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ABSTRACT. In this article, we provide the complete answer to a question raised by
Kitaoka in his book [K1]. More precisely, we prove that A4 L (4) represents all
but one and D420[2%] represents all but three binary positive even Z-lattices. We
further investigate representations of the binary forms by quinary forms in certain
positive even 2-universal genera of class number 2.

1. INTRODUCTION

In his book [K1], Kitaoka raised a question on representations of binary inte-
gral quadratic forms by the following two quinary positive even integral quadratic
forms:

4
f= 2(2 r? 4 296% — 1%y — Toxz — x3T4) and
i=1
(1.1) A
g = 2(2 xf + 390% — T1To — X1T3 — L1X4 — T1T5 + ToT5 + x3x5).
i=1

These two forms are indistinguishable locally everywhere but not isometric glob-
ally. In fact, the two classes form a genus, and the discriminant of this genus, which
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is 20, is the smallest among the genera of quinary positive even integral quadratic
forms with class number bigger than 1. Since each form represents all binary posi-
tive even integral quadratic forms locally everywhere, the genus is even 2-universal,
that is, every binary positive even integral quadratic form is represented by the
genus and hence by either one of the forms globally. Kitaoka conjectured each
of the two forms above represents all except finitely many binary positive even
integral quadratic forms. In Section 2, we prove that his conjecture holds. More
precisely, we prove that f (and g, respectively) represents all binary positive even
integral quadratic forms with one (and three, respectively) exception(s). This is
quite interesting in the sense that neither form is 2-universal and that the sets of
binary forms represented by the quinary forms f and g, respectively, are explicitly
demonstrated, which seems to be the first such example other than universal forms
when the forms to be represented are not unary. (See [CKR], [CSc|, [KKR], [KKO],
[KO1,2], [O1,2] for recent works on universal forms and related topics.) In Section
3, we further investigate examples of positive even 2-universal genera of quinary
forms of class number 2 whose classes have no exceptions, finitely many excep-
tions, or infinitely many exceptions. From these examples, we may conclude that
all combinations are possible concerning representations of binary forms by such
genera: both classes may represent all binary forms; both may have finitely many
exceptions; one may represent all while the other has finitely or infinitely many
exceptions; one may have finitely many exceptions while the other has infinitely
many.

We shall adopt lattice theoretic language. A Z-lattice L is a finitely generated
free Z-module in R™ equipped with a non-degenerate symmetric bilinear form B,
such that B(L, L) C Z. The corresponding quadratic map is denoted by Q.

For a Z-lattice L = Zey + Zes + - - - + Ze,, with basis e, e, -- ,e,, we write

L= (B(ei;e;)).

By L=1L; L Ly wemean L = L; ® Ly and B(eq,e) =0 for all e; € L1, es € Lo.
We call L diagonal if it admits an orthogonal basis and in this case, we simply
write

L=(Q(e1),Q(ez2), - ,Q(en)),

where {e1,eq,- - ,e,} is an orthogonal basis of L. We call L non-diagonal oth-
erwise. L is called positive definite or simply positive if Q(e) > 0 for any e €
L,e # 0. As usual, dL := det(B(e;, e;)) is called the discriminant of L. We define
RL := R ® L for any commutative ring R containing Z. For a Z-lattice L and
a prime p, we define L, := Z,L and call it the localization of L at p. If {e1, e,
- ,e,} is an orthogonal basis of the quadratic space V = QL or Q,L, we write

V =(Q(e1),Q(e2),---,Q(en))
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for convenience.

Let ¢, L be Z-lattices. We say L represents ¢ if there is an injective linear map
from ¢ into L that preserves the bilinear forms, and write £ — L. Such a map will
be called a representation. A representation is called an isometry if it is surjective.
We say two Z-lattices L, K are isometric if there is an isometry between them, and
write L = K. The set of all Z-lattices that are isometric to L is called the class of
L, denoted by cls(L). We define ¢, — L, and L, = K, in a similar manner over
Zy. The set of all Z-lattices K such that L, = K, for all primes spots p (including
o0) is called the genus of L, denoted by gen(L). The number classes in a genus
is called the class number of the genus (or of any Z-lattice in the genus), which is
known to be finite.

