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ABSTRACT

We consider a class of positive linear maps from the n-dimensional matrix algebra
into itself which fix diagonal entries. We show that they are expressed by Hadamard
products, and study their decompositions into the sums of completely positive linear maps
and completely copositive linear maps. In the three-dimensional case, we show that every
positive linear map in this type is decomposable, and give an intrinsic characterization for
the positivity of these maps when the involving coefficients are real numbers.

1. INTRODUCTION

Let M, be the C*-algebra of all n X n matrices over the complex field. Because
the structure of the positive cone P(M,,) of all positive linear maps between M, is
very complicated even in lower dimensions, it would be very useful to find extreme
elements of this cone in various senses. In this vein, several authors [3, 8, 9] have
constructed such extreme maps in the cases of n = 2,3, or 4. In the case of n = 3,
such maps were constructed by adjusting diagonal elements and attaching minus
signs at offdiagonals (see also [1,5,6,10]). In this note, we consider positive
linear maps between matrix algebras which fix diagonal elements. It is easy to see
that every positive linear map preserving the diagonals is of the form

Ppp:X—AoX+BoX"+]oX, XEM,,

for self-adjoint matrices A and B with zero diagonals, where A o X (respectively
X") denotes the Hadamard product of A and X (respectivley the transpose of X),
and / denotes the identity matrix.
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Recall that a positive linear map between matrix algebra is said to be decompos-
able if it is the sum of a completely positive linear map and a completely copositive
linear map. For those linear maps in the above forms, they are completely positive
(respectively completely copositive) if and only if they are 2-positive (respectively
2-copositive). Also, they are decomposable if and only if they are the sums of
2-positive and 2-copositive linear maps.

Restricting our attention to the three-dimensional case, we show that every
positive linear map in this type is decomposable. We also get a necessary and
sufficient condition for the positivity of the map @4 z in terms of the entries of A
and B, when the entries are real numbers.

Throughout this note, A > 0 means that A is positive semidefinite.

2. DECOMPOSABILITY

Let ®: M, — M, be a positive linear map which fixes diagonal elements, that
is,
@(Eii):Eiia i:1727"-an3 (21)

where {E;} denotes the usual matrix units. For j # k, consider the positive
semidefinite matrix

vay = |X|2Ejj + |y|2Ekk -+ )—cijk + yxEkj
with arbitrary x,y € C. Then
(@ (Pxy) eisei) = [x*8y + |y[*8u + 2Re [Xy(D (Eq) i, 1))

becomes a nonnegative real number for each x,y € C, where {e;} is the usual
orthonormal basis of C”. It follows that

<<I>(Ejk)ei,e,->=0, j#k, i:1,2,...,n,

and so the matrix ®(Ej) has zero diagonals for j # k. Therefore, (P, ;) has
zero diagonals except at the j-th and k-th positions. Because ®(P, ) is positive
semidefinite, it follows that ®(P, ,) is spanned by Ej;, Ex, Ejx, and Ej;. From the
relation

L
B(Ep) = L [B(Py ) — iD(P, )] - —2’- [Ej + Eu] »
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we see that ®(Ey) is spanned by Ej and Ey;, and similarly for ®(Ey;). It follows
that every positive linear map ® : M,, — M, with the property (2.1) is of the form

X1 apxiz + biaxyp - QuaXin + biaXa
azixay + baxyz X2 ce Qo+ bapXn
Q([x;]) = . )
Ap)Xn) + bnlxln An2Xn2 + br12x2n e Xnn

where A = [a;] and B = [b;] are self-adjoint matrices with zero diagonals. We
will denote this linear map by ®4 g, that is,

PppX)=AoX+BoX"+10X, XeM,, 2.2)
as in the introduction.
PROPOSITION 2.1.  Let A and B be self-adjoint matrices with zero diagonals.

Then the following are equivalent:

(1) ®4 p is completely positive.
(i1) @4 p is 2-positive.
(i) B=0andA+12>0.

PROOF. If &4 p is 2-positive, then the matrix

(@6 E; Ey\ _ Ej a;Eij + byEj;
MR E E ajiEji + bjiEjj Ej

is positive. From this, we see that b; = 0 for i # j, and B = 0. It is well known
that the map X — (A + I) o X is positive if and only if A+ 7 > 0. If B = 0 and
A +1 > 0, then we see that the n® x n? matrix [®4,5(E;)] is positive semidefinite,
and so ®, p is completely positive by [2]. |

By similar arguments to those for Proposition 2.1, we also have:

PROPOSITION 2.2.  Let A and B be self-adjoint matrices with zero diagonals.
Then the following are equivalent:

(1) @4 p is completely copositive.
(i1) @4 p is 2-copositive.
(iii)A=0and B+1 > 0.

