ÀÛ¿ë¼Ò ¼Ò½Ä No.297. (2008.11.28)



¿¬»ç: Àå¼±¿µ (¿ï»ê´ë)

Á¦¸ñ: Completeness of the Fuzzy normed spaces and Fuzzy stability of functional equations

ÀϽÃ: 2008³â 12¿ù 5ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£


-12¿ù 5ÀÏ ¼¼¹Ì³ª ÈÄ¿¡, 6½ÃºÎÅÍ ÀÛ¿ë¼Ò Á¾°­È¸½ÄÀÌ ÀÖ½À´Ï´Ù.

ȸ½ÄÀå¼Ò´Â Áö³­¹ø°ú °°ÀÌ ¼­¿ï´ë ÀÔ±¸¿ª¿¡ ÀÖ´Â ¼¼¹ÌÇÑÁ¤½Ä ÀÔ´Ï´Ù.


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.296. (2008.11.21)



¿¬»ç: ±èÇüÁØ (¼­¿ï´ë)

Á¦¸ñ: Extremal vectors and c-eigenvectors

ÀϽÃ: 2008³â 11¿ù 28ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: ÀÚ¿¬°úÇдëÇÐ 27µ¿(¼öÇаú) 413È£(Àü»ê½Ç)



-11¿ù 28ÀÏ ¼¼¹Ì³ª´Â ¼­¿ï´ëÇб³ ¼ö½ÃÀÔÇÐÀԽ÷ΠÀÎÇÏ¿© ¼ö¸®°úÇкÎ4Ãþ Àü»ê½Ç¿¡¼­ ÁøÇàµË´Ï´Ù.


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.295. (2008.11.14)



¿¬»ç: Ãֺθ² (°í·Á´ë)

Á¦¸ñ: Toeplitz operators on the Bergman space: Algebraic properties.

ÀϽÃ: 2008³â 11¿ù 21ÀÏ ±Ý¿äÀÏ 16½Ã

Àå¼Ò: »ó»ê°ü 301È£

ÃÊ·Ï:20¼¼±â ÈĹݿ¡ µé¾î¿À¸é¼­ È°¼ºÈ­µÇ±â ½ÃÀÛÇÑ Toeplitz ÀÛ¿ë¼Ò¿¡ ´ëÇÑ ¿¬±¸´Â ÇöÀç ¼¼°èÀûÀÎ ¿¬±¸°¡ È°¹ßÈ÷ ÁøÇàµÇ°í ÀÖ´Â Çؼ®ÇÐ ºÐ¾ßÀÇ ÇÑ ÁÖÁ¦ÀÌ´Ù.ÃÊâ±â¿¡´Â Hardy °ø°£ À§¿¡¼­ ÁÖ·Î ¿¬±¸°¡ ÁøÇàµÇ¾úÀ¸³ª, ÃÖ±Ù¿¡´Â Bergman °ø°£ À§¿¡¼­ÀÇ ¿¬±¸µµ È°¹ßÈ÷ ÁøÇàµÇ°í ÀÖ´Ù.Hardy °ø°£ À§¿¡ ÀÛ¿ëÇÏ´Â Toeplitz ÀÛ¿ë¼ÒÀÇ ´ë¼öÀû ¼ºÁú¿¡ ´ëÇÑ ¿¬±¸´Â 1960³â´ë Brown °ú HalmosÀÇ ¿¬±¸°á°ú¸¦ ±âÁ¡À¸·Î ÇÏ°í ÀÖ´Ù.±×·¯ÇÑ Hardy °ø°£ À§ÀÇ °á°ú¸¦ Bergman °ø°£À¸·Î ¿Å±â´Â ¿¬±¸µéÀÌ ÃÖ±Ù µé¾î ¸¹ÀÌ ÁøÇàµÇ°í ÀÖÀ¸³ª ¸¹Àº ¾î·Á¿òÀÌ ÀÖ´Ù.À̹ø °­ÀÇ¿¡¼­´Â ºñÀü¹®°¡¸¦ ´ë»óÀ¸·Î ÇÏ´Â ¼öÁØ¿¡¼­ Toeplitz ÀÛ¿ë¼ÒÀÇ ±âº»¼ºÁú, ´ë¼öÀû ¼ºÁú°ú °ü·ÃµÈ ÃÖ±ÙÀÇ ¿©·¯ ¿¬±¸°á°ú,¹ÌÇØ°á ¹®Á¦ µîÀ» ¼Ò°³ÇÏ°íÀÚ ÇÑ´Ù.