A positive Z-lattice L is called k-universal if L represents all k-ary positive Z-
lattices. L is called even when Q(L) C 2Z and odd otherwise. A positive even
Z-lattice L is called even k-universal if L represents all k-ary positive even Z-
lattices. The genus of L is called (even) k-universal if for any k-ary positive (even)
Z-lattice the genus contains a Z-lattice K that represents it. It is well known that
gen(L) is (even) k-universal if and only if L, represents all k-ary (even) Z,-lattices
for all primes p.

Note that Z-lattices naturally correspond to classic integral quadratic forms,
i.e., quadratic forms with integer coefficients such that coefficients of non-diagonal
terms are multiples of 2. A quadratic form with integer coefficient will be called
non-classic integral or simply integral. In this paper, we always assume the follow-
ing unless stated otherwise:

(1.2) Every Z-lattice is positive even.

This, however, is not at all a restriction as far as the representation theory is
concerned because representations by even Z-lattices correspond to those by (non-
classic) integral quadratic forms via scaling even Z-lattices by 1/2.

We set

(1.3) [a,b, ] := (Z i)

for convenience. For unexplained terminologies, notations, and basic facts about
Z-lattices, we refer the readers to O’Meara [O’M1] and Conway-Sloane [CS1,2].

2. ON KITAOKA’S QUINARY FORMS

Let L be a Z-lattice and a¢,) & Z, be an ideal. For convenience, we’ll say
that L is a(,-maximal if L, is an a(,)-maximal Z,-lattice. Note that for an ideal
a & Z, L is a-maximal if and only if L is a,-maximal for all prime p. One can
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easily check that for every 27Z,-maximal Z-lattice L, ord,(d(L)) < 2 if p is odd,
and orda(d(L)) < 3 if p = 2. Let £ be a binary 2Zs-maximal Z-lattice. Then one
can easily show by direct calculation that /5 is isometric to one of the following
15 binary Zo-lattices:

(2.1) (2,27), (6,67), (2,4a), (26,4v), [2,1,2], [0,1,0], [4,2,4],

where a =1,3,5,7, 3 =3,5, and v=1,5.

In this section, we consider representations of Z-lattices in the genus of A4 L (4),
which corresponds to f in (1.1). (See [K1; Problem 9, p.257], [K2]). The genus
has the smallest discriminant, which is 20, among the genera of quinary Z-lattices
of class number bigger than 1. The other class in the genus is that of D(5), which
corresponds to the class of g in (1.1). Here,

(2.2) D(k) := D44k[2—=] =

for positive integer k, following the notations in [CS1].
Theorem 2.1. A, L (4) represents all binary Z-lattices except [4,2,4].

Proof. Let £ = [a, b, ¢| be a Minkowski reduced binary Z-lattice, i.e., 0 <2b < a < ¢
such that ¢ is 2Zs-maximal. Let L := A4 L (4) and let M := Az 1 (4), N := Ay
be sublattices of L. Both M and N are of class number 1. If /5 £ [0,1,0], [4, 2, 4],
then ¢ — M C L. Hence we may assume that

(2.3) 0y ~ [0,1,0], [4,2,4].

Note that 5 — Ny if £5 ~ [0, 1,0].
If p is an odd prime, then ¢, — N, except when d/, = —5 and S,¢ = —1, where
Sp is the p-adic Hasse symbol. In particular, one can easily check that:

p=1,4 (mod 5) or
(2.4) l, — N, if ¢ p=2,3 (mod 5) and ged(p,a,b,c) =1 or
p = 5 and /5 represents a unit square in Zs.

We put

ls(t,7) : = [a — 4t%,as + b — 4tr, s%a + 2sb + ¢ — 417

(2.5) _ a — 4t? as + b — 4tr
“Nas+b—4tr s*a+2sb+c—4r? )’
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where s,t,r are integers. If s = 0, we simply write ¢(¢,7) instead of ¢y (t,r). Note
that ¢ = £,(0,0) and that

det(¢s(t,7)) = ac — b* — 4t*(s*a + 2sb + ¢) — 4ra + 8tr(as + b).

If ¢5(t,7) — N, then £ — N L (4) = L. Therefore, it suffices to find integers s, t,r
for which Z,(¢,r) is positive such that £4(¢,r) — N.

(a) Let a = 0,3 (mod 5). Note that for any integer s, ifp = 1,4 (mod 5)
or p = 2,5, then (¢4(1,0)), — N,. Let p1,p2,...,pr be all the odd prime
factors of @ — 4 such that p; = 2,3 (mod 5). The possible such primes are
3,7,13,17,23,37,43,---. According to (2.4), it is enough to find an integer s
such that

(i) ged(pips2 - .-k, sa+b) =1 and
(ii) £5(1,0) is positive definite.
Note that

3ac

det(£y(1,0)) = % —b S —A(Pa+ 2sb+ o) 2

“(3a — 16(s2 + |s| + 1)).

