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Two Main Themes in Number Theory :

1. Study on Prime Numbers

2. Study on Diophantine Equations (A Diophantine equation is an equation

with integer coefficients involving arbitrary number of variables such that its integral

solutions are sought.)

Almost all branches of modern number theory stem from these two themes.

1. Prime Numbers

It is well known that every positive integer can be uniquely factored into a product

of primes. So the prime numbers are the smallest units generating positive integers.

1-1. How many primes are there?

• Theorem. There are infinitely many primes.

(Euclid’s proof) Suppose there are only finitely many primes, say p1, p2, · · · , pn, then

one can deduce an easy contradiction from the number p1p2 · · · pn + 1.

(Euler’s Proof)
∑

p:prime
1
p

= ∞.

• Primes in Arithmetic Progression (Dirichlet, 1837) Let a, d be relatively prime

positive integers. Then there are infinitely many primes in the arithmetic progression :

a, a + d, a + 2d, a + 3d, · · · .

Roughly
1

φ(d)
of primes are in the a.p.
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For d ≥ 2, let p(a, d) be the smallest prime in the a.p. above and define p(d) =

max{p(a, d) | 1 ≤ a ≤ d, gcd(a, d) = 1}. Linnik (1944) proved that p(d) < dL for

some constant L, called Linnik’s constant, independent of d. Kanold (1963) conjectured

L = 2. Chen (1979) proved L ≤ 17, which is the best result so far.

• Prime Number Theorem (Poussin, Hadamard, 1896 - independently) Let π(x) be

the number of primes p ≤ x. Then, π(x) ∼ x
log x

.

Note that PNT implies that pn ∼ n log n, where pn is the n-th prime counted from

p1 = 2.

1-2. Twin Prime Conjecture

• Twin Prime Conjecture : There are infinitely many twin primes. Two primes p, q

are called twin primes if their difference is 2.

• The followings are elementary results deduced from Wilson’s Theorem ((p− 1)! ≡
−1 (mod p) if p is a prime) :

(Clements, 1949) n, n+2 are twin primes ⇐⇒ 4((n−1)!+1)+n ≡ 0 (mod n(n+2)).

(Sergusov, 1971) n, n + 2 are twin primes ⇐⇒ φ(m)σ(m) = (m − 3)(m + 1), where

m = n(n + 2).

• Let π2(x) be the number of primes p such that p ≤ x and p + 2 is also a prime.

Then it is known :

π2(x) ≤ C1C2
x

(log x)2

(

1 + O
( log log x

log x
)

)

where C2 =
∏

p>2(1 − (p − 1)−2) = 0.66016... is the twin-prime constant. Another

constant C1 is conjectured to be 2 by Hardy and Littlewood, but the best result so far

is C1 = 7 + ε obtained by Bombieri, Friedlander, and Iwaniec (1986).

• Brun in 1919 proved an interesting and important result as follows :

B =
∑

p,p+2 : twin primes

(1
p

+
1

p + 2
)

< ∞.

B is now called the Brun’s constant. (B = 1.90216054 · · · .)
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• Chen (1966, published in 1978) : There are infinitely many primes p such that

p + 2 ∈ P2, where P2 is the set of positive integers which are primes or products of two

primes.

• Polignac’s conjecture : For any given positive even integer 2k, there are infinitely

many primes p such that p + 2k is the next prime.

The twin prime conjecture is a special case of Polignac’s conjecture, which is also

open.

In fact, even the following simple question has not been answered yet : For any given

positive integer 2k, do there exist two primes p, q (not necessarily consecutive) whose

difference is 2k?

• Other interesting results on twin primes are :

(Brent, 1976) π2(1011) = 224, 376, 048.

(Dubner, 1985) 107570463× 102250 ± 1 are twin primes.

1-3. Goldbach Conjecture

• Goldbach Conjecture (1742) : Every integer > 5 is a sum of three primes. ⇐⇒
Every even integer ≥ 4 is a sum of two primes.

• Early contributions to Goldbach conjectures are :

(Schinzel, 1959) For any k,m ≥ 2, there exist infinitely many primes p, q for which

2k ≡ p + q (mod m).

(Hardy-Littlewood, 1923 with RH, Vinogradov, 1937 without RH) Every odd integer

n � 0 is a sum of three primes.

• Chen (1966, published in 1978) made a breakthrough : 2k = p + m for a prime p

and m ∈ P2 if 2k � 0.