Now, we show that ® is decomposable if and only if it is the sum of a 2-positive
map and a 2-copositive map.
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THEOREM 2.3. Let A and B be self-adjoint matrices with zero diagonals.
Then the following are equivalent.

(1) @4 p is decomposable.
(1) ®4 p is the sum of a 2-positive linear map and a 2-copositive linear map.
(i11) There exist diagonal matrices Dy and D, in M,, such that

Di+Dy=1, A+D >0, B+D,>0. (23)

Proor. Let ®4p5 = ®; + @, with a 2-positive linear map ®, and a 2-
copositive linear map ®,. Considering the n* x n* matrix [®4 z(E;)] again, we
use the same arguments as in the proof of [5, Proposition 3.1] (see also [7]); then
it is easy to see that ®, and @, are of the forms

(b](X):‘A]OX, (PZ(X)=A20X"a XEMm

for some positive semidefinite matrices A} and A,. From this, we get condition
(iii) with Ay = A + Dy and Ay = B+ D,. The implication (iii) = (1) follows from
the facts that the above maps ®, and ®; are completely positive and completely
copositive, respectively, as in the proof of Proposition 2.1 |

Let A and B be n x n self-adjoint matrices with zero diagonals as before.
We denote by A} [respectively Ay ] the set of all diagonal matrices D such that
A+ D > 0 [respectively B + (I — D) > 0]. With the obvious identification
D = Diag(d,,da, . ..,d,), A:{ and Ay are convex subsets of R*. We introduce
the number

dap =sup{r >0:d,, 5 € D},

where D denotes the set of all decomposable linear maps.

PROPOSITION 2.4. Let A and B be self-adjoint n X n matrices with zero
diagonals. If A N Aj consists of one poini, then we have 64 p = 1. Conversely,
if bap = 1, then A{T N Ag has no interior point.

PROOF. By definition, we see that &4 p € D. Suppose that there is r > 1
such that ®,, ,5 is decomposable. By Theorem 2.3, there exist diagonal matrices
Dy and D, with Dy + Dy = I such that rA + D) > O and rB + D; > 0. Then we
see that A N A contains two points I — (1/7)D; and (1/r)D;, by the following
expressions:

Byp(X) = KA + %D1> oX + (1 - %(D, +D2)> ox] + (B+ %Dz) o X"

1 1
= (A + —D1> oX + KB+ —D2> o X" + (I - l(Dl +D2)) ox“].
r r r
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For the second assertion, we assume that Ay N A7 has nonempty interior. Then
we can find two points (di, . ..,d,) and (d) —¢,...,d, —€)in A)‘L N Ay for some
positive number €. Define

®(X) = [A+Diag(d) —¢,...,d, — )] 0 X,
®,(X) = [B+Diag(l —dy,...,1 —dy)] o X"

Then, we see that

1
‘I)x—%A"ll_eB:——]_g(q)]_*—cDZ)

is decomposable, and so we have 94 5 > 1. ]

3. POSITIVITY IN THE THREE-DIMENSIONAL CASE

In the remainder of this note, we restrict ourselves to the case of three-
dimensional matrix algebra, and put

0 a a 0 b by
AZ(E] 0 a::,), B*(b] _0 b3>.
an 53 0 bg b3 0

Then the linear map ®, g is positive if and only if the matrix

x|? a\Xy + b\yx  dxxz + byzx
a,yx + bixy ly[2 azyz + bszy 3.1
arzx + byXz a3y + —53}2 |le

is positive semidefinite for every (x,y,2) e C3. Considering the 2 x 2 diagonal
submatrices we have

la;| + |bi| <1, i=1,2,3. 3.2)
If we consider the determinant of the matrix (3.1), then the inequality
|z[2laEy + b13x|? + |y |aszx + ba¥e|® + |x|?|asyz + bszy|?