= |

In fact, we want to find an integer ¢ for which

(iii) there exists an s € ¥ := {—0,—0 + 1,...,0 — 1,0} such that s satisfies (i).

If £k = 0, then we put ¢ = s = 0. Since a = 0,8 (mod 10), det(ly(1,0)) >
¢(3a —16)/4 > 0. If kK = 1, then we put 0 = 1 and s = 0 or —1 so that
ged(pr, sa + b) = 1. Clearly, £5(1,0) is positive definite. Assume that 2 < k < 4.
If we let 0 = k — 1, then such an s exists in X. Note that

o

det(¢4(1,0)) > Z(S(plpg copp+4)—16(c* +|o| +1)) >0 forall s € X.

Lastly, assume that ¥ > 5. By Lemma 3 in [KKO], we may take o = k2F~1
satisfying the condition (iii). If s € ¥ satisfies the condition (i), then

det(£4(1,0)) = % S 2(3a —16(k2" 1 + 1)2)

C

>
— 4

(3x3x7x13x17x 231 —16(k2" +1)%) > 0.

(b) Let a =4 (mod 5). Note that (¢5(1,0))2 — N2 and that if sa+b is not divisible
by 5, then (¢5(1,0))5 — N5. Let p1,pa, ..., pr be all the odd prime factors of a — 4
such that p; = 2,3 (mod 5) and let py = 5. We replace the condition (i) by

(i") ged(popr - - - Pk, sa +b) = 1.



Then for each £ = 0,1,2,3,4,5, we may take o = 1,1,2,3,6,11, respectively,
satisfying the condition (iii). If a > 24, then ¢,(1,0) is always positive definite and
hence £5(1,0) — N. Let a =4, 14.

a=4,b=0or
¢—M if {a=4,b=2, and c=2 (mod 4) or
(2.6) a=14,b=0 (mod 2),

a=4,b=1or
{— N if
a=14,b=1,3,5.

Furthermore, ¢(1,0) —» N ifa=14,0=7. If a =4 and b = 2, then ¢ =4 (mod 8)
because /5 is 2Zy-maximal Zs-lattice. Hence £(0,1) — N if ¢ # 4. If ¢ = 4, then
[4,2,4] is not represented by A4 L (4). When k > 6, the same argument as in case
(a) works.

(c) Let a =1 (mod 5). This case can also be proved in a quite similar manner as
in case (a) by replacing £5(1,0) by ¢5(5,0). Note that if p = 2,5, then (¢5(5,0)), —
N,. Let’s assume that a > 134 and let p1, pa, ..., pr be all the odd prime factors of
a—100 such that p; = 2,3 (mod 5). For each k, we take o satisfying the condition
(iii) as follows: 0 =0if k=0,0 =k —1if 1 <k <5, and 0 = k2¥"1 if k > 6. In
this case, however, we have to take care separately of the cases when the positive
definiteness of £4(5,0) is not guaranteed. Such cases are:

146, 156, 166, 186, 196, 206, 236, 246, 266 if k = 1
(2.7) a = { 226,256,376 if k=2
646 if k = 3.

Let a = 646 = 2 x 17 x 19. Then ¢ — N if ¢ is not divisible by 17 and ¢(0,1) — N
otherwise. For the remaining cases, we only provide a proof of the case when
a =156 = 3 x4 x 13 and kK = 1 as a sample, because proofs of the other cases
are all alike. If ged(7,b,¢) = 1, then £(5,0) — N. Hence we may assume that b
and c are divisible by 7. Then ¢_;(5,0) — N if it is positive definite, i.e., ¢ > 280.
Therefore it suffices to check the following cases:

(2.8) c =168, 182, 196, 210, 224, 238, 252, 266.