-11¿ù 21ÀÏ ¼¼¹Ì³ª´Â ¿ÀÈÄ4½ÃºÎÅÍ ½ÃÀÛÀÔ´Ï´Ù.


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.294. (2008.11.08)



¿¬»ç: ÀÌÈÆÈñ (University of Waterloo)

Á¦¸ñ: Non-commutative Lp-spaces in abstract harmonic analysis and

non-commutative probability II

ÀϽÃ: 2008³â 11¿ù 14ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£


Abstract: Both in abstract harmonic analysis and classical probability,

Lp-space has been a natural playground. However, in their non-commutative counterparts, namely, non-commutative harmonic analysis and non-commutative probability, Lp-settings have not been the central subjects so far. In this talk, we will focus on a settlement of Lp-problems in those areas with the help of recent developments of non-commutative Lp theory. We first review basic materials of non-commutative Lp-spaces, and focus on the following two concrete cases.


1. Let G be a locally compact group and VN(G) be the group von-Neumann algebra, then Lp(VN(G)) can be understood as a module over A(G), the Fourier algebra of G. We will take a look at the projectivity of Lp(VN(G)).


2. Let (G_i) be the q-gaussian variables, non-commutative analogues of indepedent standard normal gaussian variables. While the simple linear

combinations a_1G_1+ ... +a_nG_n are rather easy to understand, the linear combinations of products Sum^n_{i,j=1}a_{ij}G_iG_j are much more complicated, and they are called q-chaoses of degree 2. We will focus on Lp-norm estimates of thoes chaoses.


¿¬»ç: Ãֺθ² (°í·Á´ë)

Á¦¸ñ: Toeplitz operators on the Bergman space: Algebraic properties.

ÀϽÃ: 2008³â 11¿ù 21ÀÏ ±Ý¿äÀÏ 16½Ã

Àå¼Ò: »ó»ê°ü 301È£

ÃÊ·Ï:20¼¼±â ÈĹݿ¡ µé¾î¿À¸é¼­ È°¼ºÈ­µÇ±â ½ÃÀÛÇÑ Toeplitz ÀÛ¿ë¼Ò¿¡ ´ëÇÑ ¿¬±¸´Â ÇöÀç ¼¼°èÀûÀÎ ¿¬±¸°¡ È°¹ßÈ÷ ÁøÇàµÇ°í ÀÖ´Â Çؼ®ÇÐ ºÐ¾ßÀÇ ÇÑ ÁÖÁ¦ÀÌ´Ù.ÃÊâ±â¿¡´Â Hardy °ø°£ À§¿¡¼­ ÁÖ·Î ¿¬±¸°¡ ÁøÇàµÇ¾úÀ¸³ª, ÃÖ±Ù¿¡´Â Bergman °ø°£ À§¿¡¼­ÀÇ ¿¬±¸µµ È°¹ßÈ÷ ÁøÇàµÇ°í ÀÖ´Ù.Hardy °ø°£ À§¿¡ ÀÛ¿ëÇÏ´Â Toeplitz ÀÛ¿ë¼ÒÀÇ ´ë¼öÀû ¼ºÁú¿¡ ´ëÇÑ ¿¬±¸´Â 1960³â´ë Brown °ú HalmosÀÇ ¿¬±¸°á°ú¸¦ ±âÁ¡À¸·Î ÇÏ°í ÀÖ´Ù.±×·¯ÇÑ Hardy °ø°£ À§ÀÇ °á°ú¸¦ Bergman °ø°£À¸·Î ¿Å±â´Â ¿¬±¸µéÀÌ ÃÖ±Ù µé¾î ¸¹ÀÌ ÁøÇàµÇ°í ÀÖÀ¸³ª ¸¹Àº ¾î·Á¿òÀÌ ÀÖ´Ù.À̹ø °­ÀÇ¿¡¼­´Â ºñÀü¹®°¡¸¦ ´ë»óÀ¸·Î ÇÏ´Â ¼öÁØ¿¡¼­ Toeplitz ÀÛ¿ë¼ÒÀÇ ±âº»¼ºÁú, ´ë¼öÀû ¼ºÁú°ú °ü·ÃµÈ ÃÖ±ÙÀÇ ¿©·¯ ¿¬±¸°á°ú,¹ÌÇØ°á ¹®Á¦ µîÀ» ¼Ò°³ÇÏ°íÀÚ ÇÑ´Ù.


