ÀÛ¿ë¼Ò ¼Ò½Ä No.272. (2007.12.01)

 

 

¿¬»ç: Muneo Cho (Kanagawa Univ)
Á¦¸ñ: Xia spectrum for some class of operators
ÀϽÃ: 2007³â 12¿ù 7ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£


-12
¿ù 7ÀÏ(±Ý) Àú³á¿¡ ÀÛ¿ë¼Ò Á¾°­ ȸ½ÄÀÌ ÀÖ½À´Ï´Ù.

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.271. (2007.11.24)

 

 

¿¬»ç: Muneo Cho (Kanagawa Univ)
Á¦¸ñ: Xia spectrum for some class of operators
ÀϽÃ: 2007³â 12¿ù 7ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£


-11
¿ù 30ÀÏ(±Ý)Àº ¼­¿ï´ëÇб³ ÇкΠ½ÅÀÔ»ý ¸éÁ¢ °ü°è·Î ÀÛ¿ë¼Ò ¼¼¹Ì³ª°¡ ¾ø½À´Ï´Ù.
-12
¿ù 7ÀÏ(±Ý) Àú³á¿¡ ÀÛ¿ë¼Ò Á¾°­ ȸ½ÄÀÌ ÀÖ½À´Ï´Ù.

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.270. (2007.11.16)


¿¬»ç±èÀç¿õ (¼­¿ï´ëÇб³)
Á¦¸ñ: The Operator Class C1
ÀϽÃ: 2007³â 11¿ù 23ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£


¿¬»ç: Muneo Cho (Kanagawa Univ)
Á¦¸ñ: Xia spectrum for some class of operators
ÀϽÃ: 2007³â 12¿ù 7ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.269. (2007.11.11)


¿¬»ç: Á¤ÀϺÀ (°æºÏ´ëÇб³)
Á¦¸ñ: On Completely Hyperexpansive Operators
ÀϽÃ: 2007³â 11¿ù 16ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£


¿¬»ç: Muneo Cho (Kanagawa Univ)
Á¦¸ñ: Xia spectrum for some class of operators
ÀϽÃ: 2007³â 12¿ù 7ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.268. (2007.11.04)

 


¿¬»ç: ÀÌ»óÈÆ (Ãæ³²´ëÇб³)
Á¦¸ñ: Which hyponormal operators are subnormal?(¾î¶² ¾ÆÁ¤±ÔÀÛ¿ë¼Ò°¡ ºÎºÐÁ¤±ÔÀΰ¡?)
ÀϽÃ: 2007³â 11¿ù 9ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£ 
ÃÊ·Ï : ºê¶÷-ÇÒ¸ð½ºÀÇ ºÎºÐÁ¤±Ô¿¡ ´ëÇÑ Æ¯¼ºÈ­´Â ¾ÆÁ¤±Ô ÀÛ¿ë¼Ò¿Í ºÎºÐÁ¤±Ô ÀÛ¿ë¼ÒÀÇ Æ´ÀÌ »ó´çÈ÷ Å©´Ù´Â °ÍÀ» ¾Ï½ÃÇϴµ¥,

Ưº°ÇÑ ÀÛ¿ë¼ÒÁ·¿¡ ´ëÇؼ­´Â ÀÌ µÎ°³ÀÇ ÀÛ¿ë¼Ò°¡ ÀÏÄ¡ÇÑ´Ù. ±×·¸°Ô µÇ¸é ¿ì¾ÆÇÑ ºÎºÐÁ¤±Ô ÀÛ¿ë¼Ò¿¡ ´ëÇÑ ÀÌ·ÐÀ» Àû¿ëÇÒ¼ö Àִµ¥,

±×·± Àǹ̿¡¼­ "¾î¶² ¾ÆÁ¤±ÔÀÛ¿ë¼Ò°¡ ºÎºÐÁ¤±ÔÀΰ¡?"ÇÏ´Â ¹°À½Àº Èï¹Ì·Ó´Ù.

ÀÌ¿¡ ´ëÇØ ÀڱⱳȯÀÚÀÇ °è¼ö°¡ À¯ÇÑÀÎ °æ¿ì°¡ Á¦ÀÏ ¸ÕÀú ¶°¿À¸£´Âµ¥, ÀÌ °æ¿ì¿¡ ´ëÇØ »ìÆ캻´Ù.