By brute force computation, one can show that:

¢— N if ¢ = 224, 238, 266,
(2.9) 0(1,0) > N if ¢ = 196,

0(0,1) — N if c = 168,182,210, 252.
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(d) Let @ = 2 (mod 5). If ¢5 ~ [0,1,0], then (¢54(2,0)), — N, for p = 2,5. So,
this case can also be proved in a similar manner as in case (a) by replacing (1, 0)
by 45(2,0). Let p1,pa,...,pr be all the odd prime factors of a — 16 such that
p; = 2,3 (mod 5). The rest resembles the case (c) with a few exceptional cases
that can easily be taken care of. The exceptional cases are when a = 12 and when
a = 42,62 with k = 1. Let ¢5 ~ [4,2,4], i.e., a,c =4 (mod 8) and b =2 (mod 4).
Note that a = 12 (mod 40). Since d(£s(1,0)) = ac — b* — 4c — 4(s%a + 2sb), there
exists an integer sgp € {—1,0,1} such that (Is,(1,0))s5 is a unimodular Zs-lattice.
Therefore for all integers ¢, (¢5;45,(1,0))5 — N5. Let p1,pa,...,pr be all the odd
prime factors of a — 4 such that p; = 2,3 (mod 5). The proof is similar to that of
case (a) if we replace the condition (iii) by

(iii") there exists an s € ¥ = {—50 + sg, —5(c — 1) + so, ..., So,...,D0 + S} such
that s satisfies (i).

We may take ¢ = 0,1,1,2,3,4,5 for k = 0,1,2,3,4,5,6, respectively, and take
o = k2*=1if k > 7. For each s € ¥’ satisfying the condition (i), £5(1,0) is positive
except the following cases:

(2.10) a=12 or 52 <a <228 with k=1,2 or 110 < a < 708 with k = 3.

Note that for any integer a such that 110 < a < 708 and a = 2 (mod 10), a — 4
cannot have three distinct odd prime factors that are non-square units in Zs. The
rest resembles the case (c).

It only remains to consider sublattices of [4,2,4] of even index, which are not
27Zo-maximal anymore. But none of these can be an exception because (4, 12), the
unique sublattice of [4,2,4] of index 2, is represented by L. This completes the
proof. [

Theorem 2.2. D(5) represents all binary Z-lattices except three. The exceptions
are [2,1,4],[4,1,4], and [8,1,8].

Proof. Let £ = [a,b,c] be a Minkowski’s reduced binary 2Zs-maximal and let
I(5) := 14 L (5). Then

(2.11) D) =1(5):={zxeI(5)|Q(x) =0 (mod 2)}.
Therefore, ¢ — D(5) if and only if £ — I(5) for a binary Z-lattice ¢. If /® Qs is not

a hyperbolic plane, then ¢ — Iy — I(5). Hence we may assume that ¢ ~ [0, 1, 0].
We put

(2.12) ﬂ@rw:M—Sﬂﬁ—5ﬁm—5ﬂ%=(

7
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If we can choose integers t,r such that d(¢(¢,r)) = 1,3,5 (mod 8) and 4(¢,r) is
positive, then £(t,r) — I, and hence ¢ — Iy L (5).

If c£0 (mod 8) and a > 8, then ¢(1,0) — I4. Similarly, if a Z 0 (mod 8) and
a > 8, then ¢(0,1) — I4. When a = 2,4, 6, one can easily check that £(0,1) — I4
provided that ¢ > 8. The first two exceptions are obtained from brute force
computation among the remaining possibilities.

We now assume that a = c¢ =0 (mod 8). Note that a — 204+ ¢ =2 (mod 4). If

a—>5 —a+b >

(2.13) [a—57—a+bva_2b+c]:(—a+b a—2b+c

is positive definite, then ¢ — I, L (5). It is easy to check that the Z-lattice (2.13)
is always positive definite except when a = ¢ = 8 and b = 1, which is the third
exception.

It only remains to consider sublattices of [2,1,4],[4,1,4], and [8,1,8] of even
index. But none of them can be an exception because

(2,14), [4,2,8], [4,2,16], (6,10), (14,18), [8,2,32],
the only sublattices of index 2, are all represented by D(5). This proves the

theorem. O

Remark 2.3. Theorems 2.1 and 2.2 provide an example of an even 2-universal
genus of quinary Z-lattices of class number 2 such that both classes in the genus
represent all but finitely many binary Z-lattices.

3. OTHER EXAMPLES

In this section, we investigate some other even 2-universal genera of quinary
Z-lattices of class number 2 concerning representations of binary Z-lattices.
For a positive integer k, let

(3.1) I(k) =14 L (k)
and define
(3.2) I(k) ={rxely L (k)| Q(x)=0 (mod 2)}.