-11¿ù 21ÀÏ ¼¼¹Ì³ª´Â ¿ÀÈÄ4½ÃºÎÅÍ ½ÃÀÛÀÔ´Ï´Ù.


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.293. (2008.11.03)



¿¬»ç: ÀÌÈÆÈñ (Æ÷Ç×°ø´ë)

Á¦¸ñ: Non-commutative Lp-spaces in abstract harmonic analysis and

non-commutative probability I

ÀϽÃ: 2008³â 11¿ù 07ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£


¿¬»ç: ÀÌÈÆÈñ (Æ÷Ç×°ø´ë)

Á¦¸ñ: Non-commutative Lp-spaces in abstract harmonic analysis and

non-commutative probability II

ÀϽÃ: 2008³â 11¿ù 14ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£


Abstract: Both in abstract harmonic analysis and classical probability,

Lp-space has been a natural playground. However, in their non-commutative counterparts, namely, non-commutative harmonic analysis and non-commutative probability, Lp-settings have not been the central subjects so far. In this talk, we will focus on a settlement of Lp-problems in those areas with the help of recent developments of non-commutative Lp theory. We first review basic materials of non-commutative Lp-spaces, and focus on the following two concrete cases.


1. Let G be a locally compact group and VN(G) be the group von-Neumann algebra, then Lp(VN(G)) can be understood as a module over A(G), the Fourier algebra of G. We will take a look at the projectivity of Lp(VN(G)).


2. Let (G_i) be the q-gaussian variables, non-commutative analogues of indepedent standard normal gaussian variables. While the simple linear

combinations a_1G_1+ ... +a_nG_n are rather easy to understand, the linear combinations of products Sum^n_{i,j=1}a_{ij}G_iG_j are much more complicated, and they are called q-chaoses of degree 2. We will focus on Lp-norm estimates of thoes chaoses.


¿¬»ç: Ãֺθ² (°í·Á´ë)

Á¦¸ñ: TBA

ÀϽÃ: 2008³â 11¿ù 21ÀÏ ±Ý¿äÀÏ 16½Ã

Àå¼Ò: »ó»ê°ü 301È£


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.292. (2008.10.18)



¿¬»ç: ȲÀμº (¼º±Õ°ü´ë)

Á¦¸ñ: Hyponormality of Block Toeplitz operators with circulant type symbols.

ÀϽÃ: 2008³â 10¿ù 31ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£



- 10¿ù 24ÀÏ(±Ý)¿¡´Â ´ëÇѼöÇÐȸ ÀÏÁ¤À¸·Î ÀÎÇÏ¿© ÀÛ¿ë¼Ò ¼¼¹Ì³ª°¡ ¾ø½À´Ï´Ù.


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.291. (2008.10.10)



¿¬»ç: ±èÀç¿õ (¼­¿ï´ë)

Á¦¸ñ: The operator class $C_\rho$ and operator systems

ÀϽÃ: 2008³â 10¿ù 17ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£


¿¬»ç: ȲÀμº (¼º±Õ°ü´ë)

Á¦¸ñ: Hyponormality of Block Toeplitz operators with circulant type symbols.