 


¿¬»ç: Á¤ÀϺÀ (°æºÏ´ëÇб³)
Á¦¸ñ: On Completely Hyperexpansive Operators
ÀϽÃ: 2007³â 11¿ù 16ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£

 


¿¬»ç: Muneo Cho (Kanagawa Univ)
Á¦¸ñ: Xia spectrum for some class of operators
ÀϽÃ: 2007³â 12¿ù 7ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.267. (2007.10.27)

 


¿¬»ç: ¹ÚÃá±æ (ÇѾç´ëÇб³)
Á¦¸ñ: Functional EquationsÀÇ ºÐ·ù
ÀϽÃ: 2007³â 11¿ù 2ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£

 


¿¬»ç: ÀÌ»óÈÆ (Ãæ³²´ëÇб³)
Á¦¸ñ: Which hyponormal operators are subnormal?(¾î¶² ¾ÆÁ¤±ÔÀÛ¿ë¼Ò°¡ ºÎºÐÁ¤±ÔÀΰ¡?)
ÀϽÃ: 2007³â 11¿ù 9ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£ 
ÃÊ·Ï : ºê¶÷-ÇÒ¸ð½ºÀÇ ºÎºÐÁ¤±Ô¿¡ ´ëÇÑ Æ¯¼ºÈ­´Â ¾ÆÁ¤±Ô ÀÛ¿ë¼Ò¿Í ºÎºÐÁ¤±Ô ÀÛ¿ë¼ÒÀÇ Æ´ÀÌ »ó´çÈ÷ Å©´Ù´Â °ÍÀ» ¾Ï½ÃÇϴµ¥,

Ưº°ÇÑ ÀÛ¿ë¼ÒÁ·¿¡ ´ëÇؼ­´Â ÀÌ µÎ°³ÀÇ ÀÛ¿ë¼Ò°¡ ÀÏÄ¡ÇÑ´Ù. ±×·¸°Ô µÇ¸é ¿ì¾ÆÇÑ ºÎºÐÁ¤±Ô ÀÛ¿ë¼Ò¿¡ ´ëÇÑ ÀÌ·ÐÀ» Àû¿ëÇÒ¼ö Àִµ¥,

±×·± Àǹ̿¡¼­ "¾î¶² ¾ÆÁ¤±ÔÀÛ¿ë¼Ò°¡ ºÎºÐÁ¤±ÔÀΰ¡?"ÇÏ´Â ¹°À½Àº Èï¹Ì·Ó´Ù.

ÀÌ¿¡ ´ëÇØ ÀڱⱳȯÀÚÀÇ °è¼ö°¡ À¯ÇÑÀÎ °æ¿ì°¡ Á¦ÀÏ ¸ÕÀú ¶°¿À¸£´Âµ¥, ÀÌ °æ¿ì¿¡ ´ëÇØ »ìÆ캻´Ù.

 


¿¬»ç: Á¤ÀϺÀ (°æºÏ´ëÇб³)
Á¦¸ñ: On Completely Hyperexpansive Operators
ÀϽÃ: 2007³â 11¿ù 16ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£

 


¿¬»ç: Muneo Cho (Kanagawa Univ)
Á¦¸ñ: Xia spectrum for some class of operators
ÀϽÃ: 2007³â 12¿ù 7ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.266. (2007.10.22)

 


¿¬»ç: ±è¿ìÂù (¼­¿ï´ëÇб³)
Á¦¸ñ: The Schmidt number of the type $(5,5)$ and $(6,6)$ examples of Clarisse and Ha
ÀϽÃ: 2007³â 10¿ù 26ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£

 


¿¬»ç: ¹ÚÃá±æ (ÇѾç´ëÇб³)
Á¦¸ñ: Functional EquationsÀÇ ºÐ·ù
ÀϽÃ: 2007³â 11¿ù 2ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£

 


