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1. Separable states and PPT states

A positive semi-definite matrix in M, @ M,, = M,(M,) is said to be
separable if it is the sum of rank one projectors onto product vectors in
C™® C". A product vector is a simple tensor £ @ n € C™ @ C".

Therefore, if A is separable then it is of the form
A= Zz,-z,f" = Z |zi)(zi| € Mpm @ M,

with product vectors z; = & ®@n; € C" ® C".
We denote by V; the convex cone consisting of all separable ones.

A positive semi-definite matrix in M, ® M, is said to be entangled if it is
not separable.

2012.01.12., Luminy (Seung-Hyeok KyeSeClassification of bi-qutrit PPT entangled e Jan. 12, 2012 3/38



By the relation
E@nE®n)" =L @m’

we see that
Vi=Me M},

and so, entanglement consists of

(My @ M)t \ MF @ M.

Note that (A® B)t = AT @ BT for commutative C*-algebras A and B.
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For A€ M,, ® M, define the partial transpose A™ € M, @ M, by
XeY)=X'®Y,
for X € M, and Y € M,,,. Then
Zey@x,-j :Zej,-®x,-j:Ze;j®xJ-;
ij=1 ij=1 ii=1

So, partial transpose is nothing but the block-wise transpose.

T

1010 1 010 1 001 1 000
0 00O [O0O0O0O 0 00O [(0OO0T1O0
1010 (1010} 000O|] |01O00
0 00O 0000 1 001 0000
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For £ € C™ and n € C", we have

[(E@n)(Een)] =" @m
= (&) @’
=& em
= (Een)(Een)

The partial transpose of a rank one projection onto a product vector is
again a rank one projection, especially positive semi-definite.

Therefore, if A€ M, ® M, is separable then its partial transpose A” is also
positive semi-definite.

The product vector £ @ € C™ @ C" is called the partial conjugate of £ .
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This gives us a simple necessary condition, called the PPT (positive partial
transpose) criterion for separability, as was observed by Choi (1982) and
Peres (1996). Denote by

T={Ae (My®Mp)" : A" € (M, ® Mm)"}.
With this notation, the PPT criterion says that
Vi CT.

The equality holds if and only if (m,n) = (2,2),(2,3) or (3,2), by
Woronowicz (1976) and Choi (1982).

Woronowicz (1976): When m =2, Vi = T if and only if n < 3, and gave
an explicit example in T \ V; for (m, n) = (2,4).
Choi (1982): gave an explicit example in T \ V; for (m, n) = (3, 3).

These examples in T \ V; are said to be PPTES (positive partial transpose
entangled state) if it is normalized.
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Identify the vector space C™ @ C" with the space M, of all m x n
matrices. Every vector z € C™ @ C" is uniquely expressed by

m n
z:Ze,-®z,-E(Cm®(C”, z,-:Zz,-kekE(C”, i=1,2,...,m.
i=1 k=1

Then we get z = [zj| € Mpxp. This identification

m n
Y@ | Y zier | — [zl (1)
i=1 k=1

is an inner product isomorphism from C™ ® C" onto M.

f®77<_>§77* € Man7
e X € < €jj € Mm><n7

Z e ® ej «— Identity.
i
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A convex subset F of a convex set C is said to be a face of C if the
following condition

x,y€C, (1—t)x+ty € F forsome t € (0,1) = x,y € F

holds.

Every face of the convex cone T is determined (Ha, K, 2005) by a pair
(D, E) of subspaces of My, = C™ ® C"™

7(D,E)={AeT:RACD, RA" C E}.
Note also that
int7(D,E)={Ae€T:RA=D, RA" = E}.

Finally, we note that a pair (D, E) gives rise to a face of T if and only if
there is a nonzero A € T such that RA= D and RA™ = E.
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2 ® 2 case: We can list up all faces of the cone V; = T:

D
(1,1) SP
(2,2) SP
(3,3) SP
(3,3) SP
(3,4) SP
(4,3) SP

with some rank two matrices V and W.

E
SP
SP
SP
SpP
SP
SP

DL
SP
SP
SP
CE
CE

{0}

SP: spanned by product vectors
CE: completely entangled, that is, has no product vector.

EL
Sp
SP
SP
CE
{0}
CE

&n* én*
(&n*, Cw*)  (En*, Cw*)
(/N (T

v+ Wt
vt Mo
My wt
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Comparing boundaries of the two cones V; C T, we have the following four
possibilities:

(iy 7(D,E) Cc V;

(i) 7(D,E) € Vi but int 7(D, E) N Vy # 0
(i) int7(D,E)NVy =0 but 07(D,E)NV; £ 0
(iv) 7(D,E)NVy =10
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Note that every point x of a convex set determines a unique face in which
x is an interior point. This is the smallest face containing x. A PPT state
A determines the smallest face by RA and RA".

Recall that the range criterion (P. Horodecki, 1997) tells us that if a PPT
state A is separable then there exists product vector &; ® 7; such that
RA = span {¢; @ 1;} and RAT = span {£; ® n;}. This condition holds if
and only if either the case (i) or the case (ii) occurs.