ÀϽÃ: 2008³â 10¿ù 31ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£



- 10¿ù 24ÀÏ(±Ý)¿¡´Â ´ëÇѼöÇÐȸ ÀÏÁ¤À¸·Î ÀÎÇÏ¿© ÀÛ¿ë¼Ò ¼¼¹Ì³ª°¡ ¾ø½À´Ï´Ù.


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.290. (2008.10.03)



¿¬»ç: ÀÌ»óÈÆ (Ãæ³²´ë)

Á¦¸ñ: Which 2-hyponormal 2-variable weighted shifts are subnormal?

ÀϽÃ: 2008³â 10¿ù 10ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£

ÃÊ·Ï: It is well known that a 2-hyponormal unilateral weighted shift with two equal weights must be flat, and therefore subnormal. By contrast, a 2-hyponormal 2-variable weighted shift which is both horizontally flat and vertically flat need not be subnormal. In this paper we identify a large class S of flat 2-variable weighted shifts for which 2-hyponormality is equivalent to subnormality. One measure of the size of S is given by the fact that within S there are hyponormal shifts which are not subnormal.(Joint work with R. Curto and J. Yoon)


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.289. (2008.09.26)



¿¬»ç: ÀÌ»óÈÆ (Ãæ³²´ë)

Á¦¸ñ: Which 2-hyponormal 2-variable weighted shifts are subnormal?

ÀϽÃ: 2008³â 10¿ù 10ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£

ÃÊ·Ï: It is well known that a 2-hyponormal unilateral weighted shift with two equal weights must be flat, and therefore subnormal. By contrast, a 2-hyponormal 2-variable weighted shift which is both horizontally flat and vertically flat need not be subnormal. In this paper we identify a large class S of flat 2-variable weighted shifts for which 2-hyponormality is equivalent to subnormality. One measure of the size of S is given by the fact that within S there are hyponormal shifts which are not subnormal.(Joint work with R. Curto and J. Yoon)


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.288. (2008.09.19)



¿¬»ç: ÇÑ°æÈÆ (¼­¿ï´ë)

Á¦¸ñ: Noncommutative Lp space and operator system

ÀϽÃ: 2008³â 9¿ù 26ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£


¿¬»ç: ÀÌ»óÈÆ (Ãæ³²´ë)

Á¦¸ñ: Which 2-hyponormal 2-variable weighted shifts are subnormal?

ÀϽÃ: 2008³â 10¿ù 10ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£

ÃÊ·Ï: It is well known that a 2-hyponormal unilateral weighted shift with two equal weights must be flat, and therefore subnormal. By contrast, a 2-hyponormal 2-variable weighted shift which is both horizontally flat

and vertically flat need not be subnormal. In this paper we identify a large class S of flat 2-variable weighted shifts for which 2-hyponormality is equivalent to subnormality. One measure of the size of S is given by

the fact that within S there are hyponormal shifts which are not subnormal.(Joint work with R. Curto and J. Yoon)


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.287. (2008.09.11)



¿¬»ç: ÇãÀ缺 (ÇѾç´ë)

Á¦¸ñ: Hilbert C*-module valued stochastic processes

ÀϽÃ: 2008³â 9¿ù 19ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£


¿¬»ç: ÇÑ°æÈÆ (¼­¿ï´ë)

Á¦¸ñ: Noncommutative Lp space and operator system

ÀϽÃ: 2008³â 9¿ù 26ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£


-19ÀÏ Àú³á¿¡ ÀÛ¿ë¼Ò °³°­ ȸ½ÄÀÌ ÀÖ½À´Ï´Ù.


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.286. (2008.07.07)



¿¬»ç: Á¶ÀÏ¿ì (Ambrose Univ)

Á¦¸ñ: Hilbert Space Operators and Directed Graphs

ÀϽÃ: 7¿ù 11ÀÏ(±Ý) ¿ÀÈÄ 3:00-4:30

Àå¼Ò: »ó»ê°ü 307È£


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.285. (2008.06.13)



2008KOTAC ÈÄ, 6¿ù 23ÀÏ(¿ù)-25ÀÏ(¼ö)¿¡ ¾Æ·¡¿Í °°ÀÌ ÁýÁß°­¿¬ÀÌ ÀÖ½À´Ï´Ù.


