \ldots, m \} \) or \(j = 2, \ldots, n\}, \) and define

\[
V_{i,j} = \begin{cases}
\frac{1}{\sqrt{m}} \xi_i \eta_i^*, & j = 2, \ldots, n, \quad i = 1, \ldots, m, \\
\frac{1}{\sqrt{(m-1)} \xi_i \eta_i^*}, & j = 1, \quad i = 2, \ldots, m.
\end{cases}
\]

Then we have

\[
\sum_{(i,j) \in S} V_{i,j}^* V_{i,j} = \sum_{i=2}^m V_{i,1}^* V_{i,1} + \sum_{j=2}^n \sum_{i=1}^m V_{i,j}^* V_{i,j} = \eta \eta^* + \sum_{j=2}^n \eta_j \eta_j^* = I.
\]

Therefore, we see that \(\{V_{i,j} : (i,j) \in S\} \) is a required family of matrices. For the general cases with arbitrary ranks, we need the following:

Lemma 3.1. Assume that \(\{\xi_1, \xi_2\} \) is linearly independent. Then there exist vectors \(x, y \in \text{span} \{\xi_1, \xi_2\} \) with the following properties:

\[
\langle x, y \rangle = 0, \quad \langle x, \xi_1 \rangle + \langle y, \xi_2 \rangle = 0, \quad \langle x, \xi_1 \rangle \neq 0, \quad \langle y, \xi_2 \rangle \neq 0.
\]

Proof. Write \(\langle \xi_1, \xi_2 \rangle = re^{i\theta} \) with \(r = |\langle \xi_1, \xi_2 \rangle| \). Put

\[
\xi = \frac{\xi_1}{\langle \xi_1 \rangle} + e^{i\theta} \frac{\xi_2}{\langle \xi_2 \rangle} \quad \omega = \frac{\xi_1}{\langle \xi_1 \rangle} - e^{i\theta} \frac{\xi_2}{\langle \xi_2 \rangle}.
\]

Then we see that \(\langle \xi, \omega \rangle = 0 \) and

\[
\|\xi\| = 2 \left(1 + \frac{r}{\langle \xi_1 \rangle \langle \xi_2 \rangle} \right), \quad \|\omega\| = 2 \left(1 - \frac{r}{\langle \xi_1 \rangle \langle \xi_2 \rangle} \right)
\]

are non-zero, because \(\{\xi_1, \xi_2\} \) is linearly independent. Define

\[
x = \langle \xi_2 \rangle \left(\frac{\xi}{\|\xi\|} + \frac{\omega}{\|\omega\|} \right), \quad y = e^{-i\theta} \langle \xi_1 \rangle \left(-\frac{\xi}{\|\xi\|} + \frac{\omega}{\|\omega\|} \right)
\]
then it follows that \(\langle x, y \rangle = 0 \) since \(\langle \xi, \omega \rangle = 0 \). From (3.2), we also have \(\langle x, \xi_1 \rangle = \| \xi_1 \| \| \xi_2 \| \) and \(\langle y, \xi_2 \rangle = -\| \xi_2 \| \| \xi_2 \| \), from which the conclusion follows.

Theorem 3.2. For every \(V \in \mathcal{M}_{m,n} \), we have \(V^\perp \in \mathcal{E}_{CP} \).

Proof. If \(V \) is of rank one, we have already done. Assume that \(V \) is of rank \(r \), with \(r \geq 2 \). Take an orthonormal basis \(\{ \eta_j : j = 1, \ldots, r \} \) of (\(\text{Ker} \ V \)^\perp and put \(\xi_j = V \eta_j \) for each \(j = 1, \ldots, r \). Then \(\{ \xi_j : j = 1, \ldots, r \} \) is a basis of \(\text{Im} \ V \), and we have

\[
V = \sum_{j=1}^{r} \xi_j \eta_j^*.
\]

Multiply \(V \) by a constant, we may assume that \(\sum_{j=1}^{r} \| \xi_j \|^2 = r \) without loss of generality. For each fixed \(h = 2, \ldots, r \), choose \(x_h, y_h \in \text{span} \{ \xi_1, \xi_h \} \) such that

\[
\langle x_h, y_h \rangle = 0, \quad \langle x_h, \xi_1 \rangle + \langle y_h, \xi_h \rangle = 0,
\]

\[
\langle x_h, \xi_1 \rangle \neq 0, \quad \langle y_h, \xi_2 \rangle \neq 0, \quad \| x_h \| \leq 1, \quad \| y_h \| \leq 1.
\]