¿¬»ç: ÀÌ»óÈÆ (Ãæ³²´ëÇб³)
Á¦¸ñ: Which hyponormal operators are subnormal?(¾î¶² ¾ÆÁ¤±ÔÀÛ¿ë¼Ò°¡ ºÎºÐÁ¤±ÔÀΰ¡?)
ÀϽÃ: 2007³â 11¿ù 9ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£ 
ÃÊ·Ï : ºê¶÷-ÇÒ¸ð½ºÀÇ ºÎºÐÁ¤±Ô¿¡ ´ëÇÑ Æ¯¼ºÈ­´Â ¾ÆÁ¤±Ô ÀÛ¿ë¼Ò¿Í ºÎºÐÁ¤±Ô ÀÛ¿ë¼ÒÀÇ Æ´ÀÌ »ó´çÈ÷ Å©´Ù´Â °ÍÀ» ¾Ï½ÃÇϴµ¥,

Ưº°ÇÑ ÀÛ¿ë¼ÒÁ·¿¡ ´ëÇؼ­´Â ÀÌ µÎ°³ÀÇ ÀÛ¿ë¼Ò°¡ ÀÏÄ¡ÇÑ´Ù. ±×·¸°Ô µÇ¸é ¿ì¾ÆÇÑ ºÎºÐÁ¤±Ô ÀÛ¿ë¼Ò¿¡ ´ëÇÑ ÀÌ·ÐÀ» Àû¿ëÇÒ¼ö Àִµ¥,

±×·± Àǹ̿¡¼­ "¾î¶² ¾ÆÁ¤±ÔÀÛ¿ë¼Ò°¡ ºÎºÐÁ¤±ÔÀΰ¡?"ÇÏ´Â ¹°À½Àº Èï¹Ì·Ó´Ù.

ÀÌ¿¡ ´ëÇØ ÀڱⱳȯÀÚÀÇ °è¼ö°¡ À¯ÇÑÀÎ °æ¿ì°¡ Á¦ÀÏ ¸ÕÀú ¶°¿À¸£´Âµ¥, ÀÌ °æ¿ì¿¡ ´ëÇØ »ìÆ캻´Ù.

 


¿¬»ç: Á¤ÀϺÀ (°æºÏ´ëÇб³)
Á¦¸ñ: On Completely Hyperexpansive Operators
ÀϽÃ: 2007³â 11¿ù 16ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£

 


¿¬»ç: Muneo Cho (Kanagawa Univ)
Á¦¸ñ: Xia spectrum for some class of operators
ÀϽÃ: 2007³â 12¿ù 7ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.265. (2007.10.14)


¿¬»ç: ±è¿ìÂù (¼­¿ï´ëÇб³)
Á¦¸ñ: The Schmidt number of the type $(5,5)$ and $(6,6)$ examples of Clarisse and Ha
ÀϽÃ: 2007³â 10¿ù 26ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£ 


¿¬»ç¹ÚÃá±æ (ÇѾç´ëÇб³)
Á¦¸ñ: Functional EquationsÀÇ ºÐ·ù
ÀϽÃ: 2007³â 11¿ù 2ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£ 


-10
¿ù 19ÀÏ(±Ý)Àº ´ëÇÑ ¼öÇÐȸ °ü°è·Î ÀÛ¿ë¼Ò´ë¼ö ¼¼¹Ì³ª°¡ ¾ø½À´Ï´Ù.

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.264. (2007.10.06)


¿¬»çȲÀμº (¼º±Õ°ü´ëÇб³)
Á¦¸ñ: Joint hyponormality of block Toeplitz pairs
ÀϽÃ: 2007³â 10¿ù 12ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£ 


¿¬»ç: ±è¿ìÂù (¼­¿ï´ëÇб³)
Á¦¸ñ: The Schmidt number of the type $(5,5)$ and $(6,6)$ examples of Clarisse and Ha
ÀϽÃ: 2007³â 10¿ù 26ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£ 


¿¬»ç¹ÚÃá±æ (ÇѾç´ëÇб³)
Á¦¸ñ: Functional EquationsÀÇ ºÐ·ù
ÀϽÃ: 2007³â 11¿ù 2ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£ 


-10
¿ù 19ÀÏ(±Ý)Àº ´ëÇÑ ¼öÇÐȸ °ü°è·Î ÀÛ¿ë¼Ò´ë¼ö ¼¼¹Ì³ª°¡ ¾ø½À´Ï´Ù.