It is easy to check that

(33) I(k)° = {D a L (k) if kis even,

D(k) if k is odd.
8



The class number of I(k)¢ is 1 for k = 1,2,3 (see [N1]). From this and local
representation theory follows that I(1)¢, 1(2)¢, 1(3)¢ are all even 2-universal. If k
is divisible by 4, then (I(k)¢)2 is not locally even 2-universal at the dyadic prime
2 because it cannot represent [0, 1,0] over Zs. We now know that I(5)¢ = D(5)
has three exceptions by Theorem 2.2. (See (2.2) for D(5).) Note that

(3.4) 1(7)¢ = D(7).

Proposition 3.1. (a) I(7)¢ represents all binary Z-lattices except eleven. The
eleven exceptions are as follows:

s 2,1,4], [4,1,4], [4,1,6], [6,3,8], [8,1,8], [8,1,16],
(3:5) 8,1,24], [8,1,32], [8,1,40], [8,3,8], [8,3,16].
(b) 1(6)¢ represents all binary Z-lattices except the following:
(3.6) [4,1,¢], [8,1,8], [8,1,12], [8,1,16], [8,3,8],

where ¢ is any positive even integer.

(c) I(10)¢ represents all binary Z-lattices except the following:

16,1,16], [16,3,16], [16,1,20], [12,1,36], [12,1,40], [12,1,44],

[
. [12,1,48], [10,5,12], [8,1,¢1], [8,3,¢1], [6,1,8], [6,3,8],
(3.7) [4,1,¢5], [2,1,8], [12,b1,12], [12,b1,16], [12,b;,20], [12,bs,24],
12, bs, 28], [12,b2,32], [4,2,8]*, [8,2,8]*, [16,2,16]",
where c1,cy are any positive even integers satisfying ¢; > 8, by = 1,3,5 and

bo = 1,3. The x-marked ones at the end are those which are not 2Zo-maximal
while the others are all 279-maximal.

Proof. (a) One can apply a similar argument to that of Theorem 2.2 to conclude
that I(7)° represents all but the listed eleven exceptions.

(b)-(c) Let k =6 or 10. Assume that ¢ = [a, b, ] is a Minkowski’s reduced binary
279-maximal Z-lattice. From the local representation theory [O’M2] and the fact
that the class number of Dy is 1, it follows ¢ — Dy — I(k)® provided that £ ® Qo
is not isometric to a hyperbolic plane So we may assume that ¢5 ~ [0,1,0]. Since
one of the following Z-lattices

(3.8) l[a—Fk,b,c|, [a,b,c— k|, [a—Fk,b—Fk,c— k|

is isometric to [2, 1, 2] over Zs, we may conclude £ — I(k)€ provided that a > 8k/3.
9



The rest of the proof for the case when £ = 6 is almost identical to that for the
case when k = 10. So, we only prove the latter case, which involves more subcases.
By brute force computation, one can obtain those exceptions listed without *-mark
from a < 26 < 80/3.

We now assume that £ is not 2Zs-maximal. Let £ be one of the sublattices with
index 2 of the listed exceptions without *-mark. We only provide a proof for the
case when ¢ is a sublattice of [4, 1, ¢] with index 2, as a sample, because proofs for
the other cases are all alike. Observe that ¢ is isometric to one of the following
Z-lattices:

(3.9) [16,2,c], [4,2,4c], [16,10,c + 6]

In the first case, by comparing the discriminant of each lattice, we may conclude
that at least one of the Z-lattices [6,2,¢], [6,—8,c — 10] is not contained in the
hyperbolic plane. Therefore, £ — I(10)¢ provided that ¢ > 22. The *-marked
exception [16, 2, 16] is deduced when ¢ < 20. For the second case, since [4,2,4¢c —
10] is represented by D4, we obtain ¢ — I(10)¢ provided that ¢ > 4. The *-
marked exception [4,2,8] is deduced when ¢ = 2. We now consider the third
case. Observe that ¢ ~ [16,10,c + 6] ~ [16,6, c + 2]. So, at least one of Z-lattices
[6,6,c+ 2],[6,—4,c — 8] is represented by D4 and hence by 1(10)¢ provided that
c > 12. There is no exception, however, can be deduced when ¢ < 10. Instead, the
remaining *-marked exception [8,2,8] is deduced as a sublattice of [2,1,8] with
index 2 in a similar manner. So far, we have obtained three x-marked exceptions
as follows:

(3.10) [4,2,8] C [4,1,2], [8,2,8] C [2,1,8], [16,2,16] C [4,1,16].