A PPT state A is said to be an edge state (P. Horodecki, Lewenstein, Vidal
and Cirac, 2000) if the case (iv) occurs; there exists no product vectors
& ® nj such that RA = span {&; ® n;} and RA™ = span {; ® n;}.
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Choi’s example (1982):

1 . . 1. .1
2 - 1 .
1
5 1
1
1 5 .
A= 1 -1 1 1€T
2 1
1 2 -
1
o o1 S
1 . . 1. .1

Note that the range is a 4-dimensional space spanned by
eReteadeat+ead®e

and
1

V2

1 1
V5ﬂ®@+;§®®ﬂ, V5®®%+;§%®®, V2e30e1+

e1®es.
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The corresponding (e; ® ej < ejj) 4-dimensional subspace D of Mzy3 is
spanned by

100 0 V2 0 0 0 O 0 0
0o10|, [ 0 0], (00 V2|, |0 0 0
1
001 0 0 0 0 5 O V2 0 0
which has no rank one matrices. So, A is entangled.
Note that
a 2b %
b
a2 V2
C
\/id ﬁ a

is never of rank one.
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Stgrmer's example (1982)

2u - - - 2u - - 2u
. 4,U2 . .. . . ..
-1
1 -
A=1 2u 2u - 2u
. 4M2
4,u2 .
. . .1 .
2u - - C2u - S 2

If we identity C3 ® C3 and M35 in the usual way, then we see that

RA = {e11 — ex, e — 633}L-
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AT

Il
N
L

and so, we see that

RA = {e11 — ex, en — ez}t
RAT = {2ue1s — €1, 213 — €3, 2ue3; — ez}t
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The space RA has product vectors, but there is no product vector £ ® n
such that _
E®@neRA, E@neRA.

except for p # % Therefore, A for p # % violates the range criterion in an
extreme way.

Note that dimRA =7, dmRA™ =6
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2. Edge PPTES

An edge state A is said to be of type (p, q) if dimR(A) = p and
dmR(A™) =q.

Question: Classify edge states by their types (p, q).

Lower bounds for p and g were given by P. Horodecki, Lewenstein, Vidal
and Cirac (2000):

AeT, dmR(A) < max{m,n} = AecVy,

So, we have
p, g > max{m, n}.

What about upper bounds ?
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We consider the following three conditions for a pair (D, E) of subspaces of
CmeCm™

(A) There exists a PPT entangled edge state A such that RA = D and
RA™ =E.

(B) There exists NO nonzero product vector { @ n € C™ @ C" with

(@neD, f@nekE.

(C) Negation of (B).
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Find a condition for a quadruplet (k, ¢, m, n) of natural numbers to satisfy
the following:

(C) For any pair (D, E) of subspaces of C™ ® C" with dim D+ = k,
dim E+ = ¢, there exists a nonzero product vector

£®7] = (517]17517’2"" 7£1nn; 527717' . 'a£2nn7; sy 5177n»- . ~5m7ln)

in C™ @ C" with _
E®@neD, ExnekE.

o Every system of equations consisting of k linear equations w.r.t. &7;
and / linear equations w.r.t. &;n; has a nonzero solution.

If this condition (C) holds then there is no edge state of type
(mn — k, mn — ¢), which gives us upper bounds for range dimensions of an
edge state A and its partial transpose A7.
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Results with Y.-H. Kiem and J. Lee
(J. Math. Phys. 52 (2011), 122201 arXiv:1107.1023.):

Theorem

Let (k,¢, m,n) be a quadruplet of natural numbers with the relation
k! <mxn. If

(—a+B)K(a+pB) #£0 modulo o™, ",

in the polynomial ring Z|c, (3], then the above condition (C) holds.

Proof involves techniques from algebraic geometry.
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o If k+¢ < m+ n— 2 then the condition (C) holds:
If (mn — p) + (mn— q) < m+ n— 2 then there is no edge state of

type (p, q):
If there is an edge state of type (p, g) then we have

p+qg<2mn—m—n+2.

o If k+¢> m+ n— 2 then the condition (C) does not hold: no
information for the existence of edge states.

@ What happen when k + /¢ = m+ n— 2, that is,
p+g=2mn—m-—n+277
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We expand the polynomial to write

k+¢

(—a+B)f(a+p) = cllatphtit

t=0

= T Q)

If k4+¢ = m-+ n— 2 then we have

with the coefficients

(—CH-B)I((CH-Q)K —|—C 2Ozm 2ﬁn kflam lﬁn 1+Ck€ mﬁn 2

We see that the polynomial is zero modulo o™ and " if and only if
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Therefore, if

k4+0=m+n—-2
Culy #0

and dim D+ = k, dim E+ = ¢ then there exist product vector x ® y € D
with x®y € E,
which implies that there is no m ® n edge state of type (mn — k, mn — /).
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Converse 77
If

k7€ R
Cm—l -

{k+€:m+n—2

then there exists (D, E) such that
edimDt =k, dmELt =7
e there exist no nonzero product vector x ® y € D with x® y € E.