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.263. (2007.9.28)


¿¬»çÇÑ°æÈÆ (¼­¿ï´ëÇб³)
Á¦¸ñ: Exact hull of C^*-tensor norm
ÀϽÃ: 2007³â 10¿ù 5ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£ 


¿¬»çȲÀμº (¼º±Õ°ü´ëÇб³)
Á¦¸ñ: TBA
ÀϽÃ: 2007³â 10¿ù 12ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£ 


¿¬»ç: ±è¿ìÂù (¼­¿ï´ëÇб³)
Á¦¸ñ: The Schmidt number of the type $(5,5)$ and $(6,6)$ examples of Clarisse and Ha
ÀϽÃ: 2007³â 10¿ù 26ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£ 


¿¬»ç¹ÚÃá±æ (ÇѾç´ëÇб³)
Á¦¸ñ: Functional EquationsÀÇ ºÐ·ù
ÀϽÃ: 2007³â 11¿ù 2ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£ 

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.262. (2007.9.22)


¿¬»çÇÑ°æÈÆ (¼­¿ï´ëÇб³)
Á¦¸ñ: Exact hull of C^*-tensor norm
ÀϽÃ: 2007³â 10¿ù 5ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£ 


- 9
¿ù 28ÀÏ(±Ý)Àº Ãß¼® ¿¬ÈÞ °ü°è·Î ÀÛ¿ë¼Ò ¼¼¹Ì³ª°¡ ¾ø½À´Ï´Ù.

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.261. (2007.9.14)


¿¬»çÀ̿쿵 (¼­¿ï´ëÇб³)
Á¦¸ñSubnormality of  Toeplitz operators
ÀϽÃ: 2007³â 9¿ù 21ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£ 


- 9
¿ù 28ÀÏ(±Ý)Àº  Ãß¼®¿¬ÈÞ °ü°è·Î ÀÛ¿ë¼Ò ¼¼¹Ì³ª°¡ ¾ø½À´Ï´Ù.

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.260. (2007.9.8)

¿¬»ç: ÀÌÁ¤·Ê (´ëÁø´ëÇб³)
Á¦¸ñ: Generalized additive functional inequalities in C*-algebras
ÀϽÃ: 2007³â 9¿ù 14ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£ 


¿¬»çÀ̿쿵 (¼­¿ï´ëÇб³)
Á¦¸ñ: TBA
ÀϽÃ: 2007³â 9¿ù 21ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£ 

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.259. (2007.9.2)

¿¬»ç: ÇãÀ缺 (ÇѾç´ëÇб³)
Á¦¸ñ: Grothendieck inequality for jointly completely bounded bilinear forms on C*-algebras.
ÀϽÃ: 2007³â 9 ¿ù 7 ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£


¿¬»ç: ÀÌÁ¤·Ê (´ëÁø´ëÇб³)
Á¦¸ñ: Generalized additive functional inequalities in C*-algebras
ÀϽÃ: 2007³â 9¿ù 14ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ
Àå¼Ò: »ó»ê°ü 301È£

- 2
Çб⠼¼¹Ì³ª´Â ¸ÅÁÖ ±Ý¿äÀÏ ¿ÀÈÄ 3½Ã 30ºÐÀ¸·Î ¿¹Àüº¸´Ù 30ºÐ ´ÊÃçÁ³À½À» ¾Ë·Áµå¸³´Ï´Ù.
-
»ó»ê°ü 301È£´Â ¿ÀÈÄ 3½ÃºÎÅÍ ÀÌ¿ëÀÌ °¡´ÉÇϸç 3½Ã 15ºÐºÎÅÍ´Â ´Ù°ú°¡ ÁغñµÉ ¿¹Á¤ÀÔ´Ï´Ù.
- 9
¿ù 7ÀÏ Àú³á 5½Ã 30ºÐ °³°­ÆÄƼ°¡ ÀÖ½À´Ï´Ù. Àå¼Ò´Â ¼­¿ï´ëÀÔ±¸¿ª ÇÁ¸®ºñ(egg yellow °Ç¹°)ÀÔ´Ï´Ù.