In fact, these are the only exceptions that are sublattices of index 2 of the listed
exceptions without x-mark.

In order to finish the proof, it suffices to show that there is no other exception
¢ for which ¢5 is not 2Zs-maximal. To this end, we suppose that ¢ is an exception
other than the x-marked ones such that /5 is not 2Zs-maximal. Then we may
regard ¢ as a sublattice of finite index of a x-marked exception. If ¢ is of even
index, then /¢ is contained in a sublattice of index 2. The possible sublattices of
index 2 of the x-marked exceptions are:

(3.11)  [16,4,8],[4,4,32],[16,12,16], [32, 4, 8], [32, 20, 20], [64, 4, 16], [64, 36, 36].

However, these are all represented by I(10)¢ and hence ¢ — I(10)¢, which is
absurd. If ¢ is of odd index, then a = ¢ = b —2 = 0 (mod 4). So one of the
Z-lattices in (3.8) for k = 10 is represented by D4 and hence ¢ — I(10)¢ provided
that a > 28, which is again absurd. By brute force computation, one can show
that no such £ is possible when a < 24. [
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Observe that both I(6)¢ and I(10)¢ have infinitely many exceptions. Let us
consider the genus of Ay L (2,2,2). The genus has the second smallest discrimi-
nant, which is 24, among the genera of quinary Z-lattices of class number bigger
than 1.

Theorem 3.2. (a) The genus of Ay L (2,2,2) has class number 2, where the
other class in the genus is that of 1(6)¢ = D4 L (6). Furthermore, the genus is
even 2-universal.

(b) Ay L (2,2,2) is even 2-universal.

(c) I(6)¢ has infinitely many exceptions. More precisely, 1(6)¢ represents all binary
Z-lattices except those listed in (3.6).

Proof. (a) follows from [N1].
(b) Since Ay L (1,1,2), which is positive but not even, is 2-universal (see [KKO]),
As 1 (2,2,2) is even 2-universal.

(c) See Proposition 3.1-(b). O

Next, we consider the genus A3 | [2,1,4] whose discriminant is 28.

Theorem 3.3. (a) The genus of Az 1 [2,1,4] has class number 2, where the other
class is that of 1(7)¢ = D(7). Furthermore, the genus is even 2-universal.

(b) As L [2,1,4] is even 2-universal.
(c) 1(7)¢ has exactly eleven exceptions as listed in (3.5).
Proof. (a) follows from (3.4) and [N1].

(b) Let L := A3z 1 [2,1,4]. L contains a sublattice A3 L (4) of class number 1.
Let ¢ be any binary Z-lattice. In order to show ¢ — L, we may assume that £ is a
27Z-maximal Z-lattice. We also assume that ¢ = [a, b, ¢] is Minkowski’s reduced. If
ly # [0,1,0], [4,2,4], then { — A3 1 (4) — L by Theorems 2 and 3 in [O’M2].
Hence we may assume that

(3.12) ly ~ [0,1,0], [4,2,4].

We now take another sublattice A L (2) of L of class number 1. If o % (2, —4),
then ¢o — (A3 L (2))2. For an odd prime p, £, — (Asz L (2)), except when
dl, = —2 and S,(¢{) = —1. In particular, if either 2 € Z;Q or 2 ¢ Z;;2 with
p1ged(a,b,c), then ¢, — (As L (2)),. We proceed as in Theorem 2.1.

(b-1) Let a < 18. If a = 2,4, 8,14, 16, then one can easily check that £ — A3 L (4)
or { — Ag 1 (2). The same conclusion follows if ged(a, b, ¢) is not divisible by any
11



odd prime. Furthermore, if b = 0, then ¢ — As L (4). Therefore the remaining
possibilities for ¢ are:

(3.13) [6,3,6¢],[10,5,10c], [12,3,6¢], [12,6,10d], [18, 3,6¢], [18, 6, 10c], [18, 9, 6c].
We provide a proof only for ¢ = [12, 6, 6¢|, for the other £’s can be treated similarly.
Note that ¢ = 2 (mod 4) because ¢ is primitive. If ¢ > 6, then [12,6,6¢ — 14] —
As L (2). If ¢ = 2, then [12,6,12] — A3 L (2).