< |x?ly|*1z]? + 2 Re (a1xy + b1yx)(aaZx + byXz)(asyz + bizZy)
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holds for every x, y, z € C. Because this inequality is trivial if one of x, y, z is zero,
we divide by |x|*|y|?|z|%, and may assume that |x| = |y| = |z| = 1. Put

1 aleio + ble"g Zi;;_e""’ + Ezei"
Fap(6,0,7)=det | @e " + byet? 1 aze’™ + bae” T
azei" -+ bze""’ 638_” + 1_73€iT 1

(3.3)
We also put @ = {(8,0,7) € [-7,7}*:6 + ¢ + 7 = 0}. Summing up, we have:

PROPOSITION 3.1.  The linear map ®4 p is positive if and only if the condi-
tions (3.2) and the inequality F4 p(8,0,7) > 0 hold for each (8,0, 7) € Q.

Now, we introduce the number
pagi=sup{r >0:®,4 5 € P},
where P denotes the set of all positive linear maps. Thenitisclearthatds g < pa p.

PROPOSITION 3.2.  Assume that the linear map ©, p is positive. Then ps p =
1 if and only if either an equality holds in (3.2) or Fap(6,0,7) = 0 for some
0,0.7)€ Q.

PrOOF. Forr € {0,00) and © = (8,0, 7) € ©, we write
g(r, 6) = FrA,rB(gg o, T).

=-: Assume that the strict inequalities hold in (3.2), and take a decreasing
sequence {r,} in (1, 00) with r,|a;| + r,|b;| < 1,i = 1,2,3, which converges to 1.
Becasue ®, 4 . p is not positive, we can take ©, €  such that g(r,, ©,) < 0 for
eachn = 1,2, .... From the compactness of ) we may assume that the sequence
{©,} converges to a point Oy = (8, 09, 7o) € §2. Since g is a continuous function
on [0, 00) x €2, we have F4 5(©0) = g(1,8p) < 0. The equality F4 5(0g) = 0
follows from the positivity of the linear map @4 5.

<=: If an equality holds in (3.2) then it is clear that py g = 1. Assume that
g(1,0q) = 0 for some B¢ = (Hy, 0¢, 70)- In order to prove ps 5 = 1, it suffices to
show that the function h:r — g(r, ©g) is strictly decreasing at r = 1. Put

— ity
’

o =ae® + be B = a7 + be ', v =aze™ 4 bye” ™.

First, note that |a|? + |8]* + |7|> > 0, because @« = 3 = v = 0 implies
8(1,80) = 1. If Re(aBy) < 0, then £ is strictly decreasing on the interval
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[0, 00). If Re(a3y) > O, then h is strictly decreasing on the interval

lal? + 167 + v
3Re(afy)

From the inequalities in (3.2), we have Re(a3y) < |afiy| < 1. Therefore, it
follows that

3Re(afy) < 2Re(@fy) + | = |a* + 8 + [/,
and so £ 1s strictly decreasing at r = 1, as was desired. |

PROPOSITION 3.3, Assume that D € A7 (WAg. Then we have psp = 1 if
and only if one of the following two cases holds:

(i) An equality holds in (3.2)
(i) A + D and B + (I — D) have null vector (x1,y1,z1) and (x2,¥2,22),
respectively, with the condition

x| = |xal, Iyi] = |yal, 1zl = |zl B34

PROOF. Because A N Ay is nonempty, 4 p is immediately positive. By
Proposition 3.2, it suffices to show that F4 g(6, 0, 7) = 0 for some (8,0, 7) € Qif
and only if case (ii) holds.

Assume that Fs g(6, 0, 7) = 0 for some (8, 0, 7) € §2. Note that the matrix in
(3.3) is the sum of the following two positive semi-definite matrices:

d, alei‘) aze_ia 1 —d; b]€7i9 Egeio
ae”®  dy aze” |, bie? 1 —dy bye™ ™ | . (3.5)
aze’." 536"’.7 d3 bgeﬁl.g 53671# 1 —dsy

Because the sum of these two matrices is singular, we see that they have a common
null vector (x,y, z). Then,

(x,e%.e7z) and (x,e™"y,¢z)

are null vectors of A + D and B + (I — D), respectively, and satisfy the condition
(3.4).