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.258. (2007.6.17)

 

KOTAC2007 Á÷Àü¿¡ ´ÙÀ½ÀÇ ÁýÁß°­¿¬ÀÌÀÖ½À´Ï´Ù

 

¿¬»ç:  N. Brown (Penn State Univ.)

Á¦¸ñ:  Four applications of exactness and quasidiagonality

 

Àå¼Ò ¹× ÀÏÁ¤ : ¼­¿ï´ëÇб³ »ó»ê°ü 301È£.

6¿ù 18ÀÏ(¿ù): ¿ÀÈÄ 3:00 -- 5:00
6
¿ù 19ÀÏ(È­): ¿ÀÀü 10:00 -- 12:00
6
¿ù 20ÀÏ(¼ö): ¿ÀÀü 10:00 -- 12:00.
 

ÃÊ·Ï:  In these lectures I will explain how technical approximation
properties of C*-algebras can be used to solve certain problems which,
on the surface, appear to be far removed from the realm of
C*-approximation theory.
In the first lecture I will review some basics (group algebras, crossed
products and other preliminaries), survey the theories of exact and
quasidiagonal C*-algebras, and show how these ideas lead to a complete
solution to a problem of Herrero in single operator theory. In the
second lecture I will present applications to theoretical numerical
analysis and K-homology. The third lecture will be devoted to exact
groups, amenable actions and the striking applications of Ozawa and
Ozawa-Popa to various classification results for von Neumann algebras
.

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.257. (2007.6.2)

       

¿¬»ç:  À̿쿵 (¼­¿ï´ëÇб³)

Á¦¸ñ:  Hyponormal Toeplitz operators

ÀϽÃ:  2007³â 6 ¿ù 8 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 

6¿ù 8ÀÏ ¼¼¹Ì³ª ÈÄ  5½ÃºÎÅÍ´Â ¼­¿ï´ëÀÔ±¸ Àüö¿ª 3,4¹ø Ãⱸ ¿¡±×¿»·Î¿ì 9Ãþ

ÇÁ¸®ºñ¿¡¼­ Á¾°­ ȸ½ÄÀÌ ÀÖ½À´Ï´Ù.

 

KOTAC2007 Á÷Àü¿¡ ´ÙÀ½ÀÇ ÁýÁß°­¿¬ÀÌ ÀÖ½À´Ï´Ù

 

¿¬»ç:  N. Brown (Penn State Univ.)

Á¦¸ñ:  Four applications of exactness and quasidiagonality

 

Àå¼Ò ¹× ÀÏÁ¤ : ¼­¿ï´ëÇб³ »ó»ê°ü 301È£.

6¿ù 18ÀÏ(¿ù): ¿ÀÈÄ 3:00 -- 5:00
6
¿ù 19ÀÏ(È­): ¿ÀÀü 10:00 -- 12:00
6
¿ù 20ÀÏ(¼ö): ¿ÀÀü 10:00 -- 12:00.
 

ÃÊ·Ï:  In these lectures I will explain how technical approximation
properties of C*-algebras can be used to solve certain problems which,
on the surface, appear to be far removed from the realm of
C*-approximation theory.
In the first lecture I will review some basics (group algebras, crossed
products and other preliminaries), survey the theories of exact and
quasidiagonal C*-algebras, and show how these ideas lead to a complete
solution to a problem of Herrero in single operator theory. In the
second lecture I will present applications to theoretical numerical
analysis and K-homology. The third lecture will be devoted to exact
groups, amenable actions and the striking applications of Ozawa and
Ozawa-Popa to various classification results for von Neumann algebras.

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.256. (2007.5.25)

       

¿¬»ç:  ¼Û¸í½Å (Southern Illinois University Edwardsville)

Á¦¸ñ:  Entropy encoding using Kahunen Loeve Transform

ÀϽÃ:  2007³â 6 ¿ù 1 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

ÃÊ·Ï:  While entropy encoding is a popular topic in engineering, the choices made
in signal processing are often more by trial and error than by theory. We try to pay more attention to the mathematical foundation of the entropy encoding. We take advantage of the fact that Hilbert space and operator theory form the common language of both quantum mechanics and of signal/image processing. By introducing Hilbert space and operators, we show how probabilities, approximations and entropy encoding from signal and image processing allow precise formulas and quantitative estimates. Our main results yield orthogonal bases which optimize distinct measures of data encoding. We show that parallel problems in quantum mechanics and in signal processing entail the choice of "good" orthonormal bases (ONBs). One particular such ONB goes under the name "the Karhunen-Lo`eve basis."
 