(b-2) Let a > 20. For integers s and t, we put

1442
(3.14) L(t) :=[a — 14t* sa + b, 82a+2$b+C] = (a C T ) )

sa+b sla+2sb+c
Since lo ~ [0,1,0] or [4,2,4], (¢s(1))2 — (A3 L (2))2 for any integer s. Hence if
we find an s for which ¢4(1) is positive definite and (¢s(1)), represents a unit for
every odd prime p, then the theorem follows.

Let p1,pa, ..., pxr be all odd prime factors of a — 14 such that 2 is a non-square
unit in Z,, for all j = 1,2,... k. If either no such prime exists or p; cannot
divide ged(b, ¢) for all j, then £5(1) — Az L (2) and hence { — Az 1 (2,14) — L.
Note that ¢y(1) is positive for a > 20. If £ = 1 and p; divides ged(b, ¢), then
l_1(1) = As L (2). Let 2 < k < 5. Then there exists an s, —k+1<s <k —1,
such that sa + b is not divisible by p1ps - - - px. Hence for this s, £5(1) — Az L (2)
except when k = 2 and a = 44. The exceptional case can be treated in a similar
manner as above. We omit the proof of the case when k& > 6, which is almost
identical to that of the case (a) of Theorem 2.1.

(c) See Proposition 3.1-(a). O

We now consider the genus of As L (2,6) whose discriminant is 48.

Theorem 3.4. (a) The genus of As L (2,6) has class number 2, where the other
class is that of Ay L (2,2,4). Furthermore, the genus is even 2-universal.

(b) Both As L (2,6) and Az L (2,2,4) are even 2-universal.

Proof. (a) follows from [N1].

(b) Let £ = [a, b, c] be a Minkowski’s reduced binary 2Z-maximal Z-lattice. Firstly,
we prove the even 2-universality of L := Ay 1 (2,2,4). Since I3 L (2,3) is 2-
universal (see [KKO]), every binary Z-lattice ¢ with s(I) C 2Z can be represented

by L' := (2,2,2,4,6) C L. So we may assume that b is odd. We now consider a
quaternary sublattice M := Ay | (2,2) of L, whose class number is 1. Note that

p=2or
p # £5 (mod 12) or
p =45 (mod 12) and ged(p,a,b,c) =1 or

p = 3 and [3 represents a unit square in Zs.
12
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Define for integers s and t,

_ 442
(3.16) Es(t)3:[a—4t278a+b,82a+2sb+0]=(a N o >

sa+b s?a+2sb+c

It is easy to check that (¢5(1))s — M3 if a = 2 (mod 3) and that (¢5(3))s — Ms3
if a = 1 (mod 3) for all s. Furthermore, if @ = 0 (mod 3) and either b or c is
not divisible by 3, then there exists an so € {0,1} such that (¢3,15,(1))s — Ms.
Then we may take a suitable s such that (¢5(t)), — (L1), for all p = £5 (mod 12)
by using an almost same argument as in Theorem 2.1. We now assume that
a=0b=c=0 (mod 3). Since ¢ is primitive, {3 ~ (3,3). From the fact that the
class number of N := Ay 1 (2,6) is 1 follows that £ — N — L. Therefore, L is
even 2-universal.

Secondly, we prove the 2-universality of K := A3 L (2,6). Note that both L’
and N are contained in K. So we may assume that b is odd and that at least one
of a,b,c is not divisible by 3. We consider the sublattice H := A3 1 A; of K,
whose class number is 1. Observe that

p=2,3or
(317) 4, — H, if { p# 3 (mod 8) or

p is not a prime given above and gcd(p, a,b,c) = 1.
Define for integer s

(3.18) ls(1) :=[a— 6,50+ b, s°a+ 2sb+ ] = (a—6 sa +b >

sa+b s?a+2sb+c

Then it is easy to check that (¢5(1)), — K, for p = 2,3 and p # +3 (mod 8). The
rest resembles the above. [

Finally, we consider the genus of J L (2) whose discriminant is 40, where

1

_— o O N
= o N O
=N OO
>~ = =

following the notations in [CS1].

Theorem 3.5. (a) The genus of J L (2) has class number 2, where the other
class is that of 1(10)¢ = Dy L (10). Furthermore, the genus is even 2-universal.

(b) J L (2) represents all binary Z-lattices but one, which is [2,1,2].
13



(c) I(10)¢ has infinitely many exceptions. More precisely, I1(10)¢ represents all
binary Z-lattices except those listed in (3.7).

Proof. Proof (a) follows from [N1].