For the converse, we assume that (x, y, ) and (xe>, ye”ﬁ ,zr* ™Y are null vectors
of A+ D and B+ (I — D), respectively. Then we see that (x, ye'®~® 70~ ) s a
common null vector for the matrices in (3.5), with (6, 0, 7) = (0 — B,y -, 3—").
Therefore, we have F, g(8,0,7) = 0. |
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In the remainder of this section, we give an intrinsic characterization of
the positivity of the map ®4 5 in terms of the entries of A and B, under the
condition

ay,ay,as,by,by, by € R. 3.6)

To do this, we need the following lemma.
LEMMA 3.4.  Let o, 3, and v be real numbers, and put

F(6,0,7) = acosf + Fcoso + vycosT, 3.7
0+o0c+71 = 0. (3.8)

We denote by A the set of all triplets (p, q, r) of nonnegative real numbers satisfying
psqg+r, g <r+p, r<p+gq.
(i) If aB~ > O, then the maximum of (3.7) under the constraint (3.8) is
laf + 18] + 7.

(i) If a8y < O and (Jaf|, |B7|, |val) € A, then the maximum of (3.7) under
the constraint (3.8) is

a2‘/32 +ﬁ2,72 +,Yza2
2a8y '

iy If afBy < 0and (lab|, |87, |val) € A, then the maximum of (3.7) under
the constraint (3.8) is

max {|af + 8] = Iyl fel = 18] + Iyl —lad + 18] + [v{} -

PRrROOF. There is nothing to prove for statement (i). For the remaining cases,
we assume that afvy < 0. If (3.7) takes an extreme value at (6, o, 7) under the
constraint (3.8), then we have

asinf = @sing = ysinT, 3.9

by the Lagrange multiplier method. First, we assume that sinf # 0. From the
relation
asinf = Fsinog = —ysinfcoso — ycosfsina,

we get

cosf = ‘é - écoso'.
v o«



POSITIVE LINEAR MAPS 247

Similarly, we have

Yoy a o«
COST = —— — —COS T, coOsST = —— — —cosd.
a p 8 v

Hence, it follows that
costl = P, coso = Q, cosT = R, (3.10)
where

Mazﬁz + 6272 _ ,7202

P =
2023y
0 a2 — B + APl
= 20/32“/ ’
242 2.2 2.2
R Y-y o
2a0v?

Therefore, an extreme value of (3.7) under the constraint (3.8) occurs only when
sinf =sing =sinT =0
or
cosf =P, cosoc=Q, cosT =R,
for which (3.7) takes the values
o+ 8l =1v, ol =181+,  —lal+ 8+ (3.11)
or
OZZ())Z + ,62",/2 4 ,Yzaz
2|3 ’
respectively. It is easy see that the value (3.12) is greater than or equal to the three
values of (3.11). We note that there exist 8, o, and 7 satisfying (3.10) if and only if

(3.12)

—1<pP<1, -1<Q<1, -1<R<I.

It is also easy to see that this is the case if and only if (a3, |87, |yal) € A.
Now, if (|agl, |87, |val) ¢ A, then the extreme values occur only when
sinf = sino = sinT = 0, and this proves (iii). If (jag|, |87l |val) € A, then
we see that there are 8, ¢, and 7 satisfying the equations (3.8) and (3.9), and this
completes the proof of (ii). |
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Note that the inequality Fs p(6,0,7) > 0 for (8, 0, 7) € {2 is equivalent to

) + b1 + |ay + bre' |> + |ay + b3e'™|?
< 1 +2Re(a; + bie)ay + bre'" Y as + bye™), (3.13)

for 8 + o + 7 = 0. Now, we impose the condition (3.6) and put

a = a1b| — a1b2b3 — b]dzag,
B8 = axby — byaghy — a;byas,
v = azby — bibraz — arazba, (3.14)

| + 2(a axa3 + b1 bab3) — (a% + a% + a_% + b? + b% + b_%)7

A = max{lal +|8] = 7|l = 18] + 2] —lal + 18] + |71}

Then, by a direct calculation, we see that the condition (3.13) becomes
2(acosf + Bcoso + yeosT) < 6.
Now, we apply Lemma 3.4 to get

THEOREM 3.5.  Under the condition (3.6), the linear map ®4 p is positive if
and only if the condition (3.2) together with the following conditions is satisfied:

afy >0 = 2(al+ 18]+ |y <6,

a2ﬁ2 +/3272 +"/2(12

Q,B’) < 07 (|O¢B|, IﬁAl‘v h(ll) € A = = aﬁv

<6,

afy <0, (lagl, Byl |yal) ¢ A = 2A <6,

where the numbers o, 3,~,6, and A are given by (3.14).