Yes, for m =2 or (m,n) = (3,3).
We do not know for general cases.

The above equation is known to the Krawtchouk polynomial, which plays
an important role in coding theory.

If this equation is satisfied then there may exist an m ® n edge state of
type (mn — k, mn — ?).
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List of solutions for some easy cases:

(i) When m=2: n=2k and { =k for k =1,2,....

(i) When m=3: n=r(r+2), k= (3" and ¢= ("52) for
r=12....

(iii)) When m = n: k and ¢ are odd.

(iv) When k = ¢: m and n are even.
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For small numbers with mn < 10, we have the solutions

(1,1)in2®2, (2,2)in2®4, (1,3)in3®3,

X1+ xey2 + Xx3y3 =0
{ Xiy1+xy2 =0 x1y2 —x2y1 =0
x1y2 —xay1 =0 xoy3 — x3y2 =0
x3y1 —x1y3 =0

These examples do not give rise to examples of PPT edge states.
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2 ® 4 case:

(i) k+¢<2+4—-2=4; p+ g < 12 gives an upper bound
(i) When k+¢=4 (p+q=12), wehave 3, ., (-1)(¥) () =0if

r
and only if (k,¢) =(2,2). The case (k,¢) = (3,1) is not the root of
the equation. This means that there is no edge state of type (5,7).
This special case was shown by Samsonowicz, Ku$ and Lewenstein

(2007).

Actually, all possible types are

(5,5), (5,6), (6,5), (6,6)
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e Woronowicz (1976): edge state of (5,5) type
@ P. Horodecki (1997): parameterized examles of (5,5) type

e Augusiak, J. Grabowski, M. Ku$ and M. Lewenstein (2010): edge
state of type (5,6).

@ It is not known that if there is a 2 ® 4 edge state of type (6,6).

q
8

° O no edge state

©® unknown
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3 ® 3 case:

(i) k+¢<3+3—-2=4. p+ g < 14 gives an upper bound

(i) When k+£=4 (p+q=14), we have 3", .5 ,(-1)"(¥) () =0if
and only if (k,¢) = (1,3). The case (k,¢) = (2,2) is not the root of
the equation. This means that there is no edge state of type (7,7).

Actually, all possible types are

(4,4), (55), (5.6), (57), (6,6), (58), (6,7), (6,8),

here we list up the cases s < t by the symmetry.
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@ Choi (1982): The first example of PPTES is turned out to be an edge
state of type (4,4).

@ Other examples of edge states of this type (4,4) were constructed
using orthogonal unextendible product bases (Bennett, ...,1999) and
indecomposable positive linear maps (Ha, K, Park, 2003). The latter
is generic, in the sense that generic 5-dim subspaces of C3 ® C3 have
six product vectors. Choi's example is of second kind.

Stgrmer (1982): an edge state of type (6,7).

Ha, K (2004): types (5,6), (5,7) and (5,8)
Clasrisse (2006), Ha (2007): types (5,5) and (6,6)
type (6,8) 77
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3. Construction of edge states of type (8,6)

(with H. Osaka)
We begin with the following 3 x 3 matrix

el 4 it el it
P[] := —e 0 it 4 =i —ef?
ol e i i o

which has a kernel vector (1,1,1)".
Note that

e P[f] is positive semi-definite if and only if cosf > 0 and 2cos20 > —1
if and only if =% <6 < 3.

o If =% < 6 < 3 then P[f] is of rank two.
o If = —F or 0 = % then P[0] is of rank one.

2012.01.12., Luminy (Seung-Hyeok KyeSeClassification of bi-qutrit PPT entangled e Jan. 12, 2012 32 /38



el@ + 6719 X elG
1
b
- b
b .
A — _e_le . . . ele + e—le .
1
!
b
. . . . b
_elf L. _ei0
in M3 ® M3 with the conditions
T T
b>1, —— << -, 0 #0,
3 3 7

where - denotes the zero.
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The partial transpose A™ of A is given by

ag

EI e L

ag

EI e L
|
)

(S

_ei0 K b

a9

with ag = e + e = 2 cos¥.
It is clear that A is of PPT, and we have

rank A = 8, rank AT = 6.

It is straightforward to show that A is an edge state.
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Consider

et 4 e~ . . . _elf e
b
. b ~
@ b
X = _e—10 ei0 4 e—l@ X ei@
- )
1
. £ 1 /3*
*
’y . B .
_e10 _e—19 eio9 4 e—l@
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whose partial transpose X7 is given by

ae . . . a . . . ’7*
l _e_ig .
b ,
K b —6'9
ef? b
o . . . ag . . . /8 ,
. . . . l . _e_ie
b
—i0 1
_e . ) B
el6‘ K b
Y B ag

2012.01.12., Luminy (Seung-Hyeok KyeSeClassification of bi-qutrit PPT entangled e Jan. 12, 2012 36 / 38



With suitable choice of a, 3,, we may get edge states of types

(8,6), (7,6), (6,6), (5,6)

and

(8,5), (7,5), (6,5), (5,5)
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