For each \(j = 1, \ldots, r \), we also take an orthogonal basis \(\{ \xi_{ij} : i = 1, \ldots, r-1 \} \) of (\(\text{Im} \ V \) ∩ \(\xi_j^\perp \)) with

\[
\sum_{i=1}^{r-1} \| \xi_{ij} \|^2 + \sum_{h=2}^{r} \| x_h \|^2 = \sum_{i=1}^{r-1} \| \xi_{ij} \|^2 + \| y_j \|^2 = r, \quad j = 2, \ldots, r.
\]

Finally, we take orthonormal bases \(\{ \eta_l : l = r+1, \ldots, n \} \) and \(\{ \xi_k : k = r+1, \ldots, m \} \) of \(\text{Ker} \ V \) and (\(\text{Im} \ V \)^\perp), respectively. Define

\[
V_{ij} = \xi_{ij} \eta_j^*, \quad i = 1, \ldots, r-1, \quad j = 1, \ldots, r,
\]

\[
W_h = x_h \eta_1^* + y_h \eta_h^*, \quad h = 2, \ldots, r,
\]

\[
U_{kl} = \xi_k \eta_l^*, \quad k = r+1, \ldots, m \quad \text{or} \quad l = r+1, \ldots, n.
\]

Since \(\text{Tr}(\eta_j \eta_j^*) = \delta_{jj} \), we have

\[
\langle V, V_{ij} \rangle = \sum_{j=1}^{r} \text{Tr}(\eta_j \xi_{ij}^* \xi_j) = \langle \xi_j, \xi_{ij} \rangle = 0,
\]

\[
\langle V, W_h \rangle = \langle \xi_j, x_h \eta_1^* + y_h \eta_h^* \rangle + \langle \eta_j, \xi_k \eta_l^* \rangle = \langle \xi_j, x_h \rangle + \langle \xi_k, y_h \rangle = 0,
\]

\[
\langle V, U_{kl} \rangle = \sum_{j=1}^{r} \text{Tr}(\eta_j \xi_{ij}^* \xi_k) = \sum_{j=1}^{r} \langle \xi_j, \xi_k \rangle \text{Tr}(\eta_j \eta_j^*) = 0.
\]

Therefore, every element in \(\mathcal{F} := \{ V_{ij}, W_h, U_{kl} \} \) belongs to \(V^\perp \). Now, we have

\[
V_{ij}^* V_{ij} = \eta_j \xi_{ij}^* \xi_j \eta_j^* = \| \xi_{ij} \|^2 \eta_j \eta_j^*,
\]

\[
W_h^* W_h = (x_h \eta_1^* + y_h \eta_h^*) (x_h \eta_1^* + y_h \eta_h^*) = \| x_h \|^2 \eta_1 \eta_1^* + \| y_h \|^2 \eta_h \eta_h^*,
\]

\[
U_{kl}^* U_{kl} = \xi_k \eta_l^* \xi_k \eta_l^* = \| \xi_k \|^2 \eta_l \eta_l^*,
\]

and so it follows that

\[
\sum_{i,j} V_{ij}^* V_{ij} + \sum_{h} W_h^* W_h = \left(\sum_{i=1}^{r-1} \| \xi_{ij} \|^2 + \sum_{h=2}^{r} \| x_h \|^2 \right) \eta_j \eta_j^* + \sum_{j=2}^{r} \left(\sum_{i=1}^{r-1} \| \xi_{ij} \|^2 + \| y_j \|^2 \right) \eta_j \eta_j^*
\]

\[
= r \eta_1 \eta_1^* + r \sum_{j=2}^{r} \eta_j \eta_j^* = r \sum_{j=1}^{r} \eta_j \eta_j^*.
\]
and

\[\sum_{k,l} U_{kl}^* U_{kl} = \sum_{l=1}^{r} \sum_{k=r+1}^{m} \| \xi_k \|^2 \eta_l \eta_l^* + \sum_{l=r+1}^{n} \sum_{k=1}^{m} \| \xi_k \|^2 \eta_l \eta_l^* \]

\[= (m-r) \sum_{l=1}^{r} \eta_l \eta_l^* + m \sum_{l=r+1}^{n} \eta_l \eta_l^*, \]

because \(\sum_{k=1}^{r} \| \xi_k \|^2 = r \) and \(\| \xi_k \| = 1 \) for \(k = r+1, \ldots, m \). Summing up all of (3.3), it follows that

\[\sum_{V \in \mathcal{F}} V^* V = mI. \]