• Montgomery-Vaughan (1975) : Let G(x) be the number of positive integers 2n ≤ x

such that 2n is not a sum of two primes. Then G(x) < x1−α for some α (0 < α < 1) if

x � 0. Note that this implies limx→∞
G(x)

x
= 0.
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Chen and Pan (1980) proved : 1− α = 1/100 is possible.

Stein and Stein (1965) : Goldbach conjecture is true up to 108.

1-4. Riemann Hypothesis

• Consider the Riemann zeta function ζ(s) =
∑

n n−s, s ∈ C, Re(s) > 1.

It is well known that this function has a meromorphic continuation to the whole

complex plane C with a unique simple pole at s = 1. We still write this extended

function by ζ(s).

This function has zeroes at −2,−4,−6, · · · , which are called trivial zeros of the func-

tion. The famous Riemann Hypothesis is that all the nontrivial zeros of ζ(s) are on the

line
1
2

+ it, which is called the critical line. It is well known that there are no nontrivial

zeros outside region S = {σ + it ∈ C | 0 ≤ σ ≤ 1}, which is called the critical strip.

Zeroes of ζ(s) are closely related to the distribution of primes. But this is just one

of thousands of applications that RH could provide if proved affirmative. If you study

mathematics, you can see this RH pops up everywhere.

• Hardy (1914) : There are infinitely many zeroes of ζ(s) on the critical line.

Selberg (1942) improved this : N(T ) > C
T
2π

log
( T
2π

)

for some constant C (0 < C <

1) if T � 0. Here N(T) is the number of zeros of ζ(s) on the critical line
1
2

+ it such

that 0 < t < T .

• So far, no nontrivial zeroes of ζ(s) has been found outside the critical line.

(Levinson, 1974) At least one-third of nontrivial zeros of ζ(s) are on the critical line.

This has been improved to two-fifths by Conrey (1989).

(Van de Lune, Riele, Winter, 1986) Computed the first 1,500,000,001 nontrivial zeroes

of ζ(s) and showed that they are all simple zeroes.

• Let n = 1, 2, 3, · · · . It is well known that ζ(2n) =
(−1)n+1(2π)2nB2n

2(2n)!
/∈ Q, where

B2n is the 2n-th Bernouille number.
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Ramanujan (1914) gave an ingenious formula for ζ(2n + 1) : If α, β > 0, αβ = π2,

then

α−n(1
2
ζ(2n + 1) +

∞
∑

k=1

k−2n−1

e2αk − 1
)

= β−n(1
2
ζ(2n + 1) +

∞
∑

k=1

k−2n−1

e2βk − 1
)

− 22n
n+1
∑

k=0

(−1)k B2kB2n+2−2k

(2k)!(2n + 2− 2k)!
αn+1−kβk.

He never proved it, rather Berndt gave a complete proof (1977).

Apéry (1981) proved that ζ(3) is irrational. For other positive odd integers this is

not known.

1-5. Other Interesting Open Problems

• Mersenne number : Mn = 2n−1, n = 1, 2, 3, · · · . If Mn is a prime, then it is called

a Mersenne prime, and in this case n should be a prime too. Concerning Mersenne

numbers, the followings are open questions :

(1) Are there infinitely many Mersenne primes?

(2) Are there infinitely many composite Mersenne numbers?

(3) Is every Mersenne number square-free?

(4) Are C1 = M2 = 3, C2 = MC1 = M3 = 7, C3 = MC2 = M7 = 127, C4 = MC3 =

M127, · · · , Cn+1 = MCN , · · · primes? (Catalan’s conjecture)

Note that M13 = 8191 is a prime, but M8191 is a multiple of 338193759479.

As is well known, Mersenne primes are in one to one correspondence with even perfect

numbers : Mp = 2p − 1 ←→ 2p−1(2p − 1). A positive integer is called a perfect number

if its positive proper divisors sum up to itself. 6, 28, 496, 8128, · · · are even perfect

numbers. No odd perfect number has been found yet. So here is another open question.

(5) Are there odd perfect numbers?

I’d rather stop introducing open questions on this subject - there are too many. Also

there are bunches of results on these questions some are beautiful and some are ugly

while some introduce another conjecture · · ·
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There are 31 known Mersenne primes now and M216091 is the largest one. So, there

are 31 known even perfect numbers and the largest one is 2216090(2216091 − 1).

• Fermat number :Fn = 22n
+1, n = 0, 1, 2, · · · . If Fn is a prime, it is called a Fermat

prime. One can easily see that if 2m + 1 is a prime, then m should be of the form 2n.

Fermat thought that Fn are primes for all n. F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 =

65537 are primes and these five are all he could compute. (F5 is a 10 digit number.)