¿¬»ç: David Pask (The University of Wollongong)

Á¦¸ñ: The gauge spectral triple of a graph algebra

ÀϽÃ: 6¿ù 23ÀÏ(¿ù), 24ÀÏ(È­) ¿ÀÀü 10½Ã-12½Ã

Àå¼Ò: »ó»ê°ü 301È£


Lecture 1: In this lecture I shall give mainly background material. I shall talk briefly about noncommutative geometry and in particular, the spectral triples introduced by Connes. Then I shall give a description of the basic properties of graph algebras which I shall be drawing upon in the construction of a spectral triple.


Lecture 2: In this lecture I shall present the construction of the gauge spectral triple associated to a graph algebra. This

construction involves many steps, and so will take the entire lecture. If there is time I will indicate some recent generalisations, and point to future directions.


¿¬»ç: Bozejko M (University of Wroclaw)

Á¦¸ñ:

I. "Noncommutative Gaussian random variables and harmonic analysis on the free groups"

II. "q-Fock spaces and q-probability "

III. "Applications to operator spaces"

ÀϽÃ: 6¿ù 23ÀÏ(¿ù)-24ÀÏ(È­) ¿ÀÈÄ 2½Ã-4½Ã, 25ÀÏ(¼ö) ¿ÀÈÄ 1½Ã 30ºÐ-3½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.284. (2008.05.23)



¿¬»ç: ±è»ó¿Á  (ÇѸ²´ë)

Á¦¸ñ: Linear maps preserving operators that are invertible in $A/I$

ÀϽÃ: 2008³â 5¿ù 30ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£



-30ÀÏ Àú³á¿¡ ÀÛ¿ë¼Ò Á¾°­ ȸ½ÄÀÌ ÀÖ½À´Ï´Ù


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.283. (2008.05.17)



¿¬»ç: ÀÌÀÎÇù (George Washington Univ)

Á¦¸ñ: A survey of group actions on their boundaries and related C*-algebras

ÀϽÃ: 2008³â 5¿ù 23ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.282. (2008.05.11)



-´ÙÀ½ÁÖ 5¿ù 16ÀÏ(±Ý)¿¡´Â ¼­¿ï´ë ¼ö¸®°úÇкΠM.E.2008 Çà»ç·Î ÀÎÇÏ¿© ÀÛ¿ë¼Ò ¼¼¹Ì³ª°¡ ¾ø½À´Ï´Ù.


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.281. (2008.05.03)



¿¬»ç: ÇãÀ缺 (ÇѾç´ë)

Á¦¸ñ: Amenable actions and co-amenability

ÀϽÃ: 2008³â 5¿ù 9ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.280. (2008.04.26)



¿¬»ç: ½Åµ¿À± (¼­¿ï½Ã¸³´ë)

Á¦¸ñ: ¿©·¯ °¡Áö ÇÔ¼ö¹æÁ¤½ÄÀÇ ¾ÈÁ¤¼º¿¡ °üÇÏ¿©

ÀϽÃ: 2008³â 5¿ù 2ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£


¿¬»ç: ÇãÀ缺 (ÇѾç´ë)

Á¦¸ñ: Amenable actions and co-amenability

ÀϽÃ: 2008³â 5¿ù 9ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.279. (2008.04.18)



¿¬»ç: ½Åµ¿À± (¼­¿ï½Ã¸³´ë)

Á¦¸ñ: ¿©·¯ °¡Áö ÇÔ¼ö¹æÁ¤½ÄÀÇ ¾ÈÁ¤¼º¿¡ °üÇÏ¿©

ÀϽÃ: 2008³â 5¿ù 2ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£


¿¬»ç: ÇãÀ缺 (ÇѾç´ë)

Á¦¸ñ: Amenable actions and co-amenability

ÀϽÃ: 2008³â 5¿ù 9ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£



- ´ÙÀ½ÁÖ 4¿ù25ÀÏ(±Ý)¿¡´Â ´ëÇѼöÇÐȸ ÀÏÁ¤À¸·Î ÀÎÇÏ¿© ÀÛ¿ë¼Ò´ë¼ö ¼¼¹Ì³ª°¡ ¾ø½À´Ï´Ù. 