In order to show that \(\text{span} \mathcal{F} = V^\perp \), it remains to show that the family \(\mathcal{F} \) is linearly independent since the cardinality of \(\mathcal{F} \) is \(mn - 1 \). To do this, assume that

\[\sum_{i,j} a_{ij} V_{ij} + \sum_{h} b_h W_h + \sum_{k,l} c_{kl} U_{kl} = 0. \]

For each fixed \(l = r+1, \ldots, n \), we apply \(\eta_l \) to get \(\sum_{k=1}^{m} c_{kl} \xi_k = 0 \). Since \(\{ \xi_k \} \) is linearly independent, we have \(c_{kl} = 0 \) for each \(k = 1, \ldots, m \) and \(l = r+1, \ldots, m \). Applying the vector \(\eta_h \) for each fixed \(h = 1, \ldots, r \), we have

\[\sum_{i=1}^{r-1} a_{ih} \xi_{ih} + b_h y_h + \sum_{k=r+1}^{m} c_{kh} \xi_k = 0, \quad h = 2, \ldots, r, \quad (3.4) \]

\[\sum_{i=1}^{r-1} a_{ih} \xi_{ih} + b_h x_h + \sum_{k=r+1}^{m} c_{kh} \xi_k = 0, \quad h = 1, \quad (3.5) \]

Note that the last terms in (3.4) and (3.5) belong to \((\text{Im} V)^\perp \), but the remaining terms in \(\text{Im} V \), and so we see that every \(c_{kl} \) is zero. Taking inner product with \(\xi_h \) in (3.4), we have \(b_h = 0 \) for each \(h = 2, \ldots, r \). From the fact that \(\{ \xi_{ih} : i = 1, \ldots, r-1 \} \) is orthogonal for each \(h = 1, \ldots, r \), we finally conclude that \(a_{ih} = 0 \) for each \(h = 1, \ldots, r \) and \(i = 1, \ldots, r-1 \).

We combine the results in Section 2 and Theorem 3.2, to get the following characterization of maximal faces of \(CP_i \).

Theorem 3.3. For each \(m \times n \) matrix \(V \in M_{m,n} \), the set

\[F_i[V] := \{ \phi \in CP_i : \text{span} \mathcal{F} \subseteq V^\perp \} \]

is a maximal face of \(CP_i \). Conversely, every maximal face of \(CP_i \) arises in this way.

If \(P \) is a rank one matrix in \(M_m \otimes M_n \) whose range space is generated by \(V \in M_{m,n} = \mathbb{C}^m \otimes \mathbb{C}^n \) then \(F_i[V] \) is nothing but \(F_i \) defined in (1.1).

4. Relations with \(P_i \)

In [K], we have characterized maximal faces of \(P_i \). For each pair \((\xi, \eta) \in \mathbb{C}^m \times \mathbb{C}^n \) of unit vectors, the set

\[F_i[\xi, \eta] = \{ \phi \in P_i : \langle \phi(\xi^*) \eta, \eta \rangle = 0 \} \]

is a maximal face of \(P_i \), and every maximal face of \(P_i \) arises in this way. In this
section, we compare facial structures of P_I and CP_I. We begin with the following two simple lemmas:

Lemma 4.1. Let $\mathcal{F}^* = \{V_k: k = 1, \ldots, s\}$ be a family of $m \times n$ matrices such that $\phi_v \in CP_I$. Then for each unit vectors $\xi \in \mathbb{C}^m$ and $\eta \in \mathbb{C}^n$ the following are equivalent:

(i) $\phi_v \in F[I][\xi, \eta]$.

(ii) $\langle \xi, V_k \eta \rangle = 0$ for each $k = 1, \ldots, s$.