¿¬»ç:  À̿쿵 (¼­¿ï´ëÇб³)

Á¦¸ñ:  Hyponormal Toeplitz operators

ÀϽÃ:  2007³â 6 ¿ù 8 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 

KOTAC2007 Á÷Àü¿¡ ´ÙÀ½ÀÇ ÁýÁß°­¿¬ÀÌ ÀÖ½À´Ï´Ù

 

¿¬»ç:  N. Brown (Penn State Univ.)

Á¦¸ñ:  Four applications of exactness and quasidiagonality

 

Àå¼Ò ¹× ÀÏÁ¤ : ¼­¿ï´ëÇб³ »ó»ê°ü 301È£.

6¿ù 18ÀÏ(¿ù): ¿ÀÈÄ 3:00 -- 5:00
6
¿ù 19ÀÏ(È­): ¿ÀÀü 10:00 -- 12:00
6
¿ù 20ÀÏ(¼ö): ¿ÀÀü 10:00 -- 12:00.

ÃÊ·Ï:  In these lectures I will explain how technical approximation
properties of C*-algebras can be used to solve certain problems which,
on the surface, appear to be far removed from the realm of
C*-approximation theory.
In the first lecture I will review some basics (group algebras, crossed
products and other preliminaries), survey the theories of exact and
quasidiagonal C*-algebras, and show how these ideas lead to a complete
solution to a problem of Herrero in single operator theory. In the
second lecture I will present applications to theoretical numerical
analysis and K-homology. The third lecture will be devoted to exact
groups, amenable actions and the striking applications of Ozawa and
Ozawa-Popa to various classification results for von Neumann algebras.

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.255. (2007.5.21)

       

¿¬»ç:  ÀÌÇöÈ£ ( Purdue University)

Á¦¸ñ:  C^*-algebras of lower rank

ÀϽÃ:  2007³â 5 ¿ù 25 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 

¿¬»ç:  ¼Û¸í½Å (Southern Illinois University Edwardsville)

Á¦¸ñ:  Entropy encoding using Kahunen Loeve Transform

ÀϽÃ:  2007³â 6 ¿ù 1 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

ÃÊ·Ï:  While entropy encoding is a popular topic in engineering, the choices made
in signal processing are often more by trial and error than by theory. We try to pay more attention to the mathematical foundation of the entropy encoding. We take advantage of the fact that Hilbert space and operator theory form the common language of both quantum mechanics and of signal/image processing. By introducing Hilbert space and operators, we show how probabilities, approximations and entropy encoding from signal and image processing allow precise formulas and quantitative estimates. Our main results yield orthogonal bases which optimize distinct measures of data encoding. We show that parallel problems in quantum mechanics and in signal processing entail the choice of "good" orthonormal bases (ONBs). One particular such ONB goes under the name "the Karhunen-Lo`eve basis."
 

¿¬»ç:  À̿쿵 (¼­¿ï´ëÇб³)

Á¦¸ñ:  Hyponormal Toeplitz operators

ÀϽÃ:  2007³â 6 ¿ù 8 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.254. (2007.5.14)

       

¿¬»ç:  ÀÌÇöÈ£ ( Purdue University)

Á¦¸ñ:  C^*-algebras of lower rank

ÀϽÃ:  2007³â 5 ¿ù 25 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 

¿¬»ç:  ¼Û¸í½Å (Southern Illinois University Edwardsville)

Á¦¸ñ:  Entropy encoding using Kahunen Loeve Transform

ÀϽÃ:  2007³â 6 ¿ù 1 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£
 

¿¬»ç:  À̿쿵 (¼­¿ï´ëÇб³)

Á¦¸ñ:  Hyponormal Toeplitz operators

ÀϽÃ:  2007³â 6 ¿ù 8 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 

5¿ù 18 ÀÏÀº  ¼­¿ï´ë ¼ö¸®°úÇкΠME2007 Çà»ç·Î ¼¼¹Ì³ª°¡ ¾ø½À´Ï´Ù.