However, F5 = 641×6700417 (Euler, 1732), F6 = 274177×67280421310721 (Landry,

1880), · · · , and no other Fermat primes are found after the first five.

Questions (1), (2), (3) for Mersenne numbers can be asked for Fermat numbers and

all of them are unanswered yet.

Gauss’ famous result concerning ruler and compass construction is closely related to

Fermat primes. His theorem reads : For n ≥ 3, a regular n-gon is ruler and compass

constructible ⇐⇒ n = 2kp1p2 · · · pt, where k, t ≥ 0 and pi are distinct Fermat primes.

• Here are some more open questions on special types of primes:

Are there infinitely many primes whose digits are all 1’s? Rn =
10n − 1

9
are

called repunits. If Rn is a prime, then n is a prime. Only known prime repunits

are R2, R19, R23, R317, R1031, and the last one was found by Dubner (1986).

Are there infinitely many Wilson primes W (p) =
(p− 1)! + 1

p
? Only known Wilson

primes are W (5),W (13), W (563), and the last one was found by Goldberg (1953).

Are there infinitely many primes of the form m2 +1? Or, more generally, of the form

am2 + bm + c?

Are there finitely many primes of the form mm + 1? (Sierpinski) If so, then one can

conclude that there are infinitely many composite Fermat numbers.

• Artin’s conjecture concerning primitive roots modulo odd primes, Dickson’s conjec-

ture concerning linear polynomials (generalized by Sierpinski and Schinzel concerning

irreducible polynomials), prime producing functions, · · ·
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Concerning prime producing function, the following strange polynomial of degree 25

in 26 variables was found by Jones, Sato, Wada, and Wiens (1976) :

P = (k + 2){1− [wz + h + j − q]2 − [(gk + 2g + k + 1)(h + j) + h− z]2

− [2n + p + q + z − e]2 − [16(k + 1)3(k + 2)(n− 1)2 + 1− f2]2

− [e3(e + 2)(a + 1)2 + 1− o2]2 − [(a2 − 1)y2 + 1− x2]2

− [16r2y4(a2 − 1) + 1− u2]2 − [((a + u2(u2 − a))2 − 1)(n + 4dy)2 + 1− (x− cu)2]2

− [n + l + v − y]2 − [(a2 − 1)l2 + 1−m2]2 − [ai + k + 1− l − i]2

− [p + l(a− n− 1) + b(2an + 2a− n2 − 2n− 2)−m]2

− [q + y(a− p− 1) + s(2ap + 2a− p2 − 2p− 2)− x]2

− [z + pl(a− p) + t(2ap− p2 − 1)− pm]2}.

The positive range of this polynomial is equal to the set of all primes!!! (R = 2 +
1
2
{(P − 2) + |P − 2|}.)

• Effective Primality Tests and Factorizations. These are very closely related to

Cryptology and Coding Theory.

2. Diophantine Equations

From the definition of Diophantine equations, you can easily make a conjecture that

there will be infinitely many conjectures on these equations... I will introduce only a

few of them including Fermat’s Last Theorem.

2-1. Sums of Squares

• Is x2+y2 = n solvable? How many solutions are there? How about x2+y2+z2 = n

or x2 + y2 + z2 + w2 = n? These questions are answered by Euler (1754 ; Fermat

claimed he had proved it in 1640), Gauss(1801 ; Legendre 1798?), and Lagrange (1772).

Lagrange theorem reads : Every positive integers is a sum of four integer squares.

• Pell’s Equations : x2 − dy2 = 1, where d is a square free integer. Lagrange (1766)

proved that there are infinitely many solutions. (Fermat also claimed a proof..., and Pell

had little to do with Pell’s equation...) Pell’s equations are very closely related to the
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study of quadratic number fields and the famous Gauss Conjecture on class numbers of

these fields. It also has a close relation with continued fractions.

2-2. Waring’s Problem

• The minimum number of squares to express all positive integers is four (Lagrange).

How about the minimum number of cubes to do the same? · · · More generally, what is

the minimum number of k-th powers necessary to express all positive integers? This is

the Waring’s Problem.

• Hilbert (1909) proved that such a minimum number exists for any k ≥ 1, and

denoted the number by g(k). Waring (1782) himself conjectured that g(3) ≤ 9, g(4) ≤
19. Note that g(1) = 1, g(2) = 4.