Proof. We have

$$\phi_v \in F[I][\xi, \eta] \Leftrightarrow \left\langle \sum_{k=1}^s V_k^* \xi \xi^* V_k \eta, \eta \right\rangle = 0 \Leftrightarrow \sum_{k=1}^s |\xi^* V_k \eta|^2 = 0.$$

Lemma 4.2. Let $V = \xi \eta^*$ be a rank one matrix with unit vectors $\xi \in \mathbb{C}^m$ and $\eta \in \mathbb{C}^n$. Then we have the identity

$$F[I][V] = F[I][\xi, \eta] \cap \partial(CP_I).$$

Proof. If $W = \xi_1 \eta_1^*$ is a rank one matrix then we have

$$\langle V, W \rangle = \text{Tr}(\eta_1 \xi_1^* \xi_1 \eta_1^*) = \langle \xi, \xi_1 \rangle \langle \eta, \eta_1 \rangle = \langle \xi, \xi_1 \eta_1^* \eta \rangle = \langle \xi, W \eta \rangle,$$

and so the same relation holds for each matrix $W \in M_{m,n}$. Therefore, for each $V = \{V_k: k = 1, \ldots, s\}$ we have

$$\phi_v \in F[I][V] \Leftrightarrow \langle V, V_k \rangle = 0 \quad \text{for each} \quad k = 1, \ldots, s$$

$$\Leftrightarrow \langle \xi, V_k \eta \rangle = 0 \quad \text{for each} \quad k = 1, \ldots, s$$

$$\Leftrightarrow \phi_v \in F[I][\xi, \eta].$$

The conclusion follows since $F[I][V] \subseteq \partial(CP_I)$.

We denote by P (respectively CP) the convex cone of all positive (respectively completely positive) linear maps from $M_{m,n}$ into M_n. We also define

$$F[I][V] = \{\phi_v \in CP: \text{span } \mathcal{F} \subseteq V^\perp\}, \quad F[I][\xi, \eta] = \{\phi \in P: \langle \phi(\xi \xi^* \eta^*), \eta \rangle = 0\}.$$

Then every argument in Lemmas 4.1 and 4.2 is still valid if P_I, CP_I, $F[I][V]$ and $F[I][\xi, \eta]$ are replaced by P, CP, $F[V]$ and $F[\xi, \eta]$, respectively.

Corollary 4.3. Let $\mathcal{F}^* = \{V_k: k = 1, \ldots, s\}$ be a family of $m \times n$ matrices. Then the following are equivalent:

(i) ϕ_v is an interior point of P.

(ii) The set $\{V_k \eta: k = 1, \ldots, s\}$ spans \mathbb{C}^m for each non-zero $\eta \in \mathbb{C}^n$.

(iii) \mathcal{F}^\perp does not contain a rank one matrix.

Proof. The equivalence of (i) and (ii) follows from Lemma 4.1, because the boundary of a convex set in a Euclidean space is the union of all maximal faces (see [Rf, theorem 18.2]). We prove (ii) \Rightarrow (iii). If \mathcal{F}^\perp contains a rank one matrix $V = \xi \eta^*$ then span $\mathcal{F} \subseteq V^\perp$. Hence, $\phi_v \in F[V] \subseteq F[\xi, \eta]$. This means that $E_v := \text{span } \{V_k \eta: k = 1, \ldots, s\}$ is contained in ξ^\perp by Lemma 4.1. Conversely, if E_v is a proper subspace of \mathbb{C}^m and $\xi \in E_v^\perp$ then $\phi_v \in F[\xi, \eta]$. Hence, $\phi_v \in F[V]$ with $V = \xi \eta^*$ by Lemma 4.2, and so it follows that span $\mathcal{F} \subseteq V^\perp$ and $V \in \mathcal{F}^\perp$.

Theorem 4.4. The maximal face $F[I][V]$ of CP_I lies on the boundary of P_I if and only if V is of rank one. If this is the case with $V = \xi \eta^*$ then $F[I][V] \subseteq F[I][\xi, \eta]$.
Linear maps in matrix algebras

Proof. If V is of rank one then $F[V]$ lies in a maximal face of P, by Lemma 4.2. For the converse, we assume that $V = \sum_{j=1}^{r} y_j^*$ is a matrix of rank $r \geq 2$ where $\langle y_j: j = 1, \ldots, r \rangle$ is orthonormal, and $F[V]$ lies on the boundary of P. Then $F[V]$ lies in a maximal face of P, say $F[\xi, \eta]$. We show that $\xi = 0$ or $\eta = 0$, to get a contradiction. Assume that $\eta \neq 0$.