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.253. (2007.5.7)

      

¿¬»çÇÑ°æÈÆ (¼­¿ï´ëÇб³)

Á¦¸ñ:  Noncommutative L_p space arising from semifinite von Neumann algebra and free group factor II

ÀϽÃ:  2007³â 5 ¿ù 11 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 

¿¬»ç:  ÀÌÇöÈ£ ( Purdue University)

Á¦¸ñ:  C^*-algebras of lower rank

ÀϽÃ:  2007³â 5 ¿ù 25 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 

¿¬»ç:  ¼Û¸í½Å (Southern Illinois University Edwardsville)

Á¦¸ñ:  Entropy encoding using Kahunen Loeve Transform

ÀϽÃ:  2007³â 6 ¿ù 1 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 

¿¬»ç:  À̿쿵 (¼­¿ï´ëÇб³)

Á¦¸ñ:  Hyponormal Toeplitz operators

ÀϽÃ:  2007³â 6 ¿ù 8 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 

Áö³­ ¼Ò½ÄÁöÀÇ ³»¿ë°ú ´Þ¸® ¼¼¹Ì³ª ÀÏÁ¤ÀÌ º¯°æµÇ¾úÀ½À» ¾Ë·Áµå¸³´Ï´Ù

5¿ù 18ÀÏÀº ¼­¿ï´ë ¼ö¸®°úÇкΠME2007 Çà»ç·Î ¼¼¹Ì³ª°¡ ¾ø½À´Ï´Ù.

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.252. (2007.4.30)

      

¿¬»çÇÑ°æÈÆ (¼­¿ï´ëÇб³)

Á¦¸ñ:  Noncommutative L_p space arising from semifinite von Neumann algebra and free group factor

ÀϽÃ:  2007³â 5 ¿ù 4 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 

¿¬»ç:  À̿쿵 (¼­¿ï´ëÇб³)

Á¦¸ñ:  Hyponormal Toeplitz operators

ÀϽÃ:  2007³â 5 ¿ù 11 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 

5¿ù 18ÀÏÀº ¼­¿ï´ë ¼ö¸®°úÇкΠME2007 Çà»ç·Î ¼¼¹Ì³ª°¡ ¾ø½À´Ï´Ù.

 

¼­¿ï´ë Çؼ®ÇРƯ°­ °­ÀÇ¿¡¼­ ÀÌÇö´ë ¹Ú»ç°¡ OperatorÀÇ Æ¯¼ºÄ¡¿¡ ´ëÇÑ Gohberg-Sigal À̷п¡ ´ëÇÑ °­ÀǸ¦ ÇÕ´Ï´Ù

°­Àǽð£Àº 5¿ù 3ÀÏ ¸ñ¿äÀϺÎÅÍ ½ÃÀÛÇÏ¿© ¸ÅÁÖ È­, ¸ñ 10:30¿¡ 056-101¿¡¼­ ¾à 3¹ø Á¤µµ ÀÖÀ» ¿¹Á¤ÀÔ´Ï´Ù

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.251. (2007.4.23)

      

¿¬»çJianlian Cui (Tsinghua University)

Á¦¸ñ:  Additive maps preserving commutativity up to a factor

ÀϽÃ:  2007³â 4 ¿ù 27 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

     

¿¬»çÇÑ°æÈÆ (¼­¿ï´ëÇб³)

Á¦¸ñ:  Noncommutative L_p space arising from semifinite von Neumann algebra and free group factor

ÀϽÃ:  2007³â 5 ¿ù 4 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.250. (2007.4.17)

      

¿¬»çÇÑ°æÈÆ (¼­¿ï´ëÇб³)

Á¦¸ñ:  Noncommutative L_p space

ÀϽÃ:  2007³â 4 ¿ù 27 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 

À̹ø ÁÖ´Â ´ëÇѼöÇÐȸ (Åä) °ü°è·Î ±Ý¿ä¼¼¹Ì³ª°¡ ¾ø½À´Ï´Ù.



 

ÀÛ¿ë¼Ò ¼Ò½Ä No.249. (2007.4.10)

   

¿¬»ç:  J. Stochel (Jagiellonian Univ.)