4. DECOMPOSABILITY IN THE THREE-DIMENSIONAL CASE

In this section, we show that the linear map ®4 g on M3 is positive if and only
if it is decomposable.

THEOREM 4.1. Let ® be a positive linear map on the three-dimensional
matrix algebra which fixes diagonals. Then ® is deocomposable.

The following simple lemma will be useful. We omit an elementary proof.
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LEMMA 4.2. Assume that ag < a1, 00 < B1,7% > 0,71 > 0, and one of v
or v, is nonzero. Then the equations

x—a)y =Py =%, G—a)y—B) =7 4.1
have a common solution (x,y) with oy < x < a1, 80 < y < By if and only if the

inequality
(Yo + 1) < (o — ao)(By — Bo)

holds. Furthermore, the equality holds if and only if the solution is unique.
Also, assume that a; > 0,0, > 0. Then the first curve in (4.1) with x >
ag,y > Bo satisfies the condition
ax + By > 7
if and only if we have the inequality

2vov/ 2By + (apos + Boffr — 712) 2 0.

For the proof of Theorem 4.1, we first consider the special case in which A or
B has a zero row. For example, we assume that b, = b3 = 0.

LEMMA 4.3. Let by = by = 0. Then the map ®4 p is positive if and only if
it is decomposable if and only if the condition

(b1] + @] — asas])* < (1 — |aaH)(1 — |as]?) 4.2)
holds.

PROOF. Writeq; = |a;|e'® by = |b|e¥'. If @4 p is positive, then it follows
that

lay|> + b1 + laz)® + |as|* + 2|ai| |b1] cos(@ + ¥y — éy)
< 14+ 2Re(aiaxas) + 2|biazas| cos(8 + 1 + ¢z + ¢3),

by (3.13), and so we have

2|b1| [Jar| cos(8 + v — ¢1) — |aras| cos(8 + 11 + ¢2 + $3)]
< 14 2Re(@imas) — (la|* + |b1* + a2 }* + |as)®)
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for every 8. Because the maximum value of the left side with respect to 8 is equal
to 2|b1| [a; — aza3|, we have

20by] 1@ — @aas) < (1 — |aa )1 — |as)®) = (|b1* + @ — azaa]?),

from which the condition (4.2) follows.

Assume that (4.2) holds. If |a;| = 1 or |as| = 1 then |b1| = 0. Also, note that
if by = O then @4 p is already completely positive by Proposition 2.1. Hence, we
may assume that lay] < 1, |as| < 1, and by # 0. By Lemma 4.2, the equations

(x— @) (y — las’) = [@1 — awas* and (x— Dy —1) =[5

have a common solution (x,y) with |a;|?> < x < 1 and |a3|*> < y < 1. With these
x and y, we see that

X a a 1: X bl 0
(El y a3> and ( b 1 —y O)
a, az |1 0 0 0

are positive semidefinite. Therefore, ®4 p is decomposable by Theorem 2.3. W

From now on, we assume
(I) Neither A nor B has a zero row.
In order to complete the proof of Theorem 4.1, it suffices to show

6,4’3 =1 = PAB = 1. (43)

Therefore, we also assume

(I éap=1.
This condition (II) implies that the set A;{' M Ajg contains a point D = (d,d3, d3).
From condition (I), we also have

(x,y,2) € Af  (respectivelyAy)
= x,5,2>0 (respectively < 1). (4.4)

LEMMA 4.4. Let S and T be convex sets in R" with nonempty interiors.
Assume that S 0 T has no interior and contains a line segment L. Then L is
contained in S N OT, where OS denotes the boundary of S.

PRrROOF. Assume that there is a point x of L which is an interior point of S.
Let B be an open ball centered at x and contained in S. Take an interior point y of
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T, and denote by M the line segment between x and y. Then every pointof M N B
is an interior point of § N T with the possible exception of x. u

We introduce the following equations:

sa(x,y,z) =det[A + Diag(x,y,2)] = 0
sp(x,y,z)=det[B + Diag(l —x,1 —y,1 = 2)] =0

4.5)

LEMMA 4.5.  Assume condition (1). Then we have the following:

() A point (x,y,z) € A] lies onthe boundary of A ifand only if sa(x,y,2) =
0.