(b) Let L :=J L (2) and let ¢ = [a, b, c] be a Minkowski’s reduced 2Zs-maximal
binary Z-lattice. Note that (2,2,2,2) — L. Soif {5 % [2,1,2], [0,1,0], then ¢ — L.
Hence we may assume that

(3.20) 02 [2,1,2] or [0,1,0].
If we define K := I, 1 [2,1,3] L (2), then
(3.21) L=K°={z e K|Q(x)=0 (mod 2)}.

So ¢ — L if and only if £ — K. We consider the genus of (1,1, 5,5) that consists of
cls((1,1,5,5)) and cls([2,1,3] L [2,1,3]) (see [N2]). Note that both (1,1,5,5,10)
and [2,1,3] L [2,1,3] L (10) are represented by K.

If b5 ~ [2,1,2] and ¢5 % (1,2), then ¢ is represented by gen((1,1,5,5)). So,
¢ — K and hence ¢ — L.

If 65 ~[0,1,0] and ¢5 % (1,2), then at least one of

(3.22) [a —10,b,¢|, [a—10,b—10,c— 10], [a,b,c — 10]

is represented by gen((1,1,5,5)) provided that a > 28. This implies that £ — L.
By brute force computation, one can show that there is no exception when a < 26.

We now assume that ¢5 ~ (1,2). The class number of J is 1 and Jo ~ [0,1,0] L
[4,2,4] and J5 ~ (1,1,2,10). Note that if (2) — /5, then /5 — J5. For the
primes p # 2,5, if p = £1 (mod 5), then ¢, — J,, and if p = £2 (mod 5) and
ged(p,a,b,c) =1, then £, — J,.

Firstly, we assume that ¢ ~ [2,1,2]. Since ¢5 ~ (1,2), a is not divisible by 5
and a =2 (mod 4). We let

(3.23) ls(t) := [a — 2t%, sa + b, s* + 2sb + ¢].

If (¢5(5)), — J, for all p (including o), then ¢ — L. Note that for p = 2,5,
(¢5(5))p — Jp. Let p1,pa2,...pr be odd prime factors of a — 50 such that p; = £2
(mod 5). As in the proof of Theorem 2.1, we can find an integer s such that
ged(sa + b,p1py ... pr) = 1 for large a. The rest resembles the proof of Theorem
2.1, which we omit. For small a, we ought to check whether ¢ — L or not by brute
force computation as we did in Theorem 2.1. The only exception [2,1,2] comes
from this case.

Secondly, assume that ¢ ~ [0,1,0]. Note that (¢5(2))2 — J2. Let p1,po,...pk
be odd prime factors of a — 8 such that p; = £2 (mod 5). Note that there exists
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at least one s,—1 < s < 1 such that d(¢4(2)) is not divisible by 5 and that
there exist at least three s’s, —2 < s < 2 such that d(¢4(2)) is not divisible
by 5. So, if Kk = 0 and a > 34 or kK = 1 and a > 76, then ¢4(2) — J for
some s. If k = 2 and a > 140, then ¢4(2) — J for some s,—3 < s < 3. If
k = 3, then (4(2) — J for some s,—5 < s < 5. If k = 4, {,(2) — J for some
s € {—154s0, —10+sp, ..., S0,--.,15+50}. The case when k > 5 can be treated in
a similar manner as in Theorem 2.1 and is omitted. For the remaining cases with
bounded a, one can show that there are no exceptions by brute force computation.

The only sublattice of [2,1,2] of index 2 is (2,6), which is represented by L.
This completes the proof.

(c) See Proposition 3.1-(c). O

We know that there are only finitely many quinary positive odd Z-lattices that
represent all binary positive Z-lattices (not necessarily even) except only finitely
many (see [02]). Such Z-lattices are said to be almost 2-universal. Observe that
this implies that almost all 2-universal genera have the property that all classes in
the genera have infinitely many exceptions. One such example is the following:

gen((1,1,1,2,6)) = {cls((1,1,1,2,6)), «cls((1,2,2) L [2,1,2])}.
Note that
(3,3%%1) £ (1,1,1,2,6) and (3,3%) A (1,2,2) L [2,1,2],

for all nonnegative integers t.

In this vein, although we couldn’t find an even 2-universal genus of quinary
Z-lattices of class number 2 such that both classes in the genus have infinitely
many exceptions, we believe that there are only finitely many quinary almost even
2-universal Z-lattices.
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