• Euler (1862, son of the Euler) proved g(3) ≥ 9, g(4) ≥ 19, g(5) ≥ 37, g(6) ≥ 73, · · ·

Wieferich (1909) : g(3) ≤ 9 to settle g(3) = 9 ; Balasubramanian (1986) : g(4) ≤ 19

to settle g(4) = 19 ; Chen (1964) : g(5) ≤ 37 to settle g(5) = 37 ; Pillai (1940) :

g(6) ≤ 73 to settle g(6) = 73 ; · · ·

According to the works by Dickson (1936), Rubugunday (1942), Niven (1944), one

can determine g(k) for k ≥ 7 : possibly except for finitely many k ≥ 7, g(k) = [(3/2)k]−
2 + 2k.

• Define G(k) be the minimum number of k-th powers necessary to express all positive

integers � 0. Then G(k) ≤ g(k).

G(1) = 1, G(2) = 4, G(4) = 16 are proved. But for other k’s, G(k) are unknown.

Most interesting question is of course about G(3). It is known that 4 ≤ G(3) ≤ 7.

The lower bound is obtained by Maillet (1895) and the upper bound by Linnik (1943).

6 ≤ G(5) ≤ 21, 9 ≤ G(6) ≤ 31, · · ·

2-3. Fermat’s Last Theorem

• (Fermat’s Last Theorem, 1630?) xn + yn = zn has no solutions in nonzero integers

if n ≥ 3.
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One can easily reduce FLT to : xp + yp = zp has no primitive solutions in nonzero

integers if p is a prime ≥ 3. A solution x = a, y = b, z = c is called primitive if

gcd(a, b, c) = 1. (Fermat himself gave a proof of this when n = 4.)

FLT is sometimes divided into two cases : (Case I) is about the solutions a, b, c with

p - abc and (Case II) is about the solutions a, b, c with p | abc. Case II is much harder.

• Pierre de Fermat (1601-1655) was a lawyer and a councilor of Toulous, France.

Although he was an amateur mathematician, he became one of the greatest mathemati-

cians of all time.

Here are some euphuistic descriptions of Fermat : pioneer in analytic geometry and

differential calculus with Decartes ; founder of probability with Pascal ; and above all

the Father of modern number theory.

Fermat carried a Latin translation of ‘Arithmetika’ written (around A.D.250) by Dio-

phantus of Alexandria. He solved numerous unsolved problems in the book or claimed

so and also proposed new problems. He jotted down his proofs and problems on the

margins of the book or on letters sent to famous mathematicians of his time. After his

death, his son Samuel collected Fermat’s works and published two books : ‘Diophanti’

(1670) and ‘Varia Opera Mathematica’ (1679).

By early eighteenth century, the problems that Fermat proved (rather, claimed so)

without proofs or newly proposed were all resolved except FLT. In 1630(?) he wrote in

a margin of his copy of Arithmetika :

“· · · to divide a cube into two cubes, a fourth power, or in general any power what-

ever into two powers of the same exponent above the second is impossible, and I have

assuredly found an admirable proof of this, but the margin is too narrow to contain it.”

• Here’s a brief history of challenging FLT after Fermat:

1770 : Euler proved FLT for p = 3.

1816 : The French Academy announced a prize for solutions to FLT.

1820 : Sophie Germain proved Case I of FLT for p, where 2p+1 is also a prime (such

a prime p is called a Sophie Germain prime and it is not known yet whether there are

infinitely many Sophie Germain primes).
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1825 : Dirichlet, Legendre independently proved FLT for p = 5.

1839 : Lamé proved FLT for p = 7.

1847 : Lamé and Cauchy announced a false proof for FLT.

1850 : Kummer proved FLT for all regular primes. He approached FLT by observing

xp = zp − yp = (z − y)(z − ζpy)(z − ζ2
py) · · · (z − ζp−1

p y), where ζp = e2πi/p. So, the

coefficients are not integers anymore, rather they are algebraic integers in Q(ζp).

The ordinary integers has a unique factorization property (into primes). But algebraic

integers of Q(ζp) may not. As a sort of measurement how badly the unique factorization

property is broken, one can define the class number hp ∈ N of Q(ζp).

Now a prime is called a regular prime if p - hp, and irregular prime otherwise. It is

known that there are infinitely many irregular primes. But it is not known how many

regular primes exist. Experiments with small numbers show there are more regular

primes than irregular primes by ratio about 6 : 4, but you never know what will happen

if the numbers blow up.

Another criterion for the regularity of a prime is : p is regular ⇐⇒ p does not divide

B2, B4, · · · , Bp−3. Only irregular primes ≤ 100 are 37, 59, 67.