Á¦¸ñ:  Joint subnormality of $n$-tuples and $C_0$-semigroups of composition operators on $L^2$-spaces.

ÀϽÃ:  2007³â 4 ¿ù 13 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

ÃÊ·Ï:  Joint subnormality of a family of composition
operators on $L^2$-space is characterized by
means of positive definiteness of appropriate
Radon-Nikodym derivatives. Next, simplified
positive definiteness conditions guaranteing
joint subnormality of a $C_0$-semigroup of
composition operators are supplied. Finally, the
Radon-Nikodym derivatives attached to a jointly
subnormal $C_0$-semigroup of composition
operators are shown to be the Laplace transforms
of probability measures (modulo a $C_0$-group of
scalars) constituting a measurable family.

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.248. (2007.3.31)

   

¿¬»ç:  ÀÌÈÆÈñ (Æ÷Ç×°ø´ë)

Á¦¸ñ:  Finite dimensional subspaces of Noncommutative L_p

ÀϽÃ:  2007³â 4 ¿ù 6 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

ÃÊ·Ï:  First, we will focus on n-dimensional subspace E of Lp(M) with
respect to a semifinite von Neumann algebra M.
We will talk about so called "change of density" phenomenon saying that E
has a special basis satisfying an orthogonal condition.
With the help of this basis we can show that d_cb(E, RC[p]_n) <= n^|1/2 -
1/p|.
This result can be extended to the case M is a general von Neumann algebra
using Haggerup's reduction argument.

 

¿¬»ç:  J. Stochel (Jagiellonian Univ.)

Á¦¸ñ:  TBA

ÀϽÃ:  2007³â 4 ¿ù 13 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.247. (2007.3.25)

  

¿¬»ç:  ±èÀç¿õ (¼­¿ï´ëÇб³)

Á¦¸ñ:  Scott Brown's techniques on the invariant subspace problem ll

ÀϽÃ:  2007³â 3 ¿ù 30 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 

¿¬»ç:  ÀÌÈÆÈñ (Æ÷Ç×°ø´ë)

Á¦¸ñ:  TBA

ÀϽÃ:  2007³â 4 ¿ù 13 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.246. (2007.3.19)

 

¿¬»ç:  È²Àμº (¼º±Õ°ü´ëÇб³)

Á¦¸ñ:  Hyponormality of block Toeplitz operator

ÀϽÃ:  2007³â 3 ¿ù 23 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 

¿¬»ç:  ±èÀç¿õ (¼­¿ï´ëÇб³)

Á¦¸ñ:  Scott Brown's techniques on the invariant subspace problem ll

ÀϽÃ:  2007³â 3 ¿ù 30 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.245. (2007.3.10)

 

¿¬»ç:  ±èÀç¿õ (¼­¿ï´ëÇб³)

Á¦¸ñ:  Scott Brown's techniques on the invariant subspace problem

ÀϽÃ:  2007³â 3 ¿ù 16 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 

16ÀÏ ¼¼¹Ì³ª°¡ ³¡³­ ÈÄ Àú³á 5½Ã 30ºÐ¿¡ µ¿¿ø»ýÈ°°ü¿¡¼­ °³°­È¸½ÄÀÌ ÀÖ½À´Ï´Ù.

 


 

ÀÛ¿ë¼Ò ¼Ò½Ä No.244. (2007.3.4)

¿¬»ç±è¿ìÂù (¼­¿ï´ëÇб³)

Á¦¸ñExtreme rays in $3\otimes 3$ entangled edge states with positive partial transposes

ÀϽÃ: 2007³â 3 ¿ù 9 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 

¿¬»ç±èÀç¿õ (¼­¿ï´ëÇб³)

Á¦¸ñTBA

ÀϽÃ: 2007³â 3 ¿ù 16 ÀÏ ±Ý¿äÀÏ 15½Ã

Àå¼Ò»ó»ê°ü 301È£

 

16ÀÏ ¼¼¹Ì³ª°¡ ³¡³­ ÈÄ Àú³á 5½Ã 30ºÐ¿¡ µ¿¿ø»ýÈ°°ü¿¡¼­ °³°­È¸½ÄÀÌ ÀÖ½À´Ï´Ù.