(i) If a point D = (dy,d2,d3) € OA] is a regular point of the surface
sa(x,y,2) =0, then there is a neighborhood U of D such that

UNAL =UN{(xy,2):s4x,y,2) > 0}.
The analogous statements hold for Ay and sp.

PROOF. Let (x,y,z) € Af. Then we have that x,y,z > 0 by (4.4). Note
that (x,y,z) € A} if and only if one of the equalities

SA(X’)HZ) = 0: xy = ‘al‘za yi = ‘(13‘2’ X = \az‘z

holds. Therefore, the first statement is a direct consequence of the well-known
fact: A positive semidefinite matrix with a singular principal submatrix is itself
singular (see [4, Theorem 4.3.8] for example).
For the second statement, we assume that the gradient vector V, (D) is nonzero,
say
N
0z
Apply the inverse function theorem for the map (x, y, 2) — (x,y, 54 (x,¥,2)) to see
that there is a neighborhood U of D such that U N {(x,y,2): sa(x,y,2) > 0} is
connected. On the other hand, statement (i) says that the interior of Aj consists
of one component of the region {(x,y,z):s4(x, y,z) > 0}, and this proves (ii). ®

(D) #0.

In order to prove (4.3), we first consider the case when A} N Ay contains at
least two points.

LEMMA 4.6. Assume condition (I). Then we have the following:
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(1) If a line segment L through a point D = (dy,dy,ds) lies in aAj (orin
OAgR), then L is parallel to an axis.

(i) If 4.3 = 1 and A N Ay contains at least two points, then AT N Ay
is a line segment which is parallel to an axis.

Proor. IfD = (dy,d2,d3)and E = (e}, 2, e3) are distinct points on L, then
we have the identity

detfA + D +tE —D)] =0, t €10, 1],

by Lemma 4.5. Considering the coefficients, we see that two of d; — ¢; become 0
by (4.4). For statement (ii), let D and E be distinct points of BAX N OAg. Then
the line segment L between D and E lies in JAT N OA5 by Proposition 2.4 and
Lemma 4.4. The above argument actually shows that AT N Ay itself is a line
segment containing L. [ |

LEMMA 4.7.  Assume conditions (1) and (I). IfOA} NOAG contains at least
two points, then an equality holds in (3.2).

PrROOF. By Lemma 4.6, AT N Aj is a line segment which is parallel to
an axis, say the z-axis. If we denote Af{ NAZ = {(di,d»,2):z € I}, then two

equations in (4.5) with a fixed z have a unique common solution (d|, d) for every
z € 1. Note that (4.5) may be written as

(2)e-2)
(222

It is easy to see that

|’ |as|? - by |63
I = T 1 — , 1= .
[max { 4 4 min — 4

Therefore, for any interior point z of I, we have

2
, (4.6)

4.7

2 2 2 bal?
——|a2‘ <dy <1-— —'bzl ——‘a:" <dy <1~ —‘ g

z 1-z z 1 -z

and so we can take an open subinterval J of / such that Lemma 4.2 may be applied
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to (4.6) and (4.7) for each z € J. Then it follows that the identity
1_ bybs
L=

2
(‘ﬁl—azﬁ-l-b )
b4
:(pM_M el b
z 1 -z z -z

holds for every z € J. If we multiply by z2(1 —z)? on both sides and take squares in
a suitable manner, then we can get an identity of real polynomials with respect to z.
Comparing the coefficients of the highest degree, we get therelation |a; |+|b,| = 1.

|

-z

If A] N Aj contains at least two points, then the relation (4.3) follows by
Lemma 4.7. Next, we assume that

(IIl) A7 N Aj consists of one point D = (d;,dy, d3).
Since D € OA] NAAg, both A+ D and B + (I — D) are singular. If both A + D
and B + (I — D) are of rank one, then they have a common null vector, and so we
have ps g = 1 by Proposition 3.3.