Kummer devoted his whole life to FLT. Although he could give only a partial solution,

that was enough to bring him an honorable medal from the French Academy. But the

most important thing about Kummer’s work is that it paved the way for algebraic

number theory.

1908 : The Wolfskehl prize for a solution to FLT was announced.

1909 : Wieferich proved Case I of FLT for p, where p does not divide the Fermat

quotient (2p−1 − 1)/p. (It is not known how many such prime exist. A prime p which

divide the Fermat quotient is called a Wieferich prime. It is not known either how many

Wieferich primes exist.)

1920 : Vandiver proved FLT for certain irregular primes. In particular p = 37, 59, 67

cases were cleared to establish FLT for all p ≤ 100.

1983 : Faltings proved Mordell Conjecture : Any algebraic curve of genus ≥ 2 defined

over Q (or over a number field K) can have only finitely many primitive solutions.

Whatever that means, Fermat curve xp + yp = zp has genus g = (p− 1)(p− 2)/2 ≥ 6

if p ≥ 5. So Faltings’ result implies that the number of primitive solutions is finite. By
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this work, Faltings surprised the mathematical world and received a Fields medal in

1986.

1988 : Miyaoka announced and withdrew a false proof of FLT.

Recently, FLT was checked to be true for primes ( 6= 2) less than 4, 000, 003 by using

computer, and thereby the probability that FLT be false is < 10−24,000,000. (It is known

that if FLT is true for all p, 3 ≤ p ≤ N , then the probability that FLT be false is

< N−(N−3).)

• From 1985, a totally new approach to FLT was attempted by Frey. Assuming p is

a prime > 3 and (u, v, w) is a primitive solution of xp + yp = zp such that u, v, w 6= 0,

Frey constructed an elliptic curve y2 = x(x − up)(x + vp). (One may assume without

loss of generality that u ≡ 3 (mod 4) and v is even.) An elliptic curve is the solution

set of an equation of the form y2 = ax3 + bx2 + cx + d. Now Frey’s idea was that his

elliptic curve, which is now called a Frey curve, possesses too good properties to exist.

He looked at Shimura-Taniyama-Weil Conjecture (STW Conjecture), which has been

one of the most famous problems in Elliptic Curve Theory since its birth in 1955 : Every

elliptic curve is modular. More precisely, one can associate a modular form of weight 2

and level N to each elliptic curve, where N is a positive integer called the conductor of

the elliptic curve.

He thought that one cannot associate such a modular form to his elliptic curve. (I

will skip the detailed explanation on modular forms · · · . Briefly, a modular form is a

function on the upper half of the complex plane whose Fourier coefficients contain a

lot of arithmetic information. And it satisfies a very special transformation property

under linear fractional transformation z 7→ az + b
cz + d

for any
(

a b
c d

)

∈ Γ0(N), namely

f
(az + b
cz + d

)

= f(z)(cz + d)k, where k is a positive integer called the weight.

And there was Serre Conjecture : one can reduce the level N above to 2 if N is even.

(In fact, the conjecture handles more general cases but it’s been restricted to fit in our

purpose. The conductor of Frey curve is N =
∏

q : prime |uvw q, which is even because v

is even.)

But that a modular form of weight 2 and level 2 cannot exist is a well known fact.

So, combining these, Frey (1985) aided by Serre settled that STW Conjecture and

Serre Conjecture together will imply FLT.
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• Ribet (1986) proved Serre Conjecture. So now, STW Conjecture implies FLT.

STW Conjecture was at first Taniyama Conjecture. But later Shimura and Weil added

a partial answer to the original conjecture and reformulated it in a modern language.

• STW Conjecture was regarded as one of the most difficult and deep Conjecture

in Elliptic Curve Theory. After Frey, Serre, and Ribet proved that it implies FLT,

mathematicians thought that they cannot see its proof in their life time except one

British mathematician in Princeton, Andrew Wiles.

• At the age of 10, he met FLT (his father introduced it to him) and was fascinated

by FLT ever since. He said he wasted lots of time on FLT and exhausted before entering

Oxford. After Ph.D. at Cambridge, he went to Harvard and settled at Princeton since

early 1980’s. He studied elliptic curves and STW conjecture. And in 1986, FLT was

brought in front of him again by Frey, Serre, and Ribet. He immediately jumped into

the problem and seven years later he come up with a proof!

He did not prove STW Conjecture in full. He proved a part of it. But that part was

enough to settle FLT. From the start, he aimed exactly that. More precisely, he proved

that there corresponds a modular form of weight 2 and level N to any semistable elliptic

curve of conductor N . Now, one can easily check that Frey curves are semistable.
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