We retain every notation in the proof of Theorem 3, and write $\xi = \sum_{i=1}^{m} a_i \xi_i$ and $\eta = \sum_{j=1}^{n} b_j \eta_j$. Apply Lemma 4, to get

$$0 = \langle \xi, U_{kl} \eta \rangle = \langle \xi, b_l \xi_k \rangle = a_k \overline{b_l}$$

for each $k = r+1, \ldots, m$ and $l = 1, \ldots, n$. Therefore, we have $(a_{r+1}, \ldots, a_m) = 0$ or $(b_1, \ldots, b_n) = 0$. But, since $\eta \neq 0$, we have $(a_{r+1}, \ldots, a_m) = 0$ and $\xi \in \text{span} \{\xi_1, \ldots, \xi_r\}$. For each $l = r+1, \ldots, n$ and $k = 1, \ldots, r$, we also have

$$0 = \langle \xi, U_{kl} \eta \rangle = \langle \xi, b_l \xi_k \rangle = \sum_{i=1}^{r} a_i \overline{b_l} \langle \xi_i, \xi_k \rangle.$$

Since $\{\xi_i: i = 1, \ldots, r\}$ is linearly independent, the $r \times r$ matrix $[\langle \xi_i, \xi_k \rangle]_{i,k=1}^{r}$ is non-singular and so $a_i \overline{b_l} = 0$ for each $i = 1, \ldots, r$ and $l = r+1, \ldots, n$. If $(b_1, \ldots, b_n) = 0$ then $(a_1, \ldots, a_r) = 0$ and so we have $\xi = 0$. We proceed to consider the case $(b_1, \ldots, b_n) = 0$ and $y \in \text{span} \{\eta_1, \ldots, \eta_r\}$.

Fix $\lambda = 1, 2, \ldots, r-1$. In the proof of Theorem 3, the family $\{\xi_{ij}\}$ may be chosen so that the relations

$$\xi_{ij} \in \{\xi_i: l = 1, \ldots, r \}, \quad l \neq j (\mod r), \quad j = 1, \ldots, r$$

hold. Then it follows that $\langle \xi_{ij}, \xi_{i+\lambda (\mod r)} \rangle \neq 0$, and

$$0 = \langle \xi, V_{ij} \eta \rangle = \sum_{i=1}^{r} a_i \lambda_j \langle \xi_i, \xi_{ij} \rangle = a_{j+i \lambda (\mod r)} \overline{b_j} \langle \xi_{ij}, \xi_{ij} \rangle.$$

Therefore, we have $a_{j+i \lambda (\mod r)} \overline{b_j} = 0$ for each $j = 1, \ldots, r$. Since this is true for each $\lambda = 1, \ldots, r-1$, we see that

$$a_i \overline{b_j} = 0, \quad \text{whenever } i \neq j.$$

For each $h = 2, \ldots, r$, we have

$$0 = \langle \xi, W_{hh} \eta \rangle = \langle \xi, b_1 x_h + b_h y_h \rangle = a_1 \overline{b_1} \langle \xi_1, x_h \rangle + a_h \overline{b_h} \langle \xi_h, y_h \rangle.$$

If $b_i \neq 0$ then $a_i \overline{b_1} = 0$ implies that $a_i = 0$. Since $\langle \xi_1, x_h \rangle \neq 0$ we have $a_1 \overline{b_1} = 0$. Therefore, we have $a_i \overline{b_h} = 0$ in any cases, and the relation $\langle \xi_h, y_h \rangle \neq 0$ gives us $a_h \overline{b_h} = 0$ for each $h = 2, \ldots, r$. Hence, we see that $a_i \overline{b_j} = 0$ for each $i, j = 1, 2, \ldots, r$. Because $(b_1, b_2) = 0$, we have $(a_1, \ldots, a_r) = 0$ and conclude that $\xi = 0$.

By Theorem 4.4, we see that whenever V is a matrix with rank ≥ 2 the interior of the maximal face $F[V]$ of CP lies in the interior of P. With this information, one may suspect there might be an extreme point of CP which lies in the interior of P. But this is not the case, whenever $m \geq n$.

Proposition 4.5. If $m \geq n$ then every extreme point of CP lies on the boundary of P.

Proof. If ϕ_ν is an extreme point of CP then the cardinality of ν is less than or
equal to n by [C, remark 6]. Applying Corollary 4.3, it suffices to show that for any $m \times n$ matrices V_1', \ldots, V_n' there is $\eta \in \mathbb{C}^n$ such that $\{V_k'\eta : k = 1, \ldots, n\}$ does not span \mathbb{C}^m. If $m > n$ then this is clear, and so it remains to consider the case $m = n$. If one of V_k' is singular then this is also clear by taking a non-zero null vector. If each V_k' is non-singular, we take an eigenvector η of $V_1'^{-1}V_2$. Then $\{V_1'\eta, V_2'\eta\}$ is linearly dependent.

REFERENCES