Now, we consider the case when both A + D and B + (I — D) are of rank two.
We denote by [oy;] and [ 5] the classical adjoint matrices of A + D and B+ (I — D),
respectively. We note that the gradient vectors are given by

Vsa(D) = (a1, az, a33)  and V(D) = (=811, — B2, ~B33),

which are nonzero by the rank condition. By Lemma 4.5, we can take a neighbor-
hood U of D such that

UnAf

{(X, Y, Z) : (X,}";Z) S U7 SA(Xv)’» Z) Z O}a

{(X, Y, Z) : (.X,)", Z) € U7 SB(xa Y, Z) 2 0}

UNnA}

By condition (II1), we see that sg takes a local maximum at D under the constraint
salx,y,z2) = 0, and so Vs (D) and Vsg(D) are linearly dependent. On the other
hand, every column vector of {oy;] (respectively [5;]) is a null vector of A + D
(respectively B 4 (I — D)), and [a;] (respectively [3;]) is of rank one. With this
information in hand, it is easy to see that A + D and B -+ (/ — D) have null vectors
with the relation (3.4), and we conclude p4 g = 1 by Proposition 3.3.

It remains to consider the case when one of A + D or B + (I — D) is of rank
two and the other is of rank one. To do this, we need the following:
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LEMMA 4.8. Assume that o, 3, and y are positive numbers, and A + D is of
rank one. If every point X = (x,y,2) in A,T satisfies the relation

alx —d)) + By —da) + vz —d3) 2 0, 4.8)

then we have
(laraa| Ve, |azas| /7, lasas |/ B) € A, 4.9)
where A is as was defined in Lemma 3.4.

PRrROOF. Fromtherelation (4.4), we see thata; # Ofori = 1,2, 3. Therefore,
we have

_aiay| _asai] _amas|  amas
T 2= s 3= = =
|| |ar| ay
from the rank condition. We slice the set A] with the plane P, through the point
(0,0, ) which is parallel to the xy plane. Note that Py, N Aj = {(x,y,d3):x >
d\,y > d,} contains an interior point of A} by the first part of Lemma 4.6.
Therefore, we see that the upper right component of the hyperbola (4.6) satisfies
the relation (4.8) for each z in an open interval / containing ¢3. From the second

part of Lemma 4.2, it follows that

G(2) + H(z) = 0, zel, (4.10)
where

G(x) = 72 — wdia+ drf + dyy) + |aa|*a + |a3[*B,
H(2) 2+/ aB|za; — ayas).
Note that G(d;) = H(d;) = 0 and G'(d3) = —dya — d23 + d3y. We also have

H(z) = 2\/afB(zai| — |asas|) because ajaras = ds|a;|* is a real number. By the
relation (4.10), we have

| —dia — da 3 + dyy| < 2ai|v/apb,
from which we infer the desired condition (4.9). u

Now, we assume that A 4+ D is of rank one and B + (I — D) is of rank two. Then
the tangent plane of the surface sg(x, y, 2) = 0 at the point D is given by (4.8) with
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equality, where

N DTN
T bk 1-ds]’
_1—dy b

o =1, 124l @.11)
C1=d b

T4 B 1—dy|

and |-| denotes the determinant. It is easy to see that every point (x,y,2z) of Ay
satisfies

alx —dy) + Bx —dy) +y(y — d3) <0, (4.12)

by Lemma 4.2 together with the similar calculation as in the proof of Lemma 4.8.
If a point E € A} satisfies (4.12) with the strict inequality, then the line segment
between D and E has a nonempty intersection with Az \{D}. Because this line
segment lies in A by the convexity, we get a contradiction with assumption (I1I).
Therefore, we see that every point of A} satisfies (4.8), and so we have the relation
(4.9) with o, 3, and 7 in (4.11).

In order to apply Proposition 3.3, it is more convenient to consider the quadratic
Hermitian forms

lpix+pay +pszl* and |qix + qoy + gazl® + [rx + ray + razl?,

which are associated with A + D and B + (I — D), respectively. Then the relation
(4.9) says that

(Ip1xols Ip2yol, [Pazel) € A, (4.13)
where (xg, Yo, 20) is the cross product of (g, 42, g3) and (ry,r2,r3), and soitis a
null vector of B + (I — D). From the condition (4.13), we see that there are o and
T with the relation , '
P1xo + payoe'” + pszoe” = 0.
Therefore, (xo, Yoe'®, zoe'™) is a null vector of A + D. By Proposition 3.3, we have
pap = 1 and this completes the proof of Theorem 4.1

Note Added in the proof: In the paper (H.-J. Kim and S.-H. Kye, Indecom-
posable extreme positive linear maps in matrix algebras, Bull. London Math. Soc.,
to appear), the authors have shown that there is an indecomposable positive linear
map between M,, which fixes diagonals, whenever n > 4.

The author thanks Professor Osaka for his useful comments on the earlier draft
of this note.
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