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.278. (2008.04.11)



¿¬»ç: Torsten Ehrhardt (POSTECH)

Á¦¸ñ: A Banach algebra method and its application to the asymptotics of determinants.

ÀϽÃ: 2008³â 4¿ù 18ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£


Abstract:

The Strong Szeg"o Limit Theorem (1952) describes the asymptotics of the determinants of Toeplitz matrices for certain "nice" symbols as the matrix size goes to infinity. The original proof relied on the theory of orthogonal polynomial. Later on a generalization of this theorem to the block case based on an operator theoretic proof was given by H. Widom. A few more different proofs of this theorem have been given in the meantime.


I will describe a proof which is based on the construction of certain Banach algebras arising from bounded linear operators on Hilbert space. The idea of the proof extends beyond the Szeg"o Limit Theorem. It can be applied to Toeplitz determinants with certain discontinuous symbols, and to other types of determinants such as those of Toeplitz-plus-Hankel matrices, of Bessel operators, and even of almost Mathieu operators.


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.277. (2008.04.05)



¿¬»ç: ±èÀÎÇö (ÀÎõ´ëÇб³)

Á¦¸ñ: The Fuglede-Putnam Theorem for non-hyponormal operators

ÀϽÃ: 2008³â 4¿ù 11ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.276. (2008.03.29)



¿¬»ç: ȲÀμº (¼º±Õ°ü´ëÇб³)

Á¦¸ñ: Self-commutator of Toeplitz operator

ÀϽÃ: 2008³â 4¿ù 4ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.275. (2008.03.21)



¿¬»ç: ÀÌ»óÈÆ (Ãæ³²´ëÇб³)

Á¦¸ñ: On 2-variable subnormal completion problem

ÀϽÃ: 2008³â 3¿ù 28ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£


--------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.274. (2008.03.15)



¿¬»ç: ÇÑ°æÈÆ (¼­¿ï´ëÇб³)

Á¦¸ñ: Exact associate of C^*-tensor nom II

ÀϽÃ: 2008³â 3¿ù 21ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: »ó»ê°ü 301È£



-´Ù°ú´Â 3½Ã15ºÐºÎÅÍ ÁغñµÉ ¿¹Á¤ÀÔ´Ï´Ù.


---------------------------------------------------------------------------


ÀÛ¿ë¼Ò ¼Ò½Ä No.273. (2008.03.07)



¿¬»ç: ±èÇüÁØ (¼­¿ï´ëÇб³)

Á¦¸ñ: The hyperinvariant subspace problem for quasinilpotent operators III

ÀϽÃ: 2008³â 3¿ù 14ÀÏ ±Ý¿äÀÏ 15½Ã 30ºÐ

Àå¼Ò: ¼öÇаú°Ç¹° 27µ¿ 413È£(Àü»ê½Ç)



-À̹øÇбâ ÀÛ¿ë¼Ò ¼¼¹Ì³ªµµ 3½Ã 30ºÐºÎÅÍ ½ÃÀÛÇÕ´Ï´Ù.

-14ÀÏ Àú³á¿¡ ÀÛ¿ë¼Ò °³°­ ȸ½ÄÀÌ ÀÖ½À´Ï´Ù.

-±èÀÎÇö ¼±»ý´Ô²²¼­ ÀÎõ´ëÇÐ ÀüÀÓ±³¼ö·Î ºÎÀÓÇϼ̽À´Ï´Ù.


(-À̹øÁÖ ¼¼¹Ì³ªÀå¼Ò´Â »ó»ê°ü 301È£°¡ ¾Æ´Õ´Ï´Ù. Âø¿À¾øÀ¸½Ã±æ ¹Ù¶ø´Ï´